1
|
Ambite I, Wan MLY, Tran HT, Nazari A, Chaudhuri A, Krintel C, Gomes I, Sabari S, Ahmadi S, Carneiro ANBM, Ishac R, Haq F, Svanborg C. Multitarget mechanism of MYC inhibition by the bacterial lon protease in disease. Sci Rep 2025; 15:6778. [PMID: 40000737 PMCID: PMC11861601 DOI: 10.1038/s41598-025-88093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Identifying specific inhibitors of the MYC oncogene has been challenging, due to off target effects associated with MYC inhibition. This study investigated how the recombinant Escherichia coli Lon protease (rLon), which targets MYC in human cells, inhibits MYC over-activation in models of infection and cancer. In silico predictions identified specific peptide domains of bacterial Lon that target MYC and the affinity of these peptides for MYC was investigated by surface plasmon resonance. The N-terminal domain of rLon was shown to interact with the C-terminal, leucine zipper domain of MYC and MAX and to prevent MYC/MAX dimerization. Furthermore, rLon targeted and degraded c-MYC in vitro and in cellular models, through the peptidase domain. In a model of kidney infection, rLon treatment prevented, c-MYC, N-MYC and L-MYC over-expression, MYC-dependent gene expression, specifically renal toxicity genes and pathology, suggesting that rLon recognizes and corrects MYC dysregulation in this disease. The findings describe a multitarget mechanism of MYC inhibition by rLon, and the combined effects achieved by the Lon domains, targeting different MYC epitopes and MYC-dependent functions, with no evidence of toxicity or detrimental effects on homeostatic MYC expression.
Collapse
Affiliation(s)
- Ines Ambite
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Murphy Lam Yim Wan
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Hien Thi Tran
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Atefeh Nazari
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Arunima Chaudhuri
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Christian Krintel
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Inês Gomes
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Samudra Sabari
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Shahram Ahmadi
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - António N B M Carneiro
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Rita Ishac
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Farhan Haq
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Catharina Svanborg
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden.
| |
Collapse
|
2
|
Nakanishi M. Cellular senescence as a source of chronic microinflammation that promotes the aging process. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:224-237. [PMID: 40222899 DOI: 10.2183/pjab.101.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Why and how do we age? This physiological phenomenon that we all experience remains a great mystery, largely unexplained even in this age of scientific and technological progress. Aging is a significant risk factor for numerous diseases, including cancer. However, underlying mechanisms responsible for this association remain to be elucidated. Recent findings have elucidated the significance of the accumulation of senescent cells and other inflammatory cells in organs and tissues with age, and their deleterious effects, such as the induction of inflammation in the microenvironment, as underlying factors contributing to organ dysfunction and disease development. Cellular senescence is a cellular phenomenon characterized by a permanent cessation of cell proliferation and secretion of several proinflammatory cytokines (senescence associated secretory phenotypes). Notably, the elimination of senescent cells from aging individuals has been demonstrated to alleviate age-related organ and tissue dysfunction, as well as various geriatric diseases. This review summarizes the molecular mechanisms by which senescent cells are induced and contribute to age-related diseases, as well as the technologies that ameliorate them.
Collapse
Affiliation(s)
- Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
3
|
Muhammad D, Clark NM, Tharp NE, Chatt EC, Vierstra RD, Bartel B. Global impacts of peroxisome and pexophagy dysfunction revealed through multi-omics analyses of lon2 and atg2 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2563-2583. [PMID: 39526456 DOI: 10.1111/tpj.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Peroxisomes house diverse metabolic pathways that are essential for plant and animal survival, including enzymes that produce or inactivate toxic byproducts. Despite the importance of peroxisomes and their collaborations with other organelles, the mechanisms that trigger or prevent peroxisome turnover and the cellular impacts of impaired peroxisomes are incompletely understood. When Arabidopsis thaliana LON2, a peroxisomal protein with chaperone and protease capacity, is disrupted, metabolic dysfunction and protein instability in peroxisomes ensue. Paradoxically, preventing autophagy in lon2 mutants appears to normalize peroxisomal metabolism and stabilize peroxisomal proteins-hinting at a role for autophagy in causing the peroxisomal defects observed in lon2 seedlings. Using a combination of transcriptomics, proteomics, and in silico investigations, we compared wild type to lon2 and autophagy null mutants and double mutants. Through this analysis, we found that impeding autophagy via an atg2 null mutation alleviated several of the global defects observed when LON2 is absent. Moreover, we revealed processes influenced by LON2 that are independent of autophagy, including impacts on lipid droplet and chloroplast protein levels. Finally, we identified and classified potential LON2 substrates, which include proteins that might provide signal(s) for pexophagy.
Collapse
Affiliation(s)
- DurreShahwar Muhammad
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Natalie M Clark
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| | - Nathan E Tharp
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Elizabeth C Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
4
|
Ogdahl JL, Chien P. Allosteric modulation of the Lon protease by effector binding and local charges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611642. [PMID: 39282454 PMCID: PMC11398467 DOI: 10.1101/2024.09.06.611642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The ATPase Associated with diverse cellular Activities (AAA+) family of proteases play crucial roles in cellular proteolysis and stress responses. Like other AAA+ proteases, the Lon protease is known to be allosterically regulated by nucleotide and substrate binding. Although it was originally classified as a DNA binding protein, the impact of DNA binding on Lon activity is unclear. In this study, we characterize the regulation of Lon by single-stranded DNA (ssDNA) binding and serendipitously identify general activation strategies for Lon. Upon binding to ssDNA, Lon's ATP hydrolysis rate increases due to improved nucleotide binding, leading to enhanced degradation of protein substrates, including physiologically important targets. We demonstrate that mutations in basic residues that are crucial for Lon's DNA binding not only reduces ssDNA binding but result in charge-specific consequences on Lon activity. Introducing negative charge at these sites induces activation akin to that induced by ssDNA binding, whereas neutralizing the charge reduces Lon's activity. Based on single molecule measurements we find that this change in activity is correlated with changes in Lon oligomerization. Our study provides insights into the complex regulation of the Lon protease driven by electrostatic contributions from either DNA binding or mutations.
Collapse
Affiliation(s)
- Justyne L Ogdahl
- University of Massachusetts, Amherst, Department of Biochemistry and Molecular Biology Molecular and Cellular Biology Program
| | - Peter Chien
- University of Massachusetts, Amherst, Department of Biochemistry and Molecular Biology Molecular and Cellular Biology Program
| |
Collapse
|
5
|
Yigit K, Chien P. Proteolytic control of FixT by the Lon protease impacts FixLJ signaling in Caulobacter crescentus. J Bacteriol 2024; 206:e0023724. [PMID: 38940598 PMCID: PMC11270865 DOI: 10.1128/jb.00237-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Responding to changes in oxygen levels is critical for aerobic microbes. In Caulobacter crescentus, low oxygen is sensed by the FixL-FixJ two-component system which induces multiple genes, including those involved in heme biosynthesis, to accommodate microaerobic conditions. The FixLJ inhibitor FixT is also induced under low oxygen conditions and is degraded by the Lon protease when the oxygen levels are sufficient, which together provides negative feedback proposed to adjust FixLJ signaling thresholds during changing conditions. Here, we address whether degradation of FixT by the Lon protease contributes to phenotypic defects associated with loss of Lon. We find that ∆lon strains are deficient in FixLJ-dependent heme biosynthesis, consistent with elevated FixT levels as deletion of fixT suppresses this defect. Transcriptomics validate this result as, along with heme biosynthesis, there is diminished expression of many FixL-activated genes in ∆lon. However, stabilization of FixT in ∆lon strains does not contribute to restoring any known Lon-related fitness defect, such as cell morphology defects or stress sensitivity. In fact, cells lacking both FixT and Lon are compromised in viability during growth in standard aerobic conditions. Our work highlights the complexity of protease-dependent regulation of transcription factors and explains the molecular basis of defective heme accumulation in Lon-deficient Caulobacter. IMPORTANCE The Lon protease shapes protein quality control, signaling pathways, and stress responses in many bacteria species. Loss of Lon often results in multiple phenotypic consequences. In this work, we found a connection between the Lon protease and deficiencies in heme accumulation that then led to our finding of a global change in gene expression due in part to degradation of a regulator of the hypoxic response. However, loss of degradation of this regulator did not explain other phenotypes associated with Lon deficiencies demonstrating the complex and multiple pathways that this highly conserved protease can impact.
Collapse
Affiliation(s)
- Kubra Yigit
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Mindrebo JT, Lander GC. Structural and mechanistic studies on human LONP1 redefine the hand-over-hand translocation mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600538. [PMID: 38979310 PMCID: PMC11230189 DOI: 10.1101/2024.06.24.600538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AAA+ enzymes use energy from ATP hydrolysis to remodel diverse cellular targets. Structures of substrate-bound AAA+ complexes suggest that these enzymes employ a conserved hand-over-hand mechanism to thread substrates through their central pore. However, the fundamental aspects of the mechanisms governing motor function and substrate processing within specific AAA+ families remain unresolved. We used cryo-electron microscopy to structurally interrogate reaction intermediates from in vitro biochemical assays to inform the underlying regulatory mechanisms of the human mitochondrial AAA+ protease, LONP1. Our results demonstrate that substrate binding allosterically regulates proteolytic activity, and that LONP1 can adopt a configuration conducive to substrate translocation even when the ATPases are bound to ADP. These results challenge the conventional understanding of the hand-over-hand translocation mechanism, giving rise to an alternative model that aligns more closely with biochemical and biophysical data on related enzymes like ClpX, ClpA, the 26S proteasome, and Lon protease.
Collapse
Affiliation(s)
- Jeffrey T. Mindrebo
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| |
Collapse
|
7
|
Laird M, Ku JC, Raiten J, Sriram S, Moore M, Li Y. Mitochondrial metabolism regulation and epigenetics in hypoxia. Front Physiol 2024; 15:1393232. [PMID: 38915781 PMCID: PMC11194441 DOI: 10.3389/fphys.2024.1393232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
The complex and dynamic interaction between cellular energy control and gene expression modulation is shown by the intersection between mitochondrial metabolism and epigenetics in hypoxic environments. Poor oxygen delivery to tissues, or hypoxia, is a basic physiological stressor that sets off a series of reactions in cells to adapt and endure oxygen-starved environments. Often called the "powerhouse of the cell," mitochondria are essential to cellular metabolism, especially regarding producing energy through oxidative phosphorylation. The cellular response to hypoxia entails a change in mitochondrial metabolism to improve survival, including epigenetic modifications that control gene expression without altering the underlying genome. By altering the expression of genes involved in angiogenesis, cell survival, and metabolism, these epigenetic modifications help cells adapt to hypoxia. The sophisticated interplay between mitochondrial metabolism and epigenetics in hypoxia is highlighted by several important points, which have been summarized in the current article. Deciphering the relationship between mitochondrial metabolism and epigenetics during hypoxia is essential to understanding the molecular processes that regulate cellular adaptation to reduced oxygen concentrations.
Collapse
Affiliation(s)
- Madison Laird
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jacob Raiten
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Sashwat Sriram
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Megan Moore
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopaedic Surgery, Biomedical Engineering, Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
8
|
Yigit K, Chien P. Proteolytic control of FixT by the Lon protease impacts FixLJ signaling in Caulobacter crescentus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579008. [PMID: 38370668 PMCID: PMC10871180 DOI: 10.1101/2024.02.05.579008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Responding to changes in oxygen levels is critical for aerobic microbes. In Caulobacter crescentus, low oxygen is sensed by the FixL-FixJ two-component system which induces multiple genes, including heme biosynthesis, to accommodate microaerobic conditions. The FixLJ inhibitor FixT is also induced under low oxygen conditions and is degraded by the Lon protease, which together provides negative feedback proposed to adjust FixLJ signaling thresholds during changing conditions. Here, we address if the degradation of FixT by the Lon protease contributes to phenotypic defects associated with loss of Lon. We find that ∆lon strains are deficient in FixLJ-dependent heme biosynthesis, consistent with elevated FixT levels as deletion of fixT suppresses this defect. Transcriptomics validate this result as there is diminished expression of many FixLJ-activated genes in ∆lon. However, no physiological changes in response to microaerobic conditions occurred upon loss of Lon, suggesting that FixT dynamics are not a major contributor to fitness in oxygen limiting conditions. Similarly, stabilization of FixT in ∆lon strains does not contribute to any known Lon-related fitness defect, such as cell morphology defects or stress sensitivity. In fact, cells lacking both FixT and Lon are compromised in viability during adaptation to long term aerobic growth. Our work highlights the complexity of protease-dependent regulation of transcription factors and explains the molecular basis of defective heme accumulation in Lon-deficient Caulobacter.
Collapse
Affiliation(s)
- Kubra Yigit
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts, Amherst Amherst, MA 01003
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts, Amherst Amherst, MA 01003
| |
Collapse
|
9
|
Li D, Johmura Y, Morimoto S, Doi M, Nakanishi K, Ozawa M, Tsunekawa Y, Inoue-Yamauchi A, Naruse H, Matsukawa T, Takeshita Y, Suzuki N, Aoki M, Nishiyama A, Zeng X, Konishi C, Suzuki N, Nishiyama A, Harris AS, Morita M, Yamaguchi K, Furukawa Y, Nakai K, Tsuji S, Yamazaki S, Yamanashi Y, Shimada S, Okada T, Okano H, Toda T, Nakanishi M. LONRF2 is a protein quality control ubiquitin ligase whose deficiency causes late-onset neurological deficits. NATURE AGING 2023; 3:1001-1019. [PMID: 37474791 DOI: 10.1038/s43587-023-00464-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
Protein misfolding is a major factor of neurodegenerative diseases. Post-mitotic neurons are highly susceptible to protein aggregates that are not diluted by mitosis. Therefore, post-mitotic cells may have a specific protein quality control system. Here, we show that LONRF2 is a bona fide protein quality control ubiquitin ligase induced in post-mitotic senescent cells. Under unperturbed conditions, LONRF2 is predominantly expressed in neurons. LONRF2 binds and ubiquitylates abnormally structured TDP-43 and hnRNP M1 and artificially misfolded proteins. Lonrf2-/- mice exhibit age-dependent TDP-43-mediated motor neuron (MN) degeneration and cerebellar ataxia. Mouse induced pluripotent stem cell-derived MNs lacking LONRF2 showed reduced survival, shortening of neurites and accumulation of pTDP-43 and G3BP1 after long-term culture. The shortening of neurites in MNs from patients with amyotrophic lateral sclerosis is rescued by ectopic expression of LONRF2. Our findings reveal that LONRF2 is a protein quality control ligase whose loss may contribute to MN degeneration and motor deficits.
Collapse
Affiliation(s)
- Dan Li
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Johmura
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan.
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiko Nakanishi
- Department of Pediatrics, Central Hospital, and Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, The University of Tokyo, Tokyo, Japan
| | - Yuji Tsunekawa
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The University of Tokyo, Tokyo, Japan
| | | | - Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Takeshita
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xin Zeng
- Laboratory of Functional Analysis in silico, Human Genome Center, The University of Tokyo, Tokyo, Japan
| | - Chieko Konishi
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | - Narumi Suzuki
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | | | - Mariko Morita
- Division of Clinical Genome Research, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The University of Tokyo, Tokyo, Japan
| | - Kenta Nakai
- Laboratory of Functional Analysis in silico, Human Genome Center, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuji Yamanashi
- Division of Genetics, The University of Tokyo, Tokyo, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival. Int J Mol Sci 2023; 24:ijms24043422. [PMID: 36834832 PMCID: PMC9961632 DOI: 10.3390/ijms24043422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Proteases are the group of enzymes that carry out proteolysis in all forms of life and play an essential role in cell survival. By acting on specific functional proteins, proteases affect the transcriptional and post-translational pathways in a cell. Lon, FtsH, HslVU and the Clp family are among the ATP-dependent proteases responsible for intracellular proteolysis in bacteria. In bacteria, Lon protease acts as a global regulator, governs an array of important functions such as DNA replication and repair, virulence factors, stress response and biofilm formation, among others. Moreover, Lon is involved in the regulation of bacterial metabolism and toxin-antitoxin systems. Hence, understanding the contribution and mechanisms of Lon as a global regulator in bacterial pathogenesis is crucial. In this review, we discuss the structure and substrate specificity of the bacterial Lon protease, as well as its ability to regulate bacterial pathogenesis.
Collapse
|
11
|
Integrated Omics Reveal Time-Resolved Insights into T4 Phage Infection of E. coli on Proteome and Transcriptome Levels. Viruses 2022; 14:v14112502. [PMID: 36423111 PMCID: PMC9697503 DOI: 10.3390/v14112502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages are highly abundant viruses of bacteria. The major role of phages in shaping bacterial communities and their emerging medical potential as antibacterial agents has triggered a rebirth of phage research. To understand the molecular mechanisms by which phages hijack their host, omics technologies can provide novel insights into the organization of transcriptional and translational events occurring during the infection process. In this study, we apply transcriptomics and proteomics to characterize the temporal patterns of transcription and protein synthesis during the T4 phage infection of E. coli. We investigated the stability of E. coli-originated transcripts and proteins in the course of infection, identifying the degradation of E. coli transcripts and the preservation of the host proteome. Moreover, the correlation between the phage transcriptome and proteome reveals specific T4 phage mRNAs and proteins that are temporally decoupled, suggesting post-transcriptional and translational regulation mechanisms. This study provides the first comprehensive insights into the molecular takeover of E. coli by bacteriophage T4. This data set represents a valuable resource for future studies seeking to study molecular and regulatory events during infection. We created a user-friendly online tool, POTATO4, which is available to the scientific community and allows access to gene expression patterns for E. coli and T4 genes.
Collapse
|
12
|
Steens JA, Salazar CRP, Staals RH. The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors. Biochem Soc Trans 2022; 50:1353-1364. [PMID: 36282000 PMCID: PMC9704534 DOI: 10.1042/bst20220289] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 09/14/2023]
Abstract
Type III CRISPR-Cas systems make use of a multi-subunit effector complex to target foreign (m)RNA transcripts complementary to the guide/CRISPR RNA (crRNA). Base-pairing of the target RNA with specialized regions in the crRNA not only triggers target RNA cleavage, but also activates the characteristic Cas10 subunit and sets in motion a variety of catalytic activities that starts with the production of cyclic oligoadenylate (cOA) second messenger molecules. These messenger molecules can activate an extensive arsenal of ancillary effector proteins carrying the appropriate sensory domain. Notably, the CARF and SAVED effector proteins have been responsible for renewed interest in type III CRISPR-Cas due to the extraordinary diversity of defenses against invading genetic elements. Whereas only a handful of CARF and SAVED proteins have been studied so far, many of them seem to provoke abortive infection, aimed to kill the host and provide population-wide immunity. A defining feature of these effector proteins is the variety of in silico-predicted catalytic domains they are fused to. In this mini-review, we discuss all currently characterized type III-associated CARF and SAVED effector proteins, highlight a few examples of predicted CARF and SAVED proteins with interesting predicted catalytic activities, and speculate how they could contribute to type III immunity.
Collapse
Affiliation(s)
- Jurre A. Steens
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Raymond H.J. Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Mahmoud SA, Aldikacti B, Chien P. ATP hydrolysis tunes specificity of a AAA+ protease. Cell Rep 2022; 40:111405. [PMID: 36130509 DOI: 10.1016/j.celrep.2022.111405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/27/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
In bacteria, AAA+ proteases such as Lon and ClpXP degrade substrates with exquisite specificity. These machines capture the energy of ATP hydrolysis to power unfolding and degradation of target substrates. Here, we show that a mutation in the ATP binding site of ClpX shifts protease specificity to promote degradation of normally Lon-restricted substrates. However, this ClpX mutant is worse at degrading ClpXP targets, suggesting an optimal balance in substrate preference for a given protease that is easy to alter. In vitro, wild-type ClpXP also degrades Lon-restricted substrates more readily when ATP levels are reduced, similar to the shifted specificity of mutant ClpXP, which has altered ATP hydrolysis kinetics. Based on these results, we suggest that the rates of ATP hydrolysis not only power substrate unfolding and degradation, but also tune protease specificity. We consider various models for this effect based on emerging structures of AAA+ machines showing conformationally distinct states.
Collapse
Affiliation(s)
- Samar A Mahmoud
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Berent Aldikacti
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
14
|
Zhang A, Lebrun R, Espinosa L, Galinier A, Pompeo F. PrkA is an ATP-dependent protease that regulates sporulation in Bacillus subtilis. J Biol Chem 2022; 298:102436. [PMID: 36041628 PMCID: PMC9512850 DOI: 10.1016/j.jbc.2022.102436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
In Bacillus subtilis, sporulation is a sequential and highly regulated process. Phosphorylation events by histidine kinases are key points in the phosphorelay that initiates sporulation, but serine/threonine protein kinases also play important auxiliary roles in this regulation. PrkA has been proposed to be a serine protein kinase expressed during the initiation of sporulation and involved in this differentiation process. Additionally, the role of PrkA in sporulation has been previously proposed to be mediated via the transition phase regulator ScoC, which in turn regulates the transcriptional factor σK and its regulon. However, the kinase activity of PrkA has not been clearly demonstrated, and neither its autophosphorylation nor phosphorylated substrates have been unambiguously established in B. subtilis. We demonstrated here that PrkA regulation of ScoC is likely indirect. Following bioinformatic homology searches, we revealed sequence similarities of PrkA with the ATPases associated with diverse cellular activities ATP-dependent Lon protease family. Here, we showed that PrkA is indeed able to hydrolyze α-casein, an exogenous substrate of Lon proteases, in an ATP-dependent manner. We also showed that this ATP-dependent protease activity is essential for PrkA function in sporulation since mutation in the Walker A motif leads to a sporulation defect. Furthermore, we found that PrkA protease activity is tightly regulated by phosphorylation events involving one of the Ser/Thr protein kinases of B. subtilis, PrkC. Taken together, our results clarify the key role of PrkA in the complex process of B. subtilis sporulation.
Collapse
Affiliation(s)
- Ao Zhang
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Régine Lebrun
- Plateforme Protéomique de l'IMM, Marseille Protéomique (MaP), CNRS FR 3479, Aix-Marseille Université, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
15
|
Muhammad D, Smith KA, Bartel B. Plant peroxisome proteostasis-establishing, renovating, and dismantling the peroxisomal proteome. Essays Biochem 2022; 66:229-242. [PMID: 35538741 PMCID: PMC9375579 DOI: 10.1042/ebc20210059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022]
Abstract
Plant peroxisomes host critical metabolic reactions and insulate the rest of the cell from reactive byproducts. The specialization of peroxisomal reactions is rooted in how the organelle modulates its proteome to be suitable for the tissue, environment, and developmental stage of the organism. The story of plant peroxisomal proteostasis begins with transcriptional regulation of peroxisomal protein genes and the synthesis, trafficking, import, and folding of peroxisomal proteins. The saga continues with assembly and disaggregation by chaperones and degradation via proteases or the proteasome. The story concludes with organelle recycling via autophagy. Some of these processes as well as the proteins that facilitate them are peroxisome-specific, while others are shared among organelles. Our understanding of translational regulation of plant peroxisomal protein transcripts and proteins necessary for pexophagy remain based in findings from other models. Recent strides to elucidate transcriptional control, membrane dynamics, protein trafficking, and conditions that induce peroxisome turnover have expanded our knowledge of plant peroxisomal proteostasis. Here we review our current understanding of the processes and proteins necessary for plant peroxisome proteostasis-the emergence, maintenance, and clearance of the peroxisomal proteome.
Collapse
Affiliation(s)
| | - Kathryn A Smith
- Department of BioSciences, Rice University, Houston, TX 77005, U.S.A
| | - Bonnie Bartel
- Department of BioSciences, Rice University, Houston, TX 77005, U.S.A
| |
Collapse
|
16
|
SmiA is a hybrid priming/scaffolding adaptor for the LonA protease in Bacillus subtilis. J Biol Chem 2022; 298:102045. [PMID: 35595098 PMCID: PMC9204741 DOI: 10.1016/j.jbc.2022.102045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Regulatory proteolysis targets properly folded clients via a combination of cis-encoded degron sequences and trans-expressed specificity factors called adaptors. SmiA of Bacillus subtilis was identified as the first adaptor protein for the Lon family of proteases, but the mechanism of SmiA-dependent proteolysis is unknown. Here, we develop a fluorescence-based assay to measure the kinetics of SmiA-dependent degradation of its client SwrA and show that SmiA–SwrA interaction and the SwrA degron were both necessary, but not sufficient, for proteolysis. Consistent with a scaffolding adaptor mechanism, we found that stoichiometric excess of SmiA caused substrate-independent inhibition of LonA-dependent turnover. Furthermore, SmiA was strictly required even when SwrA levels were high suggesting that a local increase in substrate concentration mediated by the scaffold was not sufficient for proteolysis. Moreover, SmiA function could not be substituted by thermal denaturation of the substrate, consistent with a priming adaptor mechanism. Taken together, we conclude that SmiA functions via a mechanism that is a hybrid between scaffolding and priming models.
Collapse
|
17
|
Taouktsi E, Kyriakou E, Smyrniotis S, Borbolis F, Bondi L, Avgeris S, Trigazis E, Rigas S, Voutsinas GE, Syntichaki P. Organismal and Cellular Stress Responses upon Disruption of Mitochondrial Lonp1 Protease. Cells 2022; 11:cells11081363. [PMID: 35456042 PMCID: PMC9025075 DOI: 10.3390/cells11081363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Cells engage complex surveillance mechanisms to maintain mitochondrial function and protein homeostasis. LonP1 protease is a key component of mitochondrial quality control and has been implicated in human malignancies and other pathological disorders. Here, we employed two experimental systems, the worm Caenorhabditis elegans and human cancer cells, to investigate and compare the effects of LONP-1/LonP1 deficiency at the molecular, cellular, and organismal levels. Deletion of the lonp-1 gene in worms disturbed mitochondrial function, provoked reactive oxygen species accumulation, and impaired normal processes, such as growth, behavior, and lifespan. The viability of lonp-1 mutants was dependent on the activity of the ATFS-1 transcription factor, and loss of LONP-1 evoked retrograde signaling that involved both the mitochondrial and cytoplasmic unfolded protein response (UPRmt and UPRcyt) pathways and ensuing diverse organismal stress responses. Exposure of worms to triterpenoid CDDO-Me, an inhibitor of human LonP1, stimulated only UPRcyt responses. In cancer cells, CDDO-Me induced key components of the integrated stress response (ISR), the UPRmt and UPRcyt pathways, and the redox machinery. However, genetic knockdown of LonP1 revealed a genotype-specific cellular response and induced apoptosis similar to CDDO-Me treatment. Overall, the mitochondrial dysfunction ensued by disruption of LonP1 elicits adaptive cytoprotective mechanisms that can inhibit cancer cell survival but diversely modulate organismal stress response and aging.
Collapse
Affiliation(s)
- Eirini Taouktsi
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Eleni Kyriakou
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
| | - Stefanos Smyrniotis
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.S.); (S.A.)
| | - Fivos Borbolis
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
| | - Labrina Bondi
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.S.); (S.A.)
| | - Socratis Avgeris
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.S.); (S.A.)
| | - Efstathios Trigazis
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Gerassimos E. Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (S.S.); (S.A.)
- Correspondence: (G.E.V.); (P.S.); Tel.: +30-21-0650-3579 (G.E.V.); +30-21-0659-7474 (P.S.)
| | - Popi Syntichaki
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (F.B.); (L.B.); (E.T.)
- Correspondence: (G.E.V.); (P.S.); Tel.: +30-21-0650-3579 (G.E.V.); +30-21-0659-7474 (P.S.)
| |
Collapse
|
18
|
El Mouali Y, Ponath F, Scharrer V, Wenner N, Hinton JCD, Vogel J. Scanning mutagenesis of RNA-binding protein ProQ reveals a quality control role for the Lon protease. RNA (NEW YORK, N.Y.) 2021; 27:1512-1527. [PMID: 34497069 PMCID: PMC8594473 DOI: 10.1261/rna.078954.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 05/25/2023]
Abstract
The FinO-domain protein ProQ belongs to a widespread family of RNA-binding proteins (RBPs) involved in gene regulation in bacterial chromosomes and mobile elements. While the cellular RNA targets of ProQ have been established in diverse bacteria, the functionally crucial ProQ residues remain to be identified under physiological conditions. Following our discovery that ProQ deficiency alleviates growth suppression of Salmonella with succinate as the sole carbon source, an experimental evolution approach was devised to exploit this phenotype. By coupling mutational scanning with loss-of-function selection, we identified multiple ProQ residues in both the amino-terminal FinO domain and the variable carboxy-terminal region that are required for ProQ activity. Two carboxy-terminal mutations abrogated ProQ function and mildly impaired binding of a model RNA target. In contrast, several mutations in the FinO domain rendered ProQ both functionally inactive and unable to interact with target RNA in vivo. Alteration of the FinO domain stimulated the rapid turnover of ProQ by Lon-mediated proteolysis, suggesting a quality control mechanism that prevents the accumulation of nonfunctional ProQ molecules. We extend this observation to Hfq, the other major sRNA chaperone of enteric bacteria. The Hfq Y55A mutant protein, defective in RNA-binding and oligomerization, proved to be labile and susceptible to degradation by Lon. Taken together, our findings connect the major AAA+ family protease Lon with RNA-dependent quality control of Hfq and ProQ, the two major sRNA chaperones of Gram-negative bacteria.
Collapse
Affiliation(s)
- Youssef El Mouali
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Vinzent Scharrer
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L7 3EA Liverpool, United Kingdom
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L7 3EA Liverpool, United Kingdom
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| |
Collapse
|
19
|
Coscia F, Löwe J. Cryo-EM structure of the full-length Lon protease from Thermus thermophilus. FEBS Lett 2021; 595:2691-2700. [PMID: 34591981 PMCID: PMC8835725 DOI: 10.1002/1873-3468.14199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022]
Abstract
In bacteria, Lon is a large hexameric ATP-dependent protease that targets misfolded and also folded substrates, some of which are involved in cell division and survival of cellular stress. The N-terminal domain of Lon facilitates substrate recognition, but how the domains confer such activity has remained unclear. Here, we report the full-length structure of Lon protease from Thermus thermophilus at 3.9 Å resolution in a substrate-engaged state. The six N-terminal domains are arranged in three pairs, stabilized by coiled-coil segments and forming an additional channel for substrate sensing and entry into the AAA+ ring. Sequence conservation analysis and proteolysis assays confirm that this architecture is required for the degradation of both folded and unfolded substrates in bacteria.
Collapse
Affiliation(s)
- Francesca Coscia
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| | - Jan Löwe
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| |
Collapse
|
20
|
Wang C, Wang Y, Shen L. Mitochondrial proteins in heart failure: The role of deacetylation by SIRT3. Pharmacol Res 2021; 172:105802. [PMID: 34363948 DOI: 10.1016/j.phrs.2021.105802] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Heart failure (HF) is still the leading cause of death worldwide, occurring with a variety of complex mechanisms. However, most intervention for HF do not directly target the pathological mechanisms underlying cell damage in failing cardiomyocytes. Mitochondria are involved in many physiological processes, which is an important guarantee for normal heart function. Mitochondrial dysfunction is considered to be the critical node of the development of HF. Strict modulation of the mitochondrial function can ameliorate the myocardial injury and protect cardiac function. Acetylation plays an important role in mitochondrial protein homeostasis, and SIRT3, the most important deacetylation protein in mitochondria, is involved in the maintenance of mitochondrial function. SIRT3 can delay the progression of HF by improving mitochondrial function. Herein we summarize the interaction between SIRT3 and proteins related to mitochondrial function including oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), mitochondrial biosynthesis, mitochondrial quality control. In addition, we also sum up the effects of this interaction on HF and the research progress of treatments targeting SIRT3, so as to find potential HF therapeutic for clinical use in the future.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| | - Yating Wang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| | - Li Shen
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| |
Collapse
|
21
|
Butler DSC, Cafaro C, Putze J, Wan MLY, Tran TH, Ambite I, Ahmadi S, Kjellström S, Welinder C, Chao SM, Dobrindt U, Svanborg C. A bacterial protease depletes c-MYC and increases survival in mouse models of bladder and colon cancer. Nat Biotechnol 2021; 39:754-764. [PMID: 33574609 DOI: 10.1038/s41587-020-00805-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/15/2020] [Indexed: 01/12/2023]
Abstract
Is the oncogene MYC upregulated or hyperactive? In the majority of human cancers, finding agents that target c-MYC has proved difficult. Here we report specific bacterial effector molecules that inhibit cellular MYC (c-MYC) in human cells. We show that uropathogenic Escherichia coli (UPEC) degrade the c-MYC protein and attenuate MYC expression in both human cells and animal tissues. c-MYC protein was rapidly degraded by both cell-free bacterial lysates and the purified bacterial protease Lon. In mice, intravesical or peroral delivery of Lon protease delayed tumor progression and increased survival in MYC-dependent bladder and colon cancer models, respectively. These results suggest that bacteria have evolved strategies to control c-MYC tissue levels in the host and that the Lon protease shows promise for therapeutic targeting of c-MYC in cancer.
Collapse
Affiliation(s)
- Daniel S C Butler
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Caterina Cafaro
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Johannes Putze
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Murphy Lam Yim Wan
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Thi Hien Tran
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Ines Ambite
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Shahram Ahmadi
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Sven Kjellström
- Department of Clinical Sciences, BioMS, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Sing Ming Chao
- Department of Paediatrics, Nephrology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Catharina Svanborg
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden.
| |
Collapse
|
22
|
The Glyoxysomal Protease LON2 Is Involved in Fruiting-Body Development, Ascosporogenesis and Stress Resistance in Sordaria macrospora. J Fungi (Basel) 2021; 7:jof7020082. [PMID: 33530609 PMCID: PMC7911957 DOI: 10.3390/jof7020082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
Microbodies, including peroxisomes, glyoxysomes and Woronin bodies, are ubiquitous dynamic organelles that play important roles in fungal development. The ATP-dependent chaperone and protease family Lon that maintain protein quality control within the organelle significantly regulate the functionality of microbodies. The filamentous ascomycete Sordaria macrospora is a model organism for studying fruiting-body development. The genome of S. macrospora encodes one Lon protease with the C-terminal peroxisomal targeting signal (PTS1) serine-arginine-leucine (SRL) for import into microbodies. Here, we investigated the function of the protease SmLON2 in sexual development and during growth under stress conditions. Localization studies revealed a predominant localization of SmLON2 in glyoxysomes. This localization depends on PTS1, since a variant without the C-terminal SRL motif was localized in the cytoplasm. A ΔSmlon2 mutant displayed a massive production of aerial hyphae, and produced a reduced number of fruiting bodies and ascospores. In addition, the growth of the ΔSmlon2 mutant was completely blocked under mild oxidative stress conditions. Most of the defects could be complemented with both variants of SmLON2, with and without PTS1, suggesting a dual function of SmLON2, not only in microbody, but also in cytosolic protein quality control.
Collapse
|
23
|
Ambite I, Butler D, Wan MLY, Rosenblad T, Tran TH, Chao SM, Svanborg C. Molecular determinants of disease severity in urinary tract infection. Nat Rev Urol 2021; 18:468-486. [PMID: 34131331 PMCID: PMC8204302 DOI: 10.1038/s41585-021-00477-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
The most common and lethal bacterial pathogens have co-evolved with the host. Pathogens are the aggressors, and the host immune system is responsible for the defence. However, immune responses can also become destructive, and excessive innate immune activation is a major cause of infection-associated morbidity, exemplified by symptomatic urinary tract infections (UTIs), which are caused, in part, by excessive innate immune activation. Severe kidney infections (acute pyelonephritis) are a major cause of morbidity and mortality, and painful infections of the urinary bladder (acute cystitis) can become debilitating in susceptible patients. Disease severity is controlled at specific innate immune checkpoints, and a detailed understanding of their functions is crucial for strategies to counter microbial aggression with novel treatment and prevention measures. One approach is the use of bacterial molecules that reprogramme the innate immune system, accelerating or inhibiting disease processes. A very different outcome is asymptomatic bacteriuria, defined by low host immune responsiveness to bacteria with attenuated virulence. This observation provides the rationale for immunomodulation as a new therapeutic tool to deliberately modify host susceptibility, control the host response and avoid severe disease. The power of innate immunity as an arbitrator of health and disease is also highly relevant for emerging pathogens, including the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Ines Ambite
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel Butler
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Murphy Lam Yim Wan
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Therese Rosenblad
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sing Ming Chao
- Nephrology Service, Department of Paediatrics, KK Hospital, Singapore, Singapore
| | - Catharina Svanborg
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Narimisa N, Amraei F, Kalani BS, Azarnezhad A, Jazi FM. Biofilm establishment, biofilm persister cell formation, and relative gene expression analysis of type II toxin-antitoxin system in Klebsiella pneumoniae. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Singh R, Deshmukh S, Kumar A, Goyal VD, Makde RD. Crystal structure of XCC3289 from Xanthomonas campestris: homology with the N-terminal substrate-binding domain of Lon peptidase. Acta Crystallogr F Struct Biol Commun 2020; 76:488-494. [PMID: 33006577 PMCID: PMC7531242 DOI: 10.1107/s2053230x20011875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2023] Open
Abstract
LonA peptidase is a major component of the protein quality-control mechanism in both prokaryotes and the organelles of eukaryotes. Proteins homologous to the N-terminal domain of LonA peptidase, but lacking its other domains, are conserved in several phyla of prokaryotes, including the Xanthomonadales order. However, the function of these homologous proteins (LonNTD-like proteins) is not known. Here, the crystal structure of the LonNTD-like protein from Xanthomonas campestris (XCC3289; UniProt Q8P5P7) is reported at 2.8 Å resolution. The structure was solved by molecular replacement and contains one polypeptide in the asymmetric unit. The structure was refined to an Rfree of 29%. The structure of XCC3289 consists of two domains joined by a long loop. The N-terminal domain (residues 1-112) consists of an α-helix surrounded by β-sheets, whereas the C-terminal domain (residues 123-193) is an α-helical bundle. The fold and spatial orientation of the two domains closely resembles those of the N-terminal domains of the LonA peptidases from Escherichia coli and Mycobacterium avium. The structure is also similar to that of cereblon, a substrate-recognizing component of the E3 ubiquitin ligase complex. The N-terminal domains of both LonA and cereblon are known to be involved in specific protein-protein interactions. This structural analysis suggests that XCC3289 and other LonNTD-like proteins might also be capable of such protein-protein interactions.
Collapse
Affiliation(s)
- Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sonali Deshmukh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Venuka Durani Goyal
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Ravindra D. Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
26
|
Type II toxin/antitoxin system genes expression in persister cells of Klebsiella pneumoniae. ACTA ACUST UNITED AC 2020. [DOI: 10.1097/mrm.0000000000000232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Huang S, Li L, Petereit J, Millar AH. Protein turnover rates in plant mitochondria. Mitochondrion 2020; 53:57-65. [DOI: 10.1016/j.mito.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
|
28
|
Berdejo D, Merino N, Pagán E, García-Gonzalo D, Pagán R. Genetic Variants and Phenotypic Characteristics of Salmonella Typhimurium-Resistant Mutants after Exposure to Carvacrol. Microorganisms 2020; 8:microorganisms8060937. [PMID: 32580471 PMCID: PMC7356045 DOI: 10.3390/microorganisms8060937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of antimicrobial resistance has raised questions about the safety of essential oils and their individual constituents as food preservatives and as disinfection agents. Further research is required to understand how and under what conditions stable genotypic resistance might occur in food pathogens. Evolution experiments on Salmonella Typhimurium cyclically exposed to sublethal and lethal doses of carvacrol permitted the isolation of SeSCar and SeLCar strains, respectively. Both evolved strains showed a significant increase in carvacrol resistance, assessed by minimum inhibitory and bactericidal concentrations, the study of growth kinetics in the presence of carvacrol, and the evaluation of survival under lethal conditions. Moreover, antibiotic susceptibility tests revealed a development of SeLCar resistance to a wide range of antibiotics. Whole genome sequencing allowed the identification of single nucleotide variations in transcriptional regulators of oxidative stress-response: yfhP in SeSCar and soxR in SeLCar, which could be responsible for the increased resistance by improving the response to carvacrol and preventing its accumulation inside the cell. This study demonstrates the emergence of S. Typhimurium-resistant mutants against carvacrol, which might pose a risk to food safety and should therefore be considered in the design of food preservation strategies, or of cleaning and disinfection treatments.
Collapse
|
29
|
Overexpression of the Small RNA PA0805.1 in Pseudomonas aeruginosa Modulates the Expression of a Large Set of Genes and Proteins, Resulting in Altered Motility, Cytotoxicity, and Tobramycin Resistance. mSystems 2020; 5:5/3/e00204-20. [PMID: 32430407 PMCID: PMC7253367 DOI: 10.1128/msystems.00204-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P. aeruginosa is an opportunistic pathogen of humans. With roughly 10% of its genes encoding transcriptional regulators, and hundreds of small noncoding RNAs (sRNAs) interspersed throughout the genome, P. aeruginosa is able to fine-tune its response to adapt and survive in the host and resist antimicrobial agents. Understanding mechanisms of genetic regulation is therefore crucial to combat pathogenesis. The previously uncharacterized sRNA PA0805.1 was overexpressed in P. aeruginosa strain PAO1, resulting in decreased motility, increased adherence, cytotoxicity, and tobramycin resistance. In contrast, a ΔPA0805.1 deletion mutant had increased susceptibility to tobramycin under swarming conditions. Omic approaches uncovered 1,121 transcriptomic and 258 proteomic changes in the overexpression strain compared with the empty-vector strain, which included 106 regulatory factors. Downstream of these regulators were upregulated adherence factors, multidrug efflux systems, and virulence factors in both transcriptomics and proteomics. This study provides insights into the role of the sRNA PA0805.1 in modulating bacterial adaptations. Pseudomonas aeruginosa is a motile species that initiates swarming motility in response to specific environmental cues, i.e., a semisolid surface with amino acids as a nitrogen source (relevant to the human lung). Swarming is an intricately regulated process, but to date posttranscriptional regulation has not been extensively investigated. Small noncoding RNAs (sRNAs) are hypothesized to play posttranscriptional regulatory roles, largely through suppression of translation, and we previously demonstrated 20 sRNA species that were dysregulated under swarming conditions. One of these, sRNA PA0805.1 (which was 5-fold upregulated under swarming conditions), when cloned, transformed into wild-type (WT) PAO1, and overexpressed, led to broad phenotypic changes, including reduced swarming, swimming, and twitching motilities, as well as increased adherence, cytotoxicity, and tobramycin resistance. A ΔPA0805.1 deletion mutant was more susceptible to tobramycin than the WT under swarming conditions. The strain overexpressing PA0805.1 was compared to the empty-vector strain by transcriptome sequencing (RNA-Seq) and proteomics under swarming conditions to determine sRNA targets. Broad transcriptional and proteomic profiles showed 1,121 differentially expressed genes and 258 proteins with significantly different abundance. Importantly, these included 106 transcriptional regulators, two-component regulatory systems, and sigma and anti-sigma factors. Downstream of these regulators were found downregulated type IV pilus genes, many upregulated adherence and virulence factors, and two multidrug efflux systems, mexXY and mexGHI-opmD. Therefore, the sRNA PA0805.1 appears to be a global regulator that influences diverse bacterial lifestyles, most likely through a regulatory cascade. IMPORTANCEP. aeruginosa is an opportunistic pathogen of humans. With roughly 10% of its genes encoding transcriptional regulators, and hundreds of small noncoding RNAs (sRNAs) interspersed throughout the genome, P. aeruginosa is able to fine-tune its response to adapt and survive in the host and resist antimicrobial agents. Understanding mechanisms of genetic regulation is therefore crucial to combat pathogenesis. The previously uncharacterized sRNA PA0805.1 was overexpressed in P. aeruginosa strain PAO1, resulting in decreased motility, increased adherence, cytotoxicity, and tobramycin resistance. In contrast, a ΔPA0805.1 deletion mutant had increased susceptibility to tobramycin under swarming conditions. Omic approaches uncovered 1,121 transcriptomic and 258 proteomic changes in the overexpression strain compared with the empty-vector strain, which included 106 regulatory factors. Downstream of these regulators were upregulated adherence factors, multidrug efflux systems, and virulence factors in both transcriptomics and proteomics. This study provides insights into the role of the sRNA PA0805.1 in modulating bacterial adaptations.
Collapse
|
30
|
Chen X, Zhang S, Bi F, Guo C, Feng L, Wang H, Yao H, Lin D. Crystal structure of the N domain of Lon protease from Mycobacterium avium complex. Protein Sci 2020; 28:1720-1726. [PMID: 31306520 DOI: 10.1002/pro.3687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Lon protease is evolutionarily conserved in prokaryotes and eukaryotic organelles. The primary function of Lon is to selectively degrade abnormal and certain regulatory proteins to maintain the homeostasis in vivo. Lon mainly consists of three functional domains and the N-terminal domain is required for the substrate selection and recognition. However, the precise contribution of the N-terminal domain remains elusive. Here, we determined the crystal structure of the N-terminal 192-residue construct of Lon protease from Mycobacterium avium complex at 2.4 å resolution,and measured NMR-relaxation parameters of backbones. This structure consists of two subdomains, the β-strand rich N-terminal subdomain and the five-helix bundle of C-terminal subdomain, connected by a flexible linker,and is similar to the overall structure of the N domain of Escherichia coli Lon even though their sequence identity is only 26%. The obtained NMR-relaxation parameters reveal two stabilized loops involved in the structural packing of the compact N domain and a turn structure formation. The performed homology comparison suggests that structural and sequence variations in the N domain may be closely related to the substrate selectivity of Lon variants. Our results provide the structure and dynamics characterization of a new Lon N domain, and will help to define the precise contribution of the Lon N-terminal domain to the substrate recognition.
Collapse
Affiliation(s)
- Xiaoyan Chen
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, China
| | - Shijun Zhang
- State Key Laboratory for Cellular Stress Biology, Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China
| | - Fangkai Bi
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, China
| | - Chenyun Guo
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, China
| | - Liubin Feng
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, China
| | - Huilin Wang
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, China
| | - Hongwei Yao
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, China
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, China
| |
Collapse
|
31
|
Shin M, Puchades C, Asmita A, Puri N, Adjei E, Wiseman RL, Karzai AW, Lander GC. Structural basis for distinct operational modes and protease activation in AAA+ protease Lon. SCIENCE ADVANCES 2020; 6:eaba8404. [PMID: 32490208 PMCID: PMC7239648 DOI: 10.1126/sciadv.aba8404] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 05/21/2023]
Abstract
Substrate-bound structures of AAA+ protein translocases reveal a conserved asymmetric spiral staircase architecture wherein a sequential ATP hydrolysis cycle drives hand-over-hand substrate translocation. However, this configuration is unlikely to represent the full conformational landscape of these enzymes, as biochemical studies suggest distinct conformational states depending on the presence or absence of substrate. Here, we used cryo-electron microscopy to determine structures of the Yersinia pestis Lon AAA+ protease in the absence and presence of substrate, uncovering the mechanistic basis for two distinct operational modes. In the absence of substrate, Lon adopts a left-handed, "open" spiral organization with autoinhibited proteolytic active sites. Upon the addition of substrate, Lon undergoes a reorganization to assemble an enzymatically active, right-handed "closed" conformer with active protease sites. These findings define the mechanistic principles underlying the operational plasticity required for processing diverse protein substrates.
Collapse
Affiliation(s)
- Mia Shin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Puchades
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ananya Asmita
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Neha Puri
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Eric Adjei
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - A. Wali Karzai
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
32
|
Salmonella expresses foreign genes during infection by degrading their silencer. Proc Natl Acad Sci U S A 2020; 117:8074-8082. [PMID: 32209674 DOI: 10.1073/pnas.1912808117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The heat-stable nucleoid structuring (H-NS, also referred to as histone-like nucleoid structuring) protein silences transcription of foreign genes in a variety of Gram-negative bacterial species. To take advantage of the products encoded in foreign genes, bacteria must overcome the silencing effects of H-NS. Because H-NS amounts are believed to remain constant, overcoming gene silencing has largely been ascribed to proteins that outcompete H-NS for binding to AT-rich foreign DNA. However, we report here that the facultative intracellular pathogen Salmonella enterica serovar Typhimurium decreases H-NS amounts 16-fold when inside macrophages. This decrease requires both the protease Lon and the DNA-binding virulence regulator PhoP. The decrease in H-NS abundance reduces H-NS binding to foreign DNA, allowing transcription of foreign genes, including those required for intramacrophage survival. The purified Lon protease degraded free H-NS but not DNA-bound H-NS. By displacing H-NS from DNA, the PhoP protein promoted H-NS proteolysis, thereby de-repressing foreign genes-even those whose regulatory sequences are not bound by PhoP. The uncovered mechanism enables a pathogen to express foreign virulence genes during infection without the need to evolve binding sites for antisilencing proteins at each foreign gene.
Collapse
|
33
|
Baishya S, Kangsa Banik S, Das Talukdar A, Anbarasu A, Bhattacharjee A, Dutta Choudhury M. Full title: Identification of potential drug targets against carbapenem resistant Enterobacteriaceae (CRE) strains using in silico gene network analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Niwa H, Miyauchi-Nanri Y, Okumoto K, Mukai S, Noi K, Ogura T, Fujiki Y. A newly isolated Pex7-binding, atypical PTS2 protein P7BP2 is a novel dynein-type AAA+ protein. J Biochem 2018; 164:437-447. [PMID: 30204880 DOI: 10.1093/jb/mvy073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
A newly isolated binding protein of peroxisomal targeting signal type 2 (PTS2) receptor Pex7, termed P7BP2, is transported into peroxisomes by binding to the longer isoform of Pex5p, Pex5pL, via Pex7p. The binding to Pex7p and peroxisomal localization of P7BP2 depends on the cleavable PTS2 in the N-terminal region, suggesting that P7BP2 is a new PTS2 protein. By search on human database, three AAA+ domains are found in the N-terminal half of P7BP2. Protein sequence alignment and motif search reveal that in the C-terminal region P7BP2 contains additional structural domains featuring weak but sufficient homology to AAA+ domain. P7BP2 behaves as a monomer in gel-filtration chromatography and the single molecule observed under atomic force microscope shapes a disc-like ring. Collectively, these results suggest that P7BP2 is a novel dynein-type AAA+ family protein, of which domains are arranged into a pseudo-hexameric ring structure.
Collapse
Affiliation(s)
- Hajime Niwa
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yasuhiro Miyauchi-Nanri
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Kentaro Noi
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
35
|
Eremina L, Pashintseva N, Kovalev L, Kovaleva M, Shishkin S. Proteomics of mammalian mitochondria in health and malignancy: From protein identification to function. Anal Biochem 2018; 552:4-18. [DOI: 10.1016/j.ab.2017.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
|
36
|
Abstract
Regulated proteolysis is a vital process that affects all living things. Bacteria use energy-dependent AAA+ proteases to power degradation of misfolded and native regulatory proteins. Given that proteolysis is an irreversible event, specificity and selectivity in degrading substrates are key. Specificity is often augmented through the use of adaptors that modify the inherent specificity of the proteolytic machinery. Regulated protein degradation is intricately linked to quality control, cell-cycle progression, and physiological transitions. In this review, we highlight recent work that has shed light on our understanding of regulated proteolysis in bacteria. We discuss the role AAA+ proteases play during balanced growth as well as how these proteases are deployed during changes in growth. We present examples of how protease selectivity can be controlled in increasingly complex ways. Finally, we describe how coupling a core recognition determinant to one or more modifying agents is a general theme for regulated protein degradation.
Collapse
Affiliation(s)
- Samar A Mahmoud
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; ,
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; ,
| |
Collapse
|
37
|
Busche T, Tsolis KC, Koepff J, Rebets Y, Rückert C, Hamed MB, Bleidt A, Wiechert W, Lopatniuk M, Yousra A, Anné J, Karamanou S, Oldiges M, Kalinowski J, Luzhetskyy A, Economou A. Multi-Omics and Targeted Approaches to Determine the Role of Cellular Proteases in Streptomyces Protein Secretion. Front Microbiol 2018; 9:1174. [PMID: 29915569 PMCID: PMC5994538 DOI: 10.3389/fmicb.2018.01174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 01/29/2023] Open
Abstract
Gram-positive Streptomyces bacteria are profuse secretors of polypeptides using complex, yet unknown mechanisms. Many of their secretory proteins are proteases that play important roles in the acquisition of amino acids from the environment. Other proteases regulate cellular proteostasis. To begin dissecting the possible role of proteases in Streptomyces secretion, we applied a multi-omics approach. We probed the role of the 190 proteases of Streptomyces lividans strain TK24 in protein secretion in defined media at different stages of growth. Transcriptomics analysis revealed transcripts for 93% of these proteases and identified that 41 of them showed high abundance. Proteomics analysis identified 57 membrane-embedded or secreted proteases with variations in their abundance. We focused on 17 of these proteases and putative inhibitors and generated strains deleted of their genes. These were characterized in terms of their fitness, transcriptome and secretome changes. In addition, we performed a targeted analysis in deletion strains that also carried a secretion competent mRFP. One strain, carrying a deletion of the gene for the regulatory protease FtsH, showed significant global changes in overall transcription and enhanced secretome and secreted mRFP levels. These data provide a first multi-omics effort to characterize the complex regulatory mechanisms of protein secretion in Streptomyces lividans and lay the foundations for future rational manipulation of this process.
Collapse
Affiliation(s)
- Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Konstantinos C Tsolis
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Joachim Koepff
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Yuriy Rebets
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany.,Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Mohamed B Hamed
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,Department of Molecular Biology, National Research Centre, Giza, Egypt
| | - Arne Bleidt
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Mariia Lopatniuk
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Ahmed Yousra
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Jozef Anné
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marco Oldiges
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Duong DA, Jensen RV, Stevens AM. Discovery of Pantoea stewartii ssp. stewartii genes important for survival in corn xylem through a Tn-Seq analysis. MOLECULAR PLANT PATHOLOGY 2018; 19:1929-1941. [PMID: 29480976 PMCID: PMC6638119 DOI: 10.1111/mpp.12669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 05/29/2023]
Abstract
The bacterium Pantoea stewartii ssp. stewartii causes Stewart's wilt disease in corn. Pantoea stewartii is transmitted to plants via corn flea beetles, where it first colonizes the apoplast causing water-soaked lesions, and then migrates to the xylem and forms a biofilm that blocks water transport. Bacterial quorum sensing ensures that the exopolysaccharide production necessary for biofilm formation occurs only at high cell density. A genomic-level transposon sequencing (Tn-Seq) analysis was performed to identify additional bacterial genes essential for survival in planta and to provide insights into the plant-microbe interactions occurring during wilt disease. A mariner transposon library of approximately 40 000 mutants was constructed and used to inoculate corn seedlings through a xylem infection model. Cultures of the library grown in Luria-Bertani (LB) broth served as the in vitro pre-inoculation control. Tn-Seq analysis showed that the number of transposon mutations was reduced by more than 10-fold for 486 genes in planta compared with the library that grew in LB, suggesting that they are important for xylem survival. Interestingly, a small set of genes had a higher abundance of mutants in planta versus in vitro conditions, indicating enhanced strain fitness with loss of these genes inside the host. In planta competition assays retested the trends of the Tn-Seq data for several genes, including two outer membrane proteins, Lon protease and two quorum sensing-associated transcription factors, RcsA and LrhA. Virulence assays were performed to check for correlation between growth/colonization and pathogenicity. This study demonstrates the capacity of a Tn-Seq approach to advance our understanding of P. stewartii-corn interactions.
Collapse
Affiliation(s)
- Duy An Duong
- Department of Biological SciencesVirginia TechBlacksburgVA 24061USA
| | | | - Ann M. Stevens
- Department of Biological SciencesVirginia TechBlacksburgVA 24061USA
| |
Collapse
|
39
|
Cerletti M, Paggi R, Troetschel C, Ferrari MC, Guevara CR, Albaum S, Poetsch A, De Castro R. LonB Protease Is a Novel Regulator of Carotenogenesis Controlling Degradation of Phytoene Synthase in Haloferax volcanii. J Proteome Res 2018; 17:1158-1171. [PMID: 29411617 DOI: 10.1021/acs.jproteome.7b00809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The membrane protease LonB is an essential protein in the archaeon Haloferax volcanii and globally impacts its physiology. However, natural substrates of the archaeal Lon protease have not been identified. The whole proteome turnover was examined in a H. volcanii LonB mutant under reduced and physiological protease levels. LC-MS/MS combined with stable isotope labeling was applied for the identification/quantitation of membrane and cytoplasm proteins. Differential synthesis and degradation rates were evidenced for 414 proteins in response to Lon expression. A total of 58 proteins involved in diverse cellular processes showed a degradation pattern (none/very little degradation in the absence of Lon and increased degradation in the presence of Lon) consistent with a LonB substrate, which was further substantiated for several of these candidates by pull-down assays. The most notable was phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthesis. The rapid degradation of PSY upon LonB induction in addition to the remarkable stabilization of this protein and hyperpigmentation phenotype in the Lon mutant strongly suggest that PSY is a LonB substrate. This work identifies for the first time candidate targets of the archaeal Lon protease and establishes proteolysis by Lon as a novel post-translational regulatory mechanism of carotenogenesis.
Collapse
Affiliation(s)
- Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata 7600, Argentina
| | - Roberto Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata 7600, Argentina
| | | | - María Celeste Ferrari
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata 7600, Argentina
| | | | - Stefan Albaum
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University , 33615 Bielefeld, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum , 44801 Bochum, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University , Plymouth PL4 8AA, United Kingdom
| | - Rosana De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata 7600, Argentina
| |
Collapse
|
40
|
Hecker M, Wagner AH. Role of protein carbonylation in diabetes. J Inherit Metab Dis 2018; 41:29-38. [PMID: 29110177 DOI: 10.1007/s10545-017-0104-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by, among others, elevated blood glucose levels. Hyperglycaemia as well as enhanced levels of glucose-derived reactive metabolites contribute to the development of diabetic complications partly via increased generation of reactive oxygen species (ROS). ROS are not only part of signaling pathways themselves but also lead to carbonylation of particular amino acid side chains by direct metal-catalyzed oxidation. In addition, carbonyl groups can be introduced into proteins indirectly by non-oxidative covalent adduction of reactive carbonyl species generated by the oxidation of lipids or carbohydrates. Both direct and indirect carbonylation mechanisms may affect protein conformation, activity, and function. Herein we introduce the different mechanisms of the carbonylation reaction, discuss degradation mechanisms, and the fate of proteins modified this way and how the overall degree of carbonylation affects protein homeostasis and function differently. The role of protein carbonylation in metabolic control systems and cell signaling are also summarized. Finally, current diagnostic and antioxidant therapeutic options in diabetes are discussed.
Collapse
Affiliation(s)
- Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
| |
Collapse
|
41
|
Comparative biochemistry of cytochrome c oxidase in animals. Comp Biochem Physiol B Biochem Mol Biol 2017; 224:170-184. [PMID: 29180239 DOI: 10.1016/j.cbpb.2017.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of the electron transport system, is central to aerobic metabolism of animals. Many aspects of its structure and function are highly conserved, yet, paradoxically, it is also an important model for studying the evolution of the metabolic phenotype. In this review, part of a special issue honouring Peter Hochachka, we consider the biology of COX from the perspective of comparative and evolutionary biochemistry. The approach is to consider what is known about the enzyme in the context of conventional biochemistry, but focus on how evolutionary researchers have used this background to explore the role of the enzyme in biochemical adaptation of animals. In synthesizing the conventional and evolutionary biochemistry, we hope to identify synergies and future research opportunities. COX represents a rare opportunity for researchers to design studies that span the breadth of biology: molecular genetics, protein biochemistry, enzymology, metabolic physiology, organismal performance, evolutionary biology, and phylogeography.
Collapse
|
42
|
Freitas RCD, Odisi EJ, Kato C, da Silva MAC, Lima AODS. Draft Genome Sequence of the Deep-Sea Bacterium Moritella sp. JT01 and Identification of Biotechnologically Relevant Genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:480-487. [PMID: 28733934 DOI: 10.1007/s10126-017-9767-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Deep-sea bacteria can produce various biotechnologically relevant enzymes due to their adaptations to high pressures and low temperatures. To identify such enzymes, we have sequenced the genome of the polycaprolactone-degrading bacterium Moritella sp. JT01, isolated from sediment samples from Japan Trench (6957 m depth), using a Illumina HiSeq2000 sequencer (12.1 million paired-end reads) and CLC Genomics Workbench (version 6.5.1) for the assembly, resulting in a 4.83-Mb genome (42 scaffolds). The genome was annotated using Rapid Annotation using Subsystem Technology (RAST), Protein Homology/analogY Recognition Engine V 2.0 (PHYRE2), and BLAST2Go, revealing 4439 protein coding sequences and 101 RNAs. Gene products with industrial relevance, such as lipases (three) and esterases (four), were identified and are related to bacterium's ability to degrade polycaprolactone. The annotation revealed proteins related to deep-sea survival, such as cold-shock proteins (six) and desaturases (three). The presence of secondary metabolite biosynthetic gene clusters suggests that this bacterium could produce nonribosomal peptides, polyunsaturated fatty acids, and bacteriocins. To demonstrate the potential of this genome, a lipase was cloned an introduced into Escherichia coli. The lipase was purified and characterized, showing activity over a wide temperature range (over 50% at 20-60 °C) and pH range (over 80% at pH 6.3 to 9). This enzyme has tolerance to the surfactant action of sodium dodecyl sulfate and shows 30% increased activity when subjected to a working pressure of 200 MPa. The genomic characterization of Moritella sp. JT01 reveals traits associated with survival in the deep-sea and their potential uses in biotechnology, as exemplified by the characterized lipase.
Collapse
Affiliation(s)
- Robert Cardoso de Freitas
- Technological Science Center of Earth and Sea, UNIVALI, R Uruguai 458, Itajai, SC, 88302-202, Brazil
| | - Estácio Jussie Odisi
- Technological Science Center of Earth and Sea, UNIVALI, R Uruguai 458, Itajai, SC, 88302-202, Brazil
| | - Chiaki Kato
- Department of Marine Biodiversity Research, JAMSTEC, Natsushima-cho 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | | | | |
Collapse
|
43
|
Foshag D, Henrich E, Hiller E, Schäfer M, Kerger C, Burger-Kentischer A, Diaz-Moreno I, García-Mauriño SM, Dötsch V, Rupp S, Bernhard F. The E. coli S30 lysate proteome: A prototype for cell-free protein production. N Biotechnol 2017; 40:245-260. [PMID: 28943390 DOI: 10.1016/j.nbt.2017.09.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Protein production using processed cell lysates is a core technology in synthetic biology and these systems are excellent to produce difficult toxins or membrane proteins. However, the composition of the central lysate of cell-free systems is still a "black box". Escherichia coli lysates are most productive for cell-free expression, yielding several mgs of protein per ml of reaction. Their preparation implies proteome fractionation, resulting in strongly biased and yet unknown lysate compositions. Many metabolic pathways are expected to be truncated or completely removed. The lack of knowledge of basic cell-free lysate proteomes is a major bottleneck for directed lysate engineering approaches as well as for assay design using non-purified reaction mixtures. This study is starting to close this gap by providing a blueprint of the S30 lysate proteome derived from the commonly used E. coli strain A19. S30 lysates are frequently used for cell-free protein production and represent the basis of most commercial E. coli cell-free expression systems. A fraction of 821 proteins was identified as the core proteome in S30 lysates, representing approximately a quarter of the known E. coli proteome. Its classification into functional groups relevant for transcription/translation, folding, stability and metabolic processes will build the framework for tailored cell-free reactions. As an example, we show that SOS response induction during cultivation results in tuned S30 lysate with better folding capacity, and improved solubility and activity of synthesized proteins. The presented data and protocols can serve as a platform for the generation of customized cell-free systems and product analysis.
Collapse
Affiliation(s)
- Daniel Foshag
- Institute for Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Ekkehard Hiller
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Miriam Schäfer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Christian Kerger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | | | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Sofía M García-Mauriño
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
44
|
The role of Lon-mediated proteolysis in the dynamics of mitochondrial nucleic acid-protein complexes. Sci Rep 2017; 7:631. [PMID: 28377575 PMCID: PMC5428876 DOI: 10.1038/s41598-017-00632-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 03/07/2017] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial nucleoids consist of several different groups of proteins, many of which are involved in essential cellular processes such as the replication, repair and transcription of the mitochondrial genome. The eukaryotic, ATP-dependent protease Lon is found within the central nucleoid region, though little is presently known about its role there. Aside from its association with mitochondrial nucleoids, human Lon also specifically interacts with RNA. Recently, Lon was shown to regulate TFAM, the most abundant mtDNA structural factor in human mitochondria. To determine whether Lon also regulates other mitochondrial nucleoid- or ribosome-associated proteins, we examined the in vitro digestion profiles of the Saccharomyces cerevisiae TFAM functional homologue Abf2, the yeast mtDNA maintenance protein Mgm101, and two human mitochondrial proteins, Twinkle helicase and the large ribosomal subunit protein MrpL32. Degradation of Mgm101 was also verified in vivo in yeast mitochondria. These experiments revealed that all four proteins are actively degraded by Lon, but that three of them are protected from it when bound to a nucleic acid; the Twinkle helicase is not. Such a regulatory mechanism might facilitate dynamic changes to the mitochondrial nucleoid, which are crucial for conducting mitochondrial functions and maintaining mitochondrial homeostasis.
Collapse
|
45
|
Kudzhaev AM, Andrianova AG, Dubovtseva ES, Serova OV, Rotanova TV. Role of the Inserted α-Helical Domain in E. coli ATP-Dependent Lon Protease Function. Acta Naturae 2017; 9:75-81. [PMID: 28740729 PMCID: PMC5509003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Indexed: 11/02/2022] Open
Abstract
Multidomain ATP-dependent Lon protease of E. coli (Ec-Lon) is one of the key enzymes of the quality control system of the cellular proteome. A recombinant form of Ec-Lon with deletion of the inserted characteristic α-helical HI(CC) domain (Lon-dHI(CC)) has been prepared and investigated to understand the role of this domain. A comparative study of the ATPase, proteolytic, and peptidase activities of the intact Lon protease and Lon-dHI(CC) has been carried out. The ability of the enzymes to undergo autolysis and their ability to bind DNA have been studied as well. It has been shown that the HI(CC) domain of Ec-Lon protease is required for the formation of a functionally active enzyme structure and for the implementation of protein-protein interactions.
Collapse
Affiliation(s)
- A. M. Kudzhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - A. G. Andrianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - E. S. Dubovtseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - O. V. Serova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - T. V. Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| |
Collapse
|
46
|
Dumitrache A, Klingeman DM, Natzke J, Rodriguez M, Giannone RJ, Hettich RL, Davison BH, Brown SD. Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells. Sci Rep 2017; 7:43583. [PMID: 28240279 PMCID: PMC5327387 DOI: 10.1038/srep43583] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/25/2017] [Indexed: 01/01/2023] Open
Abstract
Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.
Collapse
Affiliation(s)
- Alexandru Dumitrache
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Dawn M Klingeman
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Jace Natzke
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Miguel Rodriguez
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Richard J Giannone
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Robert L Hettich
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Brian H Davison
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Steven D Brown
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| |
Collapse
|
47
|
Li L, Nelson C, Fenske R, Trösch J, Pružinská A, Millar AH, Huang S. Changes in specific protein degradation rates in Arabidopsis thaliana reveal multiple roles of Lon1 in mitochondrial protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:458-471. [PMID: 27726214 DOI: 10.1111/tpj.13392] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 05/20/2023]
Abstract
Mitochondrial Lon1 loss impairs oxidative phosphorylation complexes and TCA enzymes and causes accumulation of specific mitochondrial proteins. Analysis of over 400 mitochondrial protein degradation rates using 15 N labelling showed that 205 were significantly different between wild type (WT) and lon1-1. Those proteins included ribosomal proteins, electron transport chain subunits and TCA enzymes. For respiratory complexes I and V, decreased protein abundance correlated with higher degradation rate of subunits in total mitochondrial extracts. After blue native separation, however, the assembled complexes had slow degradation, while smaller subcomplexes displayed rapid degradation in lon1-1. In insoluble fractions, a number of TCA enzymes were more abundant but the proteins degraded slowly in lon1-1. In soluble protein fractions, TCA enzymes were less abundant but degraded more rapidly. These observations are consistent with the reported roles of Lon1 as a chaperone aiding the proper folding of newly synthesized/imported proteins to stabilise them and as a protease to degrade mitochondrial protein aggregates. HSP70, prohibitin and enzymes of photorespiration accumulated in lon1-1 and degraded slowly in all fractions, indicating an important role of Lon1 in their clearance from the proteome.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Clark Nelson
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Adriana Pružinská
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| |
Collapse
|
48
|
Levytskyy RM, Germany EM, Khalimonchuk O. Mitochondrial Quality Control Proteases in Neuronal Welfare. J Neuroimmune Pharmacol 2016; 11:629-644. [PMID: 27137937 PMCID: PMC5093085 DOI: 10.1007/s11481-016-9683-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023]
Abstract
The functional integrity of mitochondria is a critical determinant of neuronal health and compromised mitochondrial function is a commonly recognized factor that underlies a plethora of neurological and neurodegenerative diseases. Metabolic demands of neural cells require high bioenergetic outputs that are often associated with enhanced production of reactive oxygen species. Unopposed accumulation of these respiratory byproducts over time leads to oxidative damage and imbalanced protein homeostasis within mitochondrial subcompartments, which in turn may result in cellular demise. The post-mitotic nature of neurons and their vulnerability to these stress factors necessitate strict protein homeostatic control to prevent such scenarios. A series of evolutionarily conserved proteases is one of the central elements of mitochondrial quality control. These versatile proteolytic enzymes conduct a multitude of activities to preserve normal mitochondrial function during organelle biogenesis, metabolic remodeling and stress. In this review we discuss neuroprotective aspects of mitochondrial quality control proteases and neuropathological manifestations arising from defective proteolysis within the mitochondrion.
Collapse
Affiliation(s)
- Roman M Levytskyy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Edward M Germany
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
49
|
Kereïche S, Kováčik L, Bednár J, Pevala V, Kunová N, Ondrovičová G, Bauer J, Ambro Ľ, Bellová J, Kutejová E, Raška I. The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease. Sci Rep 2016; 6:33631. [PMID: 27632940 PMCID: PMC5025710 DOI: 10.1038/srep33631] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/24/2016] [Indexed: 02/02/2023] Open
Abstract
Lon is an essential, multitasking AAA+ protease regulating many cellular processes in species across all kingdoms of life. Altered expression levels of the human mitochondrial Lon protease (hLon) are linked to serious diseases including myopathies, paraplegia, and cancer. Here, we present the first 3D structure of full-length hLon using cryo-electron microscopy. hLon has a unique three-dimensional structure, in which the proteolytic and ATP-binding domains (AP-domain) form a hexameric chamber, while the N-terminal domain is arranged as a trimer of dimers. These two domains are linked by a narrow trimeric channel composed likely of coiled-coil helices. In the presence of AMP-PNP, the AP-domain has a closed-ring conformation and its N-terminal entry gate appears closed, but in ADP binding, it switches to a lock-washer conformation and its N-terminal gate opens, which is accompanied by a rearrangement of the N-terminal domain. We have also found that both the enzymatic activities and the 3D structure of a hLon mutant lacking the first 156 amino acids are severely disturbed, showing that hLon’s N-terminal domains are crucial for the overall structure of the hLon, maintaining a conformation allowing its proper functioning.
Collapse
Affiliation(s)
- Sami Kereïche
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01 Prague 2, Czech Republic
| | - Lubomír Kováčik
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01 Prague 2, Czech Republic
| | - Jan Bednár
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01 Prague 2, Czech Republic.,Université de Grenoble Alpes,CNRS UMR 5309, 38042 Grenoble Cedex 9, France
| | - Vladimír Pevala
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Nina Kunová
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gabriela Ondrovičová
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jacob Bauer
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ľuboš Ambro
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Bellová
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Kutejová
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01 Prague 2, Czech Republic
| |
Collapse
|
50
|
Toxin-Antitoxin Modules Are Pliable Switches Activated by Multiple Protease Pathways. Toxins (Basel) 2016; 8:toxins8070214. [PMID: 27409636 PMCID: PMC4963847 DOI: 10.3390/toxins8070214] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Toxin-antitoxin (TA) modules are bacterial regulatory switches that facilitate conflicting outcomes for cells by promoting a pro-survival phenotypic adaptation and/or by directly mediating cell death, all through the toxin activity upon degradation of antitoxin. Intensive study has revealed specific details of TA module functions, but significant gaps remain about the molecular details of activation via antitoxin degradation used by different bacteria and in different environments. This review summarizes the current state of knowledge about the interaction of antitoxins with cellular proteases Lon and ClpP to mediate TA module activation. An understanding of these processes can answer long-standing questions regarding stochastic versus specific activation of TA modules and provide insight into the potential for manipulation of TA modules to alter bacterial growth.
Collapse
|