1
|
Plouhinec L, Neugnot V, Lafond M, Berrin JG. Carbohydrate-active enzymes in animal feed. Biotechnol Adv 2023; 65:108145. [PMID: 37030553 DOI: 10.1016/j.biotechadv.2023.108145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Considering an ever-growing global population, which hit 8 billion people in the fall of 2022, it is essential to find solutions to avoid the competition between human food and animal feed for croplands. Agricultural co-products have become important components of the circular economy with their use in animal feed. Their implementation was made possible by the addition of exogenous enzymes in the diet, especially carbohydrate-active enzymes (CAZymes). In this review, we describe the diversity and versatility of microbial CAZymes targeting non-starch polysaccharides to improve the nutritional potential of diets containing cereals and protein meals. We focused our attention on cellulases, hemicellulases, pectinases which were often found to be crucial in vivo. We also highlight the performance and health benefits brought by the exogenous addition of enzymatic cocktails containing CAZymes in the diets of monogastric animals. Taking the example of the well-studied commercial cocktail Rovabio™, we discuss the evolution, constraints and future challenges faced by feed enzymes suppliers. We hope that this review will promote the use and development of enzyme solutions for industries to sustainably feed humans in the future.
Collapse
Affiliation(s)
- Lauriane Plouhinec
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France.
| | - Virginie Neugnot
- ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France
| | - Mickael Lafond
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
2
|
Tundo S, Mandalà G, Sella L, Favaron F, Bedre R, Kalunke RM. Xylanase Inhibitors: Defense Players in Plant Immunity with Implications in Agro-Industrial Processing. Int J Mol Sci 2022; 23:ijms232314994. [PMID: 36499321 PMCID: PMC9739030 DOI: 10.3390/ijms232314994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Xylanase inhibitors (XIs) are plant cell wall proteins largely distributed in monocots that inhibit the hemicellulose degrading activity of microbial xylanases. XIs have been classified into three classes with different structures and inhibition specificities, namely Triticum aestivum xylanase inhibitors (TAXI), xylanase inhibitor proteins (XIP), and thaumatin-like xylanase inhibitors (TLXI). Their involvement in plant defense has been established by several reports. Additionally, these inhibitors have considerable economic relevance because they interfere with the activity of xylanases applied in several agro-industrial processes. Previous reviews highlighted the structural and biochemical properties of XIs and hypothesized their role in plant defense. Here, we aimed to update the information on the genomic organization of XI encoding genes, the inhibition properties of XIs against microbial xylanases, and the structural properties of xylanase-XI interaction. We also deepened the knowledge of XI regulation mechanisms in planta and their involvement in plant defense. Finally, we reported the recently studied strategies to reduce the negative impact of XIs in agro-industrial processes and mentioned their allergenicity potential.
Collapse
Affiliation(s)
- Silvio Tundo
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
- Correspondence:
| | - Giulia Mandalà
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Renesh Bedre
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX 78596, USA
| | - Raviraj M. Kalunke
- Donald Danforth Plant Science Center, 975 N Warson Rd, 7 Olivette, St. Louis, MO 63132, USA
| |
Collapse
|
3
|
Champreda V, Mhuantong W, Lekakarn H, Bunterngsook B, Kanokratana P, Zhao XQ, Zhang F, Inoue H, Fujii T, Eurwilaichitr L. Designing cellulolytic enzyme systems for biorefinery: From nature to application. J Biosci Bioeng 2019; 128:637-654. [PMID: 31204199 DOI: 10.1016/j.jbiosc.2019.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
Abstract
Cellulolytic enzymes play a key role on conversion of lignocellulosic plant biomass to biofuels and biochemicals in sugar platform biorefineries. In this review, we survey composite carbohydrate-active enzymes (CAZymes) among groups of cellulolytic fungi and bacteria that exist under aerobic and anaerobic conditions. Recent advances in designing effective cellulase mixtures are described, starting from the most complex microbial consortium-based enzyme preparations, to single-origin enzymes derived from intensively studied cellulase producers such as Trichoderma reesei, Talaromyces cellulolyticus, and Penicellium funiculosum, and the simplest minimal enzyme systems comprising selected sets of mono-component enzymes tailor-made for specific lignocellulosic substrates. We provide a comprehensive update on studies in developing high-performance cellulases for biorefineries.
Collapse
Affiliation(s)
- Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Benjarat Bunterngsook
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Pattanop Kanokratana
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hiroyuki Inoue
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Hiroshima 739-0046, Japan
| | - Tatsuya Fujii
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Hiroshima 739-0046, Japan
| | - Lily Eurwilaichitr
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
4
|
Studies on properties of the xylan-binding domain and linker sequence of xylanase XynG1-1 from Paenibacillus campinasensis G1-1. ACTA ACUST UNITED AC 2015; 42:1591-9. [DOI: 10.1007/s10295-015-1698-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
Abstract
Abstract
Xylanase XynG1-1 from Paenibacillus campinasensis G1-1 consists of a catalytic domain (CD), a family 6_36 carbohydrate-binding module which is a xylan-binding domain (XBD), and a linker sequence (LS) between them. The structure of XynG1-3 from Bacillus pumilus G1-3 consists only of a CD. To investigate the functions and properties of the XBD and LS of XynG1-1, two truncated forms (XynG1-1CDL, XynG1-1CD) and three fusion derivatives (XynG1-3CDL, XynG1-3CDX and XynG1-3CDLX) were constructed and biochemically characterized. The optimum conditions for the catalytic activity of mutants of XynG1-1 and XynG1-3 were 60 °C and pH 7.0, and 55 °C and pH 8.0, respectively, the same as for the corresponding wild-type enzymes. XynGs with an XBD were stable over a broad temperature (30–80 °C) and pH range (4.0–11.0), respectively, on incubation for 3 h. Kinetic parameters (K m, k cat, k cat/K m) of XynGs were determined with soluble birchwood xylan and insoluble oat spelt xylan as substrates. XynGs with the XBD showed better affinities toward, and more efficient catalysis of hydrolysis of the insoluble substrate. The XBD had positive effects on thermostability and pH stability and a crucial function in the ability of the enzyme to bind and hydrolyze insoluble substrate. The LS had little effect on the overall stability of the xylanase and no relationship with affinities for soluble and insoluble substrates or catalytic efficiency.
Collapse
|
5
|
Tundo S, Moscetti I, Faoro F, Lafond M, Giardina T, Favaron F, Sella L, D'Ovidio R. Fusarium graminearum produces different xylanases causing host cell death that is prevented by the xylanase inhibitors XIP-I and TAXI-III in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:161-9. [PMID: 26475196 DOI: 10.1016/j.plantsci.2015.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/04/2015] [Accepted: 09/03/2015] [Indexed: 05/10/2023]
Abstract
To shed light on the role of Xylanase Inhibitors (XIs) during Fusarium graminearum infection, we first demonstrated that three out of four F. graminearum xylanases, in addition to their xylan degrading activity, have also the capacity to cause host cell death both in cell suspensions and wheat spike tissue. Subsequently, we demonstrated that TAXI-III and XIP-I prevented both the enzyme and host cell death activities of F. graminearum xylanases. In particular, we showed that the enzymatic inhibition by TAXI-III and XIP-I was competitive and only FGSG_11487 escaped inhibition. The finding that TAXI-III and XIP-I prevented cell death activity of heat inactivated xylanases and that XIP-I precluded the cell death activity of FGSG_11487 - even if XIP-I does not inhibit its enzyme activity - suggests that the catalytic and the cell death activities are separated features of these xylanases. Finally, the efficacy of TAXI-III or XIP-I to prevent host cell death caused by xylanases was confirmed in transgenic plants expressing separately these inhibitors, suggesting that the XIs could limit F. graminearum infection via direct inhibition of xylanase activity and/or by preventing host cell death.
Collapse
Affiliation(s)
- Silvio Tundo
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Ilaria Moscetti
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Mickaël Lafond
- ISM2/BiosCiences UMR CNRS7313, case 342, Aix-Marseille Université, 13397 Marseille cedex 20, France
| | - Thierry Giardina
- ISM2/BiosCiences UMR CNRS7313, case 342, Aix-Marseille Université, 13397 Marseille cedex 20, France
| | - Francesco Favaron
- Dipartimento del Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Padova, Italy
| | - Luca Sella
- Dipartimento del Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Padova, Italy.
| | - Renato D'Ovidio
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
| |
Collapse
|
6
|
Lafond M, Bouza B, Eyrichine S, Rouffineau F, Saulnier L, Giardina T, Bonnin E, Preynat A. In vitro gastrointestinal digestion study of two wheat cultivars and evaluation of xylanase supplementation. J Anim Sci Biotechnol 2015; 6:5. [PMID: 25785187 PMCID: PMC4362821 DOI: 10.1186/s40104-015-0002-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The filamentous fungus Talaromyces versatilis is known to improve the metabolizable energy of wheat-based poultry diets thanks to its ability to produce a pool of CAZymes and particularly endo-β(1,4)-xylanases. In order to appreciate their in vivo mode of action, the supplementation effect of two of its xylanases, XynD and XynB from families GH10 and GH11 respectively, have been evaluated on two different wheat cultivars Caphorn and Isengrain, which were chosen amongst 6 varieties for their difference in non starch polysaccharides content and arabinoxylan composition. RESULTS Polysaccharides digestion was followed during 6 h along the digestive tract using the TNO gastrointestinal model-1, to mimic monogastric metabolism. Polysaccharide degradation appeared to occur mainly at the jejunal level and was higher with Isengrain than with Caphorn. For both cultivars, XynD and XynB supplementation increased notably the amount of reducing end sugars into the jejuno-ileal dialysates, which has been confirmed by a valuable increase of the soluble glucose into the jejunal dialysates. CONCLUSIONS The amounts of arabinose and xylose into the dialysates and ileal deliveries increased consequently mainly for Caphorn, suggesting that XynD and XynB supplementation in wheat-based diet could alleviate the anti-nutritional effects of arabinoxylans by limiting the physical entrapment of starch and could increase the available metabolizable energy.
Collapse
Affiliation(s)
- Mickael Lafond
- />iSm2 - BiosCiences UMR 7313, Aix Marseille Université, Centrale Marseille, CNRS, Marseille, France
| | - Bernard Bouza
- />Adisseo France S.A.S., Centre d’Expertise et de Recherche en Nutrition, Commentry, France
| | - Sandrine Eyrichine
- />INRA, UR 1268 - Biopolymères - Interactions – Assemblages, Nantes, France
| | - Friedrich Rouffineau
- />Adisseo France S.A.S., Centre d’Expertise et de Recherche en Nutrition, Commentry, France
| | - Luc Saulnier
- />INRA, UR 1268 - Biopolymères - Interactions – Assemblages, Nantes, France
| | - Thierry Giardina
- />iSm2 - BiosCiences UMR 7313, Aix Marseille Université, Centrale Marseille, CNRS, Marseille, France
| | - Estelle Bonnin
- />INRA, UR 1268 - Biopolymères - Interactions – Assemblages, Nantes, France
| | - Aurélie Preynat
- />Adisseo France S.A.S., Centre d’Expertise et de Recherche en Nutrition, Commentry, France
| |
Collapse
|
7
|
Lafond M, Guais O, Maestracci M, Bonnin E, Giardina T. Four GH11 xylanases from the xylanolytic fungus Talaromyces versatilis act differently on (arabino)xylans. Appl Microbiol Biotechnol 2014; 98:6339-52. [DOI: 10.1007/s00253-014-5606-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/12/2022]
|
8
|
Rocchi V, Janni M, Bellincampi D, Giardina T, D'Ovidio R. Intron retention regulates the expression of pectin methyl esterase inhibitor (Pmei) genes during wheat growth and development. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:365-73. [PMID: 21972933 DOI: 10.1111/j.1438-8677.2011.00508.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pectin is an important component of the plant cell wall and its remodelling occurs during normal plant growth or following stress responses. Pectin is secreted into the cell wall in a highly methyl-esterified form and subsequently de-methyl-esterified by pectin methyl esterase (PME), whose activity is controlled by the pectin methyl esterase inhibitor protein (PMEI). Cereal cell wall contains a low amount of pectin; nonetheless the level and pattern of pectin methyl esterification play a primary role during development or pathogen infection. Since few data are available on the role of PMEI in plant development and defence of cereal species, we isolated and characterised three Pmei genes (Tdpmei2.1, Tdpmei2.2 and Tdpmei3) and their encoded products in wheat. Sequence comparisons showed a low level of intra- and inter-specific sequence conservation of PMEIs. Tdpmei2.1 and Tdpmei2.2 share 94% identity at protein level, but only 20% identity with the product of Tdpmei3. All three Tdpmei genes code for functional inhibitors of plant PMEs and do not inhibit microbial PMEs or a plant invertase. RT-PCR analyses demonstrated, for the first time to our knowledge, that Pmei genes are regulated by intron retention. Processed and unprocessed transcripts of Tdpmei2.1 and Tdpmei2.2 accumulated in several organs, but anthers contained only mature transcripts. Tdpmei3 lacks introns and its transcript accumulated mainly in stem internodes. These findings suggest that products encoded by these Tdpmei genes control organ- or tissue-specific activity of specific PME isoforms in wheat.
Collapse
Affiliation(s)
- V Rocchi
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, DAFNE, Università della Tuscia, Viterbo, Italy
| | | | | | | | | |
Collapse
|
9
|
Paës G, Berrin JG, Beaugrand J. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 2011; 30:564-92. [PMID: 22067746 DOI: 10.1016/j.biotechadv.2011.10.003] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 01/02/2023]
Abstract
For technical, environmental and economical reasons, industrial demands for process-fitted enzymes have evolved drastically in the last decade. Therefore, continuous efforts are made in order to get insights into enzyme structure/function relationships to create improved biocatalysts. Xylanases are hemicellulolytic enzymes, which are responsible for the degradation of the heteroxylans constituting the lignocellulosic plant cell wall. Due to their variety, xylanases have been classified in glycoside hydrolase families GH5, GH8, GH10, GH11, GH30 and GH43 in the CAZy database. In this review, we focus on GH11 family, which is one of the best characterized GH families with bacterial and fungal members considered as true xylanases compared to the other families because of their high substrate specificity. Based on an exhaustive analysis of the sequences and 3D structures available so far, in relation with biochemical properties, we assess biochemical aspects of GH11 xylanases: structure, catalytic machinery, focus on their "thumb" loop of major importance in catalytic efficiency and substrate selectivity, inhibition, stability to pH and temperature. GH11 xylanases have for a long time been used as biotechnological tools in various industrial applications and represent in addition promising candidates for future other uses.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA, UMR614 FARE, 2 esplanade Roland-Garros, F-51686 Reims, France.
| | | | | |
Collapse
|
10
|
Damásio ARDL, Silva TM, Almeida FBDR, Squina FM, Ribeiro DA, Leme AFP, Segato F, Prade RA, Jorge JA, Terenzi HF, Polizeli MDLT. Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Lafond M, Tauzin A, Desseaux V, Bonnin E, Ajandouz EH, Giardina T. GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production. Microb Cell Fact 2011; 10:20. [PMID: 21466666 PMCID: PMC3083334 DOI: 10.1186/1475-2859-10-20] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/05/2011] [Indexed: 11/20/2022] Open
Abstract
Background The filamentous fungus Penicillium funiculosum produces a range of glycoside hydrolases (GH). The XynD gene, encoding the sole P. funiculosum GH10 xylanase described so far, was cloned into the pPICZαA vector and expressed in methylotrophe yeast Pichia pastoris, in order to compare the results obtained with the P. funiculosum GH11 xylanases data. Results High level expression of recombinant XynD was obtained with a secretion of around 60 mg.L-1. The protein was purified to homogeneity using one purification step. The apparent size on SDS-PAGE was around 64 kDa and was 46 kDa by mass spectrometry thus higher than the expected molecular mass of 41 kDa. The recombinant protein was N- and O-glycosylated, as demonstrated using glycoprotein staining and deglycosylation reactions, which explained the discrepancy in molecular mass. Enzyme-catalysed hydrolysis of low viscosity arabinoxylan (LVAX) was maximal at pH 5.0 with Km(app) and kcat/Km(app) of 3.7 ± 0.2 (mg.mL-1) and 132 (s-1mg-1.mL), respectively. The activity of XynD was optimal at 80°C and the recombinant enzyme has shown an interesting high thermal stability at 70°C for at least 180 min without loss of activity. The enzyme had an endo-mode of action on xylan forming mainly xylobiose and short-chain xylooligosaccharides (XOS). The initial rate data from the hydrolysis of short XOS indicated that the catalytic efficiency increased slightly with increasing their chain length with a small difference of the XynD catalytic efficiency against the different XOS. Conclusion Because of its attractive properties XynD might be considered for biotechnological applications. Moreover, XOS hydrolysis suggested that XynD possess four catalytic subsites with a high energy of interaction with the substrate and a fifth subsite with a small energy of interaction, according to the GH10 xylanase literature data.
Collapse
Affiliation(s)
- Mickael Lafond
- Université Paul Cézanne, Faculté des Sciences et Techniques Saint-Jérôme, 13397 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
12
|
Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 2010; 77:237-46. [PMID: 21037302 DOI: 10.1128/aem.01761-10] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To improve the enzymatic hydrolysis (saccharification) of lignocellulosic biomass by Trichoderma reesei, a set of genes encoding putative polysaccharide-degrading enzymes were selected from the coprophilic fungus Podospora anserina using comparative genomics. Five hemicellulase-encoding genes were successfully cloned and expressed as secreted functional proteins in the yeast Pichia pastoris. These novel fungal CAZymes belonging to different glycoside hydrolase families (PaMan5A and PaMan26A mannanases, PaXyn11A xylanase, and PaAbf51A and PaAbf62A arabinofuranosidases) were able to break down their predicted cognate substrates. Although PaMan5A and PaMan26A displayed similar specificities toward a range of mannan substrates, they differed in their end products, suggesting differences in substrate binding. The N-terminal CBM35 module of PaMan26A displayed dual binding specificity toward xylan and mannan. PaXyn11A harboring a C-terminal CBM1 module efficiently degraded wheat arabinoxylan, releasing mainly xylobiose as end product. PaAbf51A and PaAbf62A arabinose-debranching enzymes exhibited differences in activity toward arabinose-containing substrates. Further investigation of the contribution made by each P. anserina auxiliary enzyme to the saccharification of wheat straw and spruce demonstrated that the endo-acting hemicellulases (PaXyn11A, PaMan5A, and PaMan26A) individually supplemented the secretome of the industrial T. reesei CL847 strain. The most striking effect was obtained with PaMan5A that improved the release of total sugars by 28% and of glucose by 18%, using spruce as lignocellulosic substrate.
Collapse
|
13
|
Gusakov AV. Proteinaceous inhibitors of microbial xylanases. BIOCHEMISTRY (MOSCOW) 2010; 75:1185-99. [DOI: 10.1134/s0006297910100019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Pollet A, Sansen S, Raedschelders G, Gebruers K, Rabijns A, Delcour JA, Courtin CM. Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA. FEBS J 2009; 276:3916-27. [PMID: 19769747 DOI: 10.1111/j.1742-4658.2009.07105.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triticum aestivum xylanase inhibitor (TAXI)-type inhibitors are active against microbial xylanases from glycoside hydrolase family 11, but the inhibition strength and the specificity towards different xylanases differ between TAXI isoforms. Mutational and biochemical analyses of TAXI-I, TAXI-IIA and Bacillus subtilis xylanase A showed that inhibition strength and specificity depend on the identity of only a few key residues of inhibitor and xylanase [Fierens K et al. (2005) FEBS J 272, 5872-5882; Raedschelders G et al. (2005) Biochem Biophys Res Commun335, 512-522; Sorensen JF & Sibbesen O (2006) Protein Eng Des Sel 19, 205-210; Bourgois TM et al. (2007) J Biotechnol 130, 95-105]. Crystallographic analysis of the structures of TAXI-IA and TAXI-IIA in complex with glycoside hydrolase family 11 B. subtilis xylanase A now provides a substantial explanation for these observations and a detailed insight into the structural determinants for inhibition strength and specificity. Structures of the xylanaseinhibitor complexes show that inhibition is established by loop interactions with active-site residues and substrate-mimicking contacts in the binding subsites. The interaction of residues Leu292 of TAXI-IA and Pro294 of TAXI-IIA with the -2 glycon subsite of the xylanase is shown to be critical for both inhibition strength and specificity. Also, detailed analysis of the interaction interfaces of the complexes illustrates that the inhibition strength of TAXI is related to the presence of an aspartate or asparagine residue adjacent to the acid/base catalyst of the xylanase, and therefore to the pH optimum of the xylanase. The lower the pH optimum of the xylanase, the stronger will be the interaction between enzyme and inhibitor, and the stronger the resulting inhibition.
Collapse
Affiliation(s)
- Annick Pollet
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Reca IB, Brutus A, D'Avino R, Villard C, Bellincampi D, Giardina T. Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase. Biochimie 2008; 90:1611-23. [PMID: 18573306 DOI: 10.1016/j.biochi.2008.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
Protein inhibitors are molecules secreted by many plants. In a functional genomics approach, an invertase inhibitor (SolyCIF) of Solanum lycopersicum was identified at the Solanaceae Cornell University data bank (www.sgn.cornell.edu). It was established that this inhibitor is expressed mainly in the leaves, flowers and green fruit of the plant and localized in the cell wall compartment. The SolyCIF cDNA was cloned by performing RT-PCR, fully sequenced and heterologously expressed in Pichia pastoris X-33. The purified recombinant protein obtained by performing ion-exchange chromatography and gel filtration was further biochemically characterized and used to perform affinity chromatography. The latter step made it possible to purify natural vacuolar invertase (TIV-1), which showed high rates of catalytic activity (438.3 U mg(-1)) and efficiently degraded saccharose (K(m)=6.4mM, V(max)=2.9 micromol saccharosemin(-1) and k(c)(at)=7.25 x 10(3)s(-1) at pH 4.9 and 37 degrees C). The invertase activity was strongly inhibited in a dose-dependent manner by SolyCIF produced in P. pastoris. In addition, Gel-SDS-PAGE analysis strongly suggests that TIV-1 was proteolyzed in planta and it was established that the fragments produced have to be tightly associated for its enzymatic activity to occur. We further investigated the location of the proteolytic sites by performing NH(2)-terminal Edman degradation on the fragments. The molecular model for TIV-1 shows that the fragmentation splits the catalytic site of the enzyme into two halves, which confirms that the enzymatic activity is possible only when the fragments are tightly associated.
Collapse
Affiliation(s)
- Ida Barbara Reca
- ISM2/BiosCiences UMR CNRS 6263, Université Aix Marseille III/CNRS, Ingénierie et Mécanismes d'Action des Glycosidases, Université Paul Cézanne, 13397 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
16
|
Factors affecting xylanase functionality in the degradation of arabinoxylans. Biotechnol Lett 2008; 30:1139-50. [DOI: 10.1007/s10529-008-9669-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/04/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|
17
|
Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J Mol Biol 2007; 375:1293-305. [PMID: 18078955 DOI: 10.1016/j.jmb.2007.11.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 11/21/2022]
Abstract
Endo-beta1,4-xylanases (xylanases) hydrolyse the beta1,4 glycosidic bonds in the backbone of xylan. Although xylanases from glycoside hydrolase family 11 (GH11) have been extensively studied, several issues remain unresolved. Thus, the mechanism by which these enzymes hydrolyse decorated xylans is unclear and the structural basis for the variation in catalytic activity within this family is unknown. Furthermore, the mechanism for the differences in the inhibition of fungal GH11 enzymes by the wheat protein XIP-I remains opaque. To address these issues we report the crystal structure and biochemical properties of the Neocallimastix patriciarum xylanase NpXyn11A, which displays unusually high catalytic activity and is one of the few fungal GH11 proteins not inhibited by XIP-I. Although the structure of NpXyn11A could not be determined in complex with substrates, we have been able to investigate how GH11 enzymes hydrolyse decorated substrates by solving the crystal structure of a second GH11 xylanase, EnXyn11A (encoded by an environmental DNA sample), bound to ferulic acid-1,5-arabinofuranose-alpha1,3-xylotriose (FAX(3)). The crystal structure of the EnXyn11A-FAX(3) complex shows that solvent exposure of the backbone xylose O2 and O3 groups at subsites -3 and +2 allow accommodation of alpha1,2-linked 4-methyl-D-glucuronic acid and L-arabinofuranose side chains. Furthermore, the ferulated arabinofuranose side chain makes hydrogen bonds and hydrophobic interactions at the +2 subsite, indicating that the decoration may represent a specificity determinant at this aglycone subsite. The structure of NpXyn11A reveals potential -3 and +3 subsites that are kinetically significant. The extended substrate-binding cleft of NpXyn11A, compared to other GH11 xylanases, may explain why the Neocallimastix enzyme displays unusually high catalytic activity. Finally, the crystal structure of NpXyn11A shows that the resistance of the enzyme to XIP-I is not due solely to insertions in the loop connecting beta strands 11 and 12, as suggested previously, but is highly complex.
Collapse
|
18
|
Beliën T, Van Campenhout S, Robben J, Volckaert G. Microbial endoxylanases: effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1072-81. [PMID: 17022171 DOI: 10.1094/mpmi-19-1072] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Endo-beta-1,4-xylanases (EC 3.2.1.8) are key enzymes in the degradation of xylan, the predominant hemicellulose in the cell walls of plants and the second most abundant polysaccharide on earth. A number of endoxylanases are produced by microbial phytopathogens responsible for severe crop losses. These enzymes are considered to play an important role in phytopathogenesis, as they provide essential means to the attacking organism to break through the plant cell wall. Plants have evolved numerous defense mechanisms to protect themselves against invading pathogens, amongst which are proteinaceous inhibitors of cell wall-degrading enzymes. These defense mechanisms are triggered when a pathogen-derived elicitor is recognized by the plant. In this review, the diverse aspects of endoxylanases in promoting virulence and in eliciting plant defense systems are highlighted. Furthermore, the role of the relatively recently discovered cereal endoxylanase inhibitor families TAXI (Triticum aestivum xylanase inhibitor) and XIP (xylanase inhibitor protein) in plant defense is discussed.
Collapse
Affiliation(s)
- Tim Beliën
- Katholieke Universiteit Leuven, Laboratory of Gene Technology, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
19
|
Sørensen JF, Sibbesen O. Mapping of residues involved in the interaction between the Bacillus subtilis xylanase A and proteinaceous wheat xylanase inhibitors. Protein Eng Des Sel 2006; 19:205-10. [PMID: 16517552 DOI: 10.1093/protein/gzl002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Bacillus subtilis xylanase A was subjected to site-directed mutagenesis, aimed at changing the interaction with Triticum aestivum xylanase inhibitor, the only wheat endogenous proteinaceous xylanase inhibitor interacting with this xylanase. The published structure of Bacillus circulans XynA was used to target amino acids surrounding the active site cleft of B.subtilis XynA for mutation. Twenty-two residues were mutated, resulting in 62 different variants. The catalytic activity of active mutants ranged from 563 to 5635 XU/mg and the interaction with T.aestivum xylanase inhibitor showed a similar variation. The results indicate that T.aestivum xylanase inhibitor interacts with several amino acid residues surrounding the active site of the enzyme. Three different amino acid substitutions in one particular residue (D11) completely abolished the interaction between T.aestivum xylanase inhibitor and B.subtilis xylanase A.
Collapse
Affiliation(s)
- J F Sørensen
- Danisco, Edwin Rahrs Vej 38, DK-8220 Brabrand and Danisco, Langebrogade 1, DK-1001 Copenhagen C, Denmark.
| | | |
Collapse
|
20
|
Brutus A, Reca IB, Herga S, Mattei B, Puigserver A, Chaix JC, Juge N, Bellincampi D, Giardina T. A family 11 xylanase from the pathogen Botrytis cinerea is inhibited by plant endoxylanase inhibitors XIP-I and TAXI-I. Biochem Biophys Res Commun 2005; 337:160-6. [PMID: 16185656 DOI: 10.1016/j.bbrc.2005.09.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/07/2005] [Indexed: 11/28/2022]
Abstract
The phytopathogen fungus Botrytis cinerea produces various glycosidases which are secreted during plant infection. In this study, the XynBc1 cDNA that encodes a xylanase from family 11 glycoside hydrolase from B. cinerea was identified by homology-based analysis, cloned by reverse transcription RT-PCR, fully sequenced, and heterologously expressed in Pichia pastoris X-33. The purified recombinant protein obtained by chelating-affinity chromatography demonstrated high catalytic activity (180+/-23 U/mg) and efficiently degraded low viscosity xylan [K(m) = 10+/-3 g L(-1), V(max) = 0.50+/-0.04 micromol xylose min(-1), and k(cat) = 136+/-11.5 s(-1) at pH 4.5 and 25 degrees C]. XynBc1 was further tested for its ability to interact with wheat XIP and TAXI type xylanase inhibitors which have been implicated in plant defence. The xylanase activity of XynBc1 produced in P. pastoris was strongly inhibited by both XIP-I and TAXI-I in a competitive manner, with a K(i) of 2.1+/-0.1 and 6.0+/-0.2 nM, respectively, whereas no inhibition was detected with TAXI-II. We also showed that XynBc1 mRNAs accumulated during early stages of plant tissue infection.
Collapse
Affiliation(s)
- Alexandre Brutus
- Institut Méditerranéen de Recherche en Nutrition, Laboratoire de Biochimie et Biologie de la Nutrition, UMR Université Paul Cézanne Aix Marseille III, INRA 1111, service 342, Faculté des Sciences et Techniques Saint-Jérôme, Marseille Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fierens K, Gils A, Sansen S, Brijs K, Courtin CM, Declerck PJ, De Ranter CJ, Gebruers K, Rabijns A, Robben J, Campenhout S, Volckaert G, Delcour JA. His374 of wheat endoxylanase inhibitor TAXI-I stabilizes complex formation with glycoside hydrolase family 11 endoxylanases. FEBS J 2005; 272:5872-82. [PMID: 16279951 DOI: 10.1111/j.1742-4658.2005.04987.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wheat endoxylanase inhibitor TAXI-I inhibits microbial glycoside hydrolase family 11 endoxylanases. Crystallographic data of an Aspergillus niger endoxylanase-TAXI-I complex showed His374 of TAXI-I to be a key residue in endoxylanase inhibition. Its role in enzyme-inhibitor interaction was further investigated by site-directed mutagenesis of His374 into alanine, glutamine or lysine. Binding kinetics and affinities of the molecular interactions between A. niger, Bacillus subtilis, Trichoderma longibrachiatumendoxylanases and wild-type TAXI-I and TAXI-I His374 mutants were determined by surface plasmon resonance analysis. Enzyme-inhibitor binding was in accordance with a simple 1 : 1 binding model. Association and dissociation rate constants of wild-type TAXI-I towards the endoxylanases were in the range between 1.96 and 36.1 x 10(4)m(-1) x s(-1) and 0.72-3.60 x 10(-4) x s(-1), respectively, resulting in equilibrium dissociation constants in the low nanomolar range. Mutation of TAXI-I His374 to a variable degree reduced the inhibition capacity of the inhibitor mainly due to higher complex dissociation rate constants (three- to 80-fold increase). The association rate constants were affected to a smaller extent (up to eightfold decrease). Substitution of TAXI-I His374 therefore strongly affects the affinity of the inhibitor for the enzymes. In addition, the results show that His374 plays a critical role in the stabilization of the endoxylanase-TAXI-I complex rather than in the docking of inhibitor onto enzyme.
Collapse
Affiliation(s)
- Katleen Fierens
- Katholieke Universiteit Leuven, Laboratory of Food Chemistry, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|