1
|
Mishra S, Chakraborty H. Dengue Virus Fusion Peptide Promotes Hemifusion Formation by Disordering the Interfacial Region of the Membrane. J Membr Biol 2025; 258:161-171. [PMID: 39825135 DOI: 10.1007/s00232-025-00336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.4 with varying cholesterol concentrations. We have demonstrated that the DENV FP promotes hemifusion formation during the fusion of small unilamellar vesicles (SUVs) mainly at pH 5.0. Moreover, the fusion process demonstrates a strong correlation between fusogenicity and the amount of membrane cholesterol. We have further evaluated the partitioning ability of the peptide in three different membranes at pH 5.0 and pH 7.4. The fusogenic ability of the peptide at pH 5.0 is associated with the composition-dependent binding affinity of the peptide to the membrane. The depth-dependent fluorescence probes are used to evaluate membrane organization and dynamics utilizing steady-state and time-resolved fluorescence spectroscopic techniques. Our results show that the DENV FP promotes hemifusion formation by fluidizing the interfacial region of the membrane.
Collapse
Affiliation(s)
- Smruti Mishra
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.
| |
Collapse
|
2
|
Valério M, Buga CC, Melo MN, Soares CM, Lousa D. Viral entry mechanisms: the role of molecular simulation in unlocking a key step in viral infections. FEBS Open Bio 2025; 15:269-284. [PMID: 39402013 PMCID: PMC11788750 DOI: 10.1002/2211-5463.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 02/04/2025] Open
Abstract
Viral infections are a major global health concern, affecting millions of people each year. Viral entry is one of the crucial stages in the infection process, but its details remain elusive. Enveloped viruses are enclosed by a lipid membrane that protects their genetic material and these viruses are linked to various human illnesses, including influenza, and COVID-19. Due to the advancements made in the field of molecular simulation, significant progress has been made in unraveling the dynamic processes involved in viral entry of enveloped viruses. Simulation studies have provided deep insight into the function of the proteins responsible for attaching to the host receptors and promoting membrane fusion (fusion proteins), deciphering interactions between these proteins and receptors, and shedding light on the functional significance of key regions, such as the fusion peptide. These studies have already significantly contributed to our understanding of this critical aspect of viral infection and assisted the development of effective strategies to combat viral diseases and improve global health. This review focuses on the vital role of fusion proteins in facilitating the entry process of enveloped viruses and highlights the contributions of molecular simulation studies to uncover the molecular details underlying their mechanisms of action.
Collapse
Affiliation(s)
- Mariana Valério
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Carolina C. Buga
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisbonPortugal
| | - Manuel N. Melo
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Cláudio M. Soares
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Diana Lousa
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
3
|
Villalaín J. Membrane fusion by dengue virus: The first step. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184400. [PMID: 39522596 DOI: 10.1016/j.bbamem.2024.184400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Flaviviruses include important human pathogens such as Dengue, Zika, West Nile, Yellow fever, Japanese encephalitis, and Tick-borne encephalitis viruses as well as some emerging viruses that affect millions of people worldwide. They fuse their membrane with the late endosomal one in a pH-dependent way and therefore the merging of the membranes is one of the main goals for obtaining new antivirals. The envelope E protein, a membrane fusion protein, is accountable for fusion and encompasses different domains involved in the fusion mechanism, including the fusion peptide segment. In this work we have used molecular dynamics to study the interaction of the distal end of domain II of the DENV envelope E protein with a membrane like the late endosomal membrane in order to observe the initiation of membrane fusion carried out by a number of trimers of the DENV envelope E protein interacting with a complex biomembrane and demonstrate its feasibility. Our results demonstrate the likelihood of membrane disorganization and pore formation by trimer complex organization, the amino acids responsible for such condition and the secondary structure arrangements needed for such fundamental process. At the same time, we define new targets of the envelope E protein sequence which could permit designing potent antiviral bioactive molecules.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
4
|
Birtles D, Lee J. Exploring the influence of anionic lipids in the host cell membrane on viral fusion. Biochem Soc Trans 2024; 52:2593-2602. [PMID: 39700018 PMCID: PMC11668307 DOI: 10.1042/bst20240833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Membrane fusion is an essential component of the viral lifecycle that allows the delivery of the genetic information of the virus into the host cell. Specialized viral glycoproteins exist on the surface of mature virions where they facilitate fusion through significant conformational changes, ultimately bringing opposing membranes into proximity until they eventually coalesce. This process can be positively influenced by a number of specific cellular factors such as pH, enzymatic cleavage, divalent ions, and the composition of the host cell membrane. In this review, we have summarized how anionic lipids have come to be involved in viral fusion and how the endosomal resident anionic lipid BMP has become increasingly implicated as an important cofactor for those viruses that fuse via the endocytic pathway.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| |
Collapse
|
5
|
Villalaín J. Localization, aggregation, and interaction of glycyrrhizic acid with the plasma membrane. J Biomol Struct Dyn 2024:1-11. [PMID: 39601256 DOI: 10.1080/07391102.2024.2434037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 11/29/2024]
Abstract
Glycyrrhizic acid (GLA) is the most important bioactive constituent of licorize root and exhibits antiviral, antimicrobial, anti-oxidant, anti-inflammatory, anti-allergic, and antitumor activities. GLA has an amphiphilic nature consisting of two hydrophilic and one hydrophobic part, and its mechanism of action could be mediated by its incorporation into the membrane. Furthermore, GLA presents two different forms, protonated (GLA) and deprotonated (GLAD), and has been suggested that their location inside the membrane could be different. Since GLA could be a source against many types of diseases, we have localized the GLA molecule in the presence of a complex membrane and established the detailed interactions of GLA with lipids using all-atom molecular dynamics. Our outcomes sustain that GLA/GLAD tend to locate amid the CHOL oxygen atom and the phospholipid phosphates, preferably perpendicular to the membrane surface, increasing membrane fluidity. Interestingly, GLA and GLAD tend to be surrounded by specific phospholipids, different for each type of molecule. Outstandingly, both GLA and GLAD tend to spontaneously associate in solution forming aggregates, precluding them from inserting into the membrane and, therefore, interacting with it. Consequently, some of the biological properties of GLA/GLAD could be credited to the alteration of the membrane biophysical properties by interacting with specific lipids. However, the formation of an aggregate in solution could hinder its bioactive properties and should be considered a suited vehicle when prepared to be used in biological or clinical assays.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad 'Miguel Hernández', Elche-Alicante, Spain
| |
Collapse
|
6
|
Bai SY, Weng W, Wang H, Cui Z, Wu J, Qu Y, Hao Y, Gao P, Zhang Y, Zhou L, Ge X, Guo X, Han J, Yang H. Modulation of Autophagy-Lysosome Axis by African Swine Fever Virus and Its Encoded Protein pEP153R. Curr Issues Mol Biol 2024; 46:11236-11254. [PMID: 39451547 PMCID: PMC11505880 DOI: 10.3390/cimb46100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
The autophagy-lysosome axis is an evolutionarily conserved intracellular degradation pathway which constitutes an important component of host innate immunity against microbial infections. Here, we show that African swine fever virus (ASFV), one of most devastating pathogens to the worldwide swine industry, can reshape the autophagy-lysosome axis by recruiting the critical lysosome membrane proteins (LAMP1 and LAMP2) to viral factories while inhibiting autophagic induction in macrophages. The screening of viral membrane proteins led to the identification of several ASFV membrane proteins, exemplified by viral protein pEP153R, that could significantly alter the subcellular localization of LAMP1/2 when expressed alone in transfected cells. Further analysis showed that pEP153R was also a component of viral factories and could induce endoplasmic reticulum (ER) retention of LAMP1/2, leading to the inhibition of the fusion of autophagosomes with lysosomes. Interestingly, the ASFV mutant lacking EP153R could still actively recruit LAMP into viral factories (VFs) and inhibit autophagic flux, indicating the existence of a functional redundancy of other viral proteins in the absence of pEP153R and highlighting the complexity of ASFV replication biology. Taken together, our results reveal novel information about the interplay of ASFV with the autophagy-lysosome axis and a previously unrecognized function of ASFV protein pEP153R in regulating the cellular autophagic process.
Collapse
Affiliation(s)
- Si-Yu Bai
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Wenlian Weng
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Hua Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Zhiying Cui
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Jiajun Wu
- China Animal Disease Control Center, Beijing 100125, China; (J.W.); (Y.H.)
| | - Yajin Qu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Yuxin Hao
- China Animal Disease Control Center, Beijing 100125, China; (J.W.); (Y.H.)
| | - Peng Gao
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| |
Collapse
|
7
|
Villalaín J. Bisphenol F and Bisphenol S in a Complex Biomembrane: Comparison with Bisphenol A. J Xenobiot 2024; 14:1201-1220. [PMID: 39311147 PMCID: PMC11417855 DOI: 10.3390/jox14030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024] Open
Abstract
Bisphenols are a group of endocrine-disrupting chemicals used worldwide for the production of plastics and resins. Bisphenol A (BPA), the main bisphenol, exhibits many unwanted effects. BPA has, currently, been replaced with bisphenol F (BPF) and bisphenol S (BPS) in many applications in the hope that these molecules have a lesser effect on metabolism than BPA. Since bisphenols tend to partition into the lipid phase, their place of choice would be the cellular membrane. In this paper, I carried out molecular dynamics simulations to compare the localization and interactions of BPA, BPF, and BPS in a complex membrane. This study suggests that bisphenols tend to be placed at the membrane interface, they have no preferred orientation inside the membrane, they can be in the monomer or aggregated state, and they affect the biophysical properties of the membrane lipids. The properties of bisphenols can be attributed, at least in part, to their membranotropic effects and to the modulation of the biophysical membrane properties. The data support that both BPF and BPS, behaving in the same way in the membrane as BPA and with the same capacity to accumulate in the biological membrane, are not safe alternatives to BPA.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche, Alicante, Spain
| |
Collapse
|
8
|
Villalaín J. Location and interaction of idebenone and mitoquinone in a membrane similar to the inner mitochondrial membrane. Comparison with ubiquinone 10. Free Radic Biol Med 2024; 222:211-222. [PMID: 38908803 DOI: 10.1016/j.freeradbiomed.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Oxygen is essential for aerobic life on earth but it is also the origin of harmful reactive oxygen species (ROS). Ubiquinone is par excellence the endogenous cellular antioxidant, but a very hydrophobic one. Because of that, other molecules have been envisaged, such as idebenone (IDE) and mitoquinone (MTQ), molecules having the same redox active benzoquinone moiety but higher solubility. We have used molecular dynamics to determine the location and interaction of these molecules, both in their oxidized and reduced forms, with membrane lipids in a membrane similar to that of the mitochondria. Both IDE and reduced IDE (IDOL) are situated near the membrane interface, whereas both MTQ and reduced MTQ (MTQOL) locate in a position adjacent to the phospholipid hydrocarbon chains. The quinone moieties of both ubiquinone 10 (UQ10) and reduced UQ10 (UQOL10) in contraposition to the same moieties of IDE, IDOL, MTQ and MTQOL, located near the membrane interphase, whereas the isoprenoid chains remained at the middle of the hydrocarbon chains. These molecules do not aggregate and their functional quinone moieties are located in the membrane at different depths but near the hydrophobic phospholipid chains whereby protecting them from ROS harmful effects.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202, Elche, Alicante, Spain.
| |
Collapse
|
9
|
Villalaín J. Localization and Aggregation of Honokiol in the Lipid Membrane. Antioxidants (Basel) 2024; 13:1025. [PMID: 39199269 PMCID: PMC11351574 DOI: 10.3390/antiox13081025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Honokiol, a biphenyl lignan extracted from bark extracts belonging to Magnolia plant species, is a pleiotropic compound which exhibits a widespread range of antioxidant, antibacterial, antidiabetic, anti-inflammatory, antiaggregant, analgesic, antitumor, antiviral and neuroprotective activities. Honokiol, being highly hydrophobic, is soluble in common organic solvents but insoluble in water. Therefore, its biological effects could depend on its bioactive mechanism. Although honokiol has many impressive bioactive properties, its effects are unknown at the level of the biological membrane. Understanding honokiol's bioactive mechanism could unlock innovative perspectives for its therapeutic development or for therapeutic development of molecules similar to it. I have studied the behaviour of the honokiol molecule in the presence of a plasma-like membrane and established the detailed relation of honokiol with membrane components using all-atom molecular dynamics. The results obtained in this work sustain that honokiol has a tendency to insert inside the membrane; locates near and below the cholesterol oxygen atom, amid the hydrocarbon membrane palisade; increases slightly hydrocarbon fluidity; does not interact specifically with any membrane lipid; and, significantly, forms aggregates. Significantly, aggregation does not impede honokiol from going inside the membrane. Some of the biological characteristics of honokiol could be accredited to its aptitude to alter membrane biophysical properties, but the establishment of aggregate forms in solution might hamper its clinical use.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche, Alicante, Spain
| |
Collapse
|
10
|
Villalaín J. Phospholipid binding of the dengue virus envelope E protein segment containing the conserved His residue. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184198. [PMID: 37437754 DOI: 10.1016/j.bbamem.2023.184198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Flaviviruses encompass many important human pathogens, including Dengue, Zika, West Nile, Yellow fever, Japanese encephalitis, and Tick-borne encephalitis viruses as well as several emerging viruses that affect millions of people worldwide. They enter cells by endocytosis, fusing their membrane with the late endosomal one in a pH-dependent manner, so membrane fusion is one of the main targets for obtaining new antiviral inhibitors. The envelope E protein, a class II membrane fusion protein, is responsible for fusion and contains different domains involved in the fusion mechanism, including the fusion peptide. However, other segments, apart from the fusion peptide, have been implicated in the mechanism of membrane fusion, in particular a segment containing a His residue supposed to act as a specific pH sensor. We have used atomistic molecular dynamics to study the binding of the envelope E protein segment containing the conserved His residue in its three different tautomer forms with a complex membrane mimicking the late-endosomal one. We show that this His-containing segment is capable of spontaneous membrane binding, preferentially binds electronegatively charged phospholipids and does not bind cholesterol. Since Flaviviruses have caused epidemics in the past, continue to do so and will undoubtedly continue to do so, this specific segment could characterise a new target that would allow finding effective antiviral molecules against DENV virus in particular and Flaviviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche, Alicante, Spain.
| |
Collapse
|
11
|
Feng S, Park S, Choi YK, Im W. CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. J Chem Theory Comput 2023; 19:2161-2185. [PMID: 37014931 PMCID: PMC10174225 DOI: 10.1021/acs.jctc.2c01246] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/06/2023]
Abstract
Molecular dynamics simulations of membranes and membrane proteins serve as computational microscopes, revealing coordinated events at the membrane interface. As G protein-coupled receptors, ion channels, transporters, and membrane-bound enzymes are important drug targets, understanding their drug binding and action mechanisms in a realistic membrane becomes critical. Advances in materials science and physical chemistry further demand an atomistic understanding of lipid domains and interactions between materials and membranes. Despite a wide range of membrane simulation studies, generating a complex membrane assembly remains challenging. Here, we review the capability of CHARMM-GUI Membrane Builder in the context of emerging research demands, as well as the application examples from the CHARMM-GUI user community, including membrane biophysics, membrane protein drug-binding and dynamics, protein-lipid interactions, and nano-bio interface. We also provide our perspective on future Membrane Builder development.
Collapse
Affiliation(s)
- Shasha Feng
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Soohyung Park
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yeol Kyo Choi
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
12
|
Villalaín J. LABYRINTHOPEPTIN A2 DISRUPTS RAFT DOMAINS. Chem Phys Lipids 2023; 253:105303. [PMID: 37061155 DOI: 10.1016/j.chemphyslip.2023.105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Labyrinthopeptins constitute a class of ribosomal synthesized peptides belonging to the type III family of lantibiotics. They exist in different variants and display broad antiviral activities as well as show antiallodynic activity. Although their mechanism of action is not understood, it has been described that Labyrinthopeptins interact with membrane phospholipids modulating its biophysical properties and point out to membrane destabilization as its main point of action. We have used all-atom molecular dynamics to study the location of labyrinthopeptin A2 in a complex membrane as well as the existence of specific interactions with membrane lipids. Our results indicate that labyrinthopeptin A2, maintaining its globular structure, tends to be placed at the membrane interface, mainly between the phosphate atoms of the phospholipids and the oxygen atom of cholesterol modulating the biophysical properties of the membrane lipids. Outstandingly, we have found that labyrinthopeptin A2 tends to be preferentially surrounded by sphingomyelin while excluding cholesterol. The bioactive properties of labyrinthopeptin A2 could be attributed to the specific disorganization of raft domains in the membrane and the concomitant disruption of the overall membrane organization. These results support the improvement of Labyrinthopeptins as therapeutic molecules, opening up new opportunities for future medical advances.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
13
|
Villalaín J. SARS-CoV-2 Protein S Fusion Peptide Is Capable of Wrapping Negatively-Charged Phospholipids. MEMBRANES 2023; 13:344. [PMID: 36984731 PMCID: PMC10057416 DOI: 10.3390/membranes13030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
COVID-19, caused by SARS-CoV-2, which is a positive-sense, single-stranded RNA enveloped virus, emerged in late 2019 and was declared a worldwide pandemic in early 2020 causing more than 600 million infections so far and more than 6 million deaths in the world. Although new vaccines have been implemented, the pandemic continues to impact world health dramatically. Membrane fusion, critical for the viral entry into the host cell, is one of the main targets for the development of novel antiviral therapies to combat COVID-19. The S2 subunit of the viral S protein, a class I membrane fusion protein, contains the fusion domain which is directly implicated in the fusion mechanism. The knowledge of the membrane fusion mechanism at the molecular level will undoubtedly result in the development of effective antiviral strategies. We have used all-atom molecular dynamics to analyse the binding of the SARS-CoV-2 fusion peptide to specific phospholipids in model membranes composed of only one phospholipid plus cholesterol in the presence of either Na+ or Ca2+. Our results show that the fusion peptide is capable of binding to the membrane, that its secondary structure does not change significantly upon binding, that it tends to preferentially bind electronegatively charged phospholipids, and that it does not bind cholesterol at all. Understanding the intricacies of the membrane fusion mechanism and the molecular interactions involved will lead us to the development of antiviral molecules that will allow a more efficient battle against these viruses.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche, Spain
| |
Collapse
|
14
|
Villalaín J. Bergamottin: location, aggregation and interaction with the plasma membrane. J Biomol Struct Dyn 2023; 41:12026-12037. [PMID: 36602143 DOI: 10.1080/07391102.2022.2164521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
Bioactive furanocoumarins, a group of natural secondary metabolites common in higher plants, are recognized for their benefits to human health and have been shown to have numerous biological properties. However, the knowledge of its biomolecular mechanism is not known. One of the main furanocoumarins is bergamottin (BGM), which is characterized by a planar three-ringed structure and a hydrocarbon chain, which give BGM its high lipid/water partition coefficient. Because of that, and although the biological mechanism of BGM is not known, BGM bioactive properties could be ascribed to its potential to interact with the biological membrane, modulating its structure, changing its dynamics and at the same time that it might interact with lipids. For our goal, we have applied molecular dynamics to determine the position of BGM in a complex membrane and discern the possibility of certain interactions with membrane lipids. Our findings establish that BGM tends to locate in the middle of the hydrocarbon layer of the membrane, inserts in between the hydrocarbon chains of the phospholipids in an oblique position with respect to the membrane plane, increasing the fluidity of the membrane. Significantly, BGM tends to be surrounded by POPC molecules but exclude the molecule of CHOL. Outstandingly, BGM molecules associate spontaneously creating aggregates, which does not preclude them from interacting with and inserting into the membrane. The bioactive properties of BGM could be ascribed to its membranotropic effects and support the improvement of these molecules as therapeutic molecules, giving place to new opportunities for potential medical improvements.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", Elche-Alicante, Spain
| |
Collapse
|
15
|
Evolutionary Conserved Short Linear Motifs Provide Insights into the Cellular Response to Stress. Antioxidants (Basel) 2022; 12:antiox12010096. [PMID: 36670957 PMCID: PMC9854524 DOI: 10.3390/antiox12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Short linear motifs (SLiMs) are evolutionarily conserved functional modules of proteins composed of 3 to 10 residues and involved in multiple cellular functions. Here, we performed a search for SLiMs that exert sequence similarity to two segments of alpha-fetoprotein (AFP), a major mammalian embryonic and cancer-associated protein. Biological activities of the peptides, LDSYQCT (AFP14-20) and EMTPVNPGV (GIP-9), have been previously confirmed under in vitro and in vivo conditions. In our study, we retrieved a vast array of proteins that contain SLiMs of interest from both prokaryotic and eukaryotic species, including viruses, bacteria, archaea, invertebrates, and vertebrates. Comprehensive Gene Ontology enrichment analysis showed that proteins from multiple functional classes, including enzymes, transcription factors, as well as those involved in signaling, cell cycle, and quality control, and ribosomal proteins were implicated in cellular adaptation to environmental stress conditions. These include response to oxidative and metabolic stress, hypoxia, DNA and RNA damage, protein degradation, as well as antimicrobial, antiviral, and immune response. Thus, our data enabled insights into the common functions of SLiMs evolutionary conserved across all taxonomic categories. These SLiMs can serve as important players in cellular adaptation to stress, which is crucial for cell functioning.
Collapse
|
16
|
Zheng W, Wang T, Liu C, Yan Q, Zhan S, Li G, Liu X, Jiang Y. Liver transcriptomics reveals microRNA features of the host response in a mouse model of dengue virus infection. Comput Biol Med 2022; 150:106057. [PMID: 36215851 DOI: 10.1016/j.compbiomed.2022.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Organ dysfunction, especially liver injury, caused by dengue virus (DENV) infection has been associated with fatal cases in dengue patients around the world. However, the pathophysiological mechanisms of liver involvement in dengue remain unclear. There is accumulating evidence that miRNAs are playing an important role in regulating viral pathogenesis, and it can help in diagnostic and anti-viral therapies development. METHODS We collected liver tissues of DENV-infected for small RNA sequencing to identify significantly different express miRNAs during dengue virus infection, and the identified target genes of these miRNAs were annotated by biological function and pathway enrichment. RESULTS 31 significantly altered miRNAs were identified, including 16 up-regulated and 15 down-regulated miRNAs. By performing a series of miRNA prediction and signaling pathway enrichment analyses, the down-regulated miRNAs of mmu-miR-484, mmu-miR-1247-5p and mmu-miR-6538 were identified to be the crucial miRNAs. Further analysis revealed that the inflammation and immune responses involving Hippo, PI3K-Akt, MAPK, Wnt, mTOR, TGF-beta, Tight junction, and Platelet activation were modulated collectively by these three key miRNAs during DENV infection. These pathways are considered to be closely associated with the pathogenic mechanism and treatment strategy of dengue patients. CONCLUSION The miRNAs identified by sequencing, especially miR-484 may be the potential therapeutic targets for liver involvement in dengue patients which involves the regulation of vascular permeability and expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China; Animal Experiment Center, Guangzhou University of Chinese Medicine, China.
| | - Ting Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Chengxin Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Qian Yan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Shaofeng Zhan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Geng Li
- Animal Experiment Center, Guangzhou University of Chinese Medicine, China.
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, China.
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, China.
| |
Collapse
|
17
|
Villalaín J. Interaction of Lassa virus fusion and membrane proximal peptides with late endosomal membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184031. [PMID: 35964711 DOI: 10.1016/j.bbamem.2022.184031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Mammarenaviruses include many significant worldwide-widespread human pathogens, among them Lassa virus (LASV), having a dramatic morbidity and mortality rate. They are a potential high-risk menace to the worldwide public health since there are no treatments and there is a high possibility of animal-to-human and human-to-human viral transmission. These viruses enter into the cells by endocytosis fusing its membrane envelope with the late endosomal membrane thanks to the glycoprotein GP2, a membrane fusion protein of class I. This protein contains different domains, among them the N-terminal fusion peptide (NFP), the internal fusion loop (IFL), the membrane proximal external region (MPER) and the transmembrane domain (TMD). All these domains are implicated in the membrane fusion process. In this work, we have used an all-atom molecular dynamics study to know the binding of these protein domains with a complex membrane mimicking the late endosome one. We show that the NFP/IFL domain is capable of spontaneously inserting into the membrane without a significant change of secondary structure, the MPER domain locates at the bilayer interface with an orientation parallel to the membrane surface and tends to interact with other MPER domains, and the TMD domain tilts inside the bilayer. Moreover, they predominantly interact with negatively charged phospholipids. Overall, these membrane-interacting domains would characterise a target that would make possible to find effective antiviral molecules against LASV in particular and Mammarenaviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
18
|
Villalaín J. Procyanidin C1 Location, Interaction, and Aggregation in Two Complex Biomembranes. MEMBRANES 2022; 12:membranes12070692. [PMID: 35877895 PMCID: PMC9319219 DOI: 10.3390/membranes12070692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 01/25/2023]
Abstract
Procyanidins are known for their many benefits to human health and show a plethora of biological effects. One of the most important procyanidin is the procyanidin trimer C1 (PC1). Due to its relatively high lipid–water partition coefficient, the properties of PC1 could be attributed to its capability to interact with the biomembrane, to modulate its structure and dynamics, and to interact with lipids and proteins, however, its biological mechanism is not known. We have used all-atom molecular dynamics in order to determine the position of PC1 in complex membranes and the presence of its specific interactions with membrane lipids, having simulated a membrane mimicking the plasma membrane and another mimicking the mitochondrial membrane. PC1 has a tendency to be located at the membrane interphase, with part of the molecule exposed to the water solvent and part of it reaching the first carbons of the hydrocarbon chains. It has no preferred orientation, and it completely excludes the CHOL molecule. Remarkably, PC1 has a tendency to spontaneously aggregate, forming high-order oligomers. These data suggest that its bioactive properties could be attributed to its membranotropic effects, which therefore supports the development of these molecules as therapeutic molecules, which would open new opportunities for future medical advances.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad Miguel Hernández, E-03202 Elche, Spain
| |
Collapse
|