1
|
Khalid R, Mahmood S, Mohamed Sofian Z, Chik Z, Ge Y. Development of Rapidly Dissolving Microneedles Integrated with Valsartan-Loaded Nanoliposomes for Transdermal Drug Delivery: In Vitro and Ex Vivo Evaluation. Pharmaceutics 2025; 17:483. [PMID: 40284478 PMCID: PMC12030157 DOI: 10.3390/pharmaceutics17040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Hypertension (HTN) is recognized as a major risk factor for cardiovascular disease, chronic kidney disease, and peripheral artery disease. Valsartan (VAL), an angiotensin receptor blocker drug for hypertension, has been limited due to its poor solubility and poor absorption from the GIT, which leads to low oral bioavailability. Objectives/Method: In the present research, firstly, VAL-loaded nanoliposomes were formulated and optimized using the Box-Behnken design (BBD). Optimized VAL-nanoliposomes were physically characterized and their fate was examined by scanning and transmission microscopy, DSC, FTIR, XRD, and ex vivo studies using rat skin. In vitro studies using human keratinocyte (HaCaT) cells showed a decrease in cell viability as the liposome concentration increased. Secondly, the formulation of VAL-loaded nanoliposomes was integrated into dissolvable microneedles (DMNs) to deliver the VAL transdermally, crossing the skin barrier for better systemic delivery. Results: The optimized nanoliposomes showed a vesicle size of 150.23 (0.47) nm, a ZP of -23.37 (0.50) mV, and an EE% of 94.72 (0.44)%. The DMNs were fabricated using a ratio of biodegradable polymers, sodium alginate (SA), and hydroxypropyl methylcellulose (HPMC). The resulting VAL-LP-DMNs exhibited sharp pyramidal microneedles, adequate mechanical properties, effective skin insertion capability, and rapid dissolution of the microneedles in rat skin. In the ex vivo analysis, the transdermal flux of VAL was significantly (5.36 (0.39) μg/cm2/h) improved by VAL-LP-DMNs. The enhancement ratio of the VAL-LP-DMNs was 1.85. In conclusion, liposomes combined with DMNs have shown high potential and bright prospects as carriers for the transdermal delivery of VAL. Conclusions: These DMNs can be explored in studies focused on in vivo evaluations to confirm their safety, pharmacokinetics profile, and pharmacodynamic efficacy.
Collapse
Affiliation(s)
- Ramsha Khalid
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
- Universiti Malaya-Research Centre for Biopharmaceuticals and Advanced Therapeutics (UBAT), Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre of Advanced Materials (CAM), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
- Universiti Malaya-Research Centre for Biopharmaceuticals and Advanced Therapeutics (UBAT), Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Zamri Chik
- Universiti Malaya-Research Centre for Biopharmaceuticals and Advanced Therapeutics (UBAT), Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
2
|
Zhang X, Wu S, Huang Q, Jing S, Yong P, Zhang L, Zhuang H. Cordycepin's therapeutic potential: in vivo transport, transbilayer diffusion and anti-aging effects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40084500 DOI: 10.1002/jsfa.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Cordycepin (3'-deoxyadenosine) is a bioactive compound known for its numerous beneficial properties, including antioxidant, anti-aging and antitumor effects. Despite its promising therapeutic potential, the in vivo transport mechanisms of cordycepin remain inadequately understood. Previous studies have highlighted its biological activity, but there is limited information regarding its transport and distribution, as well as how it interacts with biological systems to exert these effects. The present study explored the transport mechanisms of cordycepin, specifically its interaction with bovine serum albumin (BSA) transporters and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes, and assessed its anti-aging effects through cellular experiments. RESULTS The study demonstrates that cordycepin effectively interacts with DPPC liposomes, improving its therapeutic efficacy. Spectral analysis shows strong binding between cordycepin and transporters, aiding its distribution in the bloodstream and targeted accumulation in tissues. Additionally, cellular tests reveal that cordycepin inhibits butyl hydroperoxide-induced cellular senescence in a dose-dependent manner. CONCLUSION The interaction of cordycepin with BSA transporters and DPPC liposomes enhances its distribution and therapeutic potential. The compound also shows promise as an anti-aging agent by reducing cellular senescence. These findings provide insight into cordycepin's in vivo behavior and suggest strategies to enhance its pharmacological effectiveness. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Jilin, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Jilin, China
| | - Qihan Huang
- College of Food Science and Engineering, Jilin University, Jilin, China
| | - Shubo Jing
- College of Materials Science and Engineering, Jilin University, Jilin, China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Jilin, China
| | - Ling Zhang
- College of Food Science and Engineering, Jilin University, Jilin, China
| | - Hong Zhuang
- College of Food Science and Engineering, Jilin University, Jilin, China
| |
Collapse
|
3
|
Molaveisi M, Li L, Yu J, Zhao Y, Shi Q. Nanocochleates as novel delivery vehicles for enhancement of water solubility, stability and controlled release of dihydromyricetin in gastrointestinal tract. Food Res Int 2024; 197:115174. [PMID: 39593385 DOI: 10.1016/j.foodres.2024.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
Dihydromyricetin (DHM) possesses impressive antioxidant and anti-inflammatory properties; however, its effectiveness is limited by poor bioavailability. Liposomes improve the solubility and stability of insoluble bioactives but encounter challenges in gastrointestinal fluids after oral administration. Consequently, DHM-loaded nanocochleates were fabricated to enhance the solubility, stability, and release behavior of DHM. The nanoliposomes exhibited an entrapment efficiency (EE) ranging from 85.64 % to 88.79 %, a particle size between 136.20 and 150.70 nm, a polydispersity index (PDI) of 0.36 to 0.43, and a zeta potential of -6.82 to -11.13 mV. In contrast, the cylindrical-shaped nanocochleates demonstrated an EE ranging from 74.94 % to 84.64 %, a particle size between 239.07 and 571.43 nm, a PDI from 0.16 to 0.61, and a zeta potential ranging from -21.97 to -27.10 mV. The nanocochleates exhibited improved water solubility (64.75 %) and retained antioxidant activity (41.38 %) compared to free DHM. Additionally, they demonstrated enhanced stability of DHM compared to nanoliposomes during 30 days of storage. Fourier transform infrared spectroscopy and differential scanning calorimetry confirmed that DHM was encapsulated within nanocochleate structures via ionic and chemical interactions. X-ray diffraction revealed a distinct organization of the nanocochleates in comparison to the nanoliposomes. The release of DHM from nanocochleates demonstrated a prolonged and controlled release in simulated gastrointestinal medium, unlike the burst release observed with nanoliposomes. This study hightlighted the potential of nanocochleates as novel delivery vehicles for enhancing the stability and bioavailability of DHM. It also offered a unique perspective on developing functional food formulations that utilize nanocochleates as promising nanocarriers for bioactives.
Collapse
Affiliation(s)
- Mohammad Molaveisi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong Province 255000, PR China
| | - Li Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong Province 255000, PR China
| | - Jiao Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong Province 255000, PR China
| | - Ya Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong Province 255000, PR China
| | - Qilong Shi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong Province 255000, PR China.
| |
Collapse
|
4
|
Kianinejad N, Razeghifard R, Omidian HH, Omidi Y, Kwon YM. Preparation and characterization of niosomes for the delivery of a lipophilic model drug: comparative stability study with liposomes against phospholipase-A 2. J Liposome Res 2024:1-12. [PMID: 39363444 DOI: 10.1080/08982104.2024.2410748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/27/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Vesicular nanocarriers like niosomes and liposomes are widely researched for controlled drug delivery systems, with niosomes emerging as promising alternatives due to their higher stability and ease of manufacturing. This study aimed to develop and characterize a niosomal formulation for the encapsulation and sustained release of temozolomide (TMZ), a model lipophilic drug, and to compare the stability of niosomes and liposomes, with a particular focus on the behavior of their lipid bilayers. Niosomes were prepared using the thin-film hydration method, composed of Span 60 (Sorbitan monostearate), cholesterol, and soy lecithin in varying molar ratios. The study investigated critical properties such as drug loading capacity, release kinetics, and resistance to enzymatic degradation. The optimized formulation was analyzed for drug entrapment efficiency and stability against phospholipase A2 (PLA2) degradation. The optimized niosomal formulation, with a 4:2:1 molar ratio of Span 60: cholesterol, achieved a high TMZ entrapment efficiency of 73.23 ± 1.02% and demonstrated sustained drug release over 24 hours. In comparison, liposomes released their TMZ payload within 4 hours upon exposure to PLA2, while the niosomes maintained their release profile, indicating superior stability. Spectroscopic and thermal analysis confirmed successful drug encapsulation with no component incompatibilities.
Collapse
Affiliation(s)
- Nazanin Kianinejad
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Reza Razeghifard
- Department of Chemistry and Physics, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hossein H Omidian
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Young M Kwon
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
5
|
Chmelařová H, Catapano MC, Garrigues JC, Švec F, Nováková L. Advancing drug safety and mitigating health concerns: High-resolution mass spectrometry in the levothyroxine case study. J Pharm Anal 2024; 14:100970. [PMID: 39350965 PMCID: PMC11440252 DOI: 10.1016/j.jpha.2024.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 10/04/2024] Open
Abstract
Levothyroxine is a drug with a narrow therapeutic index. Changing the drug formulation composition or switching between pharmaceutical brands can alter the bioavailability, which can result in major health problems. However, the increased adverse drug reactions have not been fully explained scientifically yet and a thorough investigation of the formulations is needed. In this study, we used a non-targeted analytical approach to examine the various levothyroxine formulations in detail and to reveal possible chemical changes. Ultra-high-performance liquid chromatography coupled with a data-independent acquisition high-resolution mass spectrometry (UHPLC-DIA-HRMS) was employed. UHPLC-DIA-HRMS allowed not only the detection of levothyroxine degradation products, but also the presence of non-expected components in the formulations. Among these, we identified compounds resulting from reactions between mannitol and other excipients, such as citric acid, stearate, and palmitate, or from reactions between an excipient and an active pharmaceutical ingredient, such as levothyroxine-lactose adduct. In addition to these compounds, undeclared phospholipids were also found in three formulations. This non-targeted approach is not common in pharmaceutical quality control analysis. Revealing the presence of unexpected compounds in drug formulations proved that the current control mechanisms do not have to cover the full complexity of pharmaceutical formulations necessarily.
Collapse
Affiliation(s)
- Hana Chmelařová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Maria Carmen Catapano
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jean-Christophe Garrigues
- Laboratoire SOFTMAT (IMRCP), Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| |
Collapse
|
6
|
D'Onofrio I, De Giorgio G, Sajapin R, Vurro D, Liboà A, Dembech E, Trevisi G, Botti M, Galstyan V, Tarabella G, D'Angelo P. Inhalable drug-loaded silk fibroin carriers for pulmonary drug delivery. RSC Adv 2024; 14:27288-27297. [PMID: 39219844 PMCID: PMC11362913 DOI: 10.1039/d4ra03324h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
The design and development of engineered micro and nano-carriers offering superior therapeutic performance compared to traditional delivery forms, are crucial in pharmaceutical research. Aerosolization and inhalation of carriers with improved solubility/stability of insoluble drugs, has huge potential for targeted drug delivery (DD) in various pulmonary diseases. Indeed, dedicated carriers must meet specific dimensional rules for proper lung delivery. Particles between 2-10 μm in size are normally deposited in the tracheobronchial region, while particles of 0.5-2 μm may be properly deposited in the alveoli. In this work, we report the development of inhalable nanostructured carries made of a 'green' bio-inspired polymer from aqueous solutions, i.e. silk fibroin (SF), efficiently loaded with a hydrophobic drug, i.e. the thyroid hormone levothyroxine (L-T4), a drug for the treatment of idiopathic pulmonary fibrosis. The aim is to optimize a standard method for the synthesis of SF-based nanocarriers with controlled size and shape, where a fine control of their geometrical properties is aimed at efficiently controlling the pulmonary DD. L-T4 loaded SF particles were synthesized through a one-pot co-precipitation method. Optimized systems were determined by varying the chemo-physical parameters during the synthesis. Ethylenediaminetetraacetic acid (EDTA) was used to remove CaCO3 cores. The proposed synthesis routes have led to two SF structures, whose structural heterogeneity and nanostructured morphology have been demonstrated using fluorescence microscopy, DLS, SEM and EDX. Two systems with varying shape and size have been obtained: (i) a flat disk-like SF structure with an irregular surface and an in-plane length of about 1-2 μm; (ii) solid SF nanospheres, obtained using ethylene glycol as additive, showing two size populations (main diameters of 0.5 μm and 1.7 μm). Solid nanospherical systems, in particular, show a tendency to arrange into agglomerates that, when loosely bound into smaller particles, can facilitate the delivery at the alveoli. Both formulations exhibited similar drug loading efficiencies, evaluated by HPLC analysis. However, SF nanospheres showed greater in vitro drug release after 24 hours. The demonstrated control over the characteristics imparted to the proposed DD systems may be critical to select the most suitable size/shape to achieve high rates of delivery to the appropriate lung compartment.
Collapse
Affiliation(s)
- Ilenia D'Onofrio
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
- Graduate School in Science and Technologies of Materials, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Parco Area delle Scienze, 11/A 43121 Parma Italy
| | - Giuseppe De Giorgio
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Roman Sajapin
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Davide Vurro
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Aris Liboà
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
- Graduate School in Science and Technologies of Materials, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Parco Area delle Scienze, 11/A 43121 Parma Italy
| | - Elena Dembech
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Giovanna Trevisi
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Maddalena Botti
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
- Department of Veterinary Medical Sciences, University of Parma Via del Taglio, 10 43121 Parma Italy
| | - Vardan Galstyan
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia Via Vivarelli 10 41125 Modena Italy
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Pasquale D'Angelo
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| |
Collapse
|
7
|
Kocas M, Comoglu T, Ozkul A. Development and in vitro antiviral activity of ivermectin liposomes as a potential drug carrier system. Arch Pharm (Weinheim) 2024; 357:e2300708. [PMID: 38702288 DOI: 10.1002/ardp.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
This study aimed to assess and compare diverse formulations of ivermectin-loaded liposomes, employing lipid film hydration and ethanol injection methods. Three lipids (DOPC, SPC, and DSPC) were used in predetermined molar ratios. A total of 18 formulations were created, and a factorial design determined the optimal formulation based on particle size, polydispersity index (PDI), zeta potential, and encapsulation efficiency. The average mean particle size, PDI and zeta potential of the selected formulations (F1, F2, F7, F9, and F11) was, respectively, 196.40 ± 44.60 nm, 0.39 ± 0.09, and -40.24 ± 9.17. The encapsulation efficiency exceeded 80%, with a mean loading capacity of 4.00 ± 1.70%. In vitro studies included transmission electron microscopy, Fourier transform infrared spectroscopy, drug release, and antiviral activity assessments against SARS-CoV-2. The liposomal formulations demonstrated superior antiviral activity compared to free ivermectin, as indicated by lower IC50 values. The results of this study emphasize the effectiveness of ivermectin-loaded liposomes in inhibiting viral activity, highlighting their potential as promising candidates for antiviral therapy. The findings suggest that the strategic use of liposomes as drug carriers can significantly modulate and improve the antiviral properties of ivermectin, offering a novel approach to harnessing its full therapeutic potential. Collectively, these results provide a robust foundation for further exploration of ivermectin as a viral protection tool and optimization of its delivery mechanisms.
Collapse
Affiliation(s)
- Meryem Kocas
- Department of Pharmaceutical Technology, Selcuk University Faculty of Pharmacy, Konya, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Department of Pharmaceutical Technology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Tansel Comoglu
- Department of Pharmaceutical Technology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Aykut Ozkul
- Department of Virology, Ankara University Faculty of Veterinary Medicine, Ankara, Turkey
| |
Collapse
|
8
|
Zhuang H, Zhang X, Wu S, Mao C, Dai Y, Yong P, Niu X. Study transport of hesperidin based on the DPPC lipid model and the BSA transport model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124172. [PMID: 38513316 DOI: 10.1016/j.saa.2024.124172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Hesperidin (HE), a significant flavonoid polyphenolic compound present in citrus plants, exhibits diverse pharmacological effects. Considering the crucial involvement of biological membranes and transporter proteins in the transportation and biological processes of HE, it becomes essential to comprehend the potential mechanisms through which HE interacts with membranes and transporter proteins. In order to simulate the process of active molecule transport, a cell membrane model consisting of 1,2-dipalmitoyl-n-glycero-3-phosphatidylcholine (DPPC) and a transporter protein model of bovine serum albumin (BSA) were employed for investigation. The present study aimed to investigate the mechanism of action of hesperidin (HE) in DPPC and BSA using fluorescence quenching, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The localization and interaction of HE within liposomes were also elucidated. Furthermore, the binding of BSA and HE was analyzed through UV/Vis absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and computational biology techniques. Computational biology analysis revealed that the binding between HE and BSA primarily occurred via hydrogen bonding and hydrophobic interactions. This study aimed to investigate the role and mechanism of HE in the DPPC cell membrane model and the BSA transporter protein model, thereby offering novel insights into the action of HE in DPPC and BSA.
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Chen Mao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Yaxi Dai
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
9
|
Wu S, Jiang P, Zhang X, Mao C, Dai Y, Zhuang H, Pang Y. Understanding the Transepithelial Transport and Transbilayer Diffusion of the Antihypertensive Peptide Asn-Cys-Trp: Insights from Caco-2 Cell Monolayers and the DPPC Model Membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9828-9841. [PMID: 38639269 DOI: 10.1021/acs.jafc.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Understanding the transport mechanism of the peptide Asn-Cys-Trp (NCW) is crucial to improving its intestinal absorption and bioavailability. This study investigated the absorption of NCW through Caco-2 cell monolayers and its interaction with the DPPC bilayers. Results revealed that after a 3 h incubation, the Papp (AP-BL) and Papp (BL-AP) values of NCW at a concentration of 5 mmol/L were (22.24 ± 4.52) × 10-7 and (6.63 ± 2.31) × 10-7 cm/s, respectively, with the transport rates of 1.59 ± 0.32 and 0.62 ± 0.20%, indicating its moderate absorption. NCW was found to be transported via PepT1 and paracellular transport pathways, as evidenced by the significant impact of Gly-Pro and cytochalasin D on the Papp values. Moreover, NCW upregulated ZO-1 mRNA expression. Further investigation of the ZO-1-mediated interaction between NCW and tight junction proteins will contribute to a better understanding of the paracellular transport mechanism of NCW. The interaction between NCW and the DPPC bilayers was predominantly driven by entropy. NCW permeated the bilayers through electrostatic, hydrogen bonding, and hydrophobic interactions, resulting in increased fluidity, flexibility, and disorder as well as phase transition and phase separation of the bilayers.
Collapse
Affiliation(s)
- Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Ping Jiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Chen Mao
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Yaxi Dai
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Yong Pang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
10
|
A P, Alexander A. Biophysical analysis on molecular interactions between chitosan-coated sinapic acid loaded liposomes and mucin. Biochim Biophys Acta Gen Subj 2024; 1868:130517. [PMID: 37935351 DOI: 10.1016/j.bbagen.2023.130517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The mucus biomembrane is a primary barrier in delivering drugs to the brain via intranasal delivery. The negatively charged nanoformulations suffer from poor mucoadhesive ability and less retention time in the nasal cavity, which limits further therapeutic efficacy. The positively charged chitosan coating on liposomes may overcome the above issues. Hence, understanding the molecular interactions between the chitosan-coated liposomes and mucin is essential for developing an effective drug delivery system. METHODS The molecular interactions of mucin with sinapic acid-loaded liposomes (SA-LPs) and mucin with chitosan-coated sinapic acid-loaded liposomes (SA-CH-LPs) were assessed using different biophysical instrumental analyses by interpreting the UV-Vis spectra and observing the particle size, polydispersity index, surface charge, and rheological behavior. RESULTS The mucin interaction with SA-CH-LPs showed increased viscosity as compared to SA-LPs with mucin. Moreover, the mucin interaction with SA-CH-LPs showed stronger mucoadhesive properties as compared to SA-LPs with mucin. The electrostatic interaction between positively charged SA-CH-LPs and negatively charged mucin was responsible for the enhanced mucoadhesive property. CONCLUSION The positively charged SA-CH-LPs highly interact with mucin as compared to negatively charged SA-LPs. The mucoadhesive property of SA-CH-LPs could improve the retention of SA in the nasal cavity as compared to SA-LPs. These findings emphasize the importance of chitosan in modulating the mucoadhesive behavior of liposomes. GENERAL SIGNIFICANCE Overall, this study helps to understand the molecular interactions and mucoadhesive nature of the chitosan-coated liposomes with mucin, which is essential for biological activity in the physiological environment.
Collapse
Affiliation(s)
- Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
11
|
Khairnar P, Singh A, Ahirwar K, Shukla R. ApoE3 Anchored Liposomal Delivery of Rivastigmine for Brain Delivery: Formulation, Characterization, and In Vivo Pharmacokinetic Evaluation. AAPS PharmSciTech 2023; 24:223. [PMID: 37945928 DOI: 10.1208/s12249-023-02684-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Rivastigmine hydrogen tartrate (RHT) is an acetylcholinesterase (AChE) inhibitor used in the management of Alzheimer's disease (AD). RHT is a BCS class-I drug that undergoes significant first-pass metabolism. Permeating a hydrophilic drug through the brain remains a major challenge in brain delivery. In this study, the RHT was incorporated inside the hydrophilic core of liposomes (LPS) and then coated with the ApoE3. ApoE3-coated RHT-loaded liposomes (ApoE3-RHT-LPS) were fabricated through the thin film hydration method using DSPE-PEG. The coating of LPS with ApoE3 enhances brain uptake and improves Aβ clearance. The results obtained from the physicochemical characterization demonstrated that ApoE3-RHT-LPS shows a particle size of 128.6 ± 2.16 nm and a zeta potential of 16.6 ± 1.19. The % entrapment efficiency and % drug loading were found to be 75% and 17.84%, respectively. The data obtained from TEM and SEM studies revealed that the particle size of the LPS was less than 200 nm. An in vitro AChE assay was performed, and the results demonstrated the AChE inhibitory potential of ApoE3-RHT-LPS. Through the intravenous route, an in vivo pharmacokinetic study of formulation displayed improved brain uptake of RHT by ~ 1.3-fold than pure RHT due to ApoE3 coating. In vivo, biodistribution studies in vital organs suggested that the biodistribution of RHT to the liver was significantly reduced (p < 0.001), signifying an increase in the drug's half-life and blood circulation time. All research findings suggested that ApoE3 coating and LPS strategy are proven effective for improving the brain uptake of RHT designed for the management of AD.
Collapse
Affiliation(s)
- Pooja Khairnar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, 226002, India
| | - Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, 226002, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, 226002, India.
| |
Collapse
|
12
|
Aulia D, Ardiany D. The role of amiodarone in post-operative hypothyroidism patient with factitious thyrotoxicosis and atrial fibrillation: A case report. Int J Surg Case Rep 2023; 106:108252. [PMID: 37126923 PMCID: PMC10172904 DOI: 10.1016/j.ijscr.2023.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023] Open
Abstract
INTRODUCTION Factitious thyrotoxicosis includes all causes of thyrotoxicosis from the short or long-term ingestion of thyroid hormone, of which one of the complications is atrial fibrillation. CASE PRESENTATION A woman, 71 years old, complained of chest palpitations. She had a medical history of thyroidectomy, hypertension, and dyslipidemia. In addition, she took Levothyroxine, amlodipine and simvastatin regularly. On physical examination, the general status was weak, with vital signs showing blood pressure (BP) of 170/100 mmHg, heart rate (HR) of 130-150 bpm, irregular rhythm, respiratory rate (RR) of 20×/min, axillary temperature of 36.8 °C, and oxygen saturation (SpO2) 98 % with room air. The abnormal laboratory found were significant increase in total T4, total T3, FT4, and low levels of TSH. The first electrocardiogram (ECG) showed AF and Burch Watorfsky's score was 45. The AF was treated with a loading dose of amiodarone 150 mg in 10 min and decreased gradually. She had received a high-calorie, protein and low-salt diet of 2100 kcal/day, termination Levothyroxine usage, propranolol of 10 mg/8 h, amlodipine of 5 mg/day, and lisinopril of 5 mg/day. Treatment for AF was continued with a maintenance dose of amiodarone IV 300 mg in 6 h, then 600 mg in 18 h, warfarin tablet 2 mg/day (according to treatment from a cardiologist), and atorvastatin 20 mg/day at night. After 6 days of treatment, the patient experienced improvement and continued discharge. The patient improved on an outpatient basis and was monitored periodically. DISCUSSION Monitored treatment of thyrotoxicosis and AF management with 3 principles can minimize complication severity. CONCLUSION Early, effective and monitored treatment of thyrotoxicosis is vital to manage AF in achieving a better outcome.
Collapse
Affiliation(s)
- Dien Aulia
- Study Program of Department of Internal Medicine, Faculty of Medicine, Airlangga University - Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Ardiany
- Department of Internal Medicine, Faculty of Medicine, Airlangga University - Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| |
Collapse
|
13
|
Le-Deygen I, Safronova A, Mamaeva P, Khristidis Y, Kolmogorov I, Skuredina A, Timashev P, Kudryashova E. Liposomal Forms of Fluoroquinolones and Antifibrotics Decorated with Mannosylated Chitosan for Inhalation Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15041101. [PMID: 37111586 PMCID: PMC10145208 DOI: 10.3390/pharmaceutics15041101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The severe course of COVID-19 leads to the long-terming pulmonary diseases, such as bacterial pneumonia and post-COVID-19 pulmonary fibrosis. Thus, the essential task of biomedicine is a design of new effective drug formulations, including those for inhalation administration. In this work, we propose an approach to the creation of lipid–polymer delivery systems for fluoroquinolones and pirfenidone based on liposomes of various compositions decorated with mucoadhesive mannosylated chitosan. A generalizing study on the physicochemical patterns of the interactions of drugs with bilayers of various compositions was carried out, and the main binding sites were identified. The role of the polymer shell in the stabilization of vesicles and the delayed release of the contents has been demonstrated. For the liquid–polymer formulation of moxifloxacin, a prolonged accumulation of the drug in lung tissues was found after a single endotracheal administration to mice, significantly exceeding the control intravenous and endotracheal administration of the drug.
Collapse
|
14
|
Sahin I, Ceylan Ç, Bayraktar O. Ruscogenin interacts with DPPC and DPPG model membranes and increases the membrane fluidity: FTIR and DSC studies. Arch Biochem Biophys 2023; 733:109481. [PMID: 36522815 DOI: 10.1016/j.abb.2022.109481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Ruscogenin, a kind of steroid saponin, has been shown to have significant anti-oxidant, anti-inflammatory, and anti-thrombotic characteristics. Furthermore, it has the potential to be employed as a medicinal medication to treat a variety of acute and chronic disorders. The interaction of a drug molecule with cell membranes can help to elucidate its system-wide protective and therapeutic effects, and it's also important for its pharmacological activity. The molecular mechanism by which ruscogenin affects membrane architecture is still a mystery. Ruscogenin's interaction with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) was studied utilizing two non-invasive approaches, including: Fourier Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry. Ruscogenin caused considerable alterations in the phase transition profile, order, dynamics and hydration state of head groups and glycerol backbone of DPPC and DPPG MLVs at all concentrations. The DSC results indicated that the presence of ruscogenin decreased the main phase transition temperature (Tm) and enthalpy (ΔH) values of both membranes and increased half height width of the main transition (ΔT1/2). The FTIR results demonstrated that all concentrations (1, 3, 6, 9, 15, 24 and 30 mol percent) of ruscogenin disordered the DPPC MLVs both in the gel and liquid crystalline phases while it increased the order of DPPG MLVs in the liquid crystalline phase. Moreover, ruscogenin caused an increase in the dynamics of DPPC and DPPG MLVs in both phases. Additionally, it enhanced the hydration of the head groups of lipids and the surrounding water molecules implying ruscogenin to interact strongly with both zwitterionic and charged model membranes.
Collapse
Affiliation(s)
- Ipek Sahin
- Department of Physics, Faculty of Science, Ege University, 35100, Bornova, İzmir, Turkey.
| | - Çağatay Ceylan
- Department of Food Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Oguz Bayraktar
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, İzmir, Turkey
| |
Collapse
|
15
|
Ji H, Zhao W, Yu Z. Interaction mechanism of three egg protein derived ACE inhibitory tri-peptides and DPPC membrane using FS, FTIR, and DSC studies. Food Chem X 2022; 15:100366. [PMID: 35756460 PMCID: PMC9218224 DOI: 10.1016/j.fochx.2022.100366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 12/31/2022] Open
Abstract
Understanding the interaction of food derived angiotensin converting enzyme (ACE) inhibitory peptides and intestinal epithelial cell membrane may help to improve their absorption. This research aimed to study the molecular interaction of ACE inhibitory tri-peptides ADF, FGR, and MIR with DPPC membrane during absorption process. The DPPC liposome was prepared and characterized, then used as a model membrane. The permeability of tri-peptides across the membrane was investigated using Fluorescence spectroscopy. The effect of tri-peptides on the structure and dynamics of DPPC bilayers was determined using Fourier transform infrared spectroscopy. The effect of tri-peptides on the phase transition temperature in the DPPC membrane was also analyzed using Differential scanning calorimetry. The results showed that ACE inhibitory tri-peptides ADF, FGR, and MIR can penetrate into both the membrane-water interface and hydrophobic region of DPPC bilayer, and the tri-peptide FGR have higher permeability across the membrane.
Collapse
Affiliation(s)
- Huizhuo Ji
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.,School of Food and Health, Beijing Technology and Business University, Bejing 100048, China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
16
|
Weaver E, O'Connor E, Cole DK, Hooker A, Uddin S, Lamprou DA. Microfluidic-mediated self-assembly of phospholipids for the delivery of biologic molecules. Int J Pharm 2022; 611:121347. [PMID: 34890709 DOI: 10.1016/j.ijpharm.2021.121347] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022]
Abstract
The encapsulation of biologic molecules using a microfluidic platform is a procedure that has been understudied but shows great promise from initial reported studies. The study focusses upon the encapsulation of bovine serum albumin (BSA) under various parameters and using multiple phospholipids to identify optimal conditions for the manufacturing of protein loaded lipid nanoparticles. Additionally, encapsulation of the enzyme trypsin (TRP) has been investigated to show the eligibility of the system to other biological medications. All liposomes were subject to rigorous physicochemical characterisation, including differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR), to document the successful synthesis of the liposomes. Drug-loaded liposome stability was investigated over a 28-day period at 5 °C and 37 °C, which showed encouraging results for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) at all concentrations of BSA used. The sample containing 1 mg/ml BSA grew by only 10% over the study, which considering liposomes should be affected highly by biologic adsorption, shows great promise for the formulations. Encapsulation and in vitro release studies showed improved loading capacity for BSA compared to conventional methods, whilst maintaining a concise controlled release of the active pharmaceutical ingredient (API).
Collapse
Affiliation(s)
- Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Edward O'Connor
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - David K Cole
- Immunocore, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - Andrew Hooker
- Immunocore, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - Shahid Uddin
- Immunocore, 92 Park Dr, Milton, Abingdon OX14 4RY, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
17
|
Interaction of DPPC liposomes with cholesterol and food protein during in vitro digestion using Dynamic Light Scattering and FTIR spectroscopy analysis. Food Chem 2021; 375:131893. [PMID: 34954575 DOI: 10.1016/j.foodchem.2021.131893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023]
Abstract
The influence of cholesterol (CHO), bovine serum albumin (BSA) and lactoferrin (LF), on the phase transition temperature (Tm) and structure of DPPC liposomes during in vitro digestion was investigated using Dynamic Laser Scattering (DLS) and Fourier Transform Infrared Spectroscopy technologies (FTIR). CHO enhanced bilayers thickness and acyl chain order, especially in DPPC:CHO of 6:1, with the average size increase to 1.77 ± 0.20 μm and broaden of phase transition (Tm 45.8 °C). Protein critically impacted on the liposomal structure through formation of hydrogen bonds between in DPPC and protein. Liposomal size and Tm were significantly changed after simulated gastric digestion, whereas the pancreatic incubation can broaden transition phase and weaken functional groups of liposomes. Our data provided a better understanding on structure changes of CHO-containing membrane and protein addition by revealing Tm and chemical bonds details, and added to current knowledge for evaluating the different component on liposomal digestibility in food area.
Collapse
|
18
|
Schlich M, Musazzi UM, Campani V, Biondi M, Franzé S, Lai F, De Rosa G, Sinico C, Cilurzo F. Design and development of topical liposomal formulations in a regulatory perspective. Drug Deliv Transl Res 2021; 12:1811-1828. [PMID: 34755281 PMCID: PMC8577404 DOI: 10.1007/s13346-021-01089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/29/2023]
Abstract
The skin is the absorption site for drug substances intended to treat loco-regional diseases, although its barrier properties limit the permeation of drug molecules. The growing knowledge of the skin structure and its physiology have supported the design of innovative nanosystems (e.g. liposomal systems) to improve the absorption of poorly skin-permeable drugs. However, despite the dozens of clinical trials started, few topically applied liposomal systems have been authorized both in the EU and the USA. Indeed, the intrinsic complexity of the topically applied liposomal systems, the higher production costs, the lack of standardized methods and the more stringent guidelines for assessing their benefit/risk balance can be seen as causes of such inefficient translation. The present work aimed to provide an overview of the physicochemical and biopharmaceutical characterization methods that can be applied to topical liposomal systems intended to be marketed as medicinal products, and the current regulatory provisions. The discussion highlights how such methodologies can be relevant for defining the critical quality attributes of the final product, and they can be usefully applied based on the phase of the life cycle of a liposomal product: to guide the formulation studies in the early stages of development, to rationally design preclinical and clinical trials, to support the pharmaceutical quality control system and to sustain post-marketing variations. The provided information can help define harmonized quality standards able to overcome the case-by-case approach currently applied by regulatory agencies in assessing the benefit/risk of the topically applied liposomal systems.
Collapse
Affiliation(s)
- Michele Schlich
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy.,Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Virginia Campani
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Marco Biondi
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Silvia Franzé
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Francesco Lai
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Giuseppe De Rosa
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Chiara Sinico
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy.
| |
Collapse
|
19
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
20
|
Hao XL, Guo HY, Cao B, Mo G, Li ZH, Yu ZW. The distinct effects of two imidazolium-based ionic liquids, [C 4mim][OAc] and [C 6mim][OAc], on the phase behaviours of DPPC. Phys Chem Chem Phys 2021; 23:17888-17893. [PMID: 34378570 DOI: 10.1039/d1cp01220g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ionic liquids (ILs) are potential green solvents with very broad application prospects. Their toxicity and other biological effects are largely related to their hydrophobic properties. In this work, the effects of two imidazolium-based ILs with either a butyl or a hexyl chain, [C4mim][OAc] or [C6mim][OAc], on the phase behaviours of a representative phospholipid, dipalmitoylphosphatidylcholine (DPPC), were examined using synchrotron small- and wide-angle X-ray scattering and differential scanning calorimetry techniques. A series of samples with a lipid : IL molar ratio ranging from 1 : 0 to 1 : 4/1 : 5 were prepared as aqueous dispersions in the form of multi-lamellar vesicles. The two ILs were found to have distinct effects on the phase behaviours of DPPC. For [C4mim][OAc], its effect is very limited. In contrast, for [C6mim][OAc], it could eliminate the pre-transition of DPPC, markedly affect the main phase transition of the lipid, and insert into the DPPC bilayer at gel state to form an interdigitated gel phase. The findings increased our understanding on the biological effects of imidazolium-based ILs and might shed light on the design of novel IL-based antimicrobials.
Collapse
Affiliation(s)
- Xiao-Lei Hao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | |
Collapse
|
21
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Liposomes as biomembrane models: Biophysical techniques for drug-membrane interaction studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Structure of DPPC Monolayers at the Air/Buffer Interface: A Neutron Reflectometry and Ellipsometry Study. COATINGS 2020. [DOI: 10.3390/coatings10060507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Langmuir monolayers of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine, known as DPPC, at the air/water interface are extensively used as model systems of biomembranes and pulmonary surfactant. The properties of these monolayers have been mainly investigated by surface pressure–area isotherms coupled with different complementary techniques such as Brewster angle microscopy, for example. Several attempts using neutron reflectometry (NR) or ellipsometry have also appeared in the literature. Here, we report structural information obtained by using NR and ellipsometry on DPPC monolayers in the liquid condensed phase. On one side, NR can resolve the thickness of the aliphatic tails and the degree of hydration of the polar headgroups. On the other side, ellipsometry gives information on the refractive index and, therefore, on the physical state of the monolayer. The thickness and surface excess obtained by multiple-angle-of-incidence ellipsometry (MAIE) is compared with the results from NR measurements yielding a good agreement. Besides, a novel approach is reported to calculate the optical anisotropy of the DPPC monolayer that depends on the orientation of the aliphatic chains. The results from both NR and ellipsometry are also discussed in the context of the existing results for DPPC monolayers at the air/water interface. The differences observed are rationalized by the presence of buffer molecules interacting with phospholipids.
Collapse
|