1
|
Zheng S, Xue T, Wang Q, Zhang P, Qi W, Xue C, Li X, Du H, Zhang P, Zao X, Ye Y. Chinese Medicine for the Treatment of Liver Cirrhosis: The Mechanism of Cellular Autophagy. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:409-433. [PMID: 40070295 DOI: 10.1142/s0192415x25500168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Liver cirrhosis is a critical stage in the progression of various chronic liver diseases, often leading to severe complications such as ascites, hepatic encephalopathy, and a high mortality rate, and it thus poses a serious threat to patient life. The activation of hepatic stellate cells is a central driver of disease progression. Cellular autophagy, a lysosome-mediated degradation process, plays a key role in maintaining cellular function and dynamic homeostasis. Research has shown that autophagy is closely associated with proteins like LC3, Beclin-1, P62, and mTOR, and is regulated through signaling pathways such as PI3K/Akt/mTOR, Ras/Raf/MEK/ERK, and AMPK/mTOR. Additionally, the relationship between autophagy and apoptosis, as well as between autophagy and exosomes, has been further demonstrated. While modern medicine has made progress in treating cirrhosis, it still faces significant limitations. By contrast, numerous studies have demonstrated the efficacy of traditional Chinese medicine in preventing and treating liver cirrhosis by regulating autophagy, with fewer adverse effects. Chinese herbal monomers and formulations can modulate various autophagy-related signaling pathways, including PI3K/Akt/mTOR, Ras/Raf/MEK/ERK, and AMPK/mTOR, and influence key autophagy proteins such as LC3 and Beclin-1. This modulation inhibits hepatic stellate cell activation, reduces extracellular matrix deposition, and exerts anticirrhotic effects. Moreover, Chinese medicine appears to reduce adverse reactions in cirrhosis treatment and lower the risk of disease recurrence. This review explores the mechanisms of autophagy in the prevention and treatment of liver cirrhosis through Chinese medicine, offering new insights for the development of Chinese medicinal therapies for cirrhosis and their rational clinical application.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing 100102, P. R. China
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050000, P. R. China
| | - Qiuyue Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing 100102, P. R. China
| | - Pingxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing 100102, P. R. China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing 100102, P. R. China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P. R. China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| |
Collapse
|
2
|
Guo H, Li C, Zhao J, Guo T, Chen S, Qin X, Zhu K, Zhang W. Mechanism of Gastrodin against neurotoxicity based on network pharmacology, molecular docking and experimental verification. Biomed Pharmacother 2024; 180:117611. [PMID: 39461014 DOI: 10.1016/j.biopha.2024.117611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Disorders of glutamate metabolism and excessive release participat in multiple neuronal pathologies including ischemic stroke (IS), Alzheimer's disease (AD), or Parkinson's disease (PD). Recently, herbal medicines have been widely used and have shown satisfactory results in the treatment of neurological disorders. Gastrodin is a traditional Chinese medicine (TCM) used for the treatment of nerve injuries, spinal cord injuries, and some central nervous system diseases as well. This research examines the neuroprotective effects of Gastrodin against glutamate-induced neurotoxicity in neuronal cells. METHODS The HERB database was used to explore the active ingredients and target genes of Gastrodia Elata. The STRING database and Cytoscape software were used to screen and construct the Protein-Protein Interaction (PPI). Furthermore, we used molecular docking to predict the potential targets of Gastrodin. The effects of Gastrodin were revealed by western blot, calcium imaging, membrane clamp, CCK8 and flow cytometry. Neuronal oxidative stress and damage were assessed by measuring malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity. Neuronal morphology was examined using Golgi-Cox staining. Finally, animal behavior was examined using novel object recognition and fear conditioning tests. RESULTS We have obtained 22 components such as TM10, TM17, TM25 (Gastrodin), and 281 targets such as AKT, EGFR, and CDK1 through network pharmacology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed these genes were significantly enriched in protein phosphorylation, protein serine/threonine/tyrosine kinase activity, apoptosis and HIF-1 signaling pathways, etc. A higher affinity between Gastrodin and AKT was revealed by PPI analysis and molecular docking. Further, Gastrodin significantly inhibited Ca2+ influxes and excitatory synaptic transmission in cortical neurons. In addition, Gastrodin effectively alleviated neuron apoptosis, oxidative stress and damage. CONCLUSION Gastrodin has neuroprotective effects against glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Han Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Shijiazhuang, Hebei 050017, China; Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Chenyang Li
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Shijiazhuang, Hebei 050017, China
| | - Jiaojiao Zhao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Shijiazhuang, Hebei 050017, China
| | - Tianyuan Guo
- Department of plastic surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Siruan Chen
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Shijiazhuang, Hebei 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Shijiazhuang, Hebei 050017, China
| | - Kangsheng Zhu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Shijiazhuang, Hebei 050017, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
3
|
Siddika T, Shao R, Heinemann IU, O'Donoghue P. Delivery of AKT1 phospho-forms to human cells reveals differential substrate selectivity. IUBMB Life 2024; 76:632-646. [PMID: 38738523 DOI: 10.1002/iub.2826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024]
Abstract
Protein kinase B (AKT1) is a serine/threonine kinase that regulates fundamental cellular processes, including cell survival, proliferation, and metabolism. AKT1 activity is controlled by two regulatory phosphorylation sites (Thr308, Ser473) that stimulate a downstream signaling cascade through phosphorylation of many target proteins. At either or both regulatory sites, hyperphosphorylation is associated with poor survival outcomes in many human cancers. Our previous biochemical and chemoproteomic studies showed that the phosphorylated forms of AKT1 have differential selectivity toward peptide substrates. Here, we investigated AKT1-dependent activity in human cells, using a cell-penetrating peptide (transactivator of transcription, TAT) to deliver inactive AKT1 or active phospho-variants to cells. We used enzyme engineering and genetic code expansion relying on a phosphoseryl-transfer RNA (tRNA) synthetase (SepRS) and tRNASep pair to produce TAT-tagged AKT1 with programmed phosphorylation at one or both key regulatory sites. We found that all TAT-tagged AKT1 variants were efficiently delivered into human embryonic kidney (HEK 293T) cells and that only the phosphorylated AKT1 (pAKT1) variants stimulated downstream signaling. All TAT-pAKT1 variants induced glycogen synthase kinase (GSK)-3α phosphorylation, as well as phosphorylation of ribosomal protein S6 at Ser240/244, demonstrating stimulation of downstream AKT1 signaling. Fascinatingly, only the AKT1 variants phosphorylated at S473 (TAT-pAKT1S473 or TAT-pAKT1T308,S473) were able to increase phospho-GSK-3β levels. Although each TAT-pAKT1 variant significantly stimulated cell proliferation, cells transduced with TAT-pAKT1T308 grew significantly faster than with the other pAKT1 variants. The data demonstrate differential activity of the AKT1 phospho-forms in modulating downstream signaling and proliferation in human cells.
Collapse
Affiliation(s)
- Tarana Siddika
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Richard Shao
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Ma J, Mo J, Feng Y, Wang L, Jiang H, Li J, Jin C. Combination of transcriptomic and proteomic approaches helps unravel the mechanisms of luteolin in inducing liver cancer cell death via targeting AKT1 and SRC. Front Pharmacol 2024; 15:1450847. [PMID: 39234106 PMCID: PMC11371790 DOI: 10.3389/fphar.2024.1450847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Luteolin, a natural compound commonly used in traditional Chinese medicine, shows clinical potential as an anti-liver cancer agent. The mechanisms underlying the anti-liver cancer effect of luteolin are limited versus those reported for other cancers. Accordingly, this study was conducted to bridge the existing knowledge gap. Methods Transcriptomic and proteomic analyses of the response of the hepatocellular carcinoma cell line HuH-7 to luteolin were conducted, and a possible pathway was elucidated using confocal laser scanning microscopy (CLSM), flow cytometry, western blotting, qRT-PCR and bio-layer interferometry assay to systematically explore the possible mechanisms underlying the inhibition of the proliferation of liver cancer cells by luteolin. Results and Discussion Results showed that luteolin significantly inhibited HuH-7 cell proliferation. Transcriptomic and proteomic analyses collectively revealed that luteolin could promote cell cycle arrest and apoptosis in HuH-7 cells through transcription factors p53, nuclear factor kappa B (NF-κB), FOXO, ATF2, and TCF/LEF via AKT1, as well as the KEAP-NRF and SRC-STAT3 pathways. Furthermore, AKT1 and SRC were identified as the 2 targets of luteolin. Nuclear translocation of transcription factors p53 and NF-κB were affected by luteolin administration. Additionally, AKT1 activity affected normal metabolism in HuH-7 cells and resulted in the accumulation of reactive oxygen species, which activated MOMP and further promoted apoptosis. Our results systematically elucidate the mechanism of luteolin in inhibiting the proliferation of liver cancer cells, mainly through cell cycle arrest and apoptosis via targeting AKT1 and SRC.
Collapse
Affiliation(s)
- Junxia Ma
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Yifu Feng
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Junmin Li
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
5
|
Li D, Gao Y, Wang C, Hu L. Proteomic and phosphoproteomic profiling of urinary small extracellular vesicles in hepatocellular carcinoma. Analyst 2024; 149:4378-4387. [PMID: 38995156 DOI: 10.1039/d4an00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and a major cause of cancer-related mortality worldwide. Small extracellular vesicles (sEVs) are heterogeneous populations of membrane-structured vesicles that can be found in many biological fluids and are currently considered as a potential source of disease-associated biomarkers for diagnosis. The purpose of this study was to define the proteomic and phosphoproteomic landscape of urinary sEVs in patients with HCC. Mass spectrometry-based methods were used to detect the global proteome and phosphoproteome profiles of sEVs isolated by differential ultracentrifugation. Label-free quantitation analysis showed that 348 differentially expressed proteins (DEPs) and 548 differentially expressed phosphoproteins (DEPPs) were identified in the HCC group. Among them, multiple phosphoproteins related to HCC, including HSP90AA1, IQGAP1, MTOR, and PRKCA, were shown to be upregulated in the HCC group. Pathway enrichment analysis indicated that the upregulated DEPPs participate in the regulation of autophagy, proteoglycans in cancer, and the MAPK/mTOR/Rap1 signaling pathway. Furthermore, kinase-substrate enrichment analysis revealed activation of MTOR, AKT1, MAP2Ks, and MAPKs family kinases in HCC-derived sEVs, indicating that dysregulation of the MAPK and mTOR signaling pathways may be the primary sEV-mediated molecular mechanisms involved in the development and progression of HCC. This study demonstrated that urinary sEVs are enriched in proteomic and phosphoproteomic signatures that could be further explored for their potential use in early HCC diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Dejun Li
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China.
- Prenatal Diagnosis Center, Reproductive Medicine Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujun Gao
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Chong Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Guo N, Wang X, Xu M, Bai J, Yu H, Le Zhang. PI3K/AKT signaling pathway: Molecular mechanisms and therapeutic potential in depression. Pharmacol Res 2024; 206:107300. [PMID: 38992850 DOI: 10.1016/j.phrs.2024.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Depression is a serious global mental disorder. Numerous studies have found that depression may be closely related to decreased neurogenesis, neuroinflammation, neurotransmitter imbalance, and synaptic plasticity dysfunction. The pathogenesis of depression is complex and involves multiple signal transduction pathways and molecular changes. The PI3K/AKT pathway is an essential signaling pathways in neurons, which is widely expressed in emotion-related regions of the brain. Therefore, the PI3K/AKT pathway may play a moderating role in mood disorders. However, the role and mechanism of the PI3K/AKT signaling pathway in depression have not been fully described. This review systematically summarized the role of the PI3K/AKT signaling pathway in the pathogenesis of depression and discussed its potential in the treatment of depression. This will help in the treatment of depression and the development of antidepressants.
Collapse
Affiliation(s)
- Ningning Guo
- School of Mental Health, Jining Medical University, Jining, China
| | - Xin Wang
- Department of Radiation Therapy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Muran Xu
- Clinical College, Jining Medical University, Jining, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, China.
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China.
| | - Le Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
7
|
Hwang C, Kang YK, Kim JY, Shin SH, Park JY, Song JS, Kim SY, Jung SJ, Lee JH, Na JY, Shin DH, Kim JY, Park SW, Lee HJ. TFE3/PI3K/Akt/mTOR Axis in Renal Cell Carcinoma Affects Tumor Microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1306-1316. [PMID: 38588851 DOI: 10.1016/j.ajpath.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The role of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in renal cell carcinoma (RCC) progression, metastasis, and resistance to therapies has not been investigated thoroughly. Transcription factor E3 (TFE3) expression is related to a poorer prognosis and tumor microenvironment in patients with RCC. This study aimed to determine the relationship between TFE3 and the PI3K/Akt pathway. TFE3 down-regulation was achieved by transient transfection of siRNA and shRNA in UOK146 cells. TFE3 overexpression was induced by transient transfection with pcDNA3.1 encoding the constitutively active form of TFE3. The cells were treated with mammalian target of rapamycin (mTOR) and PI3K inhibitors. Western blot was performed to detect TFE3, programmed death-ligand 1, phospho-Akt, and Akt. Phospho-Akt expression increased significantly upon TFE3 down-regulation, and decreased significantly upon up-regulation. When RCC cells were treated with a PI3K inhibitor (LY294002), TFE3 expression increased and phospho-Akt expression decreased. Data from this study indicate that TFE3 plays a role in the PI3K/Akt pathway in RCC. The results of this study suggest that PI3K/Akt inhibitors may aid in the treatment of patients with RCC by affecting the tumor microenvironment.
Collapse
Affiliation(s)
- Chungsu Hwang
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yun Kyung Kang
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ji Yun Kim
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - So Hyun Shin
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Joon Young Park
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ji Sun Song
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - So Young Kim
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Se Jin Jung
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jung Hee Lee
- Department of Pathology, School of Medicine, Pusan National University, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ju-Young Na
- Department of Pathology, School of Medicine, Pusan National University, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Dong Hoon Shin
- Department of Pathology, School of Medicine, Pusan National University, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jee Yeon Kim
- Department of Pathology, School of Medicine, Pusan National University, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Sung Woo Park
- Department of Urology, School of Medicine, Pusan National University, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyun Jung Lee
- Department of Pathology, School of Medicine, Pusan National University, Pusan National University Yangsan Hospital, Yangsan, Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea.
| |
Collapse
|
8
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Zhong HA, Goodwin DT. Selectivity Studies and Free Energy Calculations of AKT Inhibitors. Molecules 2024; 29:1233. [PMID: 38542870 PMCID: PMC10975562 DOI: 10.3390/molecules29061233] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/03/2025] Open
Abstract
Protein kinase B (PKB) or AKT protein is an important target for cancer treatment. Significant advances have been made in developing ATP-competitive inhibitors and allosteric binders targeting AKT1. However, adverse effects or toxicities have been found, and the cutaneous toxicity was found to be linked to the inhibition of AKT2. Thus, selective inhibition of AKT inhibitors is of significance. Our work, using the Schrödinger Covalent Dock (CovDock) program and the Movable Type (MT)-based free energy calculation (ΔG), yielded small mean errors for the experimentally derived binding free energy (ΔG). The docking data suggested that AKT1 binding may require residues Asn54, Trp80, Tyr272, Asp274, and Asp292, whereas AKT2 binding would expect residues Phe163 and Glu279, and AKT3 binding would favor residues Glu17, Trp79, Phe306, and Glu295. These findings may help guide AKT1-selective or AKT3-selective molecular design while sparing the inhibition of AKT2 to minimize the cutaneous toxicity.
Collapse
Affiliation(s)
- Haizhen A. Zhong
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182, USA;
| | | |
Collapse
|
10
|
Xie W, Chen HG, Chen RH, Zhao C, Gong XJ, Zhou X. Intervention effect of Lycium barbarum polysaccharide on lead-induced kidney injury mice and its mechanism: A study based on the PI3K/Akt/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117197. [PMID: 37722516 DOI: 10.1016/j.jep.2023.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/22/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional medicinal application of Lycium barbarum is centered on the improvement of eyesight, as well as the nourishment of liver and kidney functions. Lycium barbarum polysaccharide (LBP), serving as the principal active constituent of Lycium barbarum, has been identified as the main contributor to these beneficial effects. Previous studies have indicated that Lycium barbarum polysaccharide exhibits a renoprotective effect against lead-induced injury, but its mechanism and efficacy remain unclear. AIM OF THE STUDY The objective of this study was to examine the effectiveness of LBP in preventing lead-induced renal injury and investigate both the toxic mechanism of lead-induced renal injury and the efficacy mechanism of LBP against it, with a focus on the PI3K/AKT/mTOR signaling pathway. MATERIALS AND METHODS The drug effect and mechanism of LBP on lead-induced kidney injury were investigated by administering positive drugs and LBP to mice with established lead-induced kidney injury. RESULTS The renal function of mice with lead-induced renal injury was significantly restored, renal tissue lesions and renal mitochondrial damage were delayed, a disorder of hematological parameters induced by lead was improved, the increase of lead-induced renal index was reduced, and the body weight of mice with lead-induced renal injury was increased by the LBP intervention, as revealed by the results of pharmacodynamic experiments. Based on PI3K /AKT /mTOR signaling pathway, the toxic mechanism of lead-induced kidney injury and the pharmacodynamic mechanism of LBP against lead-induced kidney injury were studied. The results showed that lead could activate the TLR4 receptor, and then activate PI3K /AKT /mTOR signaling pathway, inhibit autophagy of kidney tissue cells, and enhance apoptosis of kidney tissue cells to induce kidney injury; LBP inhibits the activation of TLR4 receptor, which in turn inhibits the PI3K/AKT/mTOR signaling pathway, enhances the autophagy of kidney tissue cells, reduces the apoptosis of kidney tissues, and delays lead-induced kidney injury.
Collapse
Affiliation(s)
- Wen Xie
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Hua-Guo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Ru-Hai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Chao Zhao
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xiao-Jian Gong
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
11
|
Nag JK, Grisaru-Granovsky S, Armon S, Rudina T, Appasamy P, Bar-Shavit R. Involvement of Protease-Activated Receptor2 Pleckstrin Homology Binding Domain in Ovarian Cancer: Expression in Fallopian Tubes and Drug Design. Biomedicines 2024; 12:246. [PMID: 38275417 PMCID: PMC10813316 DOI: 10.3390/biomedicines12010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Studying primordial events in cancer is pivotal for identifying predictive molecular indicators and for targeted intervention. While the involvement of G-protein-coupled receptors (GPCRs) in cancer is growing, GPCR-based therapies are yet rare. Here, we demonstrate the overexpression of protease-activated receptor 2 (PAR2), a GPCR member in the fallopian tubes (FTs) of high-risk BRCA carriers as compared to null in healthy tissues of FT. FTs, the origin of ovarian cancer, are known to express genes of serous tubal intraepithelial carcinoma (STICs), a precursor lesion of high-grade serous carcinoma (HGSC). PAR2 expression in FTs may serve as an early prediction sensor for ovarian cancer. We show now that knocking down Par2 inhibits ovarian cancer peritoneal dissemination in vivo, pointing to the central role of PAR2. Previously we identified pleckstrin homology (PH) binding domains within PAR1,2&4 as critical sites for cancer-growth. These motifs associate with PH-signal proteins via launching a discrete signaling network in cancer. Subsequently, we selected a compound from a library of backbone cyclic peptides generated toward the PAR PH binding motif, namely the lead compound, Pc(4-4). Pc(4-4) binds to the PAR PH binding domain and blocks the association of PH-signal proteins, such as Akt or Etk/Bmx with PAR2. It attenuates PAR2 oncogenic activity. The potent inhibitory function of Pc(4-4) is demonstrated via inhibition of ovarian cancer peritoneal spread in mice. While the detection of PAR2 may serve as a predictor for ovarian cancer, the novel Pc(4-4) compound may serve as a powerful medicament in STICs and ovarian cancer. This is the first demonstration of the involvement of PAR PH binding motif signaling in ovarian cancer and Pc(4-4) as a potential therapy treatment.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (J.K.N.); (T.R.); (P.A.)
| | - Sorina Grisaru-Granovsky
- Department of Obstetrics and Gynecology, Shaare-Zedek Medical Center (SZMC), Hebrew-University, Jerusalem 9103102, Israel; (S.G.-G.); (S.A.)
| | - Shunit Armon
- Department of Obstetrics and Gynecology, Shaare-Zedek Medical Center (SZMC), Hebrew-University, Jerusalem 9103102, Israel; (S.G.-G.); (S.A.)
| | - Tatyana Rudina
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (J.K.N.); (T.R.); (P.A.)
| | - Priyanga Appasamy
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (J.K.N.); (T.R.); (P.A.)
| | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (J.K.N.); (T.R.); (P.A.)
| |
Collapse
|
12
|
Yoshihara T, Dobashi S, Naito H. Effects of preconditioning with heat stress on acute exercise-induced intracellular signaling in male rat gastrocnemius muscle. Physiol Rep 2024; 12:e15913. [PMID: 38185480 PMCID: PMC10771927 DOI: 10.14814/phy2.15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Heat stress (HS) induces Akt/mTOR phosphorylation and FoxO3a signaling; however, whether a prior increase in heat shock protein 72 (HSP72) expression affects intracellular signaling following eccentric exercise remains unclear. We analyzed the effects of HS pretreatment on intramuscular signaling in response to acute exercise in 10-week-old male Wistar rats (n = 24). One leg of each rat was exposed to HS and the other served as an internal control (CT). Post-HS, rats were either rested or subjected to downhill treadmill running. Intramuscular signaling responses in the red and white regions of the gastrocnemius muscle were analyzed before, immediately after, or 1 h after exercise (n = 8/group). HS significantly increased HSP72 levels in both deep red and superficial white regions. Although HS did not affect exercise-induced mTOR signaling (S6K1/ERK) responses in the red region, mTOR phosphorylation in the white region was significantly higher in CT legs than in HS legs after exercise. Thr308 phosphorylation of Akt showed region-specific alteration with a decrease in the red region and an increase in the white region immediately after downhill running. Overall, a prior increase in HSP72 expression elicits fiber type-specific changes in exercise-induced Akt and mTOR phosphorylation in rat gastrocnemius muscle.
Collapse
Affiliation(s)
| | - Shohei Dobashi
- Graduate School of Health and Sports ScienceJuntendo UniversityChibaJapan
- Institute of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
| | - Hisashi Naito
- Graduate School of Health and Sports ScienceJuntendo UniversityChibaJapan
| |
Collapse
|
13
|
Geiger K, Muendlein A, Leiherer A, Gaenger S, Brandtner EM, Wabitsch M, Fraunberger P, Drexel H, Heinzle C. Myricetin attenuates hypoxia-induced inflammation in human adipocytes. Mol Biol Rep 2023; 50:9833-9843. [PMID: 37843712 DOI: 10.1007/s11033-023-08865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Adipose tissue hypoxia plays a crucial role in the development of chronic low-grade systemic inflammation which has been associated with the pathogenesis of obesity-related diseases. Myricetin is a natural compound present in numerous plant-based foods with presumed anti-inflammatory and beneficial health effects. The impact of this flavonoid on hypoxia-induced expression of inflammatory adipokines and hypoxia-regulated pathways is unknown so far and has been addressed in the present study. METHODS Differentiated human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were cultured with or without myricetin under normoxic and hypoxic conditions for varying time periods. The effect of hypoxia and myricetin on the expression of the investigated adipokines was measured by real-time RT-PCR. Western blot analysis was used for the detection of transcription factors involved in hypoxia-regulated pathways. RESULTS Myricetin interfered in the hypoxia-induced regulation of adipokines and the underlying pathways, which are involved in transmitting the inflammatory response. It strongly repressed hypoxia-induced expression of apelin, leptin, chemerin, asprosin, and DPP-4 and HIF-1α accumulation in the nucleus was diminished. Furthermore, the activation of the key regulators in the inflammatory response NF-κB, Akt, and CREB was suppressed by myricetin under hypoxic conditions. Myricetin also decreased hypoxia-induced accumulation of the pro-tumorigenic transcription factors Snail and Slug in the nucleus. CONCLUSION Taken together, our results indicated that myricetin regulated hypoxia-induced expression of adipokines and hypoxia-regulated pathways in human adipocytes. Our study therefore provided evidence of the anti-inflammatory effects of myricetin in hypoxia-treated human adipocytes.
Collapse
Affiliation(s)
- Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria.
- Medical Central Laboratories, Feldkirch, Austria.
| | - Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Stella Gaenger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Eva Maria Brandtner
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
- Vorarlberger Landeskrankenhausbetriebsgesellschaft, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
| |
Collapse
|
14
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
15
|
Ahmed HH, Essam RM, El-Yamany MF, Ahmed KA, El-Sahar AE. Unleashing lactoferrin's antidepressant potential through the PI3K/Akt/mTOR pathway in chronic restraint stress rats. Food Funct 2023; 14:9265-9278. [PMID: 37767889 DOI: 10.1039/d3fo02222f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Depression is a widespread neuropsychiatric illness whose etiology is yet mysterious. Lactoferrin (LF), an iron-binding glycoprotein, is reported to promote neuroprotection through its role in the modulation of oxidative stress and inflammation. The objective of the present research was to evaluate the efficacy of LF against chronic restraint stress (CRS)-induced depressive behavior in rats. Depression was evidenced by a reduced grooming time in the splash test and an increased immobility time in the tail suspension test (TST) and forced swimming test (FST). This effect was also accompanied by reduced GSH and serotonin levels and elevated lipid peroxidation and corticosterone levels in the hippocampus. Additionally, an exaggerated hippocampal inflammatory response was also shown by a rise in NF-κB (p65) and TNF-α levels and a reduced IL-10 level. Moreover, CRS substantially reduced the BDNF content as well as the protein levels of PI3K, Akt, and mTOR while boosting the GSK3β content. Interestingly, LF therapy significantly improved CRS-induced behavioral and biochemical aberrations, an effect which was suppressed upon pretreatment with LY294002 (PI3K inhibitor). This suggests that the antidepressant potential of LF may be mediated through the modulation of the PI3K/Akt/mTOR signaling pathway. Furthermore, LF succeeded in restoring 5-HT and corticosterone levels, diminishing oxidative stress and ameliorating the inflammatory cascades. Therefore, and for the first time, LF might serve as a promising antidepressant drug through targeting the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Hanan H Ahmed
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo, University, Cairo, Egypt.
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Muhammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo, University, Cairo, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo, University, Cairo, Egypt.
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| |
Collapse
|
16
|
Wankhede NL, Kale MB, Bawankule AK, Aglawe MM, Taksande BG, Trivedi RV, Umekar MJ, Jamadagni A, Walse P, Koppula S, Kopalli SR. Overview on the Polyphenol Avenanthramide in Oats ( Avena sativa Linn.) as Regulators of PI3K Signaling in the Management of Neurodegenerative Diseases. Nutrients 2023; 15:3751. [PMID: 37686782 PMCID: PMC10489942 DOI: 10.3390/nu15173751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Avenanthramides (Avns) and their derivatives, a group of polyphenolic compounds found abundantly in oats (Avena sativa Linn.), have emerged as promising candidates for neuroprotection due to their immense antioxidant, anti-inflammatory, and anti-apoptotic properties. Neurodegenerative diseases (NDDs), characterized by the progressive degeneration of neurons, present a significant global health burden with limited therapeutic options. The phosphoinositide 3-kinase (PI3K) signaling pathway plays a crucial role in cell survival, growth, and metabolism, making it an attractive target for therapeutic intervention. The dysregulation of PI3K signaling has been implicated in the pathogenesis of various NDDs including Alzheimer's and Parkinson's disease. Avns have been shown to modulate PI3K/AKT signaling, leading to increased neuronal survival, reduced oxidative stress, and improved cognitive function. This review explores the potential of Avn polyphenols as modulators of the PI3K signaling pathway, focusing on their beneficial effects against NDDs. Further, we outline the need for clinical exploration to elucidate the specific mechanisms of Avn action on the PI3K/AKT pathway and its potential interactions with other signaling cascades involved in neurodegeneration. Based on the available literature, using relevant keywords from Google Scholar, PubMed, Scopus, Science Direct, and Web of Science, our review emphasizes the potential of using Avns as a therapeutic strategy for NDDs and warrants further investigation and clinical exploration.
Collapse
Affiliation(s)
- Nitu L. Wankhede
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Mayur B. Kale
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Ashwini K. Bawankule
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Manish M. Aglawe
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Brijesh G. Taksande
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Rashmi V. Trivedi
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Milind J. Umekar
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Ankush Jamadagni
- Fortem Bioscience Private Limited, Bangalore 560064, Karnataka, India
| | - Prathamesh Walse
- Fortem Bioscience Private Limited, Bangalore 560064, Karnataka, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-si 27478, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
17
|
Kalous J, Aleshkina D, Anger M. A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development. Cells 2023; 12:1830. [PMID: 37508495 PMCID: PMC10378481 DOI: 10.3390/cells12141830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
A serine/threonine-specific protein kinase B (PKB), also known as Akt, is a key factor in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway that regulates cell survival, metabolism and proliferation. Akt phosphorylates many downstream specific substrates, which subsequently control the nuclear envelope breakdown (NEBD), centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. In vertebrates, Akt is also an important player during oogenesis and preimplantation development. In the signaling pathways regulating mRNA translation, Akt is involved in the control of mammalian target of rapamycin complex 1 (mTORC1) and thereby regulates the activity of a translational repressor, the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). In this review, we summarize the functions of Akt in mitosis, meiosis and early embryonic development. Additionally, the role of Akt in the regulation of mRNA translation is addressed with respect to the significance of this process during early development.
Collapse
Affiliation(s)
- Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Praha, Czech Republic
| | - Martin Anger
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| |
Collapse
|
18
|
Hsiao KC, Ruan SY, Chen SM, Lai TY, Chan RH, Zhang YM, Chu CA, Cheng HC, Tsai HW, Tu YF, Law BK, Chang TT, Chow NH, Chiang CW. The B56γ3-containing protein phosphatase 2A attenuates p70S6K-mediated negative feedback loop to enhance AKT-facilitated epithelial-mesenchymal transition in colorectal cancer. Cell Commun Signal 2023; 21:172. [PMID: 37430297 DOI: 10.1186/s12964-023-01182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Protein phosphatase 2A (PP2A) is one of the major protein phosphatases in eukaryotic cells and is essential for cellular homeostasis. PP2A is a heterotrimer comprising the dimeric AC core enzyme and a highly variable regulatory B subunit. Distinct B subunits help the core enzyme gain full activity toward specific substrates and contribute to diverse cellular roles of PP2A. PP2A has been thought to play a tumor suppressor and the B56γ3 regulatory subunit was shown to play a key tumor suppressor regulatory subunit of PP2A. Nevertheless, we uncovered a molecular mechanism of how B56γ3 may act as an oncogene in colorectal cancer (CRC). METHODS Polyclonal pools of CRC cells with stable B56γ3 overexpression or knockdown were generated by retroviral or lentiviral infection and subsequent drug selection. Co-immunoprecipitation(co-IP) and in vitro pull-down analysis were applied to analyze the protein-protein interaction. Transwell migration and invasion assays were applied to investigate the role of B56γ3 in affecting motility and invasive capability of CRC cells. The sensitivity of CRC cells to 5-fluorouracil (5-FU) was analyzed using the PrestoBlue reagent assay for cell viability. Immunohistochemistry (IHC) was applied to investigate the expression levels of phospho-AKT and B56γ3 in paired tumor and normal tissue specimens of CRC. DataSets of TCGA and GEO were analyzed to investigate the correlation of B56γ3 expression with overall survival rates of CRC patients. RESULTS We showed that B56γ3 promoted epithelial-mesenchymal transition (EMT) and reduced the sensitivity of CRC cells to 5-FU through upregulating AKT activity. Mechanistically, B56γ3 upregulates AKT activity by targeting PP2A to attenuate the p70S6K-mediated negative feedback loop regulation on PI3K/AKT activation. B56γ3 was highly expressed and positively correlated with the level of phospho-AKT in tumor tissues of CRC. Moreover, high B56γ3 expression is associated with poor prognosis of a subset of patients with CRC. CONCLUSIONS Our finding reveals that the B56γ3 regulatory subunit-containing PP2A plays an oncogenic role in CRC cells by sustaining AKT activation through suppressing p70S6K activity and suggests that the interaction between B56γ3 and p70S6K may serve as a therapeutic target for CRC. Video Abstract.
Collapse
Affiliation(s)
- Kai-Ching Hsiao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Siou-Ying Ruan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shih-Min Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Tai-Yu Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Ren-Hao Chan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yan-Ming Zhang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chien-An Chu
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hung-Wen Tsai
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Fang Tu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Brian K Law
- Department of Pharmacology and Therapeutics and the UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
19
|
Wei W, Yao JX, Zhang TT, Wen JY, Zhang Z, Luo YM, Cao Y, Li H. Network pharmacology reveals that Berberine may function against Alzheimer's disease via the AKT signaling pathway. Front Neurosci 2023; 17:1059496. [PMID: 37214397 PMCID: PMC10192713 DOI: 10.3389/fnins.2023.1059496] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Objective To investigate the mechanism underlying the effects of berberine (BBR) in the treatment of Alzheimer's disease (AD). Methods 3 × Tg AD mice were treated with BBR for 3 months, then the open field test (OFT), the novel object recognition test (NOR) and the Morris water maze (MWM) test were performed to assess behavioral performance. Hematoxylin-eosin (HE) staining, Nissl staining were used to examine histopathological changes. The pharmacological and molecular properties of BBR were obtained from the TCMSP database. BBR-associated AD targets were identified using the PharmMapper (PM), the comparative toxicogenomics database (CTD), DisGeNet and the human gene database (GeneCards). Core networks and BBR targets for the treatment of AD were identified using PPI network and functional enrichment analyses. AutoDock software was used to model the interaction between BBR and potential targets. Finally, RT-qPCR, western blotting were used to validate the expression of core targets. Results Behavioral experiments, HE staining and Nissl staining have shown that BBR can improve memory task performance and neuronal damage in the hippocampus of AD mice. 117 BBR-associated targets for the treatment of AD were identified, and 43 genes were used for downstream functional enrichment analysis in combination with the results of protein-protein interaction (PPI) network analysis. 2,230 biological processes (BP) terms, 67 cell components (CC) terms, 243 molecular function (MF) terms and 118 KEGG terms were identified. ALB, EGFR, CASP3 and five targets in the PI3K-AKT signaling pathway including AKT1, HSP90AA1, SRC, HRAS, IGF1 were selected by PPI network analysis, validated by molecular docking analysis and RT-q PCR as core targets for further analysis. Akt1 mRNA expression levels were significantly decreased in AD mice and significantly increased after BBR treatment (p < 0.05). Besides, AKT and ERK phosphorylation decreased in the model group, and BBR significantly increased their phosphorylation levels. Conclusion AKT1, HSP90AA1, SRC, HRAS, IGF1 and ALB, EGFR, CASP3 were core targets of BBR in the treatment of AD. BBR may exert a neuroprotective effect by modulating the ERK and AKT signaling pathways.
Collapse
Affiliation(s)
- Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jiu-xiu Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ting-ting Zhang
- Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jia-yu Wen
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Zhen Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Yi-miao Luo
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
20
|
Shen C, Wang Y, Zhang H, Li W, Chen W, Kuang M, Song Y, Zhong Z. Exploring the active components and potential mechanisms of Rosa roxburghii Tratt in treating type 2 diabetes mellitus based on UPLC-Q-exactive Orbitrap/MS and network pharmacology. Chin Med 2023; 18:12. [PMID: 36747287 PMCID: PMC9903504 DOI: 10.1186/s13020-023-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/14/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a global disease with growing prevalence that is difficult to cure. Rosa roxburghii Tratt is an edible and medicinal plant, and modern pharmacological studies have shown that it has potential anti-diabetic activity. This is the first study to explore the active components and potential mechanisms of Rosa roxburghii Tratt fruit for treating T2DM based on UPLC-Q-Exactive Orbitrap/MS and network pharmacology. METHODS The active components of Rosa roxburghii Tratt fruit were obtained from UPLC-Q-Exactive Orbitrap/MS analysis and retrieval in the SciFinder, PubMed, Web of Science, and CNKI databases. The potential targets of the active components were obtained from the SwissTargetPrediction and PharmMapper databases. The disease targets for T2DM were obtained from GeneCards, OMIM, TTD, DisGENent, and GEO databases. The intersection of the two datasets was used to obtain the potential targets of Rosa roxburghii Tratt fruit against T2DM. The target protein interaction network was constructed using the String database and Cytoscape software. The R software ClusterProfiler package was used for target enrichment analysis and the Cytoscape CytoNCA plug-in was used to screen core targets. Molecular docking and result visualization were performed using PyMOL and Autodock Vina software. RESULTS We obtained 20 bioactive ingredients, including alphitolic acid, quercetin, and ellagic acid, as well as 13 core targets, such as AKT1, TNF, SRC, and VEGFA. All bioactive ingredients in Rosa roxburghii Tratt fruit were active against T2DM-related therapeutic targets. Rosa roxburghii Tratt fruit may play a therapeutic role in T2DM by regulating the PI3K/AKT, RAS, AGE-RAGE, and other signaling pathways. CONCLUSIONS This study explored the active components and potential mechanisms of Rosa roxburghii Tratt fruit in the treatment of T2DM, laying the foundation for a further experimental study based on pharmacodynamic substances and their mechanisms of action.
Collapse
Affiliation(s)
- Chenxiao Shen
- grid.437123.00000 0004 1794 8068Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR 999078 China
| | - Yu Wang
- Guangzhou Wanglaoji Health Industry Co, Ltd, Guangzhou, 510632 China
| | - Hui Zhang
- Guangzhou Wanglaoji Health Industry Co, Ltd, Guangzhou, 510632 China
| | - Wei Li
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Wenyue Chen
- grid.437123.00000 0004 1794 8068Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR 999078 China
| | - Mingqing Kuang
- Guangzhou Wanglaoji Health Industry Co, Ltd, Guangzhou, 510632 China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR 999078, China.
| |
Collapse
|
21
|
Zhou J, Zhang C, Fang X, Zhang N, Zhang X, Zhu Z. Activation of autophagy inhibits the activation of NLRP3 inflammasome and alleviates sevoflurane-induced cognitive dysfunction in elderly rats. BMC Neurosci 2023; 24:9. [PMID: 36709248 PMCID: PMC9883890 DOI: 10.1186/s12868-023-00777-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
AIMS/INTRODUCTION As a common complication in elderly patients after surgery/anesthesia, postoperative cognitive dysfunction (POCD) is mainly characterized by memory, attention, motor, and intellectual retardation. Neuroinflammation is one of the most uncontroversial views in POCD. The sevoflurane-induced neurotoxicity has attracted widespread attention in recent years. However, its mechanism has not been determined. This study aimed to observe the effects of sevoflurane on cognitive function and the changes in inflammatory indices and autophagy protein expression in the prefrontal cortex in aged rats. METHOD Before the experiment, D-galactose was diluted with normal saline into a liquid with a concentration of 125 mg/kg and injected subcutaneously into the neck and back of rats for 42 days to establish the aging rat model. Morris water maze experiments were performed, including positioning navigation (5 days) and space exploration (1 day). The POCD model was established by 3.2% sevoflurane inhalation. The rats were treated with or without MCC950, a potent and selective nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inhibitor, followed by autophagy agonists and autophagy inhibitors. The expression levels of inflammasome-related protein NLRP3 and autophagy-related proteins LC3B and P62 were detected to test the behavior of rats with a water maze. RESULTS We found that sevoflurane exposure affected learning and working memory ability in aged rats. We also observed microglia activation in the prefrontal cortex. NLRP3 protein expression was significantly upregulated after sevoflurane inhalation. NLRP3 inflammasome activation induced increased expression and mRNA expression of cleaved Caspase-1 and inflammatory cytokines IL-1β and IL-18, and increased secretion of peripheral proinflammatory cytokines. The inhibitor MCC950 was used to improve cognitive ability and inflammation in rats and inhibit the secretion of cytokines. In addition, we demonstrated that significant inhibition of autophagy (decreased LC3-II/I and increased P62) was accompanied by increased activation of NLRP3 inflammasomes and more severe neural cell damage. However, autophagy inhibitor rapamycin administration to activate autophagy resulted in the inhibition of NLRP3 inflammasomes, ultimately attenuating neuronal injury. CONCLUSIONS The activation of autophagy suppressed the formation of NLRP3 inflammasomes. It also alleviated cognitive impairment in aged rats.
Collapse
Affiliation(s)
- Junjie Zhou
- grid.417409.f0000 0001 0240 6969Zunyi Medical University, 6 Xuefu West Road, Xinpu New District, Zunyi, 563000 Guizhou China ,grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Chao Zhang
- grid.417409.f0000 0001 0240 6969Zunyi Medical University, 6 Xuefu West Road, Xinpu New District, Zunyi, 563000 Guizhou China ,grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Xu Fang
- grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Naixin Zhang
- grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Xiaoxi Zhang
- grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Zhaoqiong Zhu
- grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| |
Collapse
|
22
|
Zochodne DW. Growth factors and molecular-driven plasticity in neurological systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:569-598. [PMID: 37620091 DOI: 10.1016/b978-0-323-98817-9.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
It has been almost 70 years since the discovery of nerve growth factor (NGF), a period of a dramatic evolution in our understanding of dynamic growth, regeneration, and rewiring of the nervous system. In 1953, the extraordinary finding that a protein found in mouse submandibular glands generated a halo of outgrowing axons has now redefined our concept of the nervous system connectome. Central and peripheral neurons and their axons or dendrites are no longer considered fixed or static "wiring." Exploiting this molecular-driven plasticity as a therapeutic approach has arrived in the clinic with a slate of new trials and ideas. Neural growth factors (GFs), soluble proteins that alter the behavior of neurons, have expanded in numbers and our understanding of the complexity of their signaling and interactions with other proteins has intensified. However, beyond these "extrinsic" determinants of neuron growth and function are the downstream pathways that impact neurons, ripe for translational development and potentially more important than individual growth factors that may trigger them. Persistent and ongoing nuances in clinical trial design in some of the most intractable and irreversible neurological conditions give hope for connecting new biological ideas with clinical benefits. This review is a targeted update on neural GFs, their signals, and new therapeutic ideas, selected from an expansive literature.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
23
|
Huang J, Chen L, Wu J, Ai D, Zhang JQ, Chen TG, Wang L. Targeting the PI3K/AKT/mTOR Signaling Pathway in the Treatment of Human Diseases: Current Status, Trends, and Solutions. J Med Chem 2022; 65:16033-16061. [PMID: 36503229 DOI: 10.1021/acs.jmedchem.2c01070] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is one of the most important intracellular pathways involved in cell proliferation, growth, differentiation, and survival. Therefore, this route is a prospective biological target for treating various human diseases, such as tumors, neurodegenerative diseases, pulmonary fibrosis, and diabetes. An increasing number of clinical studies emphasize the necessity of developing novel molecules targeting the PI3K/AKT/mTOR pathway. This review focuses on recent advances in ATP-competitive inhibitors, allosteric inhibitors, covalent inhibitors, and proteolysis-targeting chimeras against the PI3K/AKT/mTOR pathway, and highlights possible solutions for overcoming the toxicities and acquired drug resistance of currently available drugs. We also provide recommendations for the future design and development of promising drugs targeting this pathway.
Collapse
Affiliation(s)
- Jindi Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liye Chen
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiangxia Wu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Daiqiao Ai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ji-Quan Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Room 109, Building C, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
24
|
Kurma K, Zeybek Kuyucu A, Roth GS, Sturm N, Mercey-Ressejac M, Abbadessa G, Yu Y, Lerat H, Marche PN, Decaens T, Macek Jilkova Z. Effect of Novel AKT Inhibitor Vevorisertib as Single Agent and in Combination with Sorafenib on Hepatocellular Carcinoma in a Cirrhotic Rat Model. Int J Mol Sci 2022; 23:ijms232416206. [PMID: 36555845 PMCID: PMC9784348 DOI: 10.3390/ijms232416206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. The AKT pathway is often activated in HCC cases, and a longer exposure to tyrosine kinase inhibitors such as sorafenib may lead to over-activation of the AKT pathway, leading to HCC resistance. Here, we studied the efficacy of a new generation of allosteric AKT inhibitor, vevorisertib, alone or in combination with sorafenib. To identify specific adverse effects related to the background of cirrhosis, we used a diethylnitrosamine (DEN)-induced cirrhotic rat model. Vevorisertib was tested in vitro on Hep3B, HepG2, HuH7 and PLC/PRF cell lines. Rats were treated weekly with intra-peritoneal injections of DEN for 14 weeks to obtain cirrhosis with fully developed HCC. After that, rats were randomized into four groups (n = 7/group): control, sorafenib, vevorisertib and the combination of vevorisertib + sorafenib, and treated for 6 weeks. Tumor progression was followed by MRI. We demonstrated that the vevorisertib is a highly potent treatment, blocking the phosphorylation of AKT. The tumor progression in the rat liver was significantly reduced by treatment with vevorisertib + sorafenib (49.4%) compared to the control group (158.8%, p < 0.0001). Tumor size, tumor number and tumor cell proliferation were significantly reduced in both the vevorisertib group and vevorisertib + sorafenib groups compared to the control group. Sirius red staining showed an improvement in liver fibrosis by vevorisertib and the combination treatment. Moreover, vevorisertib + sorafenib treatment was associated with a normalization in the liver vasculature. Altogether, vevorisertib as a single agent and its combination with sorafenib exerted a strong suppression of tumor progression and improved liver fibrosis. Thus, results provide a rationale for testing vevorisertib in clinical settings and confirm the importance of targeting AKT in HCC.
Collapse
Affiliation(s)
- Keerthi Kurma
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
| | - Ayca Zeybek Kuyucu
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
| | - Gaël S. Roth
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
| | - Nathalie Sturm
- Pathology and Cytology Department, CHU Grenoble Alpes, 38700 Grenoble, France
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, 38700 La Tronche, France
| | - Marion Mercey-Ressejac
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
| | | | - Yi Yu
- ArQule Inc., Burlington, MA 01803, USA
| | - Herve Lerat
- Unité Mixte de Service hTAG, Grenoble Alpes University, Inserm US046, CNRS UAR2019, 38700 La Tronche, France
| | - Patrice N. Marche
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
| | - Thomas Decaens
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
| | - Zuzana Macek Jilkova
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
- Correspondence:
| |
Collapse
|
25
|
Bengoechea-Alonso MT, Aldaalis A, Ericsson J. Loss of the Fbw7 tumor suppressor rewires cholesterol metabolism in cancer cells leading to activation of the PI3K-AKT signalling axis. Front Oncol 2022; 12:990672. [PMID: 36176395 PMCID: PMC9513553 DOI: 10.3389/fonc.2022.990672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The sterol regulatory-element binding proteins (SREBPs) are transcription factors controlling cholesterol and fatty acid synthesis and metabolism. There are three SREBP proteins, SREBP1a, SREBP1c and SREBP2, with SREBP1a being the strongest transcription factor. The expression of SREBP1a is restricted to rapidly proliferating cells, including cancer cells. The SREBP proteins are translated as large, inactive precursors bound to the endoplasmic reticulum (ER) membranes. These precursors undergo a two-step cleavage process that releases the amino terminal domains of the proteins, which translocate to the nucleus and function as transcription factors. The nuclear forms of the SREBPs are rapidly degraded by the ubiquitin-proteasome system in a manner dependent on the Fbw7 ubiquitin ligase. Consequently, inactivation of Fbw7 results in the stabilization of active SREBP1 and SREBP2 and enhanced expression of target genes. We report that the inactivation of Fbw7 in cancer cells blocks the proteolytic maturation of SREBP2. The same is true in cells expressing a cancer-specific loss-of-function Fbw7 protein. Interestingly, the activation of SREBP2 is restored in response to cholesterol depletion, suggesting that Fbw7-deficient cells accumulate cholesterol. Importantly, inactivation of SREBP1 in Fbw7-deficient cells also restores the cholesterol-dependent regulation of SREBP2, suggesting that the stabilization of active SREBP1 molecules could be responsible for the blunted activation of SREBP2 in Fbw7-deficient cancer cells. We suggest that this could be an important negative feedback loop in cancer cells with Fbw7 loss-of-function mutations to protect these cells from the accumulation of toxic levels of cholesterol and/or cholesterol metabolites. Surprisingly, we also found that the inactivation of Fbw7 resulted in the activation of AKT. Importantly, the activation of AKT was dependent on SREBP1 and on the accumulation of cholesterol. Thus, we suggest that the loss of Fbw7 rewires lipid metabolism in cancer cells to support cell proliferation and survival.
Collapse
Affiliation(s)
- Maria T. Bengoechea-Alonso
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Arwa Aldaalis
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- *Correspondence: Johan Ericsson,
| |
Collapse
|
26
|
Nag JK, Malka H, Sedley S, Appasamy P, Rudina T, Levi T, Hoffman A, Gilon C, Uziely B, Bar-Shavit R. PH-Binding Motif in PAR4 Oncogene: From Molecular Mechanism to Drug Design. Mol Cancer Ther 2022; 21:1415-1429. [PMID: 36066448 DOI: 10.1158/1535-7163.mct-21-0946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
While the role of G-protein-coupled receptors (GPCR) in cancer is acknowledged, their underlying signaling pathways are understudied. Protease-activated receptors (PAR), a subgroup of GPCRs, form a family of four members (PAR1-4) centrally involved in epithelial malignancies. PAR4 emerges as a potent oncogene, capable of inducing tumor generation. Here, we demonstrate identification of a pleckstrin-homology (PH)-binding motif within PAR4, critical for colon cancer growth. In addition to PH-Akt/PKB association, other PH-containing signal proteins such as Gab1 and Sos1 also associate with PAR4. Point mutations are in the C-tail of PAR4 PH-binding domain; F347 L and D349A, but not E346A, abrogate these associations. Pc(4-4), a lead backbone cyclic peptide, was selected out of a mini-library, directed toward PAR2&4 PH-binding motifs. It effectively attenuates PAR2&4-Akt/PKB associations; PAR4 instigated Matrigel invasion and migration in vitro and tumor development in vivo. EGFR/erbB is among the most prominent cancer targets. AYPGKF peptide ligand activation of PAR4 induces EGF receptor (EGFR) Tyr-phosphorylation, effectively inhibited by Pc(4-4). The presence of PAR2 and PAR4 in biopsies of aggressive breast and colon cancer tissue specimens is demonstrated. We propose that Pc(4-4) may serve as a powerful drug not only toward PAR-expressing tumors but also for treating EGFR/erbB-expressing tumors in cases of resistance to traditional therapies. Overall, our studies are expected to allocate new targets for cancer therapy. Pc(4-4) may become a promising candidate for future therapeutic cancer treatment.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hodaya Malka
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shoshana Sedley
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Priyanga Appasamy
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tatyana Rudina
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tgst Levi
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amnon Hoffman
- School of Pharmacy, Institute for Drug Research, The Hebrew University, Jerusalem, Israel
| | - Chaim Gilon
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University, Jerusalem, Israel
| | - Beatrice Uziely
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
27
|
A Review of Signaling Transduction Mechanisms in Osteoclastogenesis Regulation by Autophagy, Inflammation, and Immunity. Int J Mol Sci 2022; 23:ijms23179846. [PMID: 36077242 PMCID: PMC9456406 DOI: 10.3390/ijms23179846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoclastogenesis is an ongoing rigorous course that includes osteoclast precursors fusion and bone resorption executed by degradative enzymes. Osteoclastogenesis is controlled by endogenous signaling and/or regulators or affected by exogenous conditions and can also be controlled both internally and externally. More evidence indicates that autophagy, inflammation, and immunity are closely related to osteoclastogenesis and involve multiple intracellular organelles (e.g., lysosomes and autophagosomes) and certain inflammatory or immunological factors. Based on the literature on osteoclastogenesis induced by different regulatory aspects, emerging basic cross-studies have reported the emerging disquisitive orientation for osteoclast differentiation and function. In this review, we summarize the partial potential therapeutic targets for osteoclast differentiation and function, including the signaling pathways and various cellular processes.
Collapse
|
28
|
Han R, Yu Y, Zhao K, Wei J, Hui Y, Gao JM. Lignans from Eucommia ulmoides Oliver leaves exhibit neuroprotective effects via activation of the PI3K/Akt/GSK-3β/Nrf2 signaling pathways in H 2O 2-treated PC-12 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154124. [PMID: 35487038 DOI: 10.1016/j.phymed.2022.154124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Neuronal apoptosis and oxidative stress have the most crucial influence on neurodegenerative diseases, including Parkinson's disease. Rat adrenal pheochromocytoma cells (PC-12) induced by H2O2 are one of the primary in vitro models of Parkinson's disease (PD) . Previous studies have found that E ulmoides leaf extract exerts good neuroprotective activity and has the potential to treat neurodegenerative diseases. However, the molecular pathways involved in the neuroprotective effects of its primary leaf component, lignans, have not yet been well elucidated yet. PURPOSE This study aimed to evaluate the neuroprotective effects of lignans in E. ulmoides leaves and to explore the underlying mechanism. METHODS Cell viability was measured using the CCK-8 assay. Apoptosis was assessed by calcein/PI staining. The release levels of ROS and LDH were assessed using a commercial assay kit. The enzyme activities of SOD and GPx were measured using kits. The establishment of the compound-target-pathway-disease network was performed using a database and computer software. Antioxidant proteins (HO-1, NQO-1, and Cat) and related regulatory proteins (Nrf2, GSK-3β, p-GSK 3β (Ser 9), Akt, p-Akt (Tyr326), PI3K) were detected by western blotting. Apoptosis in the zebrafish head was assessed using acridine orange (AO) staining. RESULTS In the present study, 12 lignans were isolated and characterized from E. ulmoides leaves, including a new compound, (-)-7‑epi-pinoresinol mr1 (1). Compounds 1-12 exerted neuroprotective effects in H2O2-treated PC-12 cells by increasing cell viability, improving the enzyme activity of SOD and GPx, and reducing levels of ROS and LDH. Compared to the positive control group (25 μM hesperetin), cell viability in response to 25 μM compound 1 (78.0 ± 0.8%) was highest, but its relative percent LDH release (20.1 ± 2.5%) was the lowest; 25 μM compound 4 resulted in the lowest ROS release levels (101.7 ± 2.6%) and highest SOD enzyme activity (35.9 ± 4.2 U/mg), and the GPx enzyme activity of 25 μM compound 1 was strongest (197.6 ± 0.6 U/mg). Next, the potential targets (PI3K, GSK-3β) of the test compounds' antioxidant activity were identified using pharmacological network analysis. Using DAVID software for pharmacological network analysis, potential targets (PI3K, GSK-3β, and SOD2) of 12 lignans were identified. Based on the initial screening results, biological experiments confirmed that diepoxylignans 1, 2, and 4 exerted significant neuroprotection by regulating the PI3K/AKT/GSK-3β/Nrf2 signaling pathways, increasing protein expression of HO-1, NQO-1, and CAT, and enhancing the antioxidant enzyme activity of SOD and GPx. CONCLUSION Our experiments first propose that the diepoxylignans from E. ulmoides leaves exert neuroprotective effects via activation of the PI3K/Akt/GSK-3β/Nrf2 signaling pathway. These findings further indicate that lignans could be the primary components of E. ulmoides Oliver as agents for the prevention and treatment of neurodegenerative diseases. Collectively, Eucommia ulmoides leaves with important research value may be a potential candidate for traditional Chinese medicine for treating oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Rui Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yao Yu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Kanghong Zhao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jing Wei
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, People's Republic of China
| | - Yuhu Hui
- Shaanxi Jiahe Pharmaceutical Co., Ltd. No. 7 Binhe Road, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
29
|
Cai H, Huang LY, Hong R, Song JX, Guo XJ, Zhou W, Hu ZL, Wang W, Wang YL, Shen JG, Qi SH. Momordica charantia Exosome-Like Nanoparticles Exert Neuroprotective Effects Against Ischemic Brain Injury via Inhibiting Matrix Metalloproteinase 9 and Activating the AKT/GSK3β Signaling Pathway. Front Pharmacol 2022; 13:908830. [PMID: 35814200 PMCID: PMC9263912 DOI: 10.3389/fphar.2022.908830] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Plant exosome-like nanoparticles (ELNs) have shown great potential in treating tumor and inflammatory diseases, but the neuroprotective effect of plant ELNs remains unknown. In the present study, we isolated and characterized novel ELNs from Momordica charantia (MC) and investigated their neuroprotective effects against cerebral ischemia-reperfusion injury. In the present study, MC-ELNs were isolated by ultracentrifugation and characterized. Male Sprague–Dawley rats were subjected to middle cerebral artery occlusion (MCAO) and MC-ELN injection intravenously. The integrity of the blood–brain barrier (BBB) was examined by Evans blue staining and with the expression of matrix metalloproteinase 9 (MMP-9), claudin-5, and ZO-1. Neuronal apoptosis was evaluated by TUNEL and the expression of apoptotic proteins including Bcl2, Bax, and cleaved caspase 3. The major discoveries include: 1) Dil-labeled MC-ELNs were identified in the infarct area; 2) MC-ELN treatment significantly ameliorated BBB disruption, decreased infarct sizes, and reduced neurological deficit scores; 3) MC-ELN treatment obviously downregulated the expression of MMP-9 and upregulated the expression of ZO-1 and claudin-5. Small RNA-sequencing revealed that MC-ELN-derived miRNA5266 reduced MMP-9 expression. Furthermore, MC-ELN treatment significantly upregulated the AKT/GSK3β signaling pathway and attenuated neuronal apoptosis in HT22 cells. Taken together, these findings indicate that MC-ELNs attenuate ischemia-reperfusion–induced damage to the BBB and inhibit neuronal apoptosis probably via the upregulation of the AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Heng Cai
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Lin-Yan Huang
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Rui Hong
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Jin-Xiu Song
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Xin-Jian Guo
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Wei Zhou
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Zhao-Li Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Wan Wang
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Yan-Ling Wang
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Jian-Gang Shen
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Su-Hua Qi, ; Jian-Gang Shen,
| | - Su-Hua Qi
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
- *Correspondence: Su-Hua Qi, ; Jian-Gang Shen,
| |
Collapse
|
30
|
Zhou Z, Chen H, Tang X, He B, Gu L, Feng H. Total Saikosaponins Attenuates Depression-Like Behaviors Induced by Chronic Unpredictable Mild Stress in Rats by Regulating the PI3K/AKT/NF- κB Signaling Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4950414. [PMID: 35761900 PMCID: PMC9233589 DOI: 10.1155/2022/4950414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023]
Abstract
Background Depression is a major cause of disability and most antidepressant medicines are ineffective owing to their high toxicity and numerous adverse effects. As a result, there is an urgent need to find new effective treatment methods. This paper aims to investigate the effect and mechanism of total saikosaponins (TSS) on depression-like behaviors induced by chronic unpredictable mild stress (CUMS) in rats. Methods Twenty-four male SD rats were randomly divided into 4 groups: control group, CUMS group, TSS group, and fluoxetine (Flu) group. Then, the following tests were conducted: sucrose preference test, open field test, and elevated plus maze test. Additionally, ELISA was used to detect the levels of corticosterone (CORT) and adrenocorticotropic hormone (ACTH) in the serum of the rats as well as the levels of inflammatory cytokines IL-1β, IL-6, and TNF-α in the hippocampus, and Western blot was used for measuring the expression of brain-derived neurotrophic factor (BDNF) protein and related proteins of the PI3K/AKT/NF-κB signaling pathway in the hippocampus. Results TSS could significantly improve rat behaviors, specifically indicated by increases in sucrose preference, total movement distance, stay time in the central area, number of entries into open arms, time spent in open arms, and a decrease in stay time in the peripheral area. TSS acted to significantly reduce BDNF protein expression and increase the contents of ACTH and CORT in serum as well as the levels of IL-1β, IL-6, and TNF-α in the hippocampal tissue in rats. In addition, it was able to raise the ratios of p-PI3K/PI3K and p-AKT/AKT and decrease the ratio of p-p65/p65 in tissues, which in turn regulated the PI3K/AKT/NF-κB signaling pathway. Conclusions TSS, through regulating PI3K/AKT/NF-κB signaling axis, can alleviate depression-like behaviors and elevate neuroendocrine hormone levels and inflammatory factor levels.
Collapse
Affiliation(s)
- Zhicong Zhou
- Departments of Geriatrics, Guangzhou Geriatric Hospital, 510550 Guangzhou, China
- Department of Geriatrics, Home for the Aged Guangzhou, 510550 Guangzhou, China
| | - Hui Chen
- Departments of Geriatrics, Guangzhou Geriatric Hospital, 510550 Guangzhou, China
- Department of Geriatrics, Home for the Aged Guangzhou, 510550 Guangzhou, China
| | - Xiaoyan Tang
- Department of Pharmacy, The Third Affiliated Hospital, Southern Medical University, 510630 Guangzhou, China
| | - Binghong He
- Department of Pharmacy, The Third Affiliated Hospital, Southern Medical University, 510630 Guangzhou, China
| | - Lingxia Gu
- Department of Pharmacy, The Third Affiliated Hospital, Southern Medical University, 510630 Guangzhou, China
| | - Huancun Feng
- Department of Pharmacy, The Third Affiliated Hospital, Southern Medical University, 510630 Guangzhou, China
| |
Collapse
|
31
|
Bustamante C, Díez-Mejía AF, Arbeláez N, Soares MJ, Robledo SM, Ochoa R, Varela-M. RE, Marín-Villa M. In Silico, In Vitro, and Pharmacokinetic Studies of UBMC-4, a Potential Novel Compound for Treating against Trypanosoma cruzi. Pathogens 2022; 11:pathogens11060616. [PMID: 35745470 PMCID: PMC9229894 DOI: 10.3390/pathogens11060616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
The lack of therapeutic alternatives for the treatment of Chagas disease, a neglected disease, drives the discovery of new drugs with trypanocidal activity. Consequently, we conducted in vitro studies using UBMC-4, a potential Trypanosoma cruzi AKT-like pleckstrin homology (PH) domain inhibitory compound found using bioinformatics tools. The half effective concentration (EC50) on intracellular amastigotes was determined at 1.85 ± 1 μM showing low cytotoxicity (LC50) > 40 μM on human cell lines tested. In order to study the lethal effect caused by the compound on epimastigotes, morphological changes were assessed by scanning and transmission electron microscopy. Progressive alterations such as flagellum inactivation, cell size reduction, nuclear structure alteration, condensation of chromatin towards the nuclear periphery, vacuole formation, and mitochondrial swelling with kinetoplast integrity loss were evidenced. In addition, apoptosis-like markers in T. cruzi were assessed by flow cytometry, demonstrating that the effect of UBMC-4 on T. cruzi AKT-like kinase reduced the tolerance to nutritional stress-triggered, apoptosis-like events, including DNA fragmentation, mitochondrial damage, and loss of plasma membrane integrity. After this, UBMC-4 was formulated for oral administration and pharmacokinetics were analyzed in a mouse model. Finally, upon oral administration of 200 mg/kg in mice, we found that a UBMC-4 plasma concentration remaining in circulation beyond 24 h after administration is well described by the two-compartment model. We conclude that UBMC-4 has an effective trypanocidal activity in vitro at low concentrations and this effect is evident in T. cruzi cell structures. In mice, UBMC-4 was well absorbed and reached plasma concentrations higher than the EC50, showing features that would aid in developing a new drug to treat Chagas disease.
Collapse
Affiliation(s)
- Christian Bustamante
- PECET-Programa de Estudio y Control de Enfermedades Tropicales, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia; (A.F.D.-M.); (N.A.); (S.M.R.)
- Correspondence: (C.B.); (M.M.-V.)
| | - Andrés Felipe Díez-Mejía
- PECET-Programa de Estudio y Control de Enfermedades Tropicales, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia; (A.F.D.-M.); (N.A.); (S.M.R.)
| | - Natalia Arbeláez
- PECET-Programa de Estudio y Control de Enfermedades Tropicales, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia; (A.F.D.-M.); (N.A.); (S.M.R.)
| | - Maurilio José Soares
- Cell Biology Laboratory, Carlos Chagas Institute/Fiocruz, Curitiba 81350-010, Paraná, Brazil;
| | - Sara M. Robledo
- PECET-Programa de Estudio y Control de Enfermedades Tropicales, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia; (A.F.D.-M.); (N.A.); (S.M.R.)
| | - Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Rubén E. Varela-M.
- Grupo (QUIBIO), School of Basic Sciences, Universidad Santiago de Cali, Cali 760032, Colombia;
| | - Marcel Marín-Villa
- PECET-Programa de Estudio y Control de Enfermedades Tropicales, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia; (A.F.D.-M.); (N.A.); (S.M.R.)
- Correspondence: (C.B.); (M.M.-V.)
| |
Collapse
|
32
|
Méril-Mamert V, Ponce-Mora A, Sylvestre M, Lawrence G, Bejarano E, Cebrián-Torrejón G. Antidiabetic Potential of Plants from the Caribbean Basin. PLANTS 2022; 11:plants11101360. [PMID: 35631785 PMCID: PMC9146409 DOI: 10.3390/plants11101360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia, insulin insufficiency or insulin resistance, and many issues, including vascular complications, glycative stress and lipid metabolism dysregulation. Natural products from plants with antihyperglycemic, hypolipidemic, pancreatic protective, antioxidative, and insulin-like properties complement conventional treatments. Throughout this review, we summarize the current status of knowledge of plants from the Caribbean basin traditionally used to manage DM and treat its sequelae. Seven plants were chosen due to their use in Caribbean folk medicine. We summarize the antidiabetic properties of each species, exploring the pharmacological mechanisms related to their antidiabetic effect reported in vitro and in vivo. We propose the Caribbean flora as a source of innovative bioactive phytocompounds to treat and prevent DM and DM-associated complications.
Collapse
Affiliation(s)
- Vanessa Méril-Mamert
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Alejandro Ponce-Mora
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain;
| | - Muriel Sylvestre
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Genica Lawrence
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain;
- Correspondence: (E.B.); (G.C.-T.); Tel.: +96-136-90-00 (ext. 64541) (E.B.); +96-136-90-00 (ext. 64315) (G.C.-T.)
| | - Gerardo Cebrián-Torrejón
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
- Correspondence: (E.B.); (G.C.-T.); Tel.: +96-136-90-00 (ext. 64541) (E.B.); +96-136-90-00 (ext. 64315) (G.C.-T.)
| |
Collapse
|
33
|
Feng JH, Hu XL, Lv XY, Hong Y, Zhang YH, Long H, Wang R, Wang JJ, Xiong F, Wang H. 4-Trifluoromethyl-(E)-cinnamoyl]-L-4-F-phenylalanine acid exerts its effects on the prevention, post-therapeutic and prolongation of the thrombolytic window in ischemia-reperfusion rats through multiple mechanisms of action. Pharmacol Res 2022; 178:106182. [PMID: 35304259 DOI: 10.1016/j.phrs.2022.106182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/19/2022] [Accepted: 03/11/2022] [Indexed: 01/14/2023]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. The severe sequelae caused by ischemic thrombolysis and the narrow time window are now the main clinical challenges. Our previous study has reported 4-Trifluoromethyl-(E)-cinnamoyl]-L-4-F-phenylalanine Acid (AE-18) was a promising candidate for Parkinson's Disease. In this study, the preventive and therapeutic effects of AE-18 on focal cerebral ischemia-reperfusion injury and the mechanisms are explored. In oxygen glucose deprivation/reoxygenation (OGD/R)-induced well-differentiated PC12 cells model, AE-18 (10 or 20 μM) can significantly reduce nerve damage when administered before or after molding. In middle cerebral artery occlusion-reperfusion (MCAO/R) rat model, pre-modelling, or post-modelling administration of AE-18 (5 or 10 mg/kg) was effective in reducing neurological damage, decreasing infarct volume and improving motor disturbances. In addition, AE-18 (5 mg/kg) given by intravenous injection immediately after occlusion significantly reduce the infarct volume caused by reperfusion for different durations, indicating that AE-18 could extend the time window of thrombolytic therapy. Further studies demonstrate that AE-18 exerts the effects in the prevention, treatment, and prolongation of the time window of cerebral ischemic injury mainly through inhibiting excitotoxicity and improving BBB permeability, VEGF and BDNF. These results suggest that AE-18 is a good candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jia-Hao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Long Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xian-Yu Lv
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yu Hong
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuan-Hao Zhang
- Department of Biological sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, People's Republic of China
| | - Huan Long
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jing-Jin Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China.
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
34
|
Marosi M, Nenov MN, Di Re J, Dvorak NM, Alshammari M, Laezza F. Inhibition of the Akt/PKB Kinase Increases Na v1.6-Mediated Currents and Neuronal Excitability in CA1 Hippocampal Pyramidal Neurons. Int J Mol Sci 2022; 23:ijms23031700. [PMID: 35163623 PMCID: PMC8836202 DOI: 10.3390/ijms23031700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
In neurons, changes in Akt activity have been detected in response to the stimulation of transmembrane receptors. However, the mechanisms that lead to changes in neuronal function upon Akt inhibition are still poorly understood. In the present study, we interrogate how Akt inhibition could affect the activity of the neuronal Nav channels with while impacting intrinsic excitability. To that end, we employed voltage-clamp electrophysiological recordings in heterologous cells expressing the Nav1.6 channel isoform and in hippocampal CA1 pyramidal neurons in the presence of triciribine, an inhibitor of Akt. We showed that in both systems, Akt inhibition resulted in a potentiation of peak transient Na+ current (INa) density. Akt inhibition correspondingly led to an increase in the action potential firing of the CA1 pyramidal neurons that was accompanied by a decrease in the action potential current threshold. Complementary confocal analysis in the CA1 pyramidal neurons showed that the inhibition of Akt is associated with the lengthening of Nav1.6 fluorescent intensity along the axonal initial segment (AIS), providing a mechanism for augmented neuronal excitability. Taken together, these findings provide evidence that Akt-mediated signal transduction might affect neuronal excitability in a Nav1.6-dependent manner.
Collapse
Affiliation(s)
- Mate Marosi
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Miroslav N. Nenov
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Jessica Di Re
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Nolan M. Dvorak
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Musaad Alshammari
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
- Center for Addiction Research, Center for Biomedical Engineering and Mitchell, Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Correspondence: ; Tel.: +1-(409)-772-9672; Fax: +1-(409)-772-9642
| |
Collapse
|
35
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Abstract
The Akt isoforms-AS160-GLUT4 axis is the primary axis that governs glucose homeostasis in the body. The first step on the path to insulin resistance is deregulated Akt isoforms. This could be Akt isoform expression, its phosphorylation, or improper isoform-specific redistribution to the plasma membrane in a specific tissue system. The second step is deregulated AS160 expression, its phosphorylation, improper dissociation from glucose transporter storage vesicles (GSVs), or its inability to bind to 14-3-3 proteins, thus not allowing it to execute its function. The final step is improper GLUT4 translocation and aberrant glucose uptake. These processes lead to insulin resistance in a tissue-specific way affecting the whole-body glucose homeostasis, eventually progressing to an overt diabetic phenotype. Thus, the relationship between these three key proteins and their proper regulation comes out as the defining axis of insulin signaling and -resistance. This review summarizes the role of this central axis in insulin resistance and disease in a new light.
Collapse
Affiliation(s)
- Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
37
|
Martínez-Méndez D, Mendoza L, Villarreal C, Huerta L. Continuous Modeling of T CD4 Lymphocyte Activation and Function. Front Immunol 2021; 12:743559. [PMID: 34804023 PMCID: PMC8602102 DOI: 10.3389/fimmu.2021.743559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
T CD4+ cells are central to the adaptive immune response against pathogens. Their activation is induced by the engagement of the T-cell receptor by antigens, and of co-stimulatory receptors by molecules also expressed on antigen presenting cells. Then, a complex network of intracellular events reinforce, diversify and regulate the initial signals, including dynamic metabolic processes that strongly influence both the activation state and the differentiation to effector cell phenotypes. The regulation of cell metabolism is controlled by the nutrient sensor adenosine monophosphate-activated protein kinase (AMPK), which drives the balance between oxidative phosphorylation (OXPHOS) and glycolysis. Herein, we put forward a 51-node continuous mathematical model that describes the temporal evolution of the early events of activation, integrating a circuit of metabolic regulation into the main routes of signaling. The model simulates the induction of anergy due to defective co-stimulation, the CTLA-4 checkpoint blockade, and the differentiation to effector phenotypes induced by external cytokines. It also describes the adjustment of the OXPHOS-glycolysis equilibrium by the action of AMPK as the effector function of the T cell develops. The development of a transient phase of increased OXPHOS before induction of a sustained glycolytic phase during differentiation to the Th1, Th2 and Th17 phenotypes is shown. In contrast, during Treg differentiation, glycolysis is subsequently reduced as cell metabolism is predominantly polarized towards OXPHOS. These observations are in agreement with experimental data suggesting that OXPHOS produces an ATP reservoir before glycolysis boosts the production of metabolites needed for protein synthesis, cell function, and growth.
Collapse
Affiliation(s)
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonor Huerta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
38
|
Shrimali NM, Agarwal S, Kaur S, Bhattacharya S, Bhattacharyya S, Prchal JT, Guchhait P. α-Ketoglutarate Inhibits Thrombosis and Inflammation by Prolyl Hydroxylase-2 Mediated Inactivation of Phospho-Akt. EBioMedicine 2021; 73:103672. [PMID: 34740102 PMCID: PMC8579134 DOI: 10.1016/j.ebiom.2021.103672] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022] Open
Abstract
Background Phospho-Akt1 (pAkt1) undergoes prolyl hydroxylation at Pro125 and Pro313 by the prolyl hydroxylase-2 (PHD2) in a reaction decarboxylating α-ketoglutarate (αKG). We investigated whether the αKG supplementation could inhibit Akt-mediated activation of platelets and monocytes, in vitro as well as in vivo, by augmenting PHD2 activity. Methods We treated platelets or monocytes isolated from healthy individuals with αKG in presence of agonists in vitro and assessed the signalling molecules including pAkt1. We supplemented mice with dietary αKG and estimated the functional responses of platelets and monocytes ex vivo. Further, we investigated the impact of dietary αKG on inflammation and thrombosis in lungs of mice either treated with thrombosis-inducing agent carrageenan or infected with SARS-CoV-2. Findings Octyl αKG supplementation to platelets promoted PHD2 activity through elevated intracellular αKG to succinate ratio, and reduced aggregation in vitro by suppressing pAkt1(Thr308). Augmented PHD2 activity was confirmed by increased hydroxylated-proline and enhanced binding of PHD2 to pAkt in αKG-treated platelets. Contrastingly, inhibitors of PHD2 significantly increased pAkt1 in platelets. Octyl-αKG followed similar mechanism in monocytes to inhibit cytokine secretion in vitro. Our data also describe a suppressed pAkt1 and reduced activation of platelets and leukocytes ex vivo from mice supplemented with dietary αKG, unaccompanied by alteration in their number. Dietary αKG significantly reduced clot formation and leukocyte accumulation in various organs including lungs of mice treated with thrombosis-inducing agent carrageenan. Importantly, in SARS-CoV-2 infected hamsters, we observed a significant rescue effect of dietary αKG on inflamed lungs with significantly reduced leukocyte accumulation, clot formation and viral load alongside down-modulation of pAkt in the lung of the infected animals. Interpretation Our study suggests that dietary αKG supplementation prevents Akt-driven maladies such as thrombosis and inflammation and rescues pathology of COVID19-infected lungs. Funding Study was funded by the Department of Biotechnology (DBT), Govt. of India (grants: BT/PR22881 and BT/PR22985); and the Science and Engineering Research Board, Govt. of India (CRG/000092).
Collapse
Affiliation(s)
- Nishith M Shrimali
- Regional Centre for Biotechnology; National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sakshi Agarwal
- Regional Centre for Biotechnology; National Capital Region Biotech Science Cluster, Faridabad, India
| | - Simrandeep Kaur
- Regional Centre for Biotechnology; National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sulagna Bhattacharya
- Regional Centre for Biotechnology; National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sankar Bhattacharyya
- Translational Health Science Technology Institute; National Capital Region Biotech Science Cluster, Faridabad, India
| | - Josef T Prchal
- Department of Medicine, University of Utah School of Medicine & Huntsman Cancer Center and George E. Whalen Veteran's Administration Medical Center, Salt Lake City, UT, USA
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology; National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
39
|
Guo J, Xue J, Ding Z, Li X, Wang X, Xue H. Activated Phosphoinositide 3-Kinase/Akt/Mammalian Target of Rapamycin Signal and Suppressed Autophagy Participate in Protection Offered by Licochalcone A Against Amyloid-β Peptide Fragment 25-35-Induced Injury in SH-SY5Y Cells. World Neurosurg 2021; 157:e390-e400. [PMID: 34662660 DOI: 10.1016/j.wneu.2021.10.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To assess effect of licochalcone A (LicA) on amyloid-β (Aβ) peptide fragment 25-35-induced nerve injury and reveal the potential molecular mechanisms involved. METHODS Viability of SH-SY5Y cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay after treatment with Aβ25-35 and/or LicA, following which apoptosis was detected by flow cytometry and Hoechst staining. Then, reactive oxygen species, glutathione, and superoxide dismutase were measured with flow cytometry and spectrophotometry. The ultrastructure of mitochondria was examined by transmission electron microscopy, and the biomarker proteins of autophagy, apoptosis, and phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway were measured with Western blotting. RESULTS LicA improved cell viability and decreased lactate dehydrogenase leakage remarkably in Aβ25-35-induced injury in SH-SY5Y cells. After treatment with LicA, reactive oxygen species, glutathione, and superoxide dismutase levels in cells all were significantly decreased, which indicated that LicA has an antioxidative effect on Aβ25-35-induced oxidative injury. LicA could also significantly reduce Aβ25-35-induced autophagy in SH-SY5Y cells. In the cells injured by Aβ25-35, LicA prevented the transformation from light chain protein 3-I to light chain protein 3-II and reduced the levels of proteins GRP78, GRP94, CHOP, and Bax, but increased the levels of antiapoptotic protein and phosphorylation of PI3K, Akt, and mTOR. These effects of LicA were restored or suppressed by mTOR inhibitor rapamycin or PI3K inhibitor LY294002. CONCLUSIONS LicA protects SH-SY5Y cells against Aβ25-35-induced injury, wherein suppressed autophagy and activated PI3K/Akt/mTOR signaling pathway are involved, and mTOR-dependent autophagy at least plays some role.
Collapse
Affiliation(s)
- Jing Guo
- Xi'an Dongao Biosciences Co., Ltd., Xi'an, China
| | - Jing Xue
- Xi'an Dongao Biosciences Co., Ltd., Xi'an, China
| | | | - Xiang Li
- Xi'an Dongao Biosciences Co., Ltd., Xi'an, China
| | - Xiaoxin Wang
- Xi'an Dongao Biosciences Co., Ltd., Xi'an, China
| | - Hong Xue
- Xi'an Dongao Biosciences Co., Ltd., Xi'an, China.
| |
Collapse
|
40
|
Yassin NYS, AbouZid SF, El-Kalaawy AM, Ali TM, Elesawy BH, Ahmed OM. Tackling of Renal Carcinogenesis in Wistar Rats by Silybum marianum Total Extract, Silymarin, and Silibinin via Modulation of Oxidative Stress, Apoptosis, Nrf2, PPAR γ, NF- κB, and PI3K/Akt Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7665169. [PMID: 34630852 PMCID: PMC8497111 DOI: 10.1155/2021/7665169] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
The present work was designed to assess the efficacy of Silybum marianum total extract (STE), silymarin (Sm), and silibinin (Sb) against experimentally induced renal carcinogenesis in male Wistar rats and their roles in regulating oxidative stress, inflammation, apoptosis, and carcinogenesis. The diethylnitrosamine (DEN)/2-acetylaminofluorene (AAF)/carbon tetrachloride (CCl4)-administered rats were orally treated with STE (200 mg/kg b.w.), Sm (150 mg/kg b.w.), and Sb (5 mg/kg b.w.) every other day either from the 1st week or from the 16th week of carcinogen administration to the end of 25th week. The treatments with STE, Sm, and Sb attenuated markers of toxicity in serum, decreased kidney lipid peroxidation (LPO), and significantly reinforced the renal antioxidant armory. The biochemical results were further confirmed by the histopathological alterations. The treatments also led to suppression of proinflammatory mediators such as NF-κβ, p65, Iκβα, and IL-6 in association with inhibition of the PI3K/Akt pathway. Furthermore, they activated the expressions of PPARs, Nrf2, and IL-4 in addition to downregulation of apoptotic proteins p53 and caspase-3 and upregulation of antiapoptotic mediator Bcl-2. The obtained data supply potent proof for the efficacy of STE, Sm, and Sb to counteract renal carcinogenesis via alteration of varied molecular pathways.
Collapse
Affiliation(s)
- Nour Y. S. Yassin
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sameh F. AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Asmaa M. El-Kalaawy
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
41
|
Zhu H, Zhuang D, Lou Z, Lai M, Fu D, Hong Q, Liu H, Zhou W. Akt and its phosphorylation in nucleus accumbens mediate heroin-seeking behavior induced by cues in rats. Addict Biol 2021; 26:e13013. [PMID: 33619816 PMCID: PMC8459226 DOI: 10.1111/adb.13013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023]
Abstract
Akt is initially identified as one of the downstream targets of phosphatidylinositol-3 kinase (PI3K) and is involved in morphine reward and tolerance. However, whether phospholyration of Akt (p-Akt) mediates heroin relapse remains unclear. Here, we aimed to explore the role of p-Akt in the nucleus accumbens (NAc) in cue-induced heroin-seeking behaviors after withdrawal. First, rats were trained to self-administer heroin for 14 days, after which we assessed heroin-seeking behaviors induced by a context cue (CC) or by discrete conditioned cues (CS) after 1 day or 14 days of withdrawal. We found that the active responses induced by CC or CS after 14 days of withdrawal were higher than those after 1 day of withdrawal. Meanwhile, the expression of p-Akt in the NAc was also greatest when rats were exposed to the CS after 14 days of withdrawal. Additionally, a microinjection of LY294002, an inhibitor of PI3K, into the NAc inhibited the CS-induced heroin-seeking behaviors after 14 days of withdrawal, paralleling the decreased levels of p-Akt in the NAc. Finally, Akt1 or β-arrestin 2 was downregulated via a lentiviral injection to assess the effect on heroin seeking after 14 days of withdrawal. CS-induced heroin-seeking behavior was inhibited by downregulation of Akt1, but not β-arrestin 2, in the NAc. These data demonstrate that Akt phosphorylation in the NAc may play an important role in the incubation of heroin-seeking behavior, suggesting that the PI3K/Akt pathways may be involved in the process of heroin relapse and addiction.
Collapse
Affiliation(s)
- Huaqiang Zhu
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Dingding Zhuang
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Zhongze Lou
- Department of Psychosomatic Medicine, Ningbo First Hospital Ningbo Hospital of Zhejiang University China
| | - Miaojun Lai
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Dan Fu
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Qingxiao Hong
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Huifen Liu
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Wenhua Zhou
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| |
Collapse
|
42
|
Nag JK, Malka H, Appasamy P, Sedley S, Bar-Shavit R. GPCR Partners as Cancer Driver Genes: Association with PH-Signal Proteins in a Distinctive Signaling Network. Int J Mol Sci 2021; 22:8985. [PMID: 34445691 PMCID: PMC8396503 DOI: 10.3390/ijms22168985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
The essential role of G-protein coupled receptors (GPCRs) in tumor growth is recognized, yet a GPCR based drug in cancer is rare. Understanding the molecular path of a tumor driver gene may lead to the design and development of an effective drug. For example, in members of protease-activated receptor (PAR) family (e.g., PAR1 and PAR2), a novel PH-binding motif is allocated as critical for tumor growth. Animal models have indicated the generation of large tumors in the presence of PAR1 or PAR2 oncogenes. These tumors showed effective inhibition when the PH-binding motif was either modified or were inhibited by a specific inhibitor targeted to the PH-binding motif. In the second part of the review we discuss several aspects of some cardinal GPCRs in tumor angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (J.K.N.); (H.M.); (P.A.); (S.S.)
| |
Collapse
|
43
|
Zhang C, Yu H, Yang H, Liu B. Activation of PI3K/PKB/GSK-3β signaling by sciadopitysin protects cardiomyocytes against high glucose-induced oxidative stress and apoptosis. J Biochem Mol Toxicol 2021; 35:e22887. [PMID: 34392578 DOI: 10.1002/jbt.22887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/12/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023]
Abstract
Diabetic cardiomyopathy (DCM), a diabetes complication, accounts for diabetes-associated morbidity, mortality, and heart failure. Biflavonoids have been demonstrated to possess extensive pharmacological properties, such as antidiabetic and antioxidant activities. Our study aimed to explore the effects of sciadopitysin, a type of biflavonoid, on DCM and the mechanism involved. An experimental cell model was established in AC16 cardiomyocytes by exposure to high glucose (HG). Cell injury was estimated by detecting cell viability and lactate dehydrogenase (LDH) release. Oxidative stress was determined by measuring malondialdehyde (MDA) level and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT). Apoptosis was assessed by flow cytometry analysis, caspase-3/7 activity assay, and Western blot analysis of cytochrome C (Cyt C) expression. Alternation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB)/glycogen synthase kinase-3β (GSK-3β) pathway was detected by Western blot. Results showed that HG exposure reduced viability and increased LDH release in AC16 cells, which was abolished by sciadopitysin treatment. Sciadopitysin inhibited HG-induced oxidative stress, as evidenced by the reduced MDA content, and the increased activities of SOD, CAT, and GSH-Px. Sciadopitysin suppressed HG-induced apoptosis, an increase of caspase-3/7 activity, and Cyt C expression in AC16 cells. Mechanistically, sciadopitysin activated the PI3K/PKB/GSK-3β pathway under HG stimulation in AC16 cells. Inhibition of PI3K/PKB/GSK-3β pathway by LY294002 blocked the effects of sciadopitysin on HG-induced injury, oxidative stress, and apoptosis in AC16 cells. Summarily, sciadopitysin alleviated HG-caused oxidative stress and apoptosis in cardiomyocytes by activating the PI3K/PKB/GSK-3β pathway.
Collapse
Affiliation(s)
- Chujie Zhang
- Intensive Care Unit, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Huimei Yu
- Department of Endocrinology, Huaiyin Hospital, Huai'an, China
| | - Han Yang
- Department of Geriatrics, Nanshi Hospital, Nanyang, China
| | - Ben Liu
- Pediatric Intensive Care Unit, Affiliated Hospital 4 of Nantong University, The First people's Hospital of Yancheng, Yancheng, China
| |
Collapse
|
44
|
Li Y, Hu Y, Wu Y, Zhang D, Huang D. LINC00205 Promotes Tumor Malignancy of Lung Adenocarcinoma Through Sponging miR-185-5p. Lab Med 2021; 53:39-46. [PMID: 34270733 DOI: 10.1093/labmed/lmab041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The emerging role of long noncoding RNAs (lncRNAs) in cancer, especially in lung adenocarcinoma (LUAD), is attracting increasingly more attention as a potential therapeutic target. However, whether lncRNA LINC00205 regulates the malignancy of LUAD has not been characterized. In this study, we discovered that LINC00205 was markedly upregulated in LUAD tissues and cell lines and correlated with poor prognosis of patients with LUAD. Our data showed that LINC00205 promoted the migration and proliferation of LUAD cells in vitro and tumor growth in vivo. Notably, the tumor suppressor miR-185-5p was found to be a direct target of LINC00205. In addition, miR-185-5p diminished the promotion of cell proliferation and migration mediated by LINC00205, whereas miR-185-5p inhibition had the opposite effect. In summary, our results show that LINC00205 contributes to LUAD malignancy by sponging miR-185-5p, which provides new insight into LUAD progression.
Collapse
Affiliation(s)
- Yongqiang Li
- Department of Respiratory Medicine, PLA General Hospital of Southern Theatre Command, Guangzhou, Guangdong, China
| | - Yahui Hu
- Department of Geriatric Respiratory Medicine, PLA General Hospital of Southern Theatre Command, Guangzhou, Guangdong, China
| | - Yuting Wu
- Department of Respiratory Medicine, PLA General Hospital of Southern Theatre Command, Guangzhou, Guangdong, China
| | - Deming Zhang
- Department of Geriatric Respiratory Medicine, PLA General Hospital of Southern Theatre Command, Guangzhou, Guangdong, China
| | - Dongwei Huang
- Department of Geriatric Respiratory Medicine, PLA General Hospital of Southern Theatre Command, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Khafaga AF, Shamma RN, Abdeen A, Barakat AM, Noreldin AE, Elzoghby AO, Sallam MA. Celecoxib repurposing in cancer therapy: molecular mechanisms and nanomedicine-based delivery technologies. Nanomedicine (Lond) 2021; 16:1691-1712. [PMID: 34264123 DOI: 10.2217/nnm-2021-0086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While cancer remains a significant global health problem, advances in cancer biology, deep understanding of its underlaying mechanism and identification of specific molecular targets allowed the development of new therapeutic options. Drug repurposing poses several advantages as reduced cost and better safety compared with new compounds development. COX-2 inhibitors are one of the most promising drug classes for repurposing in cancer therapy. In this review, we provide an overview of the detailed mechanism and rationale of COX-2 inhibitors as anticancer agents and we highlight the most promising research efforts on nanotechnological approaches to enhance COX-2 inhibitors delivery with special focus on celecoxib as the most widely studied agent for chemoprevention or combined with chemotherapeutic and herbal drugs for combating various cancers.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | | | - Ahmed E Noreldin
- Department of Histology & Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22516, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
46
|
Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem 2021; 476:4045-4059. [PMID: 34244974 DOI: 10.1007/s11010-021-04219-w] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022]
Abstract
Heart failure (HF) is considered as a severe health problem worldwide, while cardiac fibrosis is one of the main driving factors for the progress of HF. Cardiac fibrosis was characterized by changes in cardiomyocytes, cardiac fibroblasts, ratio of collagen (COL) I/III, and the excessive production and deposition of extracellular matrix (ECM), thus forming a scar tissue, which leads to pathological process of cardiac structural changes and systolic as well as diastolic dysfunction. Cardiac fibrosis is a common pathological change of many advanced cardiovascular diseases including ischemic heart disease, hypertension, and HF. Accumulated studies have proven that phosphoinositol-3 kinase (PI3K)/Akt signaling pathway is involved in regulating the occurrence, progression and pathological formation of cardiac fibrosis via regulating cell survival, apoptosis, growth, cardiac contractility and even the transcription of related genes through a series of molecules including mammalian target of rapamycin (mTOR), glycogen synthase kinase 3 (GSK-3), forkhead box proteins O1/3 (FoxO1/3), and nitric oxide synthase (NOS). Thus, the review focuses on the role of PI3K/Akt signaling pathway in the cardiac fibrosis. The information reviewed here should be significant in understanding the role of PI3K/Akt in cardiac fibrosis and contribute to the design of further studies related to PI3K/Akt and the cardiac fibrotic response, as well as sought to shed light on a potential treatment for cardiac fibrosis.
Collapse
|
47
|
Francia M, Stortz M, Echegaray CV, Oses C, Verneri P, Petrone MV, Toro A, Waisman A, Miriuka S, Cosentino MS, Levi V, Guberman A. SUMO conjugation susceptibility of Akt/protein kinase B affects the expression of the pluripotency transcription factor Nanog in embryonic stem cells. PLoS One 2021; 16:e0254447. [PMID: 34242346 PMCID: PMC8270172 DOI: 10.1371/journal.pone.0254447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-β and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.
Collapse
Affiliation(s)
- Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martin Stortz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Victoria Petrone
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ayelen Toro
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel Waisman
- Laboratorio de Investigación Aplicada a las Neurociencias Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (LIAN, FLENI-CONICET), Escobar, Provincia de Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratorio de Investigación Aplicada a las Neurociencias Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (LIAN, FLENI-CONICET), Escobar, Provincia de Buenos Aires, Argentina
| | - María Soledad Cosentino
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
48
|
Desale SE, Chidambaram H, Chinnathambi S. G-protein coupled receptor, PI3K and Rho signaling pathways regulate the cascades of Tau and amyloid-β in Alzheimer's disease. MOLECULAR BIOMEDICINE 2021; 2:17. [PMID: 35006431 PMCID: PMC8607389 DOI: 10.1186/s43556-021-00036-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the presence of amyloid-β plaques in the extracellular environment and aggregates of Tau protein that forms neurofibrillary tangles (NFTs) in neuronal cells. Along with these pathological proteins, the disease shows neuroinflammation, neuronal death, impairment in the immune function of microglia and synaptic loss, which are mediated by several important signaling pathways. The PI3K/Akt-mediated survival-signaling pathway is activated by many receptors such as G-protein coupled receptors (GPCRs), triggering receptor expressed on myeloid cells 2 (TREM2), and lysophosphatidic acid (LPA) receptor. The signaling pathway not only increases the survival of neurons but also regulates inflammation, phagocytosis, cellular protection, Tau phosphorylation and Aβ secretion as well. In this review, we focused on receptors, which activate PI3K/Akt pathway and its potential to treat Alzheimer's disease. Among several membrane receptors, GPCRs are the major drug targets for therapy, and GPCR signaling pathways are altered during Alzheimer's disease. Several GPCRs are involved in the pathogenic progression, phosphorylation of Tau protein by activation of various cellular kinases and are involved in the amyloidogenic pathway of amyloid-β synthesis. Apart from various GPCR signaling pathways, GPCR regulating/ interacting proteins are involved in the pathogenesis of Alzheimer's disease. These include several small GTPases, Ras homolog enriched in brain, GPCR associated sorting proteins, β-arrestins, etc., that play a critical role in disease progression and has been elaborated in this review.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
49
|
Weako J, Jang H, Keskin O, Nussinov R, Gursoy A. The structural basis of Akt PH domain interaction with calmodulin. Biophys J 2021; 120:1994-2008. [PMID: 33775637 PMCID: PMC8204387 DOI: 10.1016/j.bpj.2021.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Akt plays a key role in the Ras/PI3K/Akt/mTOR signaling pathway. In breast cancer, Akt translocation to the plasma membrane is enabled by the interaction of its pleckstrin homology domain (PHD) with calmodulin (CaM). At the membrane, the conformational change promoted by PIP3 releases CaM and facilitates Thr308 and Ser473 phosphorylation and activation. Here, using modeling and molecular dynamics simulations, we aim to figure out how CaM interacts with Akt's PHD at the atomic level. Our simulations show that CaM-PHD interaction is thermodynamically stable and involves a β-strand rather than an α-helix, in agreement with NMR data, and that electrostatic and hydrophobic interactions are critical. The PHD interacts with CaM lobes; however, multiple modes are possible. IP4, the polar head of PIP3, weakens the CaM-PHD interaction, implicating the release mechanism at the plasma membrane. Recently, we unraveled the mechanism of PI3Kα activation at the atomistic level and the structural basis for Ras role in the activation. Here, our atomistic structural data clarify the mechanism of how CaM interacts, delivers, and releases Akt-the next node in the Ras/PI3K pathway-at the plasma membrane.
Collapse
Affiliation(s)
- Jackson Weako
- Computational Science and Engineering Program, Koç University, Istanbul, Turkey
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Attila Gursoy
- Department of Computer Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
50
|
Positive Association Between Serum Insulin-Like Growth Factor-1 and Cognition in Patients with Cerebral Small Vessel Disease. J Stroke Cerebrovasc Dis 2021; 30:105790. [PMID: 33878547 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022] Open
Abstract
Cognitive impairment is one of the main complications of cerebral small vessel disease (CSVD). Serum insulin-like growth factor-1 (IGF-1) might serve as a marker for the risk of cognitive decline in patients with CSVD. We investigated the association of IGF-1 with the development of cognitive impairment in patients with CSVD. We included 216 patients with CVSD (mean age, 67.57 ± 8.53 years; 31.9% female). We compared 117 (54.2%) patients who developed cognitive impairment with 99 (45.8%) patients without cognitive impairment. Patients who developed cognitive impairment had significantly lower levels of IGF-I (p < 0 .001), suggesting that altered IGF-1 signaling may be a risk factor for cognitive decline in patients with CSVD.
Collapse
|