1
|
de Armiño DJA, Di Lella S, Montepietra D, Delcanale P, Bruno S, Giordano D, Verde C, Estrin DA, Viappiani C, Abbruzzetti S. Kinetic and dynamical properties of truncated hemoglobins of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Protein Sci 2024; 33:e5064. [PMID: 38864722 PMCID: PMC11168075 DOI: 10.1002/pro.5064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Due to the low temperature, the Antarctic marine environment is challenging for protein functioning. Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologs, resulting in enhanced reaction rates at low temperatures. The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) genome is one of the few examples of coexistence of multiple hemoglobin genes encoding, among others, two constitutively transcribed 2/2 hemoglobins (2/2Hbs), also named truncated Hbs (TrHbs), belonging to the Group II (or O), annotated as PSHAa0030 and PSHAa2217. In this work, we describe the ligand binding kinetics and their interrelationship with the dynamical properties of globin Ph-2/2HbO-2217 by combining experimental and computational approaches and implementing a new computational method to retrieve information from molecular dynamic trajectories. We show that our approach allows us to identify docking sites within the protein matrix that are potentially able to transiently accommodate ligands and migration pathways connecting them. Consistently with ligand rebinding studies, our modeling suggests that the distal heme pocket is connected to the solvent through a low energy barrier, while inner cavities play only a minor role in modulating rebinding kinetics.
Collapse
Affiliation(s)
- Diego Javier Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física, and INQUIMAE‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Santiago Di Lella
- Departamento de Química Biológica and IQUIBICEN‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Daniele Montepietra
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Nanoscience Institute—CNR‐NANOModenaItaly
| | - Pietro Delcanale
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| | - Stefano Bruno
- Department of Food and Drug SciencesUniversity of ParmaParmaItaly
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNRNaplesItaly
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton DohrnNaplesItaly
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNRNaplesItaly
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton DohrnNaplesItaly
| | - Dario A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, and INQUIMAE‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| |
Collapse
|
2
|
De Simone G, Coletta A, di Masi A, Coletta M, Ascenzi P. The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO2: The Case of Zebrafish Nitrobindin. Antioxidants (Basel) 2022; 11:antiox11101932. [PMID: 36290653 PMCID: PMC9599043 DOI: 10.3390/antiox11101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric Danio rerio Nb (Dr-Nb(III)) in the absence and presence of CO2 is reported. The Dr-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO2 dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of Dr-Nb(III). The effect of Dr-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. Dr-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO2, Dr-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO2, the ferric heme protein concentration must be higher than 10−4 M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO2/HCO3− in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions.
Collapse
Affiliation(s)
| | - Andrea Coletta
- Dipartimento di Scienze, Università Roma Tre, 00146 Roma, Italy
| | | | - Massimo Coletta
- IRCCS Fondazione Bietti, 00198 Roma, Italy
- Correspondence: (M.C.); (P.A.)
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, 00146 Roma, Italy
- Correspondence: (M.C.); (P.A.)
| |
Collapse
|
3
|
Daniel AI, Fadaka AO, Gokul A, Bakare OO, Aina O, Fisher S, Burt AF, Mavumengwana V, Keyster M, Klein A. Biofertilizer: The Future of Food Security and Food Safety. Microorganisms 2022; 10:1220. [PMID: 35744738 PMCID: PMC9227430 DOI: 10.3390/microorganisms10061220] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
There is a direct correlation between population growth and food demand. As the global population continues to rise, there is a need to scale up food production to meet the food demand of the population. In addition, the arable land over time has lost its naturally endowed nutrients. Hence, alternative measures such as fertilizers, pesticides, and herbicides are used to fortify the soil and scale up the production rate. As efforts are being made to meet this food demand and ensure food security, it is equally important to ensure food safety for consumption. Food safety measures need to be put in place throughout the food production chain lines. One of the fundamental measures is the use of biofertilizers or plant growth promoters instead of chemical or synthesized fertilizers, pesticides, and herbicides that poise several dangers to human and animal health. Biofertilizers competitively colonize plant root systems, which, in turn, enhance nutrient uptake, increase productivity and crop yield, improve plants' tolerance to stress and their resistance to pathogens, and improve plant growth through mechanisms such as the mobilization of essential elements, nutrients, and plant growth hormones. Biofertilizers are cost-effective and ecofriendly in nature, and their continuous usage enhances soil fertility. They also increase crop yield by up to about 10-40% by increasing protein contents, essential amino acids, and vitamins, and by nitrogen fixation. This review therefore highlighted different types of biofertilizers and the mechanisms by which they elicit their function to enhance crop yield to meet food demand. In addition, the review also addressed the role of microorganisms in promoting plant growth and the various organisms that are beneficial for enhancing plant growth.
Collapse
Affiliation(s)
- Augustine Innalegwu Daniel
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
- Department of Biochemistry, Federal University of Technology, P.M.B 65, Minna 920101, Niger State, Nigeria
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (A.O.F.); (V.M.)
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa;
| | - Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.O.B.); (A.F.B.); (M.K.)
| | - Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
| | - Stacey Fisher
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
| | - Adam Frank Burt
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.O.B.); (A.F.B.); (M.K.)
| | - Vuyo Mavumengwana
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (A.O.F.); (V.M.)
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town 7505, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.O.B.); (A.F.B.); (M.K.)
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
| |
Collapse
|
4
|
Abstract
Marine organisms have developed physiological and biochemical strategies to survive under the exposure of UV-B radiation. In particular, Antarctic marine bacteria, exposed to extremes of temperature, UV and ice, have adapted to cope with UV radiation by producing photoprotective molecules. Here, we describe (1) the sampling strategy to collect marine samples (surface water/ice and sediment samples) and (2) the selection strategy to isolate in these samples only UV-resistant marine bacteria.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Naples, Italy
| | - Cinzia Verde
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Naples, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Daniela Giordano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Naples, Italy.
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy.
| |
Collapse
|
5
|
Ferric nitrosylated myoglobin catalyzes peroxynitrite scavenging. J Biol Inorg Chem 2020; 25:361-370. [PMID: 32172452 DOI: 10.1007/s00775-020-01767-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/13/2020] [Indexed: 01/12/2023]
Abstract
Myoglobin (Mb), generally taken as the molecular model of monomeric globular heme-proteins, is devoted: (i) to act as an intracellular oxygen reservoir, (ii) to transport oxygen from the sarcolemma to the mitochondria of vertebrate heart and red muscle cells, and (iii) to act as a scavenger of nitrogen and oxygen reactive species protecting mitochondrial respiration. Here, the first evidence of ·NO inhibition of ferric Mb- (Mb(III)) mediated detoxification of peroxynitrite is reported, at pH 7.2 and 20.0 °C. ·NO binds to Mb(III) with a simple equilibrium; the value of the second-order rate constant for Mb(III) nitrosylation (i.e., ·NOkon) is (6.8 ± 0.7) × 104 M-1 s-1 and the value of the first-order rate constant for Mb(III)-NO denitrosylation (i.e., ·NOkoff) is 3.1 ± 0.3 s-1. The calculated value of the dissociation equilibrium constant for Mb(III)-NO complex formation (i.e., ·NOkoff/·NOkon = (4.6 ± 0.7) × 10-5 M) is virtually the same as that directly measured (i.e., ·NOK = (3.8 ± 0.5) × 10-5 M). In the absence of ·NO, Mb(III) catalyzes the conversion of peroxynitrite to NO3-, the value of the second-order rate constant (i.e., Pkon) being (1.9 ± 0.2) × 104 M-1 s-1. However, in the presence of ·NO, Mb(III)-mediated detoxification of peroxynitrite is only partially inhibited, underlying the possibility that also Mb(III)-NO is able to catalyze the peroxynitrite isomerization, though with a reduced rate (Pkon* = (2.8 ± 0.3) × 103 M-1 s-1). These data expand the multiple roles of ·NO in modulating heme-protein actions, envisaging a delicate balancing between peroxynitrite and ·NO, which is modulated through the relative amount of Mb(III) and Mb(III)-NO.
Collapse
|
6
|
Giordano D, Boubeta FM, di Prisco G, Estrin DA, Smulevich G, Viappiani C, Verde C. Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins. Antioxid Redox Signal 2020; 32:396-411. [PMID: 31578873 DOI: 10.1089/ars.2019.7887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Fernando Martín Boubeta
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
7
|
Myxococcus xanthus truncated globin HbO: in silico analysis and functional characterization. Mol Biol Rep 2019; 46:2101-2110. [PMID: 30729391 DOI: 10.1007/s11033-019-04662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
Truncated globins are 20-40 amino acids shorter than full length globins. Till date, globins have been characterized predominantly from bacteria involved in pathogenicity, nitrogen fixation and photosynthesis, where they are implicated in bacterial virulence within the host, protection of nitrogenase from oxygen inactivation and prevention of oxidative damage to the photosynthetic machinery respectively. Myxococcus xanthus, the model myxobacterium, is an obligate aerobe with a multicellular stage in its life cycle where cells encounter oxygen limitation. This work was undertaken to investigate the potential role of the truncated globin in M. xanthus. To examine the role of globins in this unique group of bacteria, the gene coding for a putative truncated globin (HbO) was identified in the genome of M. xanthus DK 1622. The sequence analysis by bioinformatics approaches revealed that HbO from M. xanthus (Mx-HbO) likely adopts a 2-on-2 alpha helical fold of the truncated globins. The gene coding for Mx-HbO was cloned and its expression in E. coli imparted reddish tinge to the cells. The spectral analysis confirmed it to be a functional globin. The expression of Mx-HbO in the heterologous host improved its growth, resulting in the attainment of higher cell density in culture. The transcript of Mx-hbO was induced threefold in the host cells when grown under low aeration condition as compared to the cells grown under high aeration condition. In M. xanthus, an obligate aerobe, where cell growth accompanies swarming, there is a higher density of cells in the middle of the swarm. Our results suggest that Mx-HbO is a functional globin and could facilitate the growth of cells facing oxygen deprivation, the condition prevailing in the middle of the swarm.
Collapse
|
8
|
De Simone G, di Masi A, Polticelli F, Ascenzi P. Human nitrobindin: the first example of an all-β-barrel ferric heme-protein that catalyzes peroxynitrite detoxification. FEBS Open Bio 2018; 8:2002-2010. [PMID: 30524950 PMCID: PMC6275384 DOI: 10.1002/2211-5463.12534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/29/2018] [Accepted: 09/26/2018] [Indexed: 11/12/2022] Open
Abstract
Nitrobindins (Nbs), constituting a heme‐protein family spanning from bacteria to Homo sapiens, display an all‐β‐barrel structural organization. Human Nb has been described as a domain of the nuclear protein named THAP4, whose physiological function is still unknown. We report the first evidence of the heme‐Fe(III)‐based detoxification of peroxynitrite by the all‐β‐barrel C‐terminal Nb‐like domain of THAP4. Ferric human Nb (Nb(III)) catalyzes the conversion of peroxynitrite to NO3− and impairs the nitration of free l‐tyrosine. The rate of human Nb(III)‐mediated scavenging of peroxynitrite is similar to those of all‐α‐helical horse heart and sperm whale myoglobin and human hemoglobin, generally taken as the prototypes of all‐α‐helical heme‐proteins. The heme‐Fe(III) reactivity of all‐β‐barrel human Nb(III) and all‐α‐helical prototypical heme‐proteins possibly reflects the out‐to‐in‐plane transition of the heme‐Fe(III)‐atom preceding peroxynitrite binding. Human Nb(III) not only catalyzes the detoxification of peroxynitrite but also binds NO, possibly representing a target of reactive nitrogen species.
Collapse
Affiliation(s)
| | | | - Fabio Polticelli
- Department of Sciences Roma Tre University Italy.,National Institute of Nuclear Physics Roma Tre Section Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy Roma Tre University Italy
| |
Collapse
|
9
|
Boubeta FM, Boechi L, Estrin D, Patrizi B, Di Donato M, Iagatti A, Giordano D, Verde C, Bruno S, Abbruzzetti S, Viappiani C. Cold-Adaptation Signatures in the Ligand Rebinding Kinetics to the Truncated Hemoglobin of the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC125. J Phys Chem B 2018; 122:11649-11661. [PMID: 30230844 DOI: 10.1021/acs.jpcb.8b07682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologues, resulting in enhanced reaction rates at low temperatures. In this context, protein-bound water molecules were suggested to play a major role, and their weaker interactions at protein active sites have been associated with cold adaptation. In this work, we tested this hypothesis on truncated hemoglobins (a family of microbial heme-proteins of yet-unclear function) applying molecular dynamics simulations and ligand-rebinding kinetics on a protein from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 in comparison with its thermophilic Thermobifida fusca homologue. The CO rebinding kinetics of the former highlight several geminate phases, with an unusually long-lived geminate intermediate. An articulated tunnel with at least two distinct docking sites was identified by analysis of molecular dynamics simulations and was suggested to be at the origin of the unusual geminate rebinding phase. Water molecules are present in the distal pocket, but their stabilization by TrpG8, TyrB10, and HisCD1 is much weaker than in thermophilic Thermobifida fusca truncated hemoglobin, resulting in a faster geminate rebinding. Our results support the hypothesis that weaker water-molecule interactions at the reaction site are associated with cold adaptation.
Collapse
Affiliation(s)
- Fernando M Boubeta
- Instituto de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET, and Universidad de Buenos Aires , C1428EHA Buenos Aires , Argentina
| | - Leonardo Boechi
- Instituto de Calculo, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , C1428EGA Buenos Aires , Argentina
| | - Dario Estrin
- Instituto de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET, and Universidad de Buenos Aires , C1428EHA Buenos Aires , Argentina
| | - Barbara Patrizi
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy.,INO-CNR, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche , Largo Fermi 6 , 50125 Florence , Italy
| | - Mariangela Di Donato
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy.,INO-CNR, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche , Largo Fermi 6 , 50125 Florence , Italy
| | - Alessandro Iagatti
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR , Via Pietro Castellino 111 , I-80131 Naples , Italy.,Stazione Zoologica Anton Dohrn , Villa Comunale , 80121 Naples , Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR , Via Pietro Castellino 111 , I-80131 Naples , Italy.,Stazione Zoologica Anton Dohrn , Villa Comunale , 80121 Naples , Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , Parco Area delle Scienze 23A , 43124 , Parma , Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco Area delle Scienze 7A , 43124 , Parma , Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco Area delle Scienze 7A , 43124 , Parma , Italy
| |
Collapse
|
10
|
Ascenzi P, Coletta M. Peroxynitrite Detoxification by Human Haptoglobin:Hemoglobin Complexes: A Comparative Study. J Phys Chem B 2018; 122:11100-11107. [DOI: 10.1021/acs.jpcb.8b05340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Via Montpellier 1, I-00133 Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
11
|
Feis A, Howes BD, Milazzo L, Coppola D, Smulevich G. Structural determinants of ligand binding in truncated hemoglobins: Resonance Raman spectroscopy of the native states and their carbon monoxide and hydroxide complexes. Biopolymers 2018; 109:e23114. [DOI: 10.1002/bip.23114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Alessandro Feis
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Barry D. Howes
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Lisa Milazzo
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Daniela Coppola
- Dipartimento di Scienze bio-agroalimentari del CNR (DiSBA-CNR), CNR, Via Pietro Castellino 111; Naples I-80131 Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| |
Collapse
|
12
|
Coexistence of multiple globin genes conferring protection against nitrosative stress to the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Nitric Oxide 2018; 73:39-51. [DOI: 10.1016/j.niox.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022]
|
13
|
Ascenzi P, Pesce A. Peroxynitrite scavenging by Campylobacter jejuni truncated hemoglobin P. J Biol Inorg Chem 2017; 22:1141-1150. [DOI: 10.1007/s00775-017-1490-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
|
14
|
Nitrosative stress defences of the enterohepatic pathogenic bacterium Helicobacter pullorum. Sci Rep 2017; 7:9909. [PMID: 28855660 PMCID: PMC5577044 DOI: 10.1038/s41598-017-10375-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/07/2017] [Indexed: 01/28/2023] Open
Abstract
Helicobacter pullorum is an avian bacterium that causes gastroenteritis, intestinal bowel and hepatobiliary diseases in humans. Although H. pullorum has been shown to activate the mammalian innate immunity with release of nitric oxide (NO), the proteins that afford protection against NO and reactive nitrogen species (RNS) remain unknown. Here several protein candidates of H. pullorum, namely a truncated (TrHb) and a single domain haemoglobin (SdHb), and three peroxiredoxin-like proteins (Prx1, Prx2 and Prx3) were investigated. We report that the two haemoglobin genes are induced by RNS, and that SdHb confers resistance to nitrosative stress both in vitro and in macrophages. For peroxiredoxins, the prx2 and prx3 expression is enhanced by peroxynitrite and hydrogen peroxide, respectively. Mutation of prx1 does not alter the resistance to these stresses, while the single ∆prx2 and double ∆prx1∆prx2 mutants have decreased viability. To corroborate the physiological data, the biochemical analysis of the five recombinant enzymes was done, namely by stopped-flow spectrophotometry. It is shown that H. pullorum SdHb reacts with NO much more quickly than TrHb, and that the three Prxs react promptly with peroxynitrite, Prx3 displaying the highest reactivity. Altogether, the results unveil SdHb and Prx3 as major protective systems of H. pullorum against nitrosative stress.
Collapse
|
15
|
Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P. Biofertilizers: a potential approach for sustainable agriculture development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3315-3335. [PMID: 27888482 DOI: 10.1007/s11356-016-8104-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.
Collapse
Affiliation(s)
- Trishna Mahanty
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Madhurankhi Goswami
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Purnita Bhattacharyya
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Bannhi Das
- Department of Biotechnology, Mount Carmel College, Bangalore, 560 052, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, 700054, India
| | - Prosun Tribedi
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India.
| |
Collapse
|
16
|
Robinson JL, Brynildsen MP. Discovery and dissection of metabolic oscillations in the microaerobic nitric oxide response network of Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:E1757-66. [PMID: 26951670 PMCID: PMC4812703 DOI: 10.1073/pnas.1521354113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The virulence of many pathogens depends upon their ability to cope with immune-generated nitric oxide (NO·). In Escherichia coli, the major NO· detoxification systems are Hmp, an NO· dioxygenase (NOD), and NorV, an NO· reductase (NOR). It is well established that Hmp is the dominant system under aerobic conditions, whereas NorV dominates anaerobic conditions; however, the quantitative contributions of these systems under the physiologically relevant microaerobic regime remain ill defined. Here, we investigated NO· detoxification in environments ranging from 0 to 50 μM O2, and discovered a regime in which E. coli NO· defenses were severely compromised, as well as conditions that exhibited oscillations in the concentration of NO·. Using an integrated computational and experimental approach, E. coli NO· detoxification was found to be extremely impaired at low O2 due to a combination of its inhibitory effects on NorV, Hmp, and translational activities, whereas oscillations were found to result from a kinetic competition for O2 between Hmp and respiratory cytochromes. Because at least 777 different bacterial species contain the genetic requirements of this stress response oscillator, we hypothesize that such oscillatory behavior could be a widespread phenomenon. In support of this hypothesis,Pseudomonas aeruginosa, whose respiratory and NO· response networks differ considerably from those of E. coli, was found to exhibit analogous oscillations in low O2 environments. This work provides insight into how bacterial NO· defenses function under the low O2 conditions that are likely to be encountered within host environments.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|
17
|
Pesce A, Bustamante JP, Bidon-Chanal A, Boechi L, Estrin DA, Luque FJ, Sebilo A, Guertin M, Bolognesi M, Ascenzi P, Nardini M. The N-terminal pre-A region of Mycobacterium tuberculosis 2/2HbN promotes NO-dioxygenase activity. FEBS J 2015; 283:305-22. [PMID: 26499089 DOI: 10.1111/febs.13571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/09/2015] [Accepted: 08/16/2015] [Indexed: 01/24/2023]
Abstract
UNLABELLED A unique defense mechanisms by which Mycobacterium tuberculosis protects itself from nitrosative stress is based on the O2 -dependent NO-dioxygenase (NOD) activity of truncated hemoglobin 2/2HbN (Mt2/2HbN). The NOD activity largely depends on the efficiency of ligand migration to the heme cavity through a two-tunnel (long and short) system; recently, it was also correlated with the presence at the Mt2/2HbN N-terminus of a short pre-A region, not conserved in most 2/2HbNs, whose deletion results in a drastic reduction of NO scavenging. In the present study, we report the crystal structure of Mt2/2HbN-ΔpreA, lacking the pre-A region, at a resolution of 1.53 Å. We show that removal of the pre-A region results in long range effects on the protein C-terminus, promoting the assembly of a stable dimer, both in the crystals and in solution. In the Mt2/2HbN-ΔpreA dimer, access of heme ligands to the short tunnel is hindered. Molecular dynamics simulations show that the long tunnel branch is the only accessible pathway for O2 -ligand migration to/from the heme, and that the gating residue Phe(62)E15 partly restricts the diameter of the tunnel. Accordingly, kinetic measurements indicate that the kon value for peroxynitrite isomerization by Mt2/2HbN-ΔpreA-Fe(III) is four-fold lower relative to the full-length protein, and that NO scavenging by Mt2/2HbN-ΔpreA-Fe(II)-O2 is reduced by 35-fold. Therefore, we speculate that Mt2/2HbN evolved to host the pre-A region as a mechanism for preventing dimerization, thus reinforcing the survival of the microorganism against the reactive nitrosative stress in macrophages. DATABASE Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 5AB8.
Collapse
Affiliation(s)
| | - Juan P Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | - Axel Bidon-Chanal
- Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | - Francisco Javier Luque
- Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Anne Sebilo
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec, Canada
| | - Michel Guertin
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec, Canada
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Italy.,CNR-IBF and CIMAINA, University of Milan, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Rome, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milan, Italy
| |
Collapse
|
18
|
Giordano D, Pesce A, Boechi L, Bustamante JP, Caldelli E, Howes BD, Riccio A, di Prisco G, Nardini M, Estrin D, Smulevich G, Bolognesi M, Verde C. Structural flexibility of the heme cavity in the cold-adapted truncated hemoglobin from the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. FEBS J 2015; 282:2948-65. [PMID: 26040838 DOI: 10.1111/febs.13335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/17/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
Truncated hemoglobins build one of the three branches of the globin protein superfamily. They display a characteristic two-on-two α-helical sandwich fold and are clustered into three groups (I, II and III) based on distinct structural features. Truncated hemoglobins are present in eubacteria, cyanobacteria, protozoa and plants. Here we present a structural, spectroscopic and molecular dynamics characterization of a group-II truncated hemoglobin, encoded by the PSHAa0030 gene from Pseudoalteromonas haloplanktis TAC125 (Ph-2/2HbO), a cold-adapted Antarctic marine bacterium hosting one flavohemoglobin and three distinct truncated hemoglobins. The Ph-2/2HbO aquo-met crystal structure (at 2.21 Å resolution) shows typical features of group-II truncated hemoglobins, namely the two-on-two α-helical sandwich fold, a helix Φ preceding the proximal helix F, and a heme distal-site hydrogen-bonded network that includes water molecules and several distal-site residues, including His(58)CD1. Analysis of Ph-2/2HbO by electron paramagnetic resonance, resonance Raman and electronic absorption spectra, under varied solution conditions, shows that Ph-2/2HbO can access diverse heme ligation states. Among these, detection of a low-spin heme hexa-coordinated species suggests that residue Tyr(42)B10 can undergo large conformational changes in order to act as the sixth heme-Fe ligand. Altogether, the results show that Ph-2/2HbO maintains the general structural features of group-II truncated hemoglobins but displays enhanced conformational flexibility in the proximity of the heme cavity, a property probably related to the functional challenges, such as low temperature, high O2 concentration and low kinetic energy of molecules, experienced by organisms living in the Antarctic environment.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | | | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Juan Pablo Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Elena Caldelli
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Barry D Howes
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Alessia Riccio
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Italy
| | - Dario Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Giulietta Smulevich
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Italy.,CNR-Institute of Biophysics and CIMAINA, University of Milano, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy.,Department of Biology, Roma 3 University, Italy
| |
Collapse
|
19
|
Ascenzi P, Leboffe L, Santucci R, Coletta M. Ferric microperoxidase-11 catalyzes peroxynitrite isomerization. J Inorg Biochem 2015; 144:56-61. [DOI: 10.1016/j.jinorgbio.2014.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 11/24/2022]
|
20
|
de Lorenzo V, Sekowska A, Danchin A. Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol Rev 2014; 39:96-119. [PMID: 25227915 DOI: 10.1111/1574-6976.12089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, we examine how bacterial metabolism is shaped by chemical constraints acting on the material and dynamic layout of enzymatic networks and beyond. These are moulded not only for optimisation of given metabolic objectives (e.g. synthesis of a particular amino acid or nucleotide) but also for curbing the detrimental reactivity of chemical intermediates. Besides substrate channelling, toxicity is avoided by barriers to free diffusion (i.e. compartments) that separate otherwise incompatible reactions, along with ways for distinguishing damaging vs. harmless molecules. On the other hand, enzymes age and their operating lifetime must be tuned to upstream and downstream reactions. This time dependence of metabolic pathways creates time-linked information, learning and memory. These features suggest that the physical structure of existing biosystems, from operon assemblies to multicellular development may ultimately stem from the need to restrain chemical damage and limit the waste inherent to basic metabolic functions. This provides a new twist of our comprehension of fundamental biological processes in live systems as well as practical take-home lessons for the forward DNA-based engineering of novel biological objects.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco-Madrid, Spain
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
21
|
Ascenzi P, Leboffe L, Pesce A, Ciaccio C, Sbardella D, Bolognesi M, Coletta M. Nitrite-reductase and peroxynitrite isomerization activities of Methanosarcina acetivorans protoglobin. PLoS One 2014; 9:e95391. [PMID: 24827820 PMCID: PMC4020757 DOI: 10.1371/journal.pone.0095391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/25/2014] [Indexed: 12/04/2022] Open
Abstract
Within the globin superfamily, protoglobins (Pgb) belong phylogenetically to the same cluster of two-domain globin-coupled sensors and single-domain sensor globins. Multiple functional roles have been postulated for Methanosarcina acetivorans Pgb (Ma-Pgb), since the detoxification of reactive nitrogen and oxygen species might co-exist with enzymatic activity(ies) to facilitate the conversion of CO to methane. Here, the nitrite-reductase and peroxynitrite isomerization activities of the CysE20Ser mutant of Ma-Pgb (Ma-Pgb*) are reported and analyzed in parallel with those of related heme-proteins. Kinetics of nitrite-reductase activity of ferrous Ma-Pgb* (Ma-Pgb*-Fe(II)) is biphasic and values of the second-order rate constant for the reduction of NO2– to NO and the concomitant formation of nitrosylated Ma-Pgb*-Fe(II) (Ma-Pgb*-Fe(II)-NO) are kapp1 = 9.6±0.2 M–1 s–1 and kapp2 = 1.2±0.1 M–1 s–1 (at pH 7.4 and 20°C). The kapp1 and kapp2 values increase by about one order of magnitude for each pH unit decrease, between pH 8.3 and 6.2, indicating that the reaction requires one proton. On the other hand, kinetics of peroxynitrite isomerization catalyzed by ferric Ma-Pgb* (Ma-Pgb*-Fe(III)) is monophasic and values of the second order rate constant for peroxynitrite isomerization by Ma-Pgb*-Fe(III) and of the first order rate constant for the spontaneous conversion of peroxynitrite to nitrate are happ = 3.8×104 M–1 s–1 and h0 = 2.8×10–1 s–1 (at pH 7.4 and 20°C). The pH-dependence of hon and h0 values reflects the acid-base equilibrium of peroxynitrite (pKa = 6.7 and 6.9, respectively; at 20°C), indicating that HOONO is the species that reacts preferentially with the heme-Fe(III) atom. These results highlight the potential role of Pgbs in the biosynthesis and scavenging of reactive nitrogen and oxygen species.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
- National Institute of Biostructures and Biosystems, Roma, Italy
- * E-mail:
| | - Loris Leboffe
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
| | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | | | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| |
Collapse
|
22
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
23
|
Abstract
Small size globins that have been defined as 'truncated haemoglobins' or as '2/2 haemoglobins' have increasingly been discovered in microorganisms since the early 1990s. Analysis of amino acid sequences allowed to distinguish three groups that collect proteins with specific and common structural properties. All three groups display 3D structures that are based on four main α-helices, which are a subset of the conventional eight-helices globin fold. Specific features, such as the presence of protein matrix tunnels that are held to promote diffusion of functional ligands to/from the haem, distinguish members of the three groups. Haem distal sites vary for their accessibility, local structures, polarity, and ligand stabilization mechanisms, suggesting functional roles that are related to O2/NO chemistry. In a few cases, such activities have been proven in vitro and in vivo through deletion mutants. The issue of 2/2 haemoglobin varied biological functions throughout the three groups remains however fully open.
Collapse
|
24
|
Tinajero-Trejo M, Jesse HE, Poole RK. Gasotransmitters, poisons, and antimicrobials: it's a gas, gas, gas! F1000PRIME REPORTS 2013; 5:28. [PMID: 23967379 PMCID: PMC3732073 DOI: 10.12703/p5-28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We review recent examples of the burgeoning literature on three gases that have major impacts in biology and microbiology. NO, CO and H2S are now co-classified as endogenous gasotransmitters with profound effects on mammalian physiology and, potentially, major implications in therapeutic applications. All are well known to be toxic yet, at tiny concentrations in human and cell biology, play key signalling and regulatory functions. All may also be endogenously generated in microbes. NO and H2S share the property of being biochemically detoxified, yet are beneficial in resisting the bactericidal properties of antibiotics. The mechanism underlying this protection is currently under debate. CO, in contrast, is not readily removed; mounting evidence shows that CO, and especially organic donor compounds that release the gas in biological environments, are themselves effective, novel antimicrobial agents.
Collapse
|
25
|
Russo R, Giordano D, di Prisco G, Hui Bon Hoa G, Marden MC, Verde C, Kiger L. Ligand-rebinding kinetics of 2/2 hemoglobin from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1932-8. [PMID: 23429181 DOI: 10.1016/j.bbapap.2013.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 11/16/2022]
Abstract
Kinetic studies were performed on ligand rebinding to a cold-adapted globin of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (Ph-2/2HbO). This 2/2 hemoglobin displays a rapid spectroscopic phase that is independent of CO concentration, followed by the standard bimolecular recombination. While the geminate recombination usually occurs on a ns timescale, Ph-2/2HbO displays a component of about 1μs that accounts for half of the geminate phase at 8°C, indicative of a relatively slow internal ligand binding. The O2 binding kinetics were measured in competition with CO to allow a short-time exposure of the deoxy hemes to O2 before CO replacement. Indeed Ph-2/2HbO is readily oxidised in the presence of O2, probably due to a superoxide character of the FeO2 bond induced by of a hydrogen-bond donor amino-acid residue. Upon O2 release or iron oxidation a distal residue (probably Tyr) is able to reversibly bind to the heme and as such to compete for binding with an external ligand. The transient hexacoordinated ferrous His-Fe-Tyr conformation after O2 dissociation could initiate the electron transfer from the iron toward its final acceptor, molecular O2 under our conditions. The hexacoordination via the distal Tyr is only partial, indicating a weak interaction between Tyr and the heme under atmospheric pressure. Hydrostatic high pressure enhances the hexacoordination indicating a flexible globin that allows structural changes. The O2 binding affinity for Ph-2/2HbO, poorly affected by the competition with Tyr, is about 1Torr at 8°C, pH7.0, which is compatible for an in vivo O2 binding function; however, this globin is more likely involved in a redox reaction associating diatomic ligands and their derived oxidative species. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|