1
|
Joichi T, Yoshida H, Katsukura H, Zhai L, Watanabe D, Yamamoto N, Haneoka M, Nakamura S, Kawamoto A, Nakazawa H, Suka M. Altered Ceramide Profile of Facial Sensitive Skin: Disordered Intercellular Lipid Structure Is Linked to Skin Hypersensitivity. J Cosmet Dermatol 2025; 24:e70154. [PMID: 40176380 PMCID: PMC11965967 DOI: 10.1111/jocd.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Although sensitive skin (SS) is a syndrome characterized by cutaneous hypersensitivity to environmental factors, its pathophysiology remains elusive. AIMS We aimed to explore the characteristics of ceramides (CERs) and intercellular lipid (ICL) structures of individuals with and without facial SS and their relationship with skin hypersensitivity. PATIENTS/METHODS Healthy Japanese females were divided into SS or non-SS groups based on self-perception and lactic acid stinging test (LAST). Stratum corneum (SC) lipids were analyzed using a liquid chromatograph-mass spectrometer, and the orthorhombic-hexagonal lateral packing structure of ICLs was assessed using electron diffraction. RESULTS According to the mean LAST score, individuals with SS (n = 48) had mild-to-moderate skin hypersensitivity. SS exhibited not significantly but slightly impaired skin barrier function (p = 0.072) and lower levels of CER[NH], [NP], [EOS], [EOH] (all p < 0.05), and [EOP] (p = 0.073) in the SC compared with non-SS (n = 18). Notably, the CER[NP]/[NS] ratio, a marker of skin barrier function, was positively correlated with the orthorhombic-hexagonal lateral packing ratio of ICLs (p = 0.002), whereas it was negatively correlated with the LAST score (p = 0.015) and the interleukin (IL)-1 receptor antagonist/IL-1α ratio (p = 0.003) in the SC, an indicator of chronic inflammation. Moreover, corneocyte size was reduced in SS (p < 0.001), suggesting inferior SC maturation, and was positively correlated with the CER[NP]/[NS] (p < 0.001) and the orthorhombic-hexagonal ratios (p = 0.011). CONCLUSIONS Individuals with SS showed an abnormal CER profile, particularly the altered CER[NP]/[NS] ratio, which was in turn associated with disordered ICL structure and skin hypersensitivity. Abnormal epidermal turnover may be an underlying mechanism of the abnormalities.
Collapse
Affiliation(s)
- Taisei Joichi
- Skin Care Products ResearchKao CorporationOdawaraKanagawaJapan
| | | | | | - Lili Zhai
- Skin Care Products ResearchKao CorporationOdawaraKanagawaJapan
| | | | | | - Mai Haneoka
- Analytical Science ResearchKao CorporationTochigiJapan
| | - Shun Nakamura
- Analytical Science ResearchKao CorporationTochigiJapan
| | - Akane Kawamoto
- Biological Science ResearchKao CorporationOdawaraKanagawaJapan
| | | | - Motoaki Suka
- Skin Care Products ResearchKao CorporationOdawaraKanagawaJapan
| |
Collapse
|
2
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Fernandes E, Lopes CM, Lúcio M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug-Membrane Biophysical Interactions. Pharmaceutics 2024; 16:807. [PMID: 38931927 PMCID: PMC11207520 DOI: 10.3390/pharmaceutics16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.
Collapse
Affiliation(s)
- Eduarda Fernandes
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carla M. Lopes
- FFP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS—Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200–150 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, MedTech–Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Fluhr JW, Moore DJ, Lane ME, Lachmann N, Rawlings AV. Epidermal barrier function in dry, flaky and sensitive skin: A narrative review. J Eur Acad Dermatol Venereol 2024; 38:812-820. [PMID: 38140732 DOI: 10.1111/jdv.19745] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
The stratum corneum (SC)-the outermost layer of the epidermis-is the principal permeability and protective barrier of the skin. Different components of the SC, including corneocytes, natural moisturizing factor, a variety of enzymes and their inhibitors, antimicrobial peptides and lipids, work interactively to maintain barrier function. The main barrier properties of the SC are the limitation of water loss and the prevention of infection and contact with potentially harmful exogenous factors. Although the SC functions consistently as a protective barrier throughout the body, variations in functions and morphology occur across body sites with age and skin type. Healthy SC function also depends on the interplay between the chemosensory barrier, the skin's microbiome and the innate immune system. Dysregulation of SC barrier function can lead to the development of skin disorders, such as dry, flaky or sensitive skin, but the complete underlying pathophysiology of these are not fully understood. This review provides insight into the current literature and emerging themes related to epidermal barrier changes that occur in the context of dry, flaky and sensitive skin. Additional studies are needed to further elucidate the underlying aetiology of dry, flaky and sensitive skin and to provide tailored treatment.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Institute of Allergology IFA Charité Universitätsmedizin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | | | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | | | - Anthony V Rawlings
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
- AVR Consulting Ltd., Northwich, UK
| |
Collapse
|
5
|
Yang C, Peng X, Shi Y, Zhang Y, Feng M, Tian Y, Zhang J, Cen S, Li Z, Dai X, Jing Z, Shi X. Umbilical therapy for promoting transdermal delivery of topical formulations: Enhanced effect and underlying mechanism. Int J Pharm 2024; 652:123834. [PMID: 38262583 DOI: 10.1016/j.ijpharm.2024.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
Umbilical paste therapy is a promising method to promote transdermal drug delivery of topical formulations. This work investigated the effect and mechanism of transdermal drug delivery through the umbilical skin. The transdermal permeation studies showed the phenomenon of higher cumulative penetration and faster penetration rates for drug through the umbilical skin compared with non-umbilical skin, namely umbilical pro-permeability. This special transdermal permeability of drugs is influenced by their molecular weight, logP value, ability to form hydrogen bonds, and molecular volume. The underlying mechanism of umbilical pro-permeability was elucidated from unique structure and regulation the effect of drugs on microcirculation in the umbilical skin. Mechanistic studies revealed that this phenomenon was not only associated with the structural and physiological properties of the skin but also to the interactions between drugs and different skin layers. The umbilical pro-permeation is attributed to the thinner stratum corneum layer, differences in stratum corneum lipid composition and keratin structure, and lower levels of intercellular tight junction proteins in the viable epidermis and dermis layer of the skin. Our research indicated that umbilical paste therapy enhanced the transdermal delivery and absorption of drugs by stimulating local blood flow through mast cell activation. Surprisingly, skin temperature modulation and calcitonin gene-related peptide and substance P levels did not appear to significantly affect this process. In conclusion, umbilical drug administration, as a straightforward and non-invasive approach to enhance transdermal drug delivery, presents novel concepts for continued investigation and practical implementation of transdermal drug delivery systems.
Collapse
Affiliation(s)
- Chang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanshuang Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingying Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - MinFang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuting Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianmin Zhang
- Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Shuai Cen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingxing Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102488, China
| | - Zhenlong Jing
- Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102488, China.
| |
Collapse
|
6
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Kim J, Kim BE, Berdyshev E, Bronova I, Bin L, Bae J, Kim S, Kim HY, Lee UH, Kim MS, Kim H, Lee J, Hall CF, Hui-Beckman J, Chang Y, Bronoff AS, Hwang D, Lee HY, Goleva E, Ahn K, Leung DYM. Staphylococcus aureus causes aberrant epidermal lipid composition and skin barrier dysfunction. Allergy 2023; 78:1292-1306. [PMID: 36609802 DOI: 10.1111/all.15640] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Staphylococcus (S) aureus colonization is known to cause skin barrier disruption in atopic dermatitis (AD) patients. However, it has not been studied how S. aureus induces aberrant epidermal lipid composition and skin barrier dysfunction. METHODS Skin tape strips (STS) and swabs were obtained from 24 children with AD (6.0 ± 4.4 years) and 16 healthy children (7.0 ± 4.5 years). Lipidomic analysis of STS samples was performed by mass spectrometry. Skin levels of methicillin-sensitive and methicillin-resistant S. aureus (MSSA and MRSA) were evaluated. The effects of MSSA and MRSA were evaluated in primary human keratinocytes (HEKs) and organotypic skin cultures. RESULTS AD and organotypic skin colonized with MRSA significantly increased the proportion of lipid species with nonhydroxy fatty acid sphingosine ceramide with palmitic acid ([N-16:0 NS-CER], sphingomyelins [16:0-18:0 SM]), and lysophosphatidylcholines [16:0-18:0 LPC], but significantly reduced the proportion of corresponding very long-chain fatty acids (VLCFAs) species (C22-28) compared to the skin without S. aureus colonization. Significantly increased transepidermal water loss (TEWL) was found in MRSA-colonized AD skin. S. aureus indirectly through interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, and IL-33 inhibited expression of fatty acid elongase enzymes (ELOVL3 and ELOVL4) in HEKs. ELOVL inhibition was more pronounced by MRSA and resulted in TEWL increase in organotypic skin. CONCLUSION Aberrant skin lipid profiles and barrier dysfunction are associated with S. aureus colonization in AD patients. These effects are attributed to the inhibition of ELOVLs by S. aureus-induced IL-1β, TNF-α, IL-6, and IL-33 seen in keratinocyte models and are more prominent in MRSA than MSSA.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Irina Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Jaewoong Bae
- R&D Institute, BioEleven Co., Ltd., Seoul, Korea
| | - Seokjin Kim
- R&D Institute, BioEleven Co., Ltd., Seoul, Korea
| | - Hye-Young Kim
- Department of Pediatrics, Medical Research Institute of Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Un Ha Lee
- Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Myoung Shin Kim
- Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Hyunmi Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jinyoung Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | - Yunhee Chang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | | | - Dasom Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Hae-Young Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
8
|
Lemaire G, Olivero M, Rouquet V, Moga A, Pagnon A, Cenizo V, Portes P. Neryl acetate, the major component of Corsican Helichrysum italicum essential oil, mediates its biological activities on skin barrier. PLoS One 2023; 18:e0268384. [PMID: 36867611 PMCID: PMC9983847 DOI: 10.1371/journal.pone.0268384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Corsican Helichrysum italicum essential oil (HIEO) is characterized by high concentrations of neryl acetate, and we previously demonstrated that Corsican HIEO increases the expression of genes that are part of the differentiation complex (involucrin, small proline rich proteins, late cornified envelope, S100 protein family). The biological activities of HIEO and neryl acetate (NA) were compared to identify how NA contributes to HIEO activity on human skin. NA, as a part component of HIEO, was tested on skin explant models for 24 hours and 5 days in comparison with HIEO. We analyzed the biological regulations in the skin explant by transcriptomic analysis, skin barrier protein immunofluorescence, lipid staining and ceramide analysis by liquid chromatography-mass spectrometry. Transcriptomic analysis revealed that 41.5% of HIEO-modulated genes were also regulated by NA and a selected panel of genes were confirmed by qquantitative reverse transcription PCR analysis. Those genes are involved in epidermal differentiation, skin barrier formation and ceramide synthesis. Involucrin (IVL), involved in formation of the cornified envelope (CE), was upregulated at both gene and protein levels after 24 hours and 5 days respectively. After 5 days of treatment, total lipids and ceramides were also increased. Our results demonstrate that NA mediates a large part of Corsican HIEO activity on skin barrier formation.
Collapse
Affiliation(s)
| | | | | | - Alain Moga
- QIMA Life Sciences–Synelvia, Labège, France
| | | | | | - Pascal Portes
- Laboratoires M&L SA–Groupe L’Occitane, Manosque, France
| |
Collapse
|
9
|
Shamaprasad P, Frame CO, Moore TC, Yang A, Iacovella CR, Bouwstra JA, Bunge AL, McCabe C. Using molecular simulation to understand the skin barrier. Prog Lipid Res 2022; 88:101184. [PMID: 35988796 PMCID: PMC10116345 DOI: 10.1016/j.plipres.2022.101184] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Skin's effectiveness as a barrier to permeation of water and other chemicals rests almost entirely in the outermost layer of the epidermis, the stratum corneum (SC), which consists of layers of corneocytes surrounded by highly organized lipid lamellae. As the only continuous path through the SC, transdermal permeation necessarily involves diffusion through these lipid layers. The role of the SC as a protective barrier is supported by its exceptional lipid composition consisting of ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs) and the complete absence of phospholipids, which are present in most biological membranes. Molecular simulation, which provides molecular level detail of lipid configurations that can be connected with barrier function, has become a popular tool for studying SC lipid systems. We review this ever-increasing body of literature with the goals of (1) enabling the experimental skin community to understand, interpret and use the information generated from the simulations, (2) providing simulation experts with a solid background in the chemistry of SC lipids including the composition, structure and organization, and barrier function, and (3) presenting a state of the art picture of the field of SC lipid simulations, highlighting the difficulties and best practices for studying these systems, to encourage the generation of robust reproducible studies in the future. This review describes molecular simulation methodology and then critically examines results derived from simulations using atomistic and then coarse-grained models.
Collapse
Affiliation(s)
- Parashara Shamaprasad
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Chloe O Frame
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Timothy C Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Alexander Yang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Joke A Bouwstra
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, the Netherlands
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America; School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
10
|
Shamaprasad P, Moore TC, Xia D, Iacovella CR, Bunge AL, McCabe C. Multiscale Simulation of Ternary Stratum Corneum Lipid Mixtures: Effects of Cholesterol Composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7496-7511. [PMID: 35671175 PMCID: PMC9309713 DOI: 10.1021/acs.langmuir.2c00471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular dynamics simulations of mixtures of the ceramide nonhydroxy-sphingosine (NS), cholesterol, and a free fatty acid are performed to gain molecular-level understanding of the structure of the lipids found in the stratum corneum layer of skin. A new coarse-grained force field for cholesterol was developed using the multistate iterative Boltzmann inversion (MS-IBI) method. The coarse-grained cholesterol force field is compatible with previously developed coarse-grained force fields for ceramide NS, free fatty acids, and water and validated against atomistic simulations of these lipids using the CHARMM force field. Self-assembly simulations of multilayer structures using these coarse-grained force fields are performed, revealing that a large fraction of the ceramides adopt extended conformations, which cannot occur in the single bilayer in water structures typically studied using molecular simulation. Cholesterol fluidizes the membrane by promoting packing defects, and an increase in cholesterol content is found to reduce the bilayer thickness due to an increase in interdigitation of the C24 lipid tails, consistent with experimental observations. Using a reverse-mapping procedure, a self-assembled coarse-grained multilayer system is used to construct an equivalent structure with atomistic resolution. Simulations of this atomistic structure are found to closely agree with experimentally derived neutron scattering length density profiles. Significant interlayer hydrogen bonding is observed in the inner layers of the atomistic multilayer structure that are not found in the outer layers in contact with water or in equivalent bilayer structures. This work highlights the importance of simulating multilayer structures, as compared to the more commonly studied bilayer systems, to enable more appropriate comparisons with multilayer experimental membranes. These results also provide validation of the efficacy of the MS-IBI derived coarse-grained force fields and the framework for multiscale simulation.
Collapse
Affiliation(s)
- Parashara Shamaprasad
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN, USA, 37235-1604
| | - Timothy C. Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN, USA, 37235-1604
| | - Donna Xia
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN, USA, 37235-1604
| | - Christopher R. Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN, USA, 37235-1604
| | - Annette L. Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA, 80401
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA, 37235-1604
| |
Collapse
|
11
|
Berger A. Delta-5 ® oil, containing the anti-inflammatory fatty acid sciadonic acid, improves skin barrier function in a skin irritation model in healthy female subjects. Lipids Health Dis 2022; 21:40. [PMID: 35443694 PMCID: PMC9019283 DOI: 10.1186/s12944-022-01643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sciadonic acid (SA) is an anti-inflammatory fatty acid displacing arachidonic acid (ARA) from specific phospholipid pools, thus modulating downstream pro-inflammatory lipid mediators. Its novel anti-inflammatory actions have been studied in vitro, in pre-clinical models, and stemming from testimonials, after topical- and oral application. It has not been tested in a formal clinical study for topical benefits previously. Skin barrier layer was our focus as it has a critically important role in maintaining skin moisture balance. Methods Herein, forearm skin was left undamaged; or barrier layer was chemically-damaged with 2% sodium lauryl sulfate (SLS) for 24 h. SLS-damaged skin was left untreated or treated with Delta-5® oil containing 24% SA twice daily for 27 days. Barrier function was assessed by open chamber transepidermal water loss (TEWL) and skin surface impedance on days 0 (clear skin), -1 (1-day post-SLS), -2 (2-days post-SLS, 1-day post-Delta-5), -3, -7, and − 28. Results Relative to day 1, Delta-5 oil statistically significantly decreased TEWL vs. untreated damaged sites, on days 3 (125% more reduced), -7 (74% more reduced), and − 28 (69% more reduced). Decreases in TEWL following chemical damage indicates improved skin barrier repair and healing. Similar patterns were quantified for skin impedance. There was also reduced redness observed on days 3 and − 7 with Delta-5 oil vs. untreated SLS-damaged skin. Conclusions Delta-5 oil thus has anti-inflammatory potential in human skin, under controlled clinical conditions, to accelerate irritant-induced healing, and improve skin barrier function. Improvement in barrier function would benefit dermatitis, acne, eczema, and skin scarring. In normal skin, Delta-5 oil has potential to promote healthy, moisturized skin; and improve skin structure, elasticity, and firmness.
Collapse
Affiliation(s)
- Alvin Berger
- SciaEssentials, LLC and Sciadonics, Inc, 1161 Wayzata Blvd E Unit 30, MN, 55391, Wayzata, United States.
| |
Collapse
|
12
|
Choi HK, Hwang K, Hong YD, Cho YH, Kim JW, Lee EO, Park WS, Park CS. Ceramide NPs Derived from Natural Oils of Korean Traditional Plants Enhance Skin Barrier Functions and Stimulate Expressions of Genes for Epidermal Homeostasis. J Cosmet Dermatol 2022; 21:4931-4941. [PMID: 35262269 DOI: 10.1111/jocd.14905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/06/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND New ceramide (CER) NPs were prepared by linking fatty acids derived from oils of Korean traditional plants to phytosphingosine(PHS). The oils of Korean traditional plants were extracted from the seeds of Panax ginseng, Camellia sinensis, Glycine max napjakong, Glycine max seoritae and Camellia japonica as sources of diverse fatty acids AIMS: To investigate signaling bioactivities of HP-C. sinensis ceramide NP that was column purified to remove any residual PHS and to evaluate the skin barrier functions of the HP-C. sinensis ceramide NP in human skin. METHODS The expressions of genes related with epidermal differentiation was analyzed in vitro by qPCR. Human studies were also performed to determine the skin barrier functions with respect of TEWL and SC cohesion. RESULTS The HP-C. sinensis CER NP significantly enhanced the expressions of FLG, CASP14 and INV indicates that the signaling biological activities of oil-derived ceramide NPs could be different depend on the natural oils. The control ceramide, C18-CER NP had no effect on the expression of the three genes. HP-C. sinensis CER NP was selected for the in vivo human studies. Application of 0.5% HP-C. sinensis CER NP cream stimulated significantly faster recovery of a disrupted skin barrier than that of the control C18-CER NP. A significant enhancement of SC cohesion of the skin treated with 0.5% HP-C. sinensis CER NP was also observed. CONCLUSION Taken all together, our results clearly demonstrate that HP-C. sinensis CER NP, P. ginseng CER NP and other oil-derived CER NP could be a better choice for developing moisturizers to improve skin barrier function as they more closely mimic the endogenous CER composition of the actual human skin barrier.
Collapse
Affiliation(s)
- Hyun Kyung Choi
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| | - Kyeonghwan Hwang
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea.,Department of R&D center, Amorepacific, Republic of Korea
| | | | - Young Hoon Cho
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| | - Jin Wook Kim
- SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| | - Eun Ok Lee
- SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| | - Won-Seok Park
- Department of R&D center, Amorepacific, Republic of Korea
| | - Chang Seo Park
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea.,SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| |
Collapse
|
13
|
Chen Y, Liao M, Ma K, Wang Z, Demé B, Penfold J, Lu JR, R P Webster J, Li P. Implications of surfactant hydrophobic chain architecture on the Surfactant-Skin lipid model interaction. J Colloid Interface Sci 2022; 608:405-415. [PMID: 34628313 DOI: 10.1016/j.jcis.2021.09.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Although surfactants have been widely used in skin care and other related applications, our knowledge about how surfactants interact with stratum corneum (SC) lipids remains limited. This work reports how surfactants interact with a lipid SC model by neutron diffraction and molecular dynamics (MD) simulations, focusing on examining the impact of surfactant molecular architecture. The surfactant-SC mixed membrane was constructed by an equimolar mixture of ceramide/cholesterol/fatty acids and surfactant at 1% molar ratio of total lipids. The arrangements of water and surfactant molecules in the membrane were obtained through neutron scattering length density (NSLD) profiles via contrast variation method, meanwhile, MD simulation clearly demonstrated the mechanism of hydration change in the surfactant-model SC mixed membrane. No drastic difference was detected in the repeating distance of the short periodicity phase (SPP) upon adding surfactants, however, it significantly enhanced the membrane hydration and reduced the amount of phase separated crystalline cholesterol, showing a strong dependence on surfactant chain length, branching and double bond. This work clearly demonstrates how surfactant architecture affects its interaction with the SC membrane, providing useful guidance for either choosing an existing surfactant or designing a new one for surfactant-based transdermal application.
Collapse
Affiliation(s)
- Yao Chen
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Didcot, OXON, UK OX11 0QX
| | - Mingrui Liao
- Department of Physics & Astronomy, the University of Manchester, Manchester M13 9PL, UK
| | - Kun Ma
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Didcot, OXON, UK OX11 0QX
| | - Zi Wang
- School of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum , Qingdao 266580, China
| | - Bruno Demé
- Institut Laue-Langevin, Grenoble, France
| | - Jeff Penfold
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Didcot, OXON, UK OX11 0QX
| | - Jian R Lu
- Department of Physics & Astronomy, the University of Manchester, Manchester M13 9PL, UK
| | - John R P Webster
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Didcot, OXON, UK OX11 0QX
| | - Peixun Li
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Didcot, OXON, UK OX11 0QX.
| |
Collapse
|
14
|
Beddoes CM, Rensen DE, Gooris GS, Malfois M, Bouwstra JA. The Importance of Free Fatty Chain Length on the Lipid Organization in the Long Periodicity Phase. Int J Mol Sci 2021; 22:ijms22073679. [PMID: 33916267 PMCID: PMC8038103 DOI: 10.3390/ijms22073679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
The skin's barrier ability is an essential function for terrestrial survival, which is controlled by intercellular lipids within the stratum corneum (SC) layer. In this barrier, free fatty acids (FFAs) are an important lipid class. As seen in inflammatory skin diseases, when the lipid chain length is reduced, a reduction in the barrier's performance is observed. In this study, we have investigated the contributing effects of various FFA chain lengths on the lamellar phase, lateral packing. The repeat distance of the lamellar phase increased with FFA chain length (C20-C28), while shorter FFAs (C16 to C18) had the opposite behaviour. While the lateral packing was affected, the orthorhombic to hexagonal to fluid phase transitions were not affected by the FFA chain length. Porcine SC lipid composition mimicking model was then used to investigate the proportional effect of shorter FFA C16, up to 50% content of the total FFA mixture. At this level, no difference in the overall lamellar phases and lateral packing was observed, while a significant increase in the water permeability was detected. Our results demonstrate a FFA C16 threshold that must be exceeded before the structure and barrier function of the long periodicity phase (LPP) is affected. These results are important to understand the lipid behaviour in this unique LPP structure as well as for the understanding, treatment, and development of inflammatory skin conditions.
Collapse
Affiliation(s)
- Charlotte M. Beddoes
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, University of Leiden, 2311 EZ Leiden, The Netherlands; (C.M.B.); (D.E.R.); (G.S.G.)
| | - Denise E. Rensen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, University of Leiden, 2311 EZ Leiden, The Netherlands; (C.M.B.); (D.E.R.); (G.S.G.)
| | - Gert S. Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, University of Leiden, 2311 EZ Leiden, The Netherlands; (C.M.B.); (D.E.R.); (G.S.G.)
| | - Marc Malfois
- ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain;
| | - Joke A. Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, University of Leiden, 2311 EZ Leiden, The Netherlands; (C.M.B.); (D.E.R.); (G.S.G.)
- Correspondence: ; Tel.: +31-71-527-4208
| |
Collapse
|
15
|
Aksoy HN, Ceylan C. Comparison of the Effects of Statins on A549 Nonsmall-Cell Lung Cancer Cell Line Lipids Using Fourier Transform Infrared Spectroscopy: Rosuvastatin Stands Out. Lipids 2021; 56:289-299. [PMID: 33611813 DOI: 10.1002/lipd.12296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 11/10/2022]
Abstract
Statins are commonly prescribed antilipidemic and anticholesterol class of drugs. In addition to their major role, they have been found to have anticancer effects on in vitro, animal and clinical studies. The aim of this study was to investigate the effects of six different statins (rosuvastatin, pravastatin, simvastatin, lovastatin, fluvastatin, and atorvastatin) on A549 cancer cells lipids by Fourier transform infrared (FTIR) spectroscopy. Proliferation tests were carried out to detect the half-maximal inhibitory concentrations (IC50 ) of each statin on A549 cells. The IC50 values were 50 μM for simvastatin, 150 μM for atorvastatin and pravastatin, and 170 μM for fluvastatin, 200 μM for rosuvastatin and lovastatin on A549 cells. No correlation was found between the antiproliferative effects of the statins and lipid-lowering effect. The cells were treated with IC5 , IC10 , and IC50 values of each statins concentration and lipid extracts were compared using FTIR spectroscopy. The results indicated that different statins had different effects on the lipid content of A549 cells. The FTIR spectra of the lipid exctracts of statin-treated A549 cells indicated that the value of hydrocarbon chain length, unsaturation index, oxidative stress level, and phospholipid containing lipids increased except for rosuvastatin-treated A549 cells. In addition, rosuvastatin significantly lowered cholesterol ester levels. In conclusion, the contrasting effects of rosuvastatin should be further investigated.
Collapse
Affiliation(s)
- Hatice Nurdan Aksoy
- Department of Biotechnology, İzmir Institute of Technology, İzmir, 35430, Turkey
| | - Cagatay Ceylan
- Department of Food Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, 35430, İzmir, Turkey
| |
Collapse
|
16
|
Ohnari H, Naru E, Ogura T, Sakata O, Obata Y. Phase Separation in Lipid Lamellae Result from Ceramide Conformations and Lateral Packing Structure. Chem Pharm Bull (Tokyo) 2021; 69:72-80. [PMID: 33390523 DOI: 10.1248/cpb.c20-00588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intercellular lipids in the stratum corneum protect the living body from invasion by allergens and pathogens, and also suppresses water evaporation within the body. It is important to understand how differences in the microstructure of intercellular lipids arise. This microstructure is affected by lipid composition. Studies using intercellular lipid models have reported the formation of two phases with different short lamellar periodicities. However, the details of the packing structure characteristics of the two phases observed in these intercellular lipid models are unclear. Our previous report revealed that different short periodicity phases coexist in the N-(α-hydroxyoctadecanoyl)-dihydrosphingosine (CER[ADS]), cholesterol (CHOL), and palmitic acid (PA) complex model. In this study, the characteristics of the packing structure of two phases with different short lamellar periodicities, which were observed in the intercellular lipid model (CER[ADS]/CHOL/PA) that we used previously, were adjusted for models with different lipid compositions. The characteristics of the packed and lamellar structures have been determined by temperature-scanning small-angle X-ray scattering and wide-angle X-ray diffraction measurements simultaneously. These differences in lamellar structure were thought to be caused by differences in ceramides (CER) conformation between the hairpin and the V-shape type. The lamellar structure of the V-shaped CER conformation has a low orthorhombic ratio. The above results suggest that an increase in the ratio of CER with the V-shaped structure causes the lamellar structure to have low orthorhombic ratio, thereby contributing to a decrease in the bilayer's barrier function.
Collapse
Affiliation(s)
| | - Eiji Naru
- Research and Development Division, KOSE Corporation
| | - Taku Ogura
- Research Institute for Science & Technology, Tokyo University of Science
| | - Osamu Sakata
- Research and Development Division, KOSE Corporation
| | | |
Collapse
|
17
|
Ramos AP, Bouwstra JA, Lafleur M. Very Long Chain Lipids Favor the Formation of a Homogeneous Phase in Stratum Corneum Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13899-13907. [PMID: 33170015 DOI: 10.1021/acs.langmuir.0c02305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The stratum corneum (SC), the outermost layer of mammal epidermis, acts as a barrier dictating the rate of absorption of exogenous molecules through the skin, as well as to prevent excessive water loss from the body. The SC consists of protein-rich corneocytes embedded into a complex lipid mixture. The lipid fraction is mainly constituted of an equimolar mixture of ceramides (Cer), free fatty acids (FFA), and cholesterol (Chol), forming a solid phase in the intracellular space; this lipid phase is supposed to play a fundamental role in the SC barrier function. An unusual characteristic of this biological membrane is that its lipids generally bear very long acyl chains, with the 24-carbon long ones being the most abundant. In this work, we used Raman microspectroscopy and infrared spectroscopy to study the influence of the acyl chain length on the lipid mixing properties in SC model membranes. Our results revealed that the combination of ceramides and FFA bearing a very long chain is required for the formation of homogeneous lipid mixtures, while lipids with shorter chains (16-carbon and 20-carbon atom long) lead to domains with micrometer dimensions. It is proposed that the biological machinery necessary for acyl chain elongation occurring at the mammalian skin level is required to inhibit lipid phase separation, a critical feature in the proper barrier functioning.
Collapse
Affiliation(s)
- Adrian Paz Ramos
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal QC H3C 3J7, Canada
| | - Joke A Bouwstra
- Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden 2333 CC, The Netherlands
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal QC H3C 3J7, Canada
| |
Collapse
|
18
|
Berkey C, Kanno D, Mehling A, Koch JP, Eisfeld W, Dierker M, Bhattacharya S, Dauskardt RH. Emollient structure and chemical functionality effects on the biomechanical function of human stratum corneum. Int J Cosmet Sci 2020; 42:605-614. [PMID: 32794598 DOI: 10.1111/ics.12656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/11/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Cosmetic emollients are widely used in skincare formulations due to their ability to 'soften' the skin and modulate formulation spreadability. Though emollients are commonly used, little is known about their effects on the biomechanical barrier properties of human stratum corneum (SC), which play a critical role in consumer perception of formulation efficacy. Accordingly, our objective was to provide new insights with a study involving fourteen cosmetic emollient molecules with widely varying structures, molecular weights, SC diffusivities, topological polar surface areas (TPSAs), viscosities and chemical functionalities. METHODS Mechanical stress in the SC was measured in vitro using a substrate curvature measurement technique. Stress development due to SC drying was measured before and after topical treatment with cosmetic emollients. Emollient diffusivity and alterations to lipid content in SC after treatment were measured via ATR-FTIR spectroscopy. The maximum penetration volume of emollient in SC was characterized to elucidate mechanisms underlying emollient effects on stress. RESULTS The application of all cosmetic emollients caused a reduction in SC mechanical stress under dehydrating conditions, and a linear correlation was discovered between emollient penetration volume and the degree of stress reduction. These molecules also induced increases in stress equilibration rate, signalling changes to SC transport kinetics. Stress equilibration rate increases linearly correlated with decreasing intensity of the νCH2 band, indicating a previously unknown interaction between cosmetic emollients and SC lipids. Stress and penetration volume results were rationalized in terms of a multi-parameter model including emollient molecular weight, diffusivity, TPSA and viscosity. CONCLUSION We provide a new rational basis for understanding the effects of cosmetic emollient choice on biomechanical properties affecting SC barrier function and consumer perception. We demonstrate for the first time that emollients very likely reduce SC mechanical stress through their ability to take up volume when penetrating the SC, and how molecular weight, SC diffusivity, TPSA and viscosity are predictive of this ability. As cosmetic formulations continue to evolve to meet the needs of customers, emollient molecules can be selected that not only contribute to formulation texture and/or spreadability but that also leverage this novel connection between emollient penetration and SC biomechanics.
Collapse
Affiliation(s)
- C Berkey
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Suite 102, Stanford, CA, 94305, USA
| | - D Kanno
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Suite 102, Stanford, CA, 94305, USA
| | - A Mehling
- BASF Personal Care and Nutrition GmbH, BASF Group, Henkelstraße 67, Duesseldorf, North Rhine-Westphalia, 40589, Germany
| | - J P Koch
- BASF Personal Care and Nutrition GmbH, BASF Group, Henkelstraße 67, Duesseldorf, North Rhine-Westphalia, 40589, Germany
| | - W Eisfeld
- BASF Personal Care and Nutrition GmbH, BASF Group, Henkelstraße 67, Duesseldorf, North Rhine-Westphalia, 40589, Germany
| | - M Dierker
- BASF Personal Care and Nutrition GmbH, BASF Group, Henkelstraße 67, Duesseldorf, North Rhine-Westphalia, 40589, Germany
| | - S Bhattacharya
- BASF Personal Care and Nutrition GmbH, BASF Group, Henkelstraße 67, Duesseldorf, North Rhine-Westphalia, 40589, Germany
| | - R H Dauskardt
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Suite 102, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Bow JR, Sonoki Y, Uchiyama M, Shimizu E, Tanaka K, Dauskardt RH. Lipid Loss Increases Stratum Corneum Stress and Drying Rates. Skin Pharmacol Physiol 2020; 33:180-188. [DOI: 10.1159/000507456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/22/2020] [Indexed: 11/19/2022]
|
20
|
Karozis SN, Mavroudakis EI, Charalambopoulou GC, Kainourgiakis ME. Molecular simulations of self-assembled ceramide bilayers: comparison of structural and barrier properties. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2019.1703975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Stelios N. Karozis
- National Center for Scientific Research “Demokritos”, Ag. Paraskevi Attikis, Greece
| | | | | | | |
Collapse
|
21
|
Martins Cardoso R, Creemers E, Absalah S, Hoekstra M, Gooris GS, Bouwstra JA, Van Eck M. Hyperalphalipoproteinemic scavenger receptor BI knockout mice exhibit a disrupted epidermal lipid barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158592. [PMID: 31863970 DOI: 10.1016/j.bbalip.2019.158592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 12/16/2019] [Indexed: 01/28/2023]
Abstract
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of cholesteryl esters (CE) from high-density lipoproteins (HDL). An impaired SR-BI function leads to hyperalphalipoproteinemia with elevated levels of cholesterol transported in the HDL fraction. Accumulation of cholesterol in apolipoprotein B (apoB)-containing lipoproteins has been shown to alter skin lipid composition and barrier function in mice. To investigate whether these hypercholesterolemic effects on the skin also occur in hyperalphalipoproteinemia, we compared skins of wild-type and SR-BI knockout (SR-BI-/-) mice. SR-BI deficiency did not affect the epidermal cholesterol content and induced only minor changes in the ceramide subclasses. The epidermal free fatty acid (FFA) pool was, however, enriched in short and unsaturated chains. Plasma CE levels strongly correlated with epidermal FFA C18:1 content. The increase in epidermal FFA coincided with downregulation of cholesterol and FFA synthesis genes, suggesting a compensatory response to increased flux of plasma cholesterol and FFAs into the skin. Importantly, the SR-BI-/- epidermal lipid barrier showed increased permeability to ethyl-paraminobenzoic acid, indicating an impairment of the barrier function. In conclusion, increased HDL-cholesterol levels in SR-BI-/- mice can alter the epidermal lipid composition and lipid barrier function similarly as observed in hypercholesterolemia due to elevated levels of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Renata Martins Cardoso
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Eline Creemers
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands
| | - Samira Absalah
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Menno Hoekstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Gert S Gooris
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Joke A Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Miranda Van Eck
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| |
Collapse
|
22
|
Contribution of Palmitic Acid to Epidermal Morphogenesis and Lipid Barrier Formation in Human Skin Equivalents. Int J Mol Sci 2019; 20:ijms20236069. [PMID: 31810180 PMCID: PMC6928966 DOI: 10.3390/ijms20236069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022] Open
Abstract
The outermost barrier layer of the skin is the stratum corneum (SC), which consists of corneocytes embedded in a lipid matrix. Biosynthesis of barrier lipids occurs de novo in the epidermis or is performed with externally derived lipids. Hence, in vitro developed human skin equivalents (HSEs) are developed with culture medium that is supplemented with free fatty acids (FFAs). Nevertheless, the lipid barrier formation in HSEs remains altered compared to native human skin (NHS). The aim of this study is to decipher the role of medium supplemented saturated FFA palmitic acid (PA) on morphogenesis and lipid barrier formation in HSEs. Therefore, HSEs were developed with 100% (25 μM), 10%, or 1% PA. In HSEs supplemented with reduced PA level, the early differentiation was delayed and epidermal activation was increased. Nevertheless, a similar SC lipid composition in all HSEs was detected. Additionally, the lipid organization was comparable for lamellar and lateral organization, irrespective of PA concentration. As compared to NHS, the level of monounsaturated lipids was increased and the FFA to ceramide ratio was drastically reduced in HSEs. This study describes the crucial role of PA in epidermal morphogenesis and elucidates the role of PA in lipid barrier formation of HSEs.
Collapse
|
23
|
Uche LE, Gooris GS, Bouwstra JA, Beddoes CM. Barrier Capability of Skin Lipid Models: Effect of Ceramides and Free Fatty Acid Composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15376-15388. [PMID: 31698908 DOI: 10.1021/acs.langmuir.9b03029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The skin is an effective barrier that prevents the influx of harmful substances from the environment and the efflux of body fluid. This barrier function is ascribed to the intercellular lipids present in the outermost layer of the skin referred to as the stratum corneum (SC). These lipids are composed mainly of ceramides (CERs), cholesterol, and free fatty acids (FFAs). Alterations in the SC lipid composition and barrier function impairment occur in several skin diseases including atopic dermatitis (AD). As the etiology of AD is multifactorial, establishing the relationship between the changes in SC lipid composition and barrier function impairment in the patients remains a challenge. Here, we employed model membrane systems to investigate the contribution of various anomalies in the SC CER and FFA composition observed in AD patients' skin to the barrier dysfunction. Using ethyl-p-aminobenzoate permeation and transepidermal water loss values as markers for barrier function, we determined that the alterations in SC lipid composition contribute to the impaired barrier function in AD patients. By the use of biophysical techniques, we established that the largest reduction in barrier capability was observed in the model with an increased fraction of short-chain FFAs, evident by the decrease in chain packing density. Modulations in the CER subclass composition impacted the lamellar organization while having a smaller effect on the barrier function. These findings provide evidence that AD therapies normalizing the FFA composition are at least as important as normalizing CER composition.
Collapse
Affiliation(s)
- Lorretta E Uche
- Division BioTherapeutics, Leiden Academic Centre for Drug Research , Leiden University , 2333 CC Leiden , Netherlands
| | - Gerrit S Gooris
- Division BioTherapeutics, Leiden Academic Centre for Drug Research , Leiden University , 2333 CC Leiden , Netherlands
| | - Joke A Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research , Leiden University , 2333 CC Leiden , Netherlands
| | - Charlotte M Beddoes
- Division BioTherapeutics, Leiden Academic Centre for Drug Research , Leiden University , 2333 CC Leiden , Netherlands
| |
Collapse
|
24
|
Effect of Ceramide Tail Length on the Structure of Model Stratum Corneum Lipid Bilayers. Biophys J 2019; 114:113-125. [PMID: 29320678 DOI: 10.1016/j.bpj.2017.10.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Lipid bilayers composed of non-hydroxy sphingosine ceramide (CER NS), cholesterol (CHOL), and free fatty acids (FFAs), which are components of the human skin barrier, are studied via molecular dynamics simulations. Since mixtures of these lipids exist in dense gel phases with little molecular mobility at physiological conditions, care must be taken to ensure that the simulations become decorrelated from the initial conditions. Thus, we propose and validate an equilibration protocol based on simulated tempering, in which the simulation takes a random walk through temperature space, allowing the system to break out of metastable configurations and hence become decorrelated from its initial configuration. After validating the equilibration protocol, which we refer to as random-walk molecular dynamics, the effects of the lipid composition and ceramide tail length on bilayer properties are studied. Systems containing pure CER NS, CER NS + CHOL, and CER NS + CHOL + FFA, with the CER NS fatty acid tail length varied within each CER NS-CHOL-FFA composition, are simulated. The bilayer thickness is found to depend on the structure of the center of the bilayer, which arises as a result of the tail-length asymmetry between the lipids studied. The hydrogen bonding between the lipid headgroups and with water is found to change with the overall lipid composition, but is mostly independent of the CER fatty acid tail length. Subtle differences in the lateral packing of the lipid tails are also found as a function of CER tail length. Overall, these results provide insight into the experimentally observed trend of altered barrier properties in skin systems where there are more CERs with shorter tails present.
Collapse
|
25
|
Uche LE, Gooris GS, Beddoes CM, Bouwstra JA. New insight into phase behavior and permeability of skin lipid models based on sphingosine and phytosphingosine ceramides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1317-1328. [PMID: 30991016 DOI: 10.1016/j.bbamem.2019.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/25/2019] [Accepted: 04/11/2019] [Indexed: 11/27/2022]
Abstract
The intercellular lipid matrix of the stratum corneum (SC), which consist mainly of ceramides (CERs), free fatty acids and cholesterol, is fundamental to the skin barrier function. These lipids assemble into two lamellar phases, known as the long and short periodicity phases (LPP and SPP respectively). The LPP is unique in the SC and is considered important for the skin barrier function. Alterations in CER composition, as well as impaired skin barrier function, are commonly observed in diseased skin, yet the understanding of this relationship remains insufficient. In this study, we have investigated the influence of non-hydroxy and α-hydroxy sphingosine-based CERs and their phytosphingosine counterparts on the permeability and lipid organization of model membranes, which were adjusted in composition to enhance formation of the LPP. The permeability was compared by diffusion studies using ethyl-p-aminobenzoate as a model drug, and the lipid organization was characterized by X-ray diffraction and infrared spectroscopy. Both the sphingosine- and phytosphingosine-based CER models formed the LPP, while the latter exhibited a longer LPP repeat distance. The ethyl-p-aminobenzoate flux across the sphingosine-based CER models was higher when compared to the phytosphingosine counterparts, contrary to the fact that the α-hydroxy phytosphingosine-based CER model had the lowest chain packing density. The unanticipated low permeability of the α-hydroxy phytosphingosine-based model is probably associated with a stronger headgroup hydrogen bonding network. Our findings indicate that the increased level of sphingosine-based CERs at the expense of phytosphingosine-based CERs, as observed in the diseased skin, may contribute to the barrier function impairment.
Collapse
Affiliation(s)
- L E Uche
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - G S Gooris
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - C M Beddoes
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - J A Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands.
| |
Collapse
|
26
|
Hypercholesterolemia in young adult APOE -/- mice alters epidermal lipid composition and impairs barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:976-984. [PMID: 30905828 DOI: 10.1016/j.bbalip.2019.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
Long-term exposure to hypercholesterolemia induces the development of skin xanthoma's characterized by the accumulation of lipid-laden foam cells in humans and in mice. Early skin changes in response to hypercholesterolemia are however unknown. In this study, we investigated the skin lipid composition and associated barrier function in young adult low-density lipoprotein receptor knockout (LDLR-/-) and apolipoprotein E knockout (APOE-/-) mice, two commonly used hypercholesterolemic mouse models characterized by the accumulation of apolipoprotein B containing lipoproteins. No differences were observed on cholesterol content in the epidermis in LDLR-/- mice nor in the more extremely hypercholesterolemic APOE-/- mice. Interestingly, the free fatty acid profile in the APOE-/- epidermis shifted towards shorter and unsaturated chains. Genes involved in the synthesis of cholesterol and fatty acids were downregulated in APOE-/- skin suggesting a compensation for the higher influx of plasma lipids, most probably as cholesteryl esters. Importantly, in vivo transepidermal water loss and permeability studies with murine lipid model membranes revealed that the lipid composition of the APOE-/- skin resulted in a reduced skin barrier function. In conclusion, severe hypercholesterolemia associated with increased apolipoprotein B containing lipoproteins affects the epidermal lipid composition and its protective barrier.
Collapse
|
27
|
Anticancer effects of alloxanthoxyletin and fatty acids esters - In vitro study on cancer HTB-140 and A549 cells. Biomed Pharmacother 2018; 110:618-630. [PMID: 30544062 DOI: 10.1016/j.biopha.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/28/2018] [Accepted: 12/02/2018] [Indexed: 01/16/2023] Open
Abstract
Alloxanthoxyletin, a natural occurring pyranocoumarin isolated from a number of plant sources, such as family of Rutaceae, and its synthetic derivatives show cytotoxic and antitumor activities. In the present study new eleven esters of alloxanthoxyletin and fatty acids were synthesized and evaluated for their anticancer toxicity. The structures of the compounds were confirmed by Proton Nuclear Magnetic Resonance (1H NMR), Carbon-13 Nuclear Magnetic Resonance (13C NMR) and High Resolution Mass Spectrometry (HRMS) analyses. For all compounds 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cytotoxic effect on human melanoma cells (HTB-140), human epithelial lung carcinoma cells (A549) and human keratinocyte line (HaCaT). For the most active compounds (8-11) lactate dehydrogenase (LDH) assay to assess the level of cell damage as well as migration inhibition assay were performed. To explain the basic mechanism of cell death induction, the effect of derivatives 8-11 on early and late apoptosis in Annexin V-FITC/7-AAD flow cytometry analysis was investigated. The results indicate that human melanoma cells (HTB-140) and human epithelial lung carcinoma cells (A549) were more sensitive to new alloxanthoxyletin derivatives exposure compared to human keratinocytes (HaCaT). Both, the cytotoxicity and the migration tests showed a concentration-dependent inhibition of cell growth, although with a different degree of efficacy. Tested compounds induced apoptosis in cancer cells, however, derivatives 8, 9, 10 and 11 were found to be much more potent inducers of early apoptosis in HTB-140 cells than in A549 and HaCaT cells. To establish the potent mechanism of action of alloxanthoxyletin derivatives 8, 9, 10 and 11 on HaCaT, A549 and HTB-140 cells, the level of IL-6 was measured. Our results indicate, that tested compounds significantly decrease the release of IL-6 for all cancer cell lines.
Collapse
|
28
|
Imaging the distribution of skin lipids and topically applied compounds in human skin using mass spectrometry. Sci Rep 2018; 8:16683. [PMID: 30420715 PMCID: PMC6232133 DOI: 10.1038/s41598-018-34286-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The barrier functions of skin against water loss, microbial invasion and penetration of xenobiotics rely, in part, on the spatial distribution of the biomolecular constituents in the skin structure, particularly its horny layer (stratum corneum). However, all skin layers are important to describe normal and dysfunctional skin conditions, and to develop adapted therapies or skin care products. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) combined with scanning electron microscopy (SEM) was used to image the spatial distribution of a variety of molecular species, from stratum corneum down to dermis, in cross-section samples of human abdominal skin. The results demonstrate the expected localization of ceramide and saturated long-chain fatty acids in stratum corneum (SC) and cholesterol sulfate in the upper part of the viable epidermis. The localization of exogenous compounds is demonstrated by the detection and imaging of carvacrol (a constituent of oregano or thyme essential oil) and ceramide, after topical application onto ex vivo human skin. Carvacrol showed pronounced accumulation to triglyceride-containing structures in the deeper parts of dermis. In contrast, the exogenous ceramide was found to be localized in SC. Furthermore, the complementary character of this approach with classical ex vivo skin absorption analysis methods is demonstrated.
Collapse
|
29
|
Cortés H, Mendoza-Muñoz N, Galván-Gil FA, Magaña JJ, Lima E, González-Torres M, Leyva-Gómez G. Comprehensive mapping of human body skin hydration: A pilot study. Skin Res Technol 2018; 25:187-193. [PMID: 30302824 DOI: 10.1111/srt.12633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies analyzed a series of representative anatomical regions in the human body; however, there is a wide structural and cellular variability in the constitution of the skin. Our objective was to perform a comprehensive assessment of human skin hydration throughout the largest possible area. MATERIALS AND METHODS Hydration was registered by Corneometer® CM825 probe in 23 anatomical regions of five healthy men. Each zone was analyzed by 2-cm segments in the supine, prone, and lateral positions. A total of 7863 measurements were registered. RESULTS Differences in the degree of hydration among the prone, supine, and lateral regions were observed. The chest and back showed a pattern of increased hydration toward the neck area. Higher levels of hydration were evidenced in the proximal areas and in the regions near the elbow and knee. The regions of greater mechanical wear and with greater exposure to the sun exhibited a lower degree of hydration. CONCLUSION The human skin exhibited hydration patterns influenced by anatomical function and the degree of sun exposure. Detailed information of the hydration patterns could serve as reference for the design of topical products, as an indicator of their effectiveness, and for the monitoring of skin pathologies.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, México, México
| | | | - Francisco A Galván-Gil
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, México, México
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maykel González-Torres
- Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Puebla, Puebla, México
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
30
|
Franco J, Ferreira C, Paschoal Sobreira TJ, Sundberg JP, HogenEsch H. Profiling of epidermal lipids in a mouse model of dermatitis: Identification of potential biomarkers. PLoS One 2018; 13:e0196595. [PMID: 29698466 PMCID: PMC5919619 DOI: 10.1371/journal.pone.0196595] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
Lipids are important structural and functional components of the skin. Alterations in the lipid composition of the epidermis are associated with inflammation and can affect the barrier function of the skin. SHARPIN-deficient cpdm mice develop a chronic dermatitis with similarities to atopic dermatitis in humans. Here, we used a recently-developed approach named multiple reaction monitoring (MRM)-profiling and single ion monitoring to rapidly identify discriminative lipid ions. Shorter fatty acyl residues and increased relative amounts of sphingosine ceramides were observed in cpdm epidermis compared to wild type mice. These changes were accompanied by downregulation of the Fasn gene which encodes fatty acid synthase. A profile of diverse lipids was generated by fast screening of over 300 transitions (ion pairs). Tentative attribution of the most significant transitions was confirmed by product ion scan (MS/MS), and the MRM-profiling linear intensity response was validated with a C17-ceramide lipid standard. Relative quantification of sphingosine ceramides CerAS(d18:1/24:0)2OH, CerAS(d18:1/16:0)2OH and CerNS(d18:1/16:0) discriminated between the two groups with 100% accuracy, while the free fatty acids cerotic acid, 16-hydroxy palmitic acid, and docosahexaenoic acid (DHA) had 96.4% of accuracy. Validation by liquid chromatography tandem mass spectrometry (LC-MS/MS) of the above-mentioned ceramides was in agreement with MRM-profiling results. Identification and rapid monitoring of these lipids represent a tool to assess therapeutic outcomes in SHARPIN-deficient mice and other mouse models of dermatitis and may have diagnostic utility in atopic dermatitis.
Collapse
Affiliation(s)
- Jackeline Franco
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
| | - Christina Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Tiago J. Paschoal Sobreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Harm HogenEsch
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
31
|
Gooris GS, Kamran M, Kros A, Moore DJ, Bouwstra JA. Interactions of dipalmitoylphosphatidylcholine with ceramide-based mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1272-1281. [PMID: 29499188 DOI: 10.1016/j.bbamem.2018.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022]
Abstract
The outermost layer of the skin, the stratum corneum (SC), acts as the natural physical barrier. The SC consists of corneocytes embedded in a crystalline lipid matrix consisting of ceramides, free fatty acids and cholesterol. Although phospholipids are frequently present in topical formulations, no detailed information is reported on the interactions between phospholipids and SC lipids. The aim of this study was to examine the interactions between a model phospholipid, dipalmitoylphosphatidylcholine (DPPC) and synthetic ceramide-based mixtures (referred to as SC lipids). (Perdeuterated) DPPC was mixed with SC lipids and the lipid organization and mixing properties were examined. The studies revealed that DPPC participates in the same lattice as SC lipids thereby enhancing a hexagonal packing. Even at a high DPPC level, no phase separated pure DPPC was observed. When a DPPC containing formulation is applied to the skin surface it must partition into the SC lipid matrix prior to any mixing with the SC lipids. To mimic this, DPPC was applied on top of a SC lipid membrane. DPPC applied in a liquid crystalline state was able to mix with the SC lipids and participated in the same lattice as the SC lipids. However, when DPPC was applied in a rippled gel-state very limited partitioning of DPPC into the SC lipid matrix occurred. Thus, when applied to the skin, liquid crystalline DPPC will have very different interactions with SC lipids than DPPC in a (rippled-)gel phase.
Collapse
Affiliation(s)
- G S Gooris
- Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus laboratories, 2333 CC Leiden, The Netherlands
| | - M Kamran
- Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus laboratories, 2333 CC Leiden, The Netherlands
| | - A Kros
- Leiden Institute of Chemistry, Leiden University, Gorleaus laboratories, 2333 CC Leiden, The Netherlands
| | - D J Moore
- GSK Consumer Healthcare, 184 Liberty Corner Road, Warren, NJ, United States of America
| | - J A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus laboratories, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
32
|
Kováčik A, Vogel A, Adler J, Pullmannová P, Vávrová K, Huster D. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1162-1170. [PMID: 29408487 DOI: 10.1016/j.bbamem.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
In this work, we studied model stratum corneum lipid mixtures composed of the hydroxylated skin ceramides N-lignoceroyl 6-hydroxysphingosine (Cer[NH]) and α-hydroxylignoceroyl phytosphingosine (Cer[AP]). Two model skin lipid mixtures of the composition Cer[NH] or Cer[AP], N-lignoceroyl sphingosine (Cer[NS]), lignoceric acid (C24:0) and cholesterol in a 0.5:0.5:1:1 molar ratio were compared. Model membranes were investigated by differential scanning calorimetry and 2H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Each component of the model mixture was specifically deuterated for selective detection by 2H NMR. Thus, the exact phase composition of the mixture at varying temperatures could be quantified. Moreover, using X-ray powder diffraction we investigated the lamellar phase formation. From the solid-state NMR and DSC studies, we found that both hydroxylated Cer[NH] and Cer[AP] exhibit a similar phase behavior. At physiological skin temperature of 32 °C, the lipids form a crystalline (orthorhombic) phase. With increasing temperature, most of the lipids become fluid and form a liquid-crystalline phase, which converts to the isotropic phase at higher temperatures (65-80 °C). Interestingly, lignoceric acid in the Cer[NH]-containing mixture has a tendency to form two types of fluid phases at 65 °C. This tendency was also observed in Cer[AP]-containing membranes at 80 °C. While Cer[AP]-containing lipid models formed a short periodicity phase featuring a repeat spacing of d = 5.4 nm, in the Cer[NH]-based model skin lipid membranes, the formation of unusual long periodicity phase with a repeat spacing of d = 10.7 nm was observed.
Collapse
Affiliation(s)
- Andrej Kováčik
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany; Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Juliane Adler
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Petra Pullmannová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
33
|
Altered lipid properties of the stratum corneum in Canine Atopic Dermatitis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:526-533. [DOI: 10.1016/j.bbamem.2017.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
|
34
|
Oh MJ, Cho YH, Cha SY, Lee EO, Kim JW, Kim SK, Park CS. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum. Clin Cosmet Investig Dermatol 2017; 10:363-371. [PMID: 28979153 PMCID: PMC5602416 DOI: 10.2147/ccid.s143591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ceramides in the human stratum corneum (SC) are a mixture of diverse N-acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N-acylated FAs and compare them with C18-ceramide N-stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer.
Collapse
Affiliation(s)
- Myoung Jin Oh
- Department of Chemical and Biochemical Engineering, Dongguk University, Chung-gu, Seoul
| | - Young Hoon Cho
- Department of Chemical and Biochemical Engineering, Dongguk University, Chung-gu, Seoul
| | - So Yoon Cha
- Department of Chemical and Biochemical Engineering, Dongguk University, Chung-gu, Seoul
| | - Eun Ok Lee
- LCS Biotech, Gwonseon-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jin Wook Kim
- LCS Biotech, Gwonseon-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Sun Ki Kim
- LCS Biotech, Gwonseon-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Chang Seo Park
- Department of Chemical and Biochemical Engineering, Dongguk University, Chung-gu, Seoul
| |
Collapse
|
35
|
Nitsche JM, Kasting GB. How Predictable Are Human Stratum Corneum Lipid/Water Partition Coefficients? Assessment and Useful Correlations for Dermal Absorption. J Pharm Sci 2017; 107:727-738. [PMID: 28818392 DOI: 10.1016/j.xphs.2017.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
Partition coefficients between human stratum corneum lipids and water (Ksclip/w) are collected or deduced from a variety of sources in a manner that approximately doubles the available data compared to the current state-of-the-art model (Hansen et al., Adv Drug Deliv Rev. 2013;65(2):251-264). An additional datum for water itself in porcine SC that considerably extends the molecular size and lipophilicity range of the data set is considered. The data are analyzed in terms of an extended linear free energy relationship involving octanol/water partition coefficients, Abraham solvation parameters, and a secondary, power law molecular weight dependence. The optimum fit to log Ksclip/w for the full data set reduces the standard error of prediction from 0.50 for a Hansen-like model to 0.39; corresponding multiplicative errors in Ksclip/w are reduced from a factor of 3.1 to one of 2.5. The difference in performance is driven by the water datum, which requires a more complex dependence on molecular size than that afforded by Abraham parameters. In the absence of the water value, the Hansen-like model, which does not include a dependence on molecular size, is essentially optimum. A comparison is presented to fluid-phase phospholipid-water systems, which have a demonstrably different structure-property relationship.
Collapse
Affiliation(s)
- Johannes M Nitsche
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200.
| | - Gerald B Kasting
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio 45267-0514
| |
Collapse
|
36
|
Gajula K, Gupta R, Sridhar DB, Rai B. In-Silico Skin Model: A Multiscale Simulation Study of Drug Transport. J Chem Inf Model 2017; 57:2027-2034. [PMID: 28718641 DOI: 10.1021/acs.jcim.7b00224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Accurate in-silico models are required to predict the release of drug molecules through skin in order to supplement the in-vivo experiments for faster development/testing of drugs. The upper most layer of the skin, stratum corneum (SC), offers the main resistance for permeation of actives. Most of the SC's molecular level models comprise cholesterol and phospholipids only, which is far from reality. In this study we have implemented a multiscale modeling framework to obtain the release profile of three drugs, namely, caffeine, fentanyl, and naphthol, through skin SC. We report for the first time diffusion of drugs through a realistic skin molecular model comprised of ceramides, cholesterol, and free fatty acid. The diffusion coefficients of drugs in the SC lipid matrix were determined from multiple constrained molecular dynamics simulations. The calculated diffusion coefficients were then used in the macroscopic models to predict the release profiles of drugs through the SC. The obtained release profiles were in good agreement with available experimental data. The partition coefficient exhibits a greater effect on the release profiles. The reported multiscale modeling framework would provide insight into the delivery mechanisms of the drugs through the skin and shall act as a guiding tool in performing targeted experiments to come up with a suitable delivery system.
Collapse
Affiliation(s)
- Kishore Gajula
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services , 54B, Hadapsar Industrial Estate, Pune-411013, India
| | - Rakesh Gupta
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services , 54B, Hadapsar Industrial Estate, Pune-411013, India
| | - D B Sridhar
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services , 54B, Hadapsar Industrial Estate, Pune-411013, India
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services , 54B, Hadapsar Industrial Estate, Pune-411013, India
| |
Collapse
|
37
|
Choe C, Schleusener J, Lademann J, Darvin ME. In vivo confocal Raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils. J Dermatol Sci 2017; 87:183-191. [PMID: 28522139 DOI: 10.1016/j.jdermsci.2017.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/05/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The intercellular lipids (ICL) of stratum corneum (SC) play an important role in maintaining the skin barrier function. The lateral and lamellar packing order of ICL in SC is not homogenous, but rather depth-dependent. OBJECTIVE This study aimed to analyze the influence of the topically applied mineral-derived (paraffin and petrolatum) and plant-derived (almond oil and jojoba oil) oils on the depth-dependent ICL profile ordering of the SC in vivo. METHOD Confocal Raman microscopy (CRM), a unique tool to analyze the depth profile of the ICL structure non-invasively, is employed to investigate the interaction between oils and human SC in vivo. RESULTS The results show that the response of SC to oils' permeation varies in the depths. All oils remain in the upper layers of the SC (0-20% of SC thickness) and show predominated differences of ICL ordering from intact skin. In these depths, skin treated with plant-derived oils shows more disordered lateral and lamellar packing order of ICL than intact skin (p<0.05). In the intermediate layers of SC (30-50% of SC thickness), the oils do not influence the lateral packing order of SC ICL (p>0.1), except plant-derived oils at the depth 30% of SC thickness. In the deeper layers of the SC (60-100% of SC thickness), no difference between ICL lateral packing order of the oil-treated and intact skin can be observed, except that at the depths of 70-90% of the SC thickness, where slight changes with more disorder states are measured for plant-derived oil treated skin (p<0.1), which could be explained by the penetration of free fatty acid fractions in the deep-located SC areas. CONCLUSION Both oil types remain in the superficial layers of the SC (0-20% of the SC thickness). Skin treated with mineral- and plant-derived oils shows significantly higher disordered lateral and lamellar packing order of ICL in these layers of the SC compared to intact skin. Plant-derived oils significantly changed the ICL ordering in the depths of 30% and 70-90% of the SC thickness, which is likely due to the penetration of free fatty acids in the deeper layers of the SC.
Collapse
Affiliation(s)
- ChunSik Choe
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany; Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People's Republic of Korea
| | - Johannes Schleusener
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Lademann
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Maxim E Darvin
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
38
|
Schroeter A, Stahlberg S, Školová B, Sonnenberger S, Eichner A, Huster D, Vávrová K, Hauß T, Dobner B, Neubert RHH, Vogel A. Phase separation in ceramide[NP] containing lipid model membranes: neutron diffraction and solid-state NMR. SOFT MATTER 2017; 13:2107-2119. [PMID: 28225091 DOI: 10.1039/c6sm02356h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The stratum corneum is the outermost layer of the skin and protects the organism against external influences as well as water loss. It consists of corneocytes embedded in a mixture of ceramides, fatty acids, and cholesterol in a molar ratio of roughly 1 : 1 : 1. The unique structural and compositional arrangement of these stratum corneum lipids is responsible for the skin barrier properties. Many studies investigated the organization of these barrier lipids and, in particular, the exact conformation of ceramides. However, so far no consensus has been reached. In this study, we investigate a model system comprised of N-(non-hydroxy-tetracosanoyl)-phytosphingosine/cholesterol/tetracosanoic acid (CER[NP]-C24/CHOL/TA) at a 1 : 1 : 1 molar ratio using neutron diffraction and 2H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Deuterated variants of all three lipid components of the model system were used to enable their separate investigation in the NMR spectra and quantification of the amount of molecules in each phase. Neutron scattering experiments show the coexistence of two lipid phases at low temperatures with repeat spacings of 54.2 Å and 43.0 Å at a physiological skin temperature of 32 °C. They appear to be indistinguishable in the 2H NMR spectra as both phases are crystalline and ceramide molecules do not rotate around their long axis on a microsecond timescale. The evolution of these phases upon heating is followed and with increasing temperature fluid and even isotropically mobile molecules are observed. A model of the organization of the lamellar phases is proposed in which the thicker phase consists of CER[NP]-C24 in a hairpin conformation mixed with CHOL and TA, while the phase with a repeat spacing of 43.0 Å contains CER[NP]-C24 in a V-shape conformation.
Collapse
Affiliation(s)
- Annett Schroeter
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sören Stahlberg
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| | - Barbora Školová
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany. and Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Stefan Sonnenberger
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Adina Eichner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| | - Kateřina Vávrová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Thomas Hauß
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum für Materialien und Energie, Berlin, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany and Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| |
Collapse
|
39
|
Gupta R, Dwadasi BS, Rai B. Molecular Dynamics Simulation of Skin Lipids: Effect of Ceramide Chain Lengths on Bilayer Properties. J Phys Chem B 2016; 120:12536-12546. [DOI: 10.1021/acs.jpcb.6b08059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rakesh Gupta
- Engineering & Physical Sciences, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune 411013, India
| | - Balarama Sridhar Dwadasi
- Engineering & Physical Sciences, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune 411013, India
| | - Beena Rai
- Engineering & Physical Sciences, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune 411013, India
| |
Collapse
|