1
|
Lahiri H, Israeli E, Krugliak M, Basu K, Britan-Rosich Y, Yaish TR, Arkin IT. Potent Anti-Influenza Synergistic Activity of Theobromine and Arainosine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618054. [PMID: 39416015 PMCID: PMC11482935 DOI: 10.1101/2024.10.13.618054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Influenza represents one of the biggest health threats facing humanity. Seasonal epidemics can transition to global pandemics, with cross-species infection presenting a continuous challenge. Although vaccines and several anti-viral options are available, constant genetic drifts and shifts vitiate any of the aforementioned prevention and treatment options. Therefore, we describe an approach targeted at the virus's channel to derive new anti-viral options. Specifically, Influenza A's M2 protein is a well-characterized channel targeted for a long time by aminoadamantane blockers. However, widespread mutations in the protein render the drugs ineffective. Consequently, we started by screening a repurposed drug library against aminoadamantane-sensitive and resistant M2 channels using bacteria-based genetic assays. Subsequent in cellulo testing and structure-activity relationship studies yielded a combination of Theobromine and Arainosine, which exhibits stark anti-viral activity by inhibiting the virus's channel. The drug duo was potent against H1N1 pandemic swine flu, H5N1 pandemic avian flu, aminoadamantane-resistant and sensitive strains alike, exhibiting activity that surpassed Oseltamivir, the leading anti-flu drug on the market. When this drug duo was tested in an animal model, it once more outperformed Oseltamivir, considerably reducing disease symptoms and viral RNA progeny. In conclusion, the outcome of this study represents a new potential treatment option for influenza alongside an approach that is sufficiently general and readily applicable to other viral targets.
Collapse
|
2
|
Basu K, Krugliak M, Arkin IT. Viroporins of Mpox Virus. Int J Mol Sci 2023; 24:13828. [PMID: 37762131 PMCID: PMC10530900 DOI: 10.3390/ijms241813828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mpox or monkeypox virus (MPXV) belongs to the subclass of Poxviridae and has emerged recently as a global threat. With a limited number of anti-viral drugs available for this new virus species, it is challenging to thwart the illness it begets. Therefore, characterizing new drug targets in the virus may prove advantageous to curbing the disease. Since channels as a family are excellent drug targets, we have sought to identify viral ion channels for this virus, which are instrumental in formulating channel-blocking anti-viral drugs. Bioinformatics analyses yielded eight transmembranous proteins smaller or equal to 100 amino acids in length. Subsequently, three independent bacteria-based assays have pointed to five of the eight proteins that exhibit ion channel activity. Finally, we propose a tentative structure of four ion channels from their primary amino acid sequences, employing AlphaFold2 and molecular dynamic simulation methods. These results may represent the first steps in characterizing MPXV viroporins en route to developing blockers that inhibit their function.
Collapse
Affiliation(s)
| | | | - Isaiah T. Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; (K.B.); (M.K.)
| |
Collapse
|
3
|
Benazraf A, Arkin IT. Exhaustive mutational analysis of severe acute respiratory syndrome coronavirus 2 ORF3a: An essential component in the pathogen's infectivity cycle. Protein Sci 2023; 32:e4528. [PMID: 36468608 PMCID: PMC9795539 DOI: 10.1002/pro.4528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022]
Abstract
Detailed knowledge of a protein's key residues may assist in understanding its function and designing inhibitors against it. Consequently, such knowledge of one of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)'s proteins is advantageous since the virus is the etiological agent behind one of the biggest health crises of recent times. To that end, we constructed an exhaustive library of bacteria differing from each other by the mutated version of the virus's ORF3a viroporin they harbor. Since the protein is harmful to bacterial growth due to its channel activity, genetic selection followed by deep sequencing could readily identify mutations that abolish the protein's function. Our results have yielded numerous mutations dispersed throughout the sequence that counteract ORF3a's ability to slow bacterial growth. Comparing these data with the conservation pattern of ORF3a within the coronavirinae provided interesting insights: Deleterious mutations obtained in our study corresponded to conserved residues in the protein. However, despite the comprehensive nature of our mutagenesis coverage (108 average mutations per site), we could not reveal all of the protein's conserved residues. Therefore, it is tempting to speculate that our study unearthed positions in the protein pertinent to channel activity, while other conserved residues may correspond to different functionalities of ORF3a. In conclusion, our study provides important information on a key component of SARS-CoV-2 and establishes a procedure to analyze other viroporins comprehensively.
Collapse
Affiliation(s)
- Amit Benazraf
- Department of Biological ChemistryThe Alexander Silberman Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Isaiah T. Arkin
- Department of Biological ChemistryThe Alexander Silberman Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
4
|
Searching for Blockers of Dengue and West Nile Virus Viroporins. Viruses 2022; 14:v14081750. [PMID: 36016372 PMCID: PMC9413451 DOI: 10.3390/v14081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Flavivirus infections, such as those caused by dengue and West Nile viruses, emerge as new challenges for the global healthcare sector. It has been found that these two viruses encode ion channels collectively termed viroporins. Therefore, drug molecules that block such ion-channel activity can serve as potential antiviral agents and may play a primary role in therapeutic purposes. We screened 2839 FDA-approved drugs and compounds in advanced experimental phases using three bacteria-based channel assays to identify such ion channel blockers. We primarily followed a negative genetic screen in which the channel is harmful to the bacteria due to excessive membrane permeabilization that can be relieved by a blocker. Subsequently, we cross-checked the outcome with a positive genetic screen and a pH-dependent assay. The following drugs exhibited potential blocker activities: plerixafor, streptomycin, tranexamic acid, CI-1040, glecaprevir, kasugamycin, and mesna were effective against dengue virus DP1. In contrast, idasanutlin, benzbromarone, 5-azacytidine, and plerixafor were effective against West Nile Virus MgM. These drugs can serve as future antiviral therapeutic agents following subsequent in vitro and in vivo efficacy studies.
Collapse
|
5
|
Identification of SARS-CoV-2 E Channel Blockers from a Repurposed Drug Library. Pharmaceuticals (Basel) 2021; 14:ph14070604. [PMID: 34201587 PMCID: PMC8308726 DOI: 10.3390/ph14070604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2, the etiological agent of the COVID-19 pandemic, is a member of the Coronaviridae family. It is an enveloped virus with ion channels in its membrane, the most characterized of which is the E protein. Therefore, in an attempt to identify blockers of the E channel, we screened a library of 2839 approved-for-human-use drugs. Our approach yielded eight compounds that exhibited appreciable activity in three bacteria-based channel assays. Considering the fact that the E channel is the most conserved of all SARS-CoV-2 proteins, any inhibitor of its activity may provide an option to curb the viral spread. In addition, inhibitors can also enhance our ability to understand the exact role played by the E protein during the infectivity cycle. Finally, detailed electrophysiological analyses, alongside in vitro and in vivo studies will be needed to establish the exact potential of each of the blockers identified in our study.
Collapse
|
6
|
Tomar PPS, Krugliak M, Arkin IT. Blockers of the SARS-CoV-2 3a Channel Identified by Targeted Drug Repurposing. Viruses 2021; 13:v13030532. [PMID: 33807095 PMCID: PMC8004704 DOI: 10.3390/v13030532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
The etiological agent of the COVID-19 pandemic is SARS-CoV-2. As a member of the Coronaviridae, the enveloped pathogen has several membrane proteins, of which two, E and 3a, were suggested to function as ion channels. In an effort to increase our treatment options, alongside providing new research tools, we have sought to inhibit the 3a channel by targeted drug repurposing. To that end, using three bacteria-based assays, we screened a library of 2839 approved-for-human-use drugs and identified the following potential channel-blockers: Capreomycin, Pentamidine, Spectinomycin, Kasugamycin, Plerixafor, Flumatinib, Litronesib, Darapladib, Floxuridine and Fludarabine. The stage is now set for examining the activity of these compounds in detailed electrophysiological studies and their impact on the whole virus with appropriate biosafety measures.
Collapse
|
7
|
Singh Tomar PP, Arkin IT. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem Biophys Res Commun 2020; 530:10-14. [PMID: 32828269 PMCID: PMC7305885 DOI: 10.1016/j.bbrc.2020.05.206] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 02/01/2023]
Abstract
COVID-19 is one of the most impactful pandemics in recorded history. As such, the identification of inhibitory drugs against its etiological agent, SARS-CoV-2, is of utmost importance, and in particular, repurposing may provide the fastest route to curb the disease. As the first step in this route, we sought to identify an attractive and viable target in the virus for pharmaceutical inhibition. Using three bacteria-based assays that were tested on known viroporins, we demonstrate that one of its essential components, the E protein, is a potential ion channel and, therefore, is an excellent drug target. Channel activity was demonstrated for E proteins in other coronaviruses, providing further emphasis on the importance of this functionally to the virus' pathogenicity. The results of a screening effort involving a repurposing drug library of ion channel blockers yielded two compounds that inhibit the E protein: Gliclazide and Memantine. In conclusion, as a route to curb viral virulence and abate COVID-19, we point to the E protein of SARS-CoV-2 as an attractive drug target and identify off-label compounds that inhibit it.
Collapse
Affiliation(s)
- Prabhat Pratap Singh Tomar
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 91904, Israel
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
8
|
Virtual Screening Identifies Chebulagic Acid as an Inhibitor of the M2(S31N) Viral Ion Channel and Influenza A Virus. Molecules 2020; 25:molecules25122903. [PMID: 32599753 PMCID: PMC7356874 DOI: 10.3390/molecules25122903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
The increasing prevalence of drug-resistant influenza viruses emphasizes the need for new antiviral countermeasures. The M2 protein of influenza A is a proton-gated, proton-selective ion channel, which is essential for influenza replication and an established antiviral target. However, all currently circulating influenza A virus strains are now resistant to licensed M2-targeting adamantane drugs, primarily due to the widespread prevalence of an M2 variant encoding a serine to asparagine 31 mutation (S31N). To identify new chemical leads that may target M2(S31N), we performed a virtual screen of molecules from two natural product libraries and identified chebulagic acid as a candidate M2(S31N) inhibitor and influenza antiviral. Chebulagic acid selectively restores growth of M2(S31N)-expressing yeast. Molecular modeling also suggests that chebulagic acid hydrolysis fragments preferentially interact with the highly-conserved histidine residue within the pore of M2(S31N) but not adamantane-sensitive M2(S31). In contrast, chebulagic acid inhibits in vitro influenza A replication regardless of M2 sequence, suggesting that it also acts on other influenza targets. Taken together, results implicate chebulagic acid and/or its hydrolysis fragments as new chemical leads for M2(S31N) and influenza-directed antiviral development.
Collapse
|
9
|
Tomar PPS, Oren R, Krugliak M, Arkin IT. Potential Viroporin Candidates From Pathogenic Viruses Using Bacteria-Based Bioassays. Viruses 2019; 11:v11070632. [PMID: 31324045 PMCID: PMC6669592 DOI: 10.3390/v11070632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Viroporins are a family of small hydrophobic proteins found in many enveloped viruses that are capable of ion transport. Building upon the ability to inhibit influenza by blocking its archetypical M2 H+ channel, as a family, viroporins may represent a viable target to curb viral infectivity. To this end, using three bacterial assays we analyzed six small hydrophobic proteins from biomedically important viruses as potential viroporin candidates. Our results indicate that Eastern equine encephalitis virus 6k, West Nile virus MgM, Dengue virus 2k, Dengue virus P1, Variola virus gp170, and Variola virus gp151 proteins all exhibit channel activity in the bacterial assays, and as such may be considered viroporin candidates. It is clear that more studies, such as patch clamping, will be needed to characterize the ionic conductivities of these proteins. However, our approach presents a rapid procedure to analyze open reading frames in other viruses, yielding new viroporin candidates for future detailed investigation. Finally, if conductivity is proven vital to their cognate viruses, the bio-assays presented herein afford a simple approach to screen for new channel blockers.
Collapse
Affiliation(s)
- Prabhat Pratap Singh Tomar
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 91904, Israel
| | - Rivka Oren
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 91904, Israel
| | - Miriam Krugliak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 91904, Israel
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 91904, Israel.
| |
Collapse
|
10
|
Santner P, Martins JMDS, Kampmeyer C, Hartmann-Petersen R, Laursen JS, Stein A, Olsen CA, Arkin IT, Winther JR, Willemoës M, Lindorff-Larsen K. Random Mutagenesis Analysis of the Influenza A M2 Proton Channel Reveals Novel Resistance Mutants. Biochemistry 2018; 57:5957-5968. [PMID: 30230310 DOI: 10.1021/acs.biochem.8b00722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influenza M2 proton channel is a major drug target, but unfortunately, the acquisition of resistance mutations greatly reduces the functional life span of a drug in influenza treatment. New M2 inhibitors that inhibit mutant M2 channels otherwise resistant to the early adamantine-based drugs have been reported, but it remains unclear whether and how easy resistance could arise to such inhibitors. We have combined a newly developed proton conduction assay with an established method for selection and screening, both Escherichia coli-based, to enable the study of M2 function and inhibition. Combining this platform with two groups of structurally different M2 inhibitors allowed us to isolate drug resistant M2 channels from a mutant library. Two groups of M2 variants emerged from this analysis. A first group appeared almost unaffected by the inhibitor, M_089 (N13I, I35L, and F47L) and M_272 (G16C and D44H), and the single-substitution variants derived from these (I35L, L43P, D44H, and L46P). Functionally, these resemble the known drug resistant M2 channels V27A, S31N, and swine flu. In addition, a second group of tested M2 variants were all still inhibited by drugs but to a lesser extent than wild type M2. Molecular dynamics simulations aided in distinguishing the two groups where drug binding to the wild type and the less resistant M2 group showed a stable positioning of the ligand in the canonical binding pose, as opposed to the drug resistant group in which the ligand rapidly dissociated from the complex during the simulations.
Collapse
Affiliation(s)
- Paul Santner
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - João Miguel da Silva Martins
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Caroline Kampmeyer
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Jonas S Laursen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Amelie Stein
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Christian A Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark.,Center for Biopharmaceuticals, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Isaiah T Arkin
- Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Givat-Ram, Jerusalem 91904 , Israel
| | - Jakob R Winther
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Santner P, Martins JMDS, Laursen JS, Behrendt L, Riber L, Olsen CA, Arkin IT, Winther JR, Willemoës M, Lindorff-Larsen K. A Robust Proton Flux (pHlux) Assay for Studying the Function and Inhibition of the Influenza A M2 Proton Channel. Biochemistry 2018; 57:5949-5956. [PMID: 30230312 DOI: 10.1021/acs.biochem.8b00721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The M2 protein is an important target for drugs in the fight against the influenza virus. Because of the emergence of resistance against antivirals directed toward the M2 proton channel, the search for new drugs against resistant M2 variants is of high importance. Robust and sensitive assays for testing potential drug compounds on different M2 variants are valuable tools in this search for new inhibitors. In this work, we describe a fluorescence sensor-based assay, which we termed "pHlux", that measures proton conduction through M2 when synthesized from an expression vector in Escherichia coli. The assay was compared to a previously established bacterial potassium ion transport complementation assay, and the results were compared to simulations obtained from analysis of a computational model of M2 and its interaction with inhibitor molecules. The inhibition of M2 was measured for five different inhibitors, including Rimantadine, Amantadine, and spiro type compounds, and the drug resistance of the M2 mutant variants (swine flu, V27A, and S31N) was confirmed. We demonstrate that the pHlux assay is robust and highly sensitive and shows potential for high-throughput screening.
Collapse
Affiliation(s)
- Paul Santner
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - João Miguel da Silva Martins
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Jonas S Laursen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Lars Behrendt
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Leise Riber
- Department of Biology, Section for Microbiology , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Christian A Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark.,Center for Biopharmaceuticals, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Isaiah T Arkin
- Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat-Ram , Jerusalem 91904 , Israel
| | - Jakob R Winther
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| |
Collapse
|
12
|
Mapping the Resistance Potential of Influenza's H + Channel against an Antiviral Blocker. J Mol Biol 2016; 428:4209-4217. [PMID: 27524470 DOI: 10.1016/j.jmb.2016.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 01/20/2023]
Abstract
The development of drug resistance has long plagued our efforts to curtail viral infections in general and influenza in particular. The problem is particularly challenging since the exact mode of resistance may be difficult to predict, without waiting for untreatable strains to evolve. Herein, a different approach is taken. Using a novel genetic screen, we map the resistance options of influenza's M2 channel against its aminoadamantane antiviral inhibitors. In the process, we could identify clinically known resistant mutations in a completely unbiased manner. Additionally, novel mutations were obtained, which, while known to exist in circulating viruses, were not previously classified as drug resistant. Finally, we demonstrated the approach against an anti-influenza drug that has not seen clinical use, identifying several resistance mutations in the process. In conclusion, we present and employ a method to predict the resistance options of influenza's M2 channel to antiviral agents ahead of clinical use and without medical hazard.
Collapse
|
13
|
Wang J, Li F, Ma C. Recent progress in designing inhibitors that target the drug-resistant M2 proton channels from the influenza A viruses. Biopolymers 2016; 104:291-309. [PMID: 25663018 DOI: 10.1002/bip.22623] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/24/2015] [Indexed: 12/15/2022]
Abstract
Influenza viruses are the causative agents for seasonal influenza, which results in thousands of deaths and millions of hospitalizations each year. Moreover, sporadic transmission of avian or swan influenza viruses to humans often leads to an influenza pandemic, as there is no preimmunity in the human body to fight against such novel strains. The metastable genome of the influenza viruses, coupled with the reassortment of different strains from a wide range of host origins, leads to the continuous evolution of the influenza virus diversity. Such characteristics of influenza viruses present a grand challenge in devising therapeutic strategies to combat influenza virus infection. This review summarizes recent progress in designing small molecule inhibitors that target the drug-resistant influenza A virus M2 proton channels and highlights the contribution of mechanistic studies of proton conductance to drug discovery. The lessons learned throughout the course of M2 drug discovery might provide insights for designing inhibitors that target other therapeutically important ion channels.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721.,BIO5 Institute, University of Arizona, Tucson, AZ, 85721
| | - Fang Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
14
|
Taube R, Alhadeff R, Assa D, Krugliak M, Arkin IT. Bacteria-based analysis of HIV-1 Vpu channel activity. PLoS One 2014; 9:e105387. [PMID: 25272035 PMCID: PMC4182682 DOI: 10.1371/journal.pone.0105387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/21/2014] [Indexed: 02/04/2023] Open
Abstract
HIV-1 Vpu is a small, single-span membrane protein with two attributed functions that increase the virus' pathogenicity: degradation of CD4 and inactivation of BST-2. Vpu has also been shown to posses ion channel activity, yet no correlation has been found between this attribute and Vpu's role in viral release. In order to gain further insight into the channel activity of Vpu we devised two bacteria-based assays that can examine this function in detail. In the first assay Vpu was over-expressed, such that it was deleterious to bacterial growth due to membrane permeabilization. In the second and more sensitive assay, the channel was expressed at low levels in K+ transport deficient bacteria. Consequently, Vpu expression enabled the bacteria to grow at otherwise non permissive low K+ concentrations. Hence, Vpu had the opposite impact on bacterial growth in the two assays: detrimental in the former and beneficial in the latter. Furthermore, we show that channel blockers also behave reciprocally in the two assays, promoting growth in the first assay and hindering it in the second assay. Taken together, we investigated Vpu's channel activity in a rapid and quantitative approach that is amenable to high-throughput screening, in search of novel blockers.
Collapse
Affiliation(s)
- Robert Taube
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, Israel
- Institue of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raphael Alhadeff
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, Israel
| | - Dror Assa
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, Israel
| | - Miriam Krugliak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, Israel
| | - Isaiah T. Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
15
|
Claridge JK, Aittoniemi J, Cooper DM, Schnell JR. Isotropic bicelles stabilize the juxtamembrane region of the influenza M2 protein for solution NMR studies. Biochemistry 2013; 52:8420-9. [PMID: 24168642 DOI: 10.1021/bi401035m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The protein M2 from influenza is a tetrameric membrane protein with several roles in the viral life cycle. The transmembrane helix (TMH) of M2 has proton channel activity that is required for unpackaging the viral genome. Additionally a C-terminal juxtamembrane region includes an amphipathic helix (APH) important for virus budding and scission. The APH interacts with membranes and is required for M2 localization to the site of viral budding. As a step toward obtaining high resolution information on the structure and lipid interactions of the M2 APH, we sought to develop a fast tumbling bicelle system, which would make studies of M2 in a membrane-like environment by solution NMR possible. Since M2 is highly sensitive to the solubilizing environment, an M2 construct containing the APH was studied under micelle and bicelle conditions while maintaining the same detergent and lipid headgroup chemistry to facilitate interpretation of the spectroscopic results. The sequence from a human H1N1 "swine flu" isolate was used to design an M2 construct (swM2) similar in amino acid sequence to currently circulating viruses. Comparison of swM2 solubilized in either the diacyl detergent 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) or a mixture of DHPC and the lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (q = 0.4) indicated that the largest changes were a decrease in helicity at the N-terminus of the TMH and a decrease in dynamics for the juxtamembrane linker residues connecting the TMH and the APH. Whereas the linker region is very dynamic and the amide protons are rapidly exchanged with water protons in micelles, the dynamics and water exchange are largely suppressed in the presence of lipid. Chemical shift changes and relaxation measurements were consistent with an overall stabilization of the linker region, with only modest changes in conformation or environment of the APH itself. Such changes are consistent with differences observed in structures of M2 in lipid bilayers and detergent micelles, indicating that the bicelle system provides a more membrane-like environment.
Collapse
Affiliation(s)
- Jolyon K Claridge
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
16
|
Alhadeff R, Assa D, Astrahan P, Krugliak M, Arkin IT. Computational and experimental analysis of drug binding to the Influenza M2 channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1068-73. [PMID: 24016551 DOI: 10.1016/j.bbamem.2013.07.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 01/23/2023]
Abstract
The Influenza Matrix 2 (M2) protein is the target of Amantadine and Rimantadine which block its H(+) channel activity. However, the potential of these aminoadamantyls to serve as anti-flu agents is marred by the rapid resistance that the virus develops against them. Herein, using a cell based assay that we developed, we identify two new aminoadamantyl derivatives that show increased activity against otherwise resistant M2 variants. In order to understand the distinguishing binding patterns of the different blockers, we computed the potential of mean force of the drug binding process. The results reveal that the new derivatives are less mobile and bind to a larger pocket in the channel. Finally, such analyses may prove useful in designing new, more effective M2 blockers as a means of curbing influenza. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Raphael Alhadeff
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Dror Assa
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Peleg Astrahan
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Miriam Krugliak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
17
|
Balgi AD, Wang J, Cheng DYH, Ma C, Pfeifer TA, Shimizu Y, Anderson HJ, Pinto LH, Lamb RA, DeGrado WF, Roberge M. Inhibitors of the influenza A virus M2 proton channel discovered using a high-throughput yeast growth restoration assay. PLoS One 2013; 8:e55271. [PMID: 23383318 PMCID: PMC3562233 DOI: 10.1371/journal.pone.0055271] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/22/2012] [Indexed: 11/18/2022] Open
Abstract
The M2 proton channel of the influenza A virus is the target of the anti-influenza drugs amantadine and rimantadine. The effectiveness of these drugs has been dramatically limited by the rapid spread of drug resistant mutations, mainly at sites S31N, V27A and L26F in the pore of the channel. Despite progress in designing inhibitors of V27A and L26F M2, there are currently no drugs targeting these mutated channels in clinical trials. Progress in developing new drugs has been hampered by the lack of a robust assay with sufficient throughput for discovery of new active chemotypes among chemical libraries and sufficient sensitivity to provide the SAR data essential for their improvement and development as drugs. In this study we adapted a yeast growth restoration assay, in which expression of the M2 channel inhibits yeast growth and exposure to an M2 channel inhibitor restores growth, into a robust and sensitive high-throughput screen for M2 channel inhibitors. A screen of over 250,000 pure chemicals and semi-purified fractions from natural extracts identified 21 active compounds comprising amantadine, rimantadine, 13 related adamantanes and 6 non-adamantanes. Of the non-adamantanes, hexamethylene amiloride and a triazine derivative represented new M2 inhibitory chemotypes that also showed antiviral activity in a plaque reduction assay. Of particular interest is the fact that the triazine derivative was not sufficiently potent for detection as an inhibitor in the traditional two electrode voltage clamp assay for M2 channel activity, but its discovery in the yeast assay led to testing of analogues of which one was as potent as amantadine.
Collapse
Affiliation(s)
- Aruna D. Balgi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Daphne Y. H. Cheng
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chunlong Ma
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Tom A. Pfeifer
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Yoko Shimizu
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Hilary J. Anderson
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lawrence H. Pinto
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Robert A. Lamb
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
An assay suitable for high throughput screening of anti-influenza drugs. PLoS One 2013; 8:e54070. [PMID: 23326573 PMCID: PMC3542334 DOI: 10.1371/journal.pone.0054070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/10/2012] [Indexed: 02/06/2023] Open
Abstract
We developed a novel drug screening system for anti-influenza A virus by targeting the M2 proton channel. In the SPP (Single Protein Production) system, E. coli cell growth occurs only in the presence of effective M2 channel inhibitors, and thus simple measurement of cell growth was used as readouts for drug screening. Two potential inhibitors for M2 (V27A) mutant were verified using this method, which inhibit both the mutant and wild-type M2 channels.
Collapse
|
19
|
Hong M, DeGrado WF. Structural basis for proton conduction and inhibition by the influenza M2 protein. Protein Sci 2012; 21:1620-33. [PMID: 23001990 DOI: 10.1002/pro.2158] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 12/20/2022]
Abstract
The influenza M2 protein forms an acid-activated and drug-sensitive proton channel in the virus envelope that is important for the virus lifecycle. The functional properties and high-resolution structures of this proton channel have been extensively studied to understand the mechanisms of proton conduction and drug inhibition. We review biochemical and electrophysiological studies of M2 and discuss how high-resolution structures have transformed our understanding of this proton channel. Comparison of structures obtained in different membrane-mimetic solvents and under different pH using X-ray crystallography, solution NMR, and solid-state NMR spectroscopy revealed how the M2 structure depends on the environment and showed that the pharmacologically relevant drug-binding site lies in the transmembrane (TM) pore. Competing models of proton conduction have been evaluated using biochemical experiments, high-resolution structural methods, and computational modeling. These results are converging to a model in which a histidine residue in the TM domain mediates proton relay with water, aided by microsecond conformational dynamics of the imidazole ring. These mechanistic insights are guiding the design of new inhibitors that target drug-resistant M2 variants and may be relevant for other proton channels.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
20
|
Leonov H, Astrahan P, Krugliak M, Arkin IT. How Do Aminoadamantanes Block the Influenza M2 Channel, and How Does Resistance Develop? J Am Chem Soc 2011; 133:9903-11. [DOI: 10.1021/ja202288m] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hadas Leonov
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Peleg Astrahan
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Miriam Krugliak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Isaiah T. Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
21
|
Structural basis for the function and inhibition of an influenza virus proton channel. Nature 2008; 451:596-9. [PMID: 18235504 DOI: 10.1038/nature06528] [Citation(s) in RCA: 493] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 12/06/2007] [Indexed: 12/15/2022]
Abstract
The M2 protein from influenza A virus is a pH-activated proton channel that mediates acidification of the interior of viral particles entrapped in endosomes. M2 is the target of the anti-influenza drugs amantadine and rimantadine; recently, resistance to these drugs in humans, birds and pigs has reached more than 90% (ref. 1). Here we describe the crystal structure of the transmembrane-spanning region of the homotetrameric protein in the presence and absence of the channel-blocking drug amantadine. pH-dependent structural changes occur near a set of conserved His and Trp residues that are involved in proton gating. The drug-binding site is lined by residues that are mutated in amantadine-resistant viruses. Binding of amantadine physically occludes the pore, and might also perturb the pK(a) of the critical His residue. The structure provides a starting point for solving the problem of resistance to M2-channel blockers.
Collapse
|