1
|
Bhat AA, Altamimi ASA, Goyal A, Goyal K, Kaur I, Kumar S, Sharma N, Kumar MR, Ali H, Thapa R, Negi P, Singh SK, Gupta G. The role of CD95 in modulating CAR T-cell therapy: Challenges and therapeutic opportunities in oncology. Int Immunopharmacol 2025; 144:113675. [PMID: 39608172 DOI: 10.1016/j.intimp.2024.113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
CAR T cell therapy has revolutionized how we deliver cancer treatment, most notably for hematologic cancers, by compelling T cells to recognize and kill tumor cells. Nevertheless, current obstacles to utilizing this therapy in solid tumors and overcoming cancer resistance include radicalization. This review discusses how CD95 modulation can boost CAR T cell efficacy. Traditionally, CD95 was known to execute apoptosis induction, but it plays a dual role in induced cell death or in supporting cancer cell survival. Recent data have demonstrated that cancer cells escape CD95-mediated apoptosis via the downregulation of CD95, caspase 8 mutation, or the expression of the inhibition protein cFLIP. Additionally, the immunosuppressive tumor microenvironment, containing CD95L expressing immune cells, explains CAR T cell therapy resistance. Furthermore, we characterize the therapeutic potential of CD95 targeted approaches, including CD95L inhibition (APG101) and alterations in CAR T cell manufacturing (tyrosine kinase inhibitors to mitigate fratricide). In this review, we highlight the importance of multi-path way strategies combining CD95 modulation with CAR T cell engineering to overcome resistance, specifically to target tumor cells better and sustain CAR T cell persistence to enhance treatment efficacy in solid tumors.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, Punjab, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173212, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
2
|
Kural MH, Djakbarova U, Cakir B, Tanaka Y, Chan ET, Arteaga Muniz VI, Madraki Y, Qian H, Park J, Sewanan LR, Park IH, Niklason LE, Kural C. Mechano-inhibition of endocytosis sensitizes cancer cells to Fas-induced Apoptosis. Cell Death Dis 2024; 15:440. [PMID: 38909035 PMCID: PMC11193792 DOI: 10.1038/s41419-024-06822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The transmembrane death receptor Fas transduces apoptotic signals upon binding its ligand, FasL. Although Fas is highly expressed in cancer cells, insufficient cell surface Fas expression desensitizes cancer cells to Fas-induced apoptosis. Here, we show that the increase in Fas microaggregate formation on the plasma membrane in response to the inhibition of endocytosis sensitizes cancer cells to Fas-induced apoptosis. We used a clinically accessible Rho-kinase inhibitor, fasudil, that reduces endocytosis dynamics by increasing plasma membrane tension. In combination with exogenous soluble FasL (sFasL), fasudil promoted cancer cell apoptosis, but this collaborative effect was substantially weaker in nonmalignant cells. The combination of sFasL and fasudil prevented glioblastoma cell growth in embryonic stem cell-derived brain organoids and induced tumor regression in a xenograft mouse model. Our results demonstrate that sFasL has strong potential for apoptosis-directed cancer therapy when Fas microaggregate formation is augmented by mechano-inhibition of endocytosis.
Collapse
Affiliation(s)
- Mehmet H Kural
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | | | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, H1T 2M4, Canada
| | - Emily T Chan
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Hong Qian
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
- Humacyte Inc., Durham, NC, 27213, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Lorenzo R Sewanan
- Department of Internal Medicine, Columbia University, New York, NY, 10032, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Laura E Niklason
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
4
|
Young D, Das N, Anowai A, Dufour A. Matrix Metalloproteases as Influencers of the Cells' Social Media. Int J Mol Sci 2019; 20:E3847. [PMID: 31394726 PMCID: PMC6720954 DOI: 10.3390/ijms20163847] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been studied in the context of cancer due to their ability to increase cell invasion, and were initially thought to facilitate metastasis solely through the degradation of the extracellular matrix (ECM). MMPs have also been investigated in the context of their ECM remodeling activity in several acute and chronic inflammatory diseases. However, after several MMP inhibitors failed in phase III clinical trials, a global reassessment of their biological functions was undertaken, which has revealed multiple unanticipated functions including the processing of chemokines, cytokines, and cell surface receptors. Despite what their name suggests, the matrix aspect of MMPs could contribute to a lesser part of their physiological functions in inflammatory diseases, as originally anticipated. Here, we present examples of MMP substrates implicated in cell signaling, independent of their ECM functions, and discuss the impact for the use of MMP inhibitors.
Collapse
Affiliation(s)
- Daniel Young
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nabangshu Das
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anthonia Anowai
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
5
|
Agorku DJ, Langhammer A, Heider U, Wild S, Bosio A, Hardt O. CD49b, CD87, and CD95 Are Markers for Activated Cancer-Associated Fibroblasts Whereas CD39 Marks Quiescent Normal Fibroblasts in Murine Tumor Models. Front Oncol 2019; 9:716. [PMID: 31428583 PMCID: PMC6690267 DOI: 10.3389/fonc.2019.00716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Fibroblasts are thought to be key players in the tumor microenvironment. Means to identify and isolate fibroblasts as well as an understanding of their cancer-specific features are essential to dissect their role in tumor biology. To date, the identification of cancer-associated fibroblasts is widely based on generic markers for activated fibroblasts in combination with their origin in tumor tissue. This study was focused on a deep characterization of the cell surface marker profile of cancer-associated fibroblasts in widely used mouse tumor models and defining aberrant expression profiles by comparing them to their healthy counterparts. We established a generic workflow to isolate healthy and cancer-associated fibroblasts from solid tissues, thereby reducing bias, and background noise introduced by non-target cells. We identified CD87, CD44, CD49b, CD95, and Ly-6C as cancer-associated fibroblast cell surface markers, while CD39 was identified to mark normal fibroblasts from healthy tissues. In addition, we found a functional association of most cancer-related fibroblast markers to proliferation and a systemic upregulation of CD87, and CD49b in tumor-bearing mice, even in non-affected tissues. These novel markers will facilitate the characterization of fibroblasts and shed further light in their functions and implication in cancer progression.
Collapse
Affiliation(s)
- David J Agorku
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.,HAN Master Programmes, HAN University of Applied Sciences, Nijmegen, Netherlands
| | | | - Ute Heider
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Stefan Wild
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | - Olaf Hardt
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| |
Collapse
|
6
|
Shirjang S, Mansoori B, Asghari S, Duijf PHG, Mohammadi A, Gjerstorff M, Baradaran B. MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic Biol Med 2019; 139:1-15. [PMID: 31102709 DOI: 10.1016/j.freeradbiomed.2019.05.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
To protect tissues and the organism from disease, potentially harmful cells are removed through programmed cell death processes, including apoptosis and necroptosis. These types of cell death are critically controlled by microRNAs (miRNAs). MiRNAs are short RNA molecules that target and inhibit expression of many cellular regulators, including those controlling programmed cell death via the intrinsic (Bcl-2 and Mcl-1), extrinsic (TRAIL and Fas), p53-and endoplasmic reticulum (ER) stress-induced apoptotic pathways, as well as the necroptosis cell death pathway. In this review, we discuss the current knowledge of apoptosis and necroptosis pathways and how these are impaired in cancer cells. We focus on how miRNAs disrupt apoptosis and necroptosis, thereby critically contributing to malignancy. Understanding which and how miRNAs and their targets affect cell death pathways could open up novel therapeutic opportunities for cancer patients. Indeed, restoration of pro-apoptotic tumor suppressor miRNAs (apoptomiRs) or inhibition of oncogenic miRNAs (oncomiRs) represent strategies that are currently being trialed or are already applied as miRNA-based cancer therapies. Therefore, better understanding the cancer type-specific expression of apoptomiRs and oncomiRs and their underlying mechanisms in cell death pathways will not only advance our knowledge, but also continue to provide new opportunities to treat cancer.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Samira Asghari
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Item F, Wueest S, Lemos V, Stein S, Lucchini FC, Denzler R, Fisser MC, Challa TD, Pirinen E, Kim Y, Hemmi S, Gulbins E, Gross A, O'Reilly LA, Stoffel M, Auwerx J, Konrad D. Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function. Nat Commun 2017; 8:480. [PMID: 28883393 PMCID: PMC5589858 DOI: 10.1038/s41467-017-00566-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease is one of the most prevalent metabolic disorders and it tightly associates with obesity, type 2 diabetes, and cardiovascular disease. Reduced mitochondrial lipid oxidation contributes to hepatic fatty acid accumulation. Here, we show that the Fas cell surface death receptor (Fas/CD95/Apo-1) regulates hepatic mitochondrial metabolism. Hepatic Fas overexpression in chow-fed mice compromises fatty acid oxidation, mitochondrial respiration, and the abundance of mitochondrial respiratory complexes promoting hepatic lipid accumulation and insulin resistance. In line, hepatocyte-specific ablation of Fas improves mitochondrial function and ameliorates high-fat-diet-induced hepatic steatosis, glucose tolerance, and insulin resistance. Mechanistically, Fas impairs fatty acid oxidation via the BH3 interacting-domain death agonist (BID). Mice with genetic or pharmacological inhibition of BID are protected from Fas-mediated impairment of mitochondrial oxidation and hepatic steatosis. We suggest Fas as a potential novel therapeutic target to treat obesity-associated fatty liver and insulin resistance. Hepatic steatosis is a common disease closely associated with metabolic syndrome and insulin resistance. Here Item et al. show that Fas, a member of the TNF receptor superfamily, contributes to mitochondrial dysfunction, steatosis development, and insulin resistance under high fat diet.
Collapse
Affiliation(s)
- Flurin Item
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, CH-8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, CH-8032, Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, CH-8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, CH-8032, Zurich, Switzerland
| | - Vera Lemos
- Metabolic Signaling, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sokrates Stein
- Metabolic Signaling, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Fabrizio C Lucchini
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, CH-8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, CH-8032, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Rémy Denzler
- Institute of Molecular Health Sciences, ETH Zurich, CH-8093, Zurich, Switzerland.,Competence Center of Systems Physiology and Metabolic Disease, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Muriel C Fisser
- Institute of Molecular Health Sciences, ETH Zurich, CH-8093, Zurich, Switzerland.,Competence Center of Systems Physiology and Metabolic Disease, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Tenagne D Challa
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, CH-8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, CH-8032, Zurich, Switzerland
| | - Eija Pirinen
- Laboratory of Integrative and Systems Physiology (LISP), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.,Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Youngsoo Kim
- Ionis Pharmaceuticals Inc., Carlsbad, 92010, California, USA
| | - Silvio Hemmi
- Institute of Molecular Life Sciences, University of Zurich, CH-8057, Zurich, Switzerland
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, D-45147, Germany
| | - Atan Gross
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3050, Australia
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, CH-8093, Zurich, Switzerland.,Competence Center of Systems Physiology and Metabolic Disease, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology (LISP), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, CH-8032, Zurich, Switzerland. .,Children's Research Center, University Children's Hospital, CH-8032, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
8
|
Czamara K, Petko F, Baranska M, Kaczor A. Raman microscopy at the subcellular level: a study on early apoptosis in endothelial cells induced by Fas ligand and cycloheximide. Analyst 2017; 141:1390-7. [PMID: 26765153 DOI: 10.1039/c5an02202a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High spatially resolved Raman microscopy was applied to study the early apoptosis in endothelial cells and chemical and structural changes induced by this process. Application of cluster analysis enabled separation of signals due to various subcellular organelles and compartments such as the nuclei, nucleoli, endoplasmic reticulum or cytoplasm and analysis of alterations locally at the subcellular level. Different stimuli, i.e. Fas ligand, a tumor necrosis factor, and cycloheximide, an inhibitor of eukaryotic protein biosynthesis, were applied to induce apoptotic mechanisms. Due to different mechanisms of action, the changes observed in subcellular structures were different for FasL and cycloheximide. Although in both cases a statistically significant decrease of the protein level was observed in all studied cellular structures, the increase of the nucleic acids content locally in apoptotic nuclei was considerably more pronounced upon FasL-induced apoptosis compared to the cycloheximide one. Additionally, apoptosis invokes also a decrease of the proteins with the α-helix protein structure selectively for FasL in the cytoplasm and endoplasmic reticulum.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland. and Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Filip Petko
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland. and Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland. and Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| |
Collapse
|
9
|
O' Reilly E, Tirincsi A, Logue SE, Szegezdi E. The Janus Face of Death Receptor Signaling during Tumor Immunoediting. Front Immunol 2016; 7:446. [PMID: 27843441 PMCID: PMC5086583 DOI: 10.3389/fimmu.2016.00446] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
Cancer immune surveillance is essential for the inhibition of carcinogenesis. Malignantly transformed cells can be recognized by both the innate and adaptive immune systems through different mechanisms. Immune effector cells induce extrinsic cell death in the identified tumor cells by expressing death ligand cytokines of the tumor necrosis factor ligand family. However, some tumor cells can escape immune elimination and progress. Acquisition of resistance to the death ligand-induced apoptotic pathway can be obtained through cleavage of effector cell expressed death ligands into a poorly active form, mutations or silencing of the death receptors, or overexpression of decoy receptors and pro-survival proteins. Although the immune system is highly effective in the elimination of malignantly transformed cells, abnormal/dysfunctional death ligand signaling curbs its cytotoxicity. Moreover, DRs can also transmit pro-survival and pro-migratory signals. Consequently, dysfunctional death receptor-mediated apoptosis/necroptosis signaling does not only give a passive resistance against cell death but actively drives tumor cell motility, invasion, and contributes to consequent metastasis. This dual contribution of the death receptor signaling in both the early, elimination phase, and then in the late, escape phase of the tumor immunoediting process is discussed in this review. Death receptor agonists still hold potential for cancer therapy since they can execute the tumor-eliminating immune effector function even in the absence of activation of the immune system against the tumor. The opportunities and challenges of developing death receptor agonists into effective cancer therapeutics are also discussed.
Collapse
Affiliation(s)
- Eimear O' Reilly
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland , Galway , Ireland
| | - Andrea Tirincsi
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland , Galway , Ireland
| | - Susan E Logue
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland , Galway , Ireland
| | - Eva Szegezdi
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland , Galway , Ireland
| |
Collapse
|
10
|
Chakrabandhu K, Hueber AO. Fas Versatile Signaling and Beyond: Pivotal Role of Tyrosine Phosphorylation in Context-Dependent Signaling and Diseases. Front Immunol 2016; 7:429. [PMID: 27799932 PMCID: PMC5066474 DOI: 10.3389/fimmu.2016.00429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
The Fas/FasL system is known, first and foremost, as a potent apoptosis activator. While its proapoptotic features have been studied extensively, evidence that the Fas/FasL system can elicit non-death signals has also accumulated. These non-death signals can promote survival, proliferation, migration, and invasion of cells. The key molecular mechanism that determines the shift from cell death to non-death signals had remained unclear until the recent identification of the tyrosine phosphorylation in the death domain of Fas as the reversible signaling switch. In this review, we present the connection between the recent findings regarding the control of Fas multi-signals and the context-dependent signaling choices. This information can help explain variable roles of Fas signaling pathway in different pathologies.
Collapse
|
11
|
Regulation of viability, differentiation and death of human melanoma cells carrying neural stem cell biomarkers: a possibility for neural trans-differentiation. Apoptosis 2016; 20:996-1015. [PMID: 25953317 DOI: 10.1007/s10495-015-1131-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During embryonic development, melanoblasts, the precursors of melanocytes, emerge from a subpopulation of the neural crest stem cells and migrate to colonize skin. Melanomas arise during melanoblast differentiation into melanocytes and from young proliferating melanocytes through somatic mutagenesis and epigenetic regulations. In the present study, we used several human melanoma cell lines from the sequential phases of melanoma development (radial growth phase, vertical growth phase and metastatic phase) to compare: (i) the frequency and efficiency of the induction of cell death via apoptosis and necroptosis; (ii) the presence of neural and cancer stem cell biomarkers as well as death receptors, DR5 and FAS, in both adherent and spheroid cultures of melanoma cells; (iii) anti-apoptotic effects of the endogenous production of cytokines and (iv) the ability of melanoma cells to perform neural trans-differentiation. We demonstrated that programed necrosis or necroptosis, could be induced in two metastatic melanoma lines, FEMX and OM431, while the mitochondrial pathway of apoptosis was prevalent in a vast majority of melanoma lines. All melanoma lines used in the current study expressed substantial levels of pluripotency markers, SOX2 and NANOG. There was a trend for increasing expression of Nestin, an early neuroprogenitor marker, during melanoma progression. Most of the melanoma lines, including WM35, FEMX and A375, can grow as a spheroid culture in serum-free media with supplements. It was possible to induce neural trans-differentiation of 1205Lu and OM431 melanoma cells in serum-free media supplemented with insulin. This was confirmed by the expression of neuronal markers, doublecortin and β3-Tubulin, by significant growth of neurites and by the negative regulation of this process by a dominant-negative Rac1N17. These results suggest a relative plasticity of differentiated melanoma cells and a possibility for their neural trans-differentiation without the necessity for preliminary dedifferentiation.
Collapse
|
12
|
The role of CD95 and CD95 ligand in cancer. Cell Death Differ 2015; 22:549-59. [PMID: 25656654 PMCID: PMC4356349 DOI: 10.1038/cdd.2015.3] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/27/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023] Open
Abstract
CD95 (Fas/APO-1) and its ligand, CD95L, have long been viewed as a death receptor/death ligand system that mediates apoptosis induction to maintain immune homeostasis. In addition, these molecules are important in the immune elimination of virus-infected cells and cancer cells. CD95L was, therefore, considered to be useful for cancer therapy. However, major side effects have precluded its systemic use. During the last 10 years, it has been recognized that CD95 and CD95L have multiple cancer-relevant nonapoptotic and tumor-promoting activities. CD95 and CD95L were discovered to be critical survival factors for cancer cells, and were found to protect and promote cancer stem cells. We now discuss five different ways in which inhibiting or eliminating CD95L, rather than augmenting, may be beneficial for cancer therapy alone or in combination with standard chemotherapy or immune therapy.
Collapse
|
13
|
Li L, Yao YC, Fang SH, Ma CQ, Cen Y, Xu ZM, Dai ZY, Li C, Li S, Zhang T, Hong HH, Qi WW, Zhou T, Li CY, Yang X, Gao GQ. Pigment epithelial-derived factor (PEDF)-triggered lung cancer cell apoptosis relies on p53 protein-driven Fas ligand (Fas-L) up-regulation and Fas protein cell surface translocation. J Biol Chem 2014; 289:30785-30799. [PMID: 25225287 DOI: 10.1074/jbc.m114.590000] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), a potent antiangiogenesis agent, has recently attracted attention for targeting tumor cells in several types of tumors. However, less is known about the apoptosis-inducing effect of PEDF on human lung cancer cells and the underlying molecular events. Here we report that PEDF has a growth-suppressive and proapoptotic effect on lung cancer xenografts. Accordingly, in vitro, PEDF apparently induced apoptosis in A549 and Calu-3 cells, predominantly via the Fas-L/Fas death signaling pathway. Interestingly, A549 and Calu-3 cells are insensitive to the Fas-L/Fas apoptosis pathway because of the low level of cell surface Fas. Our results revealed that, in addition to the enhancement of Fas-L expression, PEDF increased the sensitivity of A549 and Calu-3 cells to Fas-L-mediated apoptosis by triggering the translocation of Fas protein to the plasma membrane in a p53- and FAP-1-dependent manner. Similarly, the up-regulation of Fas-L by PEDF was also mediated by p53. Furthermore, peroxisome proliferator-activated receptor γ was determined to be the upstream regulator of p53. Together, these findings uncover a novel mechanism of tumor cell apoptosis induced by PEDF and provide a potential therapeutic strategy for tumors that are insensitive to Fas-L/Fas-dependent apoptosis because of a low level of cell surface Fas.
Collapse
Affiliation(s)
- Lei Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China,; Department of Reproductive Medicine Center, Key Laboratory for Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Ya-Chao Yao
- Laboratory Center of Guangdong No. 2 Provincial People's Hospital, Guangzhou 510317, Guangdong Province, China
| | - Shu-Huan Fang
- DME Center, Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cai-Qi Ma
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Cen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zu-Min Xu
- Cancer Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524000, China
| | - Zhi-Yu Dai
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cen Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuai Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hong-Hai Hong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Wei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao-Yang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China,.
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China,; China Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China, and.
| | - Guo-Quan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China,; Key Laboratory of Functional Molecules from Marine Microorganisms, Sun Yat-sen University, Department of Education of Guangdong Province, Guangdong 510080, China.
| |
Collapse
|
14
|
Abstract
The conventional view of CD95 (Fas/APO-1) is that it is a dedicated apoptosis-inducing receptor with important functions in immune cell homeostasis and in viral and tumor defense. There is an emerging recognition, however, that CD95 also has multiple non-apoptotic activities. In the context of cancer, CD95 was shown to have tumor-promoting activities, and the concept of this new function of CD95 in cancer is gaining traction. Recently, we showed that not only is CD95 a growth promoter for cancer cells, but, paradoxically, when either CD95 or CD95 ligand (CD95L) is removed, that virtually all cancer cells die through a process we have named DICE (death induced by CD95R/L elimination). In this perspective, I outline a hypothesis regarding the physiological function of DICE, and why it may be possible to use induction of DICE to treat many, if not most, cancers.
Collapse
Affiliation(s)
- Marcus E Peter
- Northwestern University; Feinberg School of Medicine; Division Hematology/Oncology; Chicago, IL USA
| |
Collapse
|
15
|
Liu Q, Tan Q, Zheng Y, Chen K, Qian C, Li N, Wang Q, Cao X. Blockade of Fas signaling in breast cancer cells suppresses tumor growth and metastasis via disruption of Fas signaling-initiated cancer-related inflammation. J Biol Chem 2014; 289:11522-11535. [PMID: 24627480 DOI: 10.1074/jbc.m113.525014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mechanisms for cancer-related inflammation remain to be fully elucidated. Non-apoptotic functions of Fas signaling have been proposed to play an important role in promoting tumor progression. It has yet to be determined if targeting Fas signaling can control tumor progression through suppression of cancer-related inflammation. In the current study we found that breast cancer cells with constitutive Fas expression were resistant to apoptosis induction by agonistic anti-Fas antibody (Jo2) ligation or Fas ligand cross-linking. Higher expression of Fas in human breast cancer tissue has been significantly correlated with poorer prognosis in breast cancer patients. To determine whether blockade of Fas signaling in breast cancer could suppress tumor progression, we prepared an orthotopic xenograft mouse model with mammary cancer cells 4T1 and found that blockade of Fas signaling in 4T1 cancer cells markedly reduced tumor growth, inhibited tumor metastasis in vivo, and prolonged survival of tumor-bearing mice. Mechanistically, blockade of Fas signaling in cancer cells significantly decreased systemic or local recruitment of myeloid derived suppressor cells (MDSCs) in vivo. Furthermore, blockade of Fas signaling markedly reduced IL-6, prostaglandin E2 production from breast cancer cells by impairing p-p38, and activity of the NFκB pathway. In addition, administration of a COX-2 inhibitor and anti-IL-6 antibody significantly reduced MDSC accumulation in vivo. Therefore, blockade of Fas signaling can suppress breast cancer progression by inhibiting proinflammatory cytokine production and MDSC accumulation, indicating that Fas signaling-initiated cancer-related inflammation in breast cancer cells may be a potential target for treatment of breast cancer.
Collapse
Affiliation(s)
- Qiuyan Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China,.
| | - Qinchun Tan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China, and
| | - Yuanyuan Zheng
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Kun Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China, and
| | - Cheng Qian
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Nan Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China, and
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China,; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China, and; National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
16
|
Guo XX, Li Y, Sun C, Jiang D, Lin YJ, Jin FX, Lee SK, Jin YH. p53-dependent Fas expression is critical for Ginsenoside Rh2 triggered caspase-8 activation in HeLa cells. Protein Cell 2014; 5:224-34. [PMID: 24622841 PMCID: PMC3967063 DOI: 10.1007/s13238-014-0027-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/12/2014] [Indexed: 11/29/2022] Open
Abstract
We have recently reported that Ginsenoside Rh2 (G-Rh2) induces the activation of two initiator caspases, caspase-8 and caspase-9 in human cancer cells. However, the molecular mechanism of its death-inducing function remains unclear. Here we show that G-Rh2 stimulated the activation of both caspase-8 and caspase-9 simultaneously in HeLa cells. Under G-Rh2 treatment, membrane death receptors Fas and TNFR1 are remarkably upregulated. However, the induced expression of Fas but not TNFR1 was contributed to the apoptosis process. Moreover, significant increases in Fas expression and caspase-8 activity temporally coincided with an increase in p53 expression in p53-non-mutated HeLa and SK-HEP-1 cells upon G-Rh2 treatment. In contrast, Fas expression and caspase-8 activity remained constant with G-Rh2 treatment in p53-mutated SW480 and PC-3 cells. In addition, siRNA-mediated knockdown of p53 diminished G-Rh2-induced Fas expression and caspase-8 activation. These results indicated that G-Rh2-triggered extrinsic apoptosis relies on p53-mediated Fas over-expression. In the intrinsic apoptotic pathway, G-Rh2 induced strong and immediate translocation of cytosolic BAK and BAX to the mitochondria, mitochondrial cytochrome c release, and subsequent caspase-9 activation both in HeLa and in SW480 cells. p53-mediated Fas expression and subsequent downstream caspase-8 activation as well as p53-independent caspase-9 activation all contribute to the activation of the downstream effector caspase-3/-7, leading to tumor cell death. Taken together, we suggest that G-Rh2 induces cancer cell apoptosis in a multi-path manner and is therefore a promising candidate for anti-tumor drug development.
Collapse
Affiliation(s)
- Xiao-Xi Guo
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Modulation of hippocampal neuroplasticity by Fas/CD95 regulatory protein 2 (Faim2) in the course of bacterial meningitis. J Neuropathol Exp Neurol 2014; 73:2-13. [PMID: 24335530 PMCID: PMC3978830 DOI: 10.1097/nen.0000000000000020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Supplemental digital content is available in the text. Fas-apoptotic inhibitory molecule 2 (Faim2) is a neuron-specific membrane protein and a member of the evolutionary conserved lifeguard apoptosis regulatory gene family. Its neuroprotective effect in acute neurological diseases has been demonstrated in an in vivo model of focal cerebral ischemia. Here we show that Faim2 is physiologically expressed in the human brain with a changing pattern in cases of infectious meningoencephalitis.In Faim2-deficient mice, there was increased caspase-associated hippocampal apoptotic cell death and an increased extracellular signal-regulated kinase pattern during acute bacterial meningitis induced by subarachnoid infection with Streptococcus pneumoniae type 3 strain. However, after rescuing the animals by antibiotic treatment, Faim2 deficiency led to increased hippocampal neurogenesis at 7 weeks after infection. This was associated with improved performance of Faim2-deficient mice compared to wild-type littermates in the Morris water maze, a paradigm for hippocampal spatial learning and memory. Thus, Faim2 deficiency aggravated degenerative processes in the acute phase but induced regenerative processes in the repair phase of a mouse model of pneumococcal meningitis. Hence, time-dependent modulation of neuroplasticity by Faim2 may offer a new therapeutic approach for reducing hippocampal neuronal cell death and improving cognitive deficits after bacterial meningitis.
Collapse
|
18
|
Multidrug resistance in chronic myeloid leukaemia: how much can we learn from MDR-CML cell lines? Biosci Rep 2013; 33:BSR20130067. [PMID: 24070327 PMCID: PMC3839595 DOI: 10.1042/bsr20130067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The hallmark of CML (chronic myeloid leukaemia) is the BCR (breakpoint cluster region)-ABL fusion gene. CML evolves through three phases, based on both clinical and pathological features: a chronic phase, an accelerated phase and blast crisis. TKI (tyrosine kinase inhibitors) are the treatment modality for patients with chronic phase CML. The therapeutic potential of the TKI imatinib is affected by BCR-ABL dependent an independent mechanisms. Development of MDR (multidrug resistance) contributes to the overall clinical resistance. MDR involves overexpression of ABC -transporters (ATP-binding-cassette transporter) among other features. MDR studies include the analysis of cancer cell lines selected for resistance. CML blast crisis is accompanied by increased resistance to apoptosis. This work reviews the role played by the influx transporter OCT1 (organic cation transporter 1), by efflux ABC transporters, molecules involved in the modulation of apoptosis (p53, Bcl-2 family, CD95, IAPs (inhibitors of apoptosis protein)], Hh and Wnt/β-catenin pathways, cytoskeleton abnormalities and other features described in leukaemic cells of clinical samples and CML cell lines. An MDR cell line, Lucena-1, generated from K562 by stepwise exposure to vincristine, was used as our model and some potential anticancer drugs effective against the MDR cell line and patients' samples are presented.
Collapse
|
19
|
Leiszter K, Galamb O, Sipos F, Krenács T, Veres G, Wichmann B, Kalmár A, Patai ÁV, Tóth K, Valcz G, Molnár B, Tulassay Z. Sporadic colorectal cancer development shows rejuvenescence regarding epithelial proliferation and apoptosis. PLoS One 2013; 8:e74140. [PMID: 24098334 PMCID: PMC3789736 DOI: 10.1371/journal.pone.0074140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/29/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS Sporadic colorectal cancer (CRC) development is a sequential process showing age-dependency, uncontrolled epithelial proliferation and decreased apoptosis. During juvenile growth cellular proliferation and apoptosis are well balanced, which may be perturbed upon aging. Our aim was to correlate proliferative and apoptotic activities in aging human colonic epithelium and colorectal cancer. We also tested the underlying molecular biology concerning the proliferation- and apoptosis-regulating gene expression alterations. MATERIALS AND METHODS Colorectal biopsies from healthy children (n1 = 14), healthy adults (n2 = 10), adult adenomas (n3 = 10) and CRCs (n4 = 10) in adults were tested for Ki-67 immunohistochemistry and TUNEL apoptosis assay. Mitosis- and apoptosis-related gene expression was also studied in healthy children (n1 = 6), adult (n2 = 41) samples and in CRC (n3 = 34) in HGU133plus2.0 microarray platform. Measured alterations were confirmed with RT-PCR both on dependent and independent sample sets (n1 = 6, n2 = 6, n3 = 6). RESULTS Mitotic index (MI) was significantly higher (p<0.05) in intact juvenile (MI = 0.33±0.06) and CRC samples (MI = 0.42±0.10) compared to healthy adult samples (MI = 0.15±0.06). In contrast, apoptotic index (AI) was decreased in children (0.13±0.06) and significantly lower in cancer (0.06±0.03) compared to healthy adult samples (0.17±0.05). Eight proliferation- (e.g. MKI67, CCNE1) and 11 apoptosis-associated genes (e.g. TNFSF10, IFI6) had altered mRNA expression both in the course of normal aging and carcinogenesis, mainly inducing proliferation and reducing apoptosis compared to healthy adults. Eight proliferation-associated genes including CCND1, CDK1, CDK6 and 26 apoptosis-regulating genes (e.g. SOCS3) were differently expressed between juvenile and cancer groups mostly supporting the pronounced cell growth in CRC. CONCLUSION Colorectal samples from children and CRC patients can be characterized by similarly increased proliferative and decreased apoptotic activities compared to healthy colonic samples from adults. Therefore, cell kinetic alterations during colorectal cancer development show uncontrolled rejuvenescence as opposed to the controlled cell growth in juvenile colonic epithelium.
Collapse
Affiliation(s)
- Katalin Leiszter
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Orsolya Galamb
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Veres
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Barnabás Wichmann
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Alexandra Kalmár
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Árpád V. Patai
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Kinga Tóth
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Valcz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Béla Molnár
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Tulassay
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
20
|
Hau A, Ceppi P, Peter ME. CD95 is part of a let-7/p53/miR-34 regulatory network. PLoS One 2012; 7:e49636. [PMID: 23166734 PMCID: PMC3498227 DOI: 10.1371/journal.pone.0049636] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/16/2012] [Indexed: 12/25/2022] Open
Abstract
The death receptor CD95 (APO-1/Fas) mediates apoptosis induction upon ligation by its cognate ligand CD95L. Two types of CD95 signaling pathways have been identified, which are characterized by the absence (Type I) or presence (Type II) of mitochondrial involvement. Micro(mi)RNAs are small noncoding RNAs that negatively regulate gene expression. They are important regulators of differentiation processes and are found frequently deregulated in many human cancers. We recently showed that Type I cells express less of the differentiation marker miRNA let-7 and, hence, likely represent more advanced tumor cells than the let-7 high expressing Type II cells. We have now identified miR-34a as a selective marker for cells that are sensitive to CD95-mediated apoptosis. Both CD95 and miR-34a are p53 target genes, and consequently, both the sensitivity of cancer cells to CD95-mediated apoptosis and the ability to respond to p53 mediated DNA genotoxic stress are linked. Interestingly, while miR-34a was found to positively correlate with the ability of cells to respond to genotoxic stress, let-7 was negatively correlated. The expression level of CD95 inversely correlated with the expression of let-7 suggesting regulation of let-7 expression by CD95. To test a link between p53 and miR-34a, we altered the expression of CD95. This affected the ability of cells to activate p53 and to regulate miR-34a. Our data point to a novel regulatory network comprising p53, CD95, let-7, and miR-34a that affects cancer cell survival, differentiation, and sensitivity to apoptotic signals. The possible relevance of this regulatory network for cancer stem cells is discussed.
Collapse
Affiliation(s)
- Annika Hau
- Feinberg School of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, Illinois, United States of America
| | - Paolo Ceppi
- Feinberg School of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, Illinois, United States of America
| | - Marcus E. Peter
- Feinberg School of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
21
|
Wang Z, Huang C, Zeng J, Deng Q, Zeng H, Liu Z, Peng X, Bi F, Tang Q, Li Z. Effects of the proapoptotic regulator Bcl-2/adenovirus EIB 19-kDa-interacting protein 3 on the chemosensitivity of human colon cancer cell lines. Oncol Lett 2012. [PMID: 23205118 DOI: 10.3892/ol.2012.933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the clinical setting, drug resistance remains a significant obstacle for successful chemotherapy. Bcl-2/adenovirus EIB 19-kDa-interacting protein 3 (BNIP3) is a proapoptotic member of the Bcl-2 family. To address its potential as a therapeutic target for chemosensitisation, this study investigated the effect of BNIP3 expression on chemosensitivity and reversal of oxaliplatin (L-OHP) resistance in human colon cancer cell lines. A plasmid expressing the BNIP3 gene was transfected into human parental colon cancer cell lines (SW620 and colo320) and L-OHP-resistant colon cancer cell lines (SW620/L-OHP and colo320/L-OHP) using Lipofectamine™ 2000, and the transfection efficiency was determined using fluorescence optics. Western blot analysis identified that SW620/L-OHP and colo320/L-OHP cells expressed lower levels of BNIP3 protein compared with the SW620 and colo320 cells. Transfection with the recombinant BNIP3 plasmid revealed an increase in BNIP3 expression in tumour cells. Following transfection with pDsRed-BNIP3, the chemosensitivity of parental and L-OHP-resistant cell lines to L-OHP was increased (P<0.01), as detected by the Cell Counting Kit-8 (CCK8) assay. Hoechst 33342 staining and flow cytometry revealed that the effects on L-OHP-induced apoptosis were enhanced by the overexpression of BNIP3. Chemosensitisation in human colon cancer cells was observed following treatment with the recombinant BNIP3 plasmid in vitro. The results of this study suggest that BNIP3 is a potential therapeutic target for reversing the resistance of L-OHP-resistant colon cancer cells to L-OHP.
Collapse
Affiliation(s)
- Zi Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ranjan K, Surolia A, Pathak C. Apoptotic potential of Fas-associated death domain on regulation of cell death regulatory protein cFLIP and death receptor mediated apoptosis in HEK 293T cells. J Cell Commun Signal 2012; 6:155-68. [PMID: 22791313 DOI: 10.1007/s12079-012-0166-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/09/2012] [Indexed: 12/28/2022] Open
Abstract
Fas-associated death domain (FADD) is a common adaptor molecule which plays an important role in transduction of death receptor mediated apoptosis. The FADD provides DED motif for binding to both procaspase-8 and cFLIP molecules which executes death receptor mediated apoptosis. Dysregulated expression of FADD and cFLIP may contribute to inhibition of apoptosis and promote cell survival in cancer. Moreover elevated intracellular level of cFLIP competitively excludes the binding of procaspase-8 to the death effector domain (DED) of FADD at the DISC to block the activation of death receptor signaling required for apoptosis. Increasing evidence shows that defects in FADD protein expression are associated with progression of malignancies and resistance to apoptosis. Therefore, improved expression and function of FADD may provide new paradigms for regulation of cell proliferation and survival in cancer. In the present study, we have examined the potential of FADD in induction of apoptosis by overexpression of FADD in HEK 293T cells and validated further its consequences on the expression of pro and anti-apoptotic proteins besides initiation of death receptor mediated signaling. We have found deficient expression of FADD and elevated expression of cFLIP(L) in HEK 293T cells. Our results demonstrate that over expression of FADD attenuates the expression of anti-apoptotic protein cFLIP and activates the cascade of extrinsic caspases to execution of apoptosis in HEK 293T cells.
Collapse
Affiliation(s)
- Kishu Ranjan
- Cell Biology Department, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba, Gandhinagar, 382007, India
| | | | | |
Collapse
|
23
|
Tauzin S, Debure L, Moreau JF, Legembre P. CD95-mediated cell signaling in cancer: mutations and post-translational modulations. Cell Mol Life Sci 2012; 69:1261-77. [PMID: 22042271 PMCID: PMC11115069 DOI: 10.1007/s00018-011-0866-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/10/2011] [Accepted: 10/14/2011] [Indexed: 01/20/2023]
Abstract
Apoptosis has emerged as a fundamental process important in tissue homeostasis, immune response, and during development. CD95 (also known as Fas), a member of the tumor necrosis factor receptor (TNF-R) superfamily, has been initially cloned as a death receptor. Its cognate ligand, CD95L, is mainly found at the plasma membrane of activated T-lymphocytes and natural killer cells where it contributes to the elimination of transformed and infected cells. According to its implication in the immune homeostasis and immune surveillance, and since several malignant cells of various histological origins exhibit loss-of-function mutations, which cause resistance towards the CD95-mediated apoptotic signal, CD95 has been classified as a tumor suppressor gene. Nevertheless, this assumption has been recently challenged, as in certain pathophysiological contexts, CD95 engagement transmits non-apoptotic signals that promote inflammation, carcinogenesis or liver/peripheral nerve regeneration. The focus of this review is to discuss these apparent contradictions of the known function(s) of CD95.
Collapse
Affiliation(s)
- Sébastien Tauzin
- Université Rennes-1, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Laure Debure
- IRSET, Team “Death Receptors and Tumor Escape”, 2 Av du Prof. Léon Bernard, 35043 Rennes, France
| | - Jean-François Moreau
- Université de Bordeaux-2, UMR CNRS 5164, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Patrick Legembre
- University of Rennes-1, IRSET (Institut de Recherche sur la Santé l’Environnement et le Travail), Team “Death Receptors and Tumor Escape”, 2 av Prof Léon Bernard, 35043 Rennes cedex, France
| |
Collapse
|
24
|
Potential for modulation of the fas apoptotic pathway by epidermal growth factor in sarcomas. Sarcoma 2011; 2011:847409. [PMID: 22135505 PMCID: PMC3206362 DOI: 10.1155/2011/847409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/18/2022] Open
Abstract
One important mechanism by which cancer cells parasitize their host is by escaping apoptosis. Thus, selectively facilitating apoptosis is a therapeutic mechanism by which oncotherapy may prove highly advantageous. One major apoptotic pathway is mediated by Fas ligand (FasL). The death-inducing signaling Ccmplex (DISC) and subsequent death-domain aggregations are created when FasL is bound by its receptor thereby enabling programmed cell death. Conceptually, if a better understanding of the Fas pathway can be garnered, an oncoselective prodeath therapeutic approach can be tailored. Herein, we propose that EGF and CTGF play essential roles in the regulation of the Fas apoptotic pathway in sarcomas. Tumor and in vitro data suggest viable cells counter the prodeath signal induced by FasL by activating EGF, which in turn induces prosurvival CTGF. The prosurvival attributes of CTGF ultimately predominate over the death-inducing FasL. Cells destined for elimination inhibit this prosurvival response via a presently undefined pathway. This scenario represents a novel role for EGF and CTGF as regulators of the Fas pathway in sarcomas.
Collapse
|
25
|
A shear stress responsive gene product PP1201 protects against Fas-mediated apoptosis by reducing Fas expression on the cell surface. Apoptosis 2011; 16:162-73. [PMID: 21107705 DOI: 10.1007/s10495-010-0556-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cells that form vascular system employ different mechanisms to offset deleterious consequences of exposure to cytokines and cells present in blood. Vascular homeostasis is sustained in part by genes, whose expression increases in response to hemodynamic forces in these cells. PP1201 (also known as RECS1) is one such gene whose expression level increases in response to laminar shear stress. Aged mice deficient in PP1201 are prone to develop cystic medial degeneration (CMD), a form of aortic aneurism manifested with loss of smooth muscle cells and accumulation of basophilic substances. Here we found that higher levels of PP1201 can protect against Fas ligand (FasL)-induced apoptosis. PP1201 interacted with the Fas receptor (CD95/Apo1) and colocalized with it in the Golgi compartment. Unlike its homolog lifeguard (LFG), PP1201 overexpression in several types of cells including primary human aortic smooth muscle cells (AoSMC) decreased the expression of Fas on the plasma membrane without changing the total Fas levels. Only high but not constitutive level of PP1201 controls Fas signaling. Our data suggest that PP1201 functions as an anti-apoptotic protein and its increased expression in vascular cells can contribute to homeostasis by reducing Fas trafficking to the cell membrane.
Collapse
|
26
|
Tauzin S, Chaigne-Delalande B, Selva E, Khadra N, Daburon S, Contin-Bordes C, Blanco P, Le Seyec J, Ducret T, Counillon L, Moreau JF, Hofman P, Vacher P, Legembre P. The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway. PLoS Biol 2011; 9:e1001090. [PMID: 21713032 PMCID: PMC3119658 DOI: 10.1371/journal.pbio.1001090] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/11/2011] [Indexed: 02/06/2023] Open
Abstract
Patients affected by chronic inflammatory disorders display high amounts of soluble CD95L. This homotrimeric ligand arises from the cleavage by metalloproteases of its membrane-bound counterpart, a strong apoptotic inducer. In contrast, the naturally processed CD95L is viewed as an apoptotic antagonist competing with its membrane counterpart for binding to CD95. Recent reports pinpointed that activation of CD95 may attract myeloid and tumoral cells, which display resistance to the CD95-mediated apoptotic signal. However, all these studies were performed using chimeric CD95Ls (oligomerized forms), which behave as the membrane-bound ligand and not as the naturally processed CD95L. Herein, we examine the biological effects of the metalloprotease-cleaved CD95L on CD95-sensitive activated T-lymphocytes. We demonstrate that cleaved CD95L (cl-CD95L), found increased in sera of systemic lupus erythematosus (SLE) patients as compared to that of healthy individuals, promotes the formation of migrating pseudopods at the leading edge of which the death receptor CD95 is capped (confocal microscopy). Using different migration assays (wound healing/Boyden Chamber/endothelial transmigration), we uncover that cl-CD95L promotes cell migration through a c-yes/Ca²⁺/PI3K-driven signaling pathway, which relies on the formation of a CD95-containing complex designated the MISC for Motility-Inducing Signaling Complex. These findings revisit the role of the metalloprotease-cleaved CD95L and emphasize that the increase in cl-CD95L observed in patients affected by chronic inflammatory disorders may fuel the local or systemic tissue damage by promoting tissue-filtration of immune cells.
Collapse
Affiliation(s)
- Sébastien Tauzin
- Université de Rennes-1, Rennes, France
- IRSET/EA-4427 SeRAIC, Rennes, France
| | | | - Eric Selva
- Université de Nice Sophia antipolis, INSERM ERI21/EA 4319, Nice, France
| | - Nadine Khadra
- Université de Rennes-1, Rennes, France
- IRSET/EA-4427 SeRAIC, Rennes, France
| | - Sophie Daburon
- CNRS UMR 5164, Bordeaux, France
- Université de Bordeaux-2, Bordeaux, France
| | - Cécile Contin-Bordes
- CNRS UMR 5164, Bordeaux, France
- Université de Bordeaux-2, Bordeaux, France
- CHU Bordeaux, Bordeaux, France
| | - Patrick Blanco
- CNRS UMR 5164, Bordeaux, France
- Université de Bordeaux-2, Bordeaux, France
- CHU Bordeaux, Bordeaux, France
| | - Jacques Le Seyec
- Université de Rennes-1, Rennes, France
- IRSET/EA-4427 SeRAIC, Rennes, France
| | - Thomas Ducret
- Université de Bordeaux-2, Bordeaux, France
- INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Laurent Counillon
- Université de Nice-Sophia Antipolis, UMR 6097 Faculté des Sciences Parc Valrose, Nice, France
| | - Jean-François Moreau
- CNRS UMR 5164, Bordeaux, France
- Université de Bordeaux-2, Bordeaux, France
- CHU Bordeaux, Bordeaux, France
| | - Paul Hofman
- Université de Nice Sophia antipolis, INSERM ERI21/EA 4319, Nice, France
- CHU de Nice et Centre de Ressources Biologiques-Tumorothèque, Nice, France
| | - Pierre Vacher
- Université de Bordeaux-2, Bordeaux, France
- INSERM U916, Institut Bergonié, Bordeaux, France
| | - Patrick Legembre
- Université de Rennes-1, Rennes, France
- IRSET/EA-4427 SeRAIC, Rennes, France
- CNRS UMR 5164, Bordeaux, France
- Université de Bordeaux-2, Bordeaux, France
| |
Collapse
|
27
|
Abstract
Death receptor (DR) signaling has a major impact on the outcome of numerous neurological diseases, including ischemic stroke. DRs mediate not only cell death signals, but also proinflammatory responses and cell proliferation. Identification of regulatory proteins that control the switch between apoptotic and alternative DR signaling opens new therapeutic opportunities. Fas apoptotic inhibitory molecule 2 (Faim2) is an evolutionary conserved, neuron-specific inhibitor of Fas/CD95-mediated apoptosis. To investigate its role during development and in disease models, we generated Faim2-deficient mice. The ubiquitous null mutation displayed a viable and fertile phenotype without overt deficiencies. However, lack of Faim2 caused an increase in susceptibility to combined oxygen-glucose deprivation in primary neurons in vitro as well as in caspase-associated cell death, stroke volume, and neurological impairment after cerebral ischemia in vivo. These processes were rescued by lentiviral Faim2 gene transfer. In summary, we provide evidence that Faim2 is a novel neuroprotective molecule in the context of cerebral ischemia.
Collapse
|
28
|
Abstract
The hepatocyte is especially vulnerable to injury due to its central role in xenobiotic metabolism including drugs and alcohol, participation in lipid and fatty acid metabolism, its unique role in the enterohepatic circulation of bile acids, the widespread prevalence of hepatotropic viruses, and its existence within a milieu of innate immune responding cells. Apoptosis and necrosis are the most widely recognized forms of hepatocyte cell death. The hepatocyte displays many unique features regarding cell death by apoptosis. It is quite susceptible to death receptor-mediated injury, and its death receptor signaling pathways involve the mitochondrial pathway for efficient cell killing. Also, death receptors can trigger lysosomal disruption in hepatocytes which further promote cell and tissue injury. Interestingly, hepatocytes are protected from cell death by only two anti-apoptotic proteins, Bcl-x(L) and Mcl-1, which have nonredundant functions. Endoplasmic reticulum stress or the unfolded protein response contributes to hepatocyte cell death during alterations of lipid and fatty acid metabolism. Finally, the current information implicating RIP kinases in necrosis provides an approach to more fully address this mode of cell death in hepatocyte injury. All of these processes contributing to hepatocyte injury are discussed in the context of potential therapeutic strategies.
Collapse
Affiliation(s)
- Harmeet Malhi
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
29
|
Schickel R, Park SM, Murmann AE, Peter ME. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 2010; 38:908-15. [PMID: 20620960 DOI: 10.1016/j.molcel.2010.05.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/27/2010] [Accepted: 05/09/2010] [Indexed: 12/20/2022]
Abstract
Tumor progression shares many characteristics with the process of epithelial-to-mesenchymal transition (EMT). Cells that have undergone an EMT are known to have an increased resistance to apoptosis. CD95/Fas is an apoptosis-inducing receptor expressed on many tissues and tumor cells. During tumor progression CD95 is frequently downregulated, and tumor cells lose apoptosis sensitivity. miR-200 microRNAs repress both the EMT-inducing ZEB1 and ZEB2 transcription factors. We now demonstrate that miR-200c sensitizes cells to apoptosis mediated by CD95. We have identified the apoptosis inhibitor FAP-1 as a target for miR-200c. FAP-1 was demonstrated to be responsible for the reduced sensitivity to CD95-mediated apoptosis in cells with inhibited miR-200. The identification of FAP-1 as an miR-200c target provides a molecular mechanism to explain both the downregulation of CD95 expression and the reduction in sensitivity of cells to CD95-mediated apoptosis that is observed in the context of reduced miR-200 expression during tumor progression.
Collapse
Affiliation(s)
- Robert Schickel
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
30
|
Chen L, Park SM, Tumanov AV, Hau A, Sawada K, Feig C, Turner JR, Fu YX, Romero IL, Lengyel E, Peter ME. CD95 promotes tumour growth. Nature 2010; 465:492-6. [PMID: 20505730 PMCID: PMC2879093 DOI: 10.1038/nature09075] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 04/01/2010] [Indexed: 12/22/2022]
Abstract
CD95 (also called Fas and APO-1) is a prototypical death receptor that regulates tissue homeostasis mainly in the immune system through induction of apoptosis 1-3. During cancer progression CD95 is frequently downregulated or cells are rendered apoptosis resistant 4,5 raising the possibility that loss of CD95 is part of a mechanism for tumour evasion. However, complete loss of CD95 is rarely seen in human cancers 4 and many cancer cells express large quantities of CD95 and are highly sensitive to CD95 mediated apoptosis in vitro. Furthermore, cancer patients frequently have elevated levels of the physiological ligand for CD95, CD95L 6. These data raise the intriguing possibility that CD95 could actually promote the growth of tumours through its nonapoptotic activities 7. Here we show that cancer cells in general, regardless of their CD95 apoptosis sensitivity, depend on constitutive activity of CD95, stimulated by cancer-produced CD95L, for optimal growth. Consistently, loss of CD95 in mouse models of ovarian cancer and liver cancer reduces cancer incidence as well as the size of the tumours. The tumorigenic activity of CD95 is mediated by a pathway involving JNK and c-Jun. These results demonstrate that CD95 plays a growth promoting role during tumorigenesis and suggest that efforts to inhibit its activity rather than to enhance its activation should be considered during cancer therapy.
Collapse
Affiliation(s)
- Lina Chen
- The Ben May Department for Cancer Research, The University of Chicago, 924 E 57th Street, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ametller E, García-Recio S, Costamagna D, Mayordomo C, Fernández-Nogueira P, Carbó N, Pastor-Arroyo EM, Gascón P, Almendro V. Tumor promoting effects of CD95 signaling in chemoresistant cells. Mol Cancer 2010; 9:161. [PMID: 20573240 PMCID: PMC2906471 DOI: 10.1186/1476-4598-9-161] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/23/2010] [Indexed: 11/22/2022] Open
Abstract
Background CD95 is a death receptor controlling not only apoptotic pathways but also activating mechanisms promoting tumor growth. During the acquisition of chemoresistance to oxaliplatin there is a progressive loss of CD95 expression in colon cancer cells and a decreased ability of this receptor to induce cell death. The aim of this study was to characterize some key cellular responses controlled by CD95 signaling in oxaliplatin-resistant colon cancer cells. Results We show that CD95 triggering results in an increased metastatic ability in resistant cells. Moreover, oxaliplatin treatment itself stimulates cell migration and decreases cell adhesion through CD95 activation, since CD95 expression inhibition by siRNA blocks the promigratory effects of oxaliplatin. These promigratory effects are related to the epithelia-to-mesenchymal transition (EMT) phenomenon, as evidenced by the up-regulation of some transcription factors and mesenchymal markers both in vitro and in vivo. Conclusions We conclude that oxaliplatin treatment in cells that have acquired resistance to oxaliplatin-induced apoptosis results in tumor-promoting effects through the activation of CD95 signaling and by inducing EMT, all these events jointly contributing to a metastatic phenotype.
Collapse
Affiliation(s)
- Elisabet Ametller
- Medical Oncology, Institut d'Investigacions Biomèdiques Agustí Pi y Sunyer (IDIBAPS), Institut Clínic de Malalties Hemato-Oncològiques (ICMHO), Hospital Clínic, Facultat de Medicina, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Almendro V, Ametller E, García-Recio S, Collazo O, Casas I, Augé JM, Maurel J, Gascón P. The role of MMP7 and its cross-talk with the FAS/FASL system during the acquisition of chemoresistance to oxaliplatin. PLoS One 2009; 4:e4728. [PMID: 19266094 PMCID: PMC2648894 DOI: 10.1371/journal.pone.0004728] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022] Open
Abstract
Background The efficacy of oxaliplatin in cancer chemotherapy is limited by the development of drug resistance. MMP7 has been related to the loss of tumor cell response to cytotoxic agents although the exact mechanism is not fully understood. Moreover, MMP7 is an independent prognosis factor for survival in patients with colorectal cancer. The aim of the present study was to analyze the role of MMP7 and its cross-talk with the Fas/FasL system during the acquisition of oxaliplatin resistance in colon cancer cells. Principal Findings For this purpose we have developed three different oxaliplatin-resistant cell lines (RHT29, RHCT116 p53+/+, RHCT116 p53−/−) from the parental HT29, HCT116 p53+/+ and HCT116 p53−/− colon cancer cells. MMP7 basal expression was higher in the resistant compared to the parental cell lines. MMP7 was also upregulated by oxaliplatin in both HT29 (p53 mutant) and RHCT116 p53−/− but not in the RHCT116 p53+/+. Inhibition of MMP by 1,10-phenantroline monohydrate or siRNA of MMP7 restores cell sensitivity to oxaliplatin-induced apoptosis in both HT29 and RHCT116 p53−/− but not in the RHCT116 p53+/+. Some of these effects are caused by alterations in Fas receptor. Fas is upregulated by oxaliplatin in colon cancer cells, however the RHT29 cells treated with oxaliplatin showed a 3.8-fold lower Fas expression at the cell surface than the HT29 cells. Decrease of Fas at the plasma membrane seems to be caused by MMP7 since its inhibition restores Fas levels. Moreover, functional analysis of Fas demonstrates that this receptor was less potent in inducing apoptosis in RHT29 cells and that its activation induces MAPK signaling in resistant cells. Conclusions Taking together, these results suggest that MMP7 is related to the acquisition of oxaliplatin-resistance and that its inhibition restores drug sensitivity by increasing Fas receptor. Furthermore, Fas undergoes a change in its functionality in oxaliplatin-resistant cells inducing survival pathways instead of apoptotic signals.
Collapse
Affiliation(s)
- Vanessa Almendro
- Facultat de Medicina, Hospital Clínic, Institut d'Investigacions Biomèdiques Agustí Pi y Sunyer, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Death receptors are members of the tumor necrosis factor receptor superfamily characterized by a cytoplasmic region known as the "death domain" that enables the receptors to initiate cytotoxic signals when engaged by cognate ligands. Binding to the ligand results in receptor aggregation and recruitment of adaptor proteins, which, in turn, initiates a proteolytic cascade by recruiting and activating initiator caspases 8 and 10. Death receptors were once thought to primarily induce cytotoxic signaling cascades. However, recent data indicate that they initiate multiple signaling pathways, unveiling a number of nonapoptosis-related functions, including regulation of cell proliferation and differentiation, chemokine production, inflammatory responses, and tumor-promoting activities. These noncytotoxic cascades are not simply a manifestation of inhibiting proapoptotic pathways but are intrinsically regulated by adaptor protein and receptor internalization processes. Insights into these various death receptor signaling pathways provide new therapeutic strategies targeting these receptors in pathophysiological processes.
Collapse
Affiliation(s)
- Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | | |
Collapse
|
34
|
Ruan W, Lee CT, Desbarats J. A novel juxtamembrane domain in tumor necrosis factor receptor superfamily molecules activates Rac1 and controls neurite growth. Mol Biol Cell 2008; 19:3192-202. [PMID: 18508927 DOI: 10.1091/mbc.e08-02-0161] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Members of the tumor necrosis factor receptor (TNFR) superfamily control cell fate determination, including cell death and differentiation. Fas (CD95) is the prototypical "death receptor" of the TNFR superfamily and signals apoptosis through well established pathways. In the adult nervous system, Fas induces apoptosis in the context of neuropathology such as stroke or amyotrophic lateral sclerosis. However, during nervous system development, Fas promotes neurite growth and branching. The molecular mechanisms underlying Fas-induced process formation and branching have remained unknown to date. Here, we define the molecular pathway linking Fas to process growth and branching in cell lines and in developing neurons. We describe a new cytoplasmic membrane proximal domain (MPD) that is essential for Fas-induced process growth and that is conserved in members of the TNFR superfamily. We show that the Fas MPD recruits ezrin, a molecule that links transmembrane proteins to the cytoskeleton, and activates the small GTPase Rac1. Deletion of the MPD, but not the death domain, abolished Rac1 activation and process growth. Furthermore, an ezrin-derived inhibitory peptide prevented Fas-induced neurite growth in primary neurons. Our results define a new domain, topologically and functionally distinct from the death domain, which regulates neuritogenesis via recruitment of ezrin and activation of Rac1.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
35
|
Li H, Cai X, Fan X, Moquin B, Stoicov C, Houghton J. Fas Ag-FasL coupling leads to ERK1/2-mediated proliferation of gastric mucosal cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G263-75. [PMID: 17991709 DOI: 10.1152/ajpgi.00267.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
When cells within the gastric mucosa progress from metaplasia to dysplasia to cancer, they acquire a Fas Ag apoptosis-resistant phenotype. It is unusual to completely abolish the pathway, suggesting other forms of Fas Ag signaling may be important or even necessary for gastric cancer to progress. Little is known about alternate signaling of the Fas Ag pathway in gastric mucosal cells. Using a cell culture model of rat gastric mucosal cells, we show that gastric mucosal cells utilize a type II signaling pathway for apoptosis. Under conditions of low receptor stimulation or under conditions where apoptosis is blocked downstream of the death-inducing signal complex, Fas Ag signaling proceeds toward proliferative signaling. Under conditions favoring proliferative signaling, cFLIP is recruited to the Fas-associated death domain-like interleukin-1beta-converting enzyme at the death-inducing signal complex and activates ERK1/2. ERK1/2 in turn activates NF-kappaB. ERK1/2 stimulates proliferation, whereas NF-kappaB activation results in upregulation of the antiapoptotic protein survivin, further promoting proliferation over apoptosis. These results suggest that factors that inhibit apoptosis confer a growth advantage to the cells beyond the survival advantage of avoiding apoptosis and in effect convert the Fas Ag signaling pathway from a tumor suppressor to a tumor promoter.
Collapse
Affiliation(s)
- Hanchen Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
36
|
Koshkina NV, Khanna C, Mendoza A, Guan H, DeLauter L, Kleinerman ES. Fas-negative osteosarcoma tumor cells are selected during metastasis to the lungs: the role of the Fas pathway in the metastatic process of osteosarcoma. Mol Cancer Res 2007; 5:991-9. [PMID: 17951400 DOI: 10.1158/1541-7786.mcr-07-0007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low expression of Fas by different tumors including osteosarcoma, correlates with poor prognosis. We found that osteosarcoma lung metastases from patients expressed negligible amounts of Fas, but primary tumors often expressed high Fas levels. The reason for this discrepancy is unknown. We hypothesized that because FasL is constitutively expressed in the lungs, Fas-positive (Fas(+)) tumor cells entering the lungs would bind with FasL and die from Fas-induced apoptosis, resulting in the "selection" of Fas-negative (Fas(-)) cells, which would eventually form metastases. To test this hypothesis, we injected K7 osteosarcoma cells, which express functional Fas in vitro, into mice and confirmed that its bone tumors were Fas(+), but lung metastases were Fas(-). Next, to inhibit Fas signaling without affecting Fas expression, we transfected these cells with a FADD-dominant negative (FDN) plasmid and developed K7/FDN cells. Metastases formed by K7/FDN cells contained Fas(+) tumor cells. Moreover, K7/FDN cells were retained in the lungs longer and formed more lung metastases than K7 cells. In addition, the incidence of lung metastases in FasL-deficient mice injected with K7 cells was higher than that in wild-type mice. Metastases from FasL-deficient mice but not from wild-type mice contained Fas(+) tumor cells. Based on that, we conclude that Fas(-) osteosarcoma cells are selected during lung metastases formation and that inhibition of Fas signaling in tumors or lack of FasL in the host environment allows the proliferation of Fas(+) osteosarcoma cells in the lungs and promotes metastases growth. Therefore, Fas may be considered as a new therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Nadezhda V Koshkina
- Division of Pediatrics Research, Unit 853, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Villa-Morales M, Santos J, Pérez-Gómez E, Quintanilla M, Fernández-Piqueras J. A Role for the Fas/FasL System in Modulating Genetic Susceptibility to T-Cell Lymphoblastic Lymphomas. Cancer Res 2007; 67:5107-16. [PMID: 17545588 DOI: 10.1158/0008-5472.can-06-4006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Fas/FasL system mediates induced apoptosis of immature thymocytes and peripheral T lymphocytes, but little is known about its implication in genetic susceptibility to T-cell malignancies. In this article, we report that the expression of FasL increases early in all mice after gamma-radiation treatments, maintaining such high levels for a long time in mice that resisted tumor induction. However, its expression is practically absent in T-cell lymphoblastic lymphomas. Interestingly, there exist significant differences in the level of expression between two mice strains exhibiting extremely distinct susceptibilities that can be attributed to promoter functional polymorphisms. In addition, several functional nucleotide changes in the coding sequences of both Fas and FasL genes significantly affect their biological activity. These results lead us to propose that germ-line functional polymorphisms affecting either the levels of expression or the biological activity of both Fas and FasL genes could be contributing to the genetic risk to develop T-cell lymphoblastic lymphomas and support the use of radiotherapy as an adequate procedure to choose in the treatment of T-cell malignancies.
Collapse
Affiliation(s)
- María Villa-Morales
- Laboratorio de Genética Molecular Humana, Departamento de Biología, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
38
|
Peshes-Yaloz N, Rosen D, Sondel PM, Krammer PH, Berke G. Up-regulation of Fas (CD95) expression in tumour cells in vivo. Immunology 2007; 120:502-11. [PMID: 17343612 PMCID: PMC2265906 DOI: 10.1111/j.1365-2567.2006.02521.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Both the function and regulation of Fas expression in tumours is poorly understood. Our laboratory has reported that cultured, low Fas-expressing tumours undergo massive, yet reversible, up-regulation of cell surface Fas expression when injected into mice. The present study was aimed at determining what causes this enhanced Fas expression and whether the newly expressed Fas functions as a death receptor. Newly expressed Fas is indeed capable of inducing apoptosis. Based on our observation that Fas induction is reduced when tumour cells are injected into immune-deficient mice, we propose that Fas up-regulation in vivo involves the host's immune system. Accordingly, Fas up-regulation occurs in vitro when low Fas-expressing tumour cells are cocultured with lymphoid cells. Furthermore ascitic fluid extracted from tumour-bearing mice trigger Fas up-regulation in low Fas expressing tumours. This last finding suggests that a soluble factor(s) mediates induction of Fas expression. The best candidate for this soluble factor is nitric oxide (NO) based on the following observations: the factor in the ascites is unstable; Fas expression is induced to a lesser degree after injection into inducible NO synthase (NOS)-deficient (iNOS(-/-)) mice when compared to control mice; similarly, coculture with iNOS(-/-) splenocytes induces Fas less effectively than coculture with control splenocytes; and finally, the NO donor SNAP induces considerable Fas up-regulation in tumours in vitro. Our model is that host lymphoid cells in response to a tumour increase NO synthesis, which in turn causes enhanced Fas expression in the tumour.
Collapse
Affiliation(s)
- Naama Peshes-Yaloz
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
39
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL, APO-2L) is a mediator of cell death that preferentially targets cancer cells. The potential of TRAIL as a chemotherapeutic agent is limited, however, because of the emergence of TRAIL resistance. Furthermore, recent studies have demonstrated that alternative TRAIL signaling is unmasked in TRAIL resistant cells. In these cells, the predominant effect of TRAIL receptor activation is the activation of nuclear factor-kappaB (NF-kappaB), which promotes tumor metastases and invasion. TRAIL resistance can occur at the level of the death inducing signaling complex via upregulation of cFLIP or via an increase in antiapoptotic proteins of the Bcl-2 family. A paradigm emerges from this information, that chemotherapy, targeting NF-kappaB, cFLIP, or antiapoptotic proteins of the Bcl-2 family, in combination with TRAIL maybe more rational than TRAIL therapy alone.
Collapse
Affiliation(s)
- H Malhi
- Division of Gastroenterology and Hepatology, Miles and Shirley Fiterman Center in Digestive Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
40
|
Lee KH, Feig C, Tchikov V, Schickel R, Hallas C, Schütze S, Peter ME, Chan AC. The role of receptor internalization in CD95 signaling. EMBO J 2006; 25:1009-23. [PMID: 16498403 PMCID: PMC1409734 DOI: 10.1038/sj.emboj.7601016] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 01/30/2006] [Indexed: 11/08/2022] Open
Abstract
Activation of the cell surface CD95 receptor triggers a cascade of signaling events, including assembly of the death-inducing signaling complex (DISC), that culminate in cellular apoptosis. In this study, we demonstrate a general requirement of receptor internalization for CD95 ligand-mediated DISC amplification, caspase activation and apoptosis in type I cells. Recruitment of DISC components to the activated receptor predominantly occurs after the receptor has moved into an endosomal compartment and blockade of CD95 internalization impairs DISC formation and apoptosis. In contrast, CD95 ligand stimulation of cells unable to internalize CD95 results in activation of proliferative Erk and NF-kappaB signaling pathways. Hence, the subcellular localization and internalization pathways of CD95 play important roles in controlling activation of distinct signaling cascades to determine divergent cellular fates.
Collapse
Affiliation(s)
- Kyeong-Hee Lee
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Christine Feig
- The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Vladimir Tchikov
- Institute of Immunology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Robert Schickel
- The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Cora Hallas
- Institute of Immunology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schütze
- Institute of Immunology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcus E Peter
- The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL, USA
- These authors shared senior authorship
| | - Andrew C Chan
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
- These authors shared senior authorship
- Department of Immunology, Genentech Inc., MS-34, Bldg. 12-281, 1 DNA Way, South San Francisco, CA 94080, USA. Tel.: +1 650 225 8104; Fax: +1 650 225 8136; E-mail: or
| |
Collapse
|
41
|
Ivanov VN, Ronai Z, Hei TK. Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis. J Biol Chem 2005; 281:1840-52. [PMID: 16306044 PMCID: PMC4376329 DOI: 10.1074/jbc.m509866200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human melanoma is the most aggressive form of skin cancer and is extremely resistant to radiation and chemotherapy. One of the critical parameters of this resistance is down-regulation of Fas (CD95) cell-surface expression. Using TIG3 normal human fibroblasts and human melanoma cell lines, we investigated transcriptional regulation of FAP-1, a regulator of Fas translocation in the cell. Protein-tyrosine phosphatase FAP-1 (PTPN13, PTP-BAS) interacts with human Fas protein and prevents its export from the cytoplasm to the cell surface. In contrast, dynamin-2 facilitates Fas protein translocation from the Golgi apparatus via the trans-Golgi network to the cell surface. Suppression of dynamin functions by dominant negative dynamin K44A blocks Fas export, whereas the down-regulation of FAP-1 expression by specific RNA interference restores Fas export (a phenomenon that could still be down-regulated in the presence of dominant-negative dynamin). Based on the FAP-1- and dynamin-dependent regulation of Fas translocation, we have created human melanoma lines with different levels of surface expression of Fas. Treatment of these melanoma lines with soluble Fas ligand resulted in programmed cell death that was proportional to the pre-existing levels of surface Fas. Taking into consideration the well known observations that FAP-1 expression is often up-regulated in metastatic tumors, we have established a causal connection between high basal NF-kappaB transcription factor activity (which is a hallmark of many types of metastatic tumors) and NF-kappaB-dependent transcriptional regulation of FAP-1 gene expression that finally restricts Fas protein trafficking, thereby, facilitating the survival of cancer cells.
Collapse
Affiliation(s)
- Vladimir N Ivanov
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|