1
|
Wan S, Zhou X, Xie F, Zhou F, Zhang L. Ketogenic diet and cancer: multidimensional exploration and research. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1010-1024. [PMID: 39821829 DOI: 10.1007/s11427-023-2637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/29/2024] [Indexed: 01/19/2025]
Abstract
The ketogenic diet (KD) has attracted attention in recent years for its potential anticancer effects. KD is a dietary structure of high fat, moderate protein, and extremely low carbohydrate content. Originally introduced as a treatment for epilepsy, KD has been widely applied in weight loss programs and the management of metabolic diseases. Previous studies have shown that KD can potentially inhibit the growth and spread of cancer by limiting energy supply to tumor cells, thereby inhibiting tumor angiogenesis, reducing oxidative stress in normal cells, and affecting cancer cell signaling and other processes. Moreover, KD has been shown to influence T-cell-mediated immune responses and inflammation by modulating the gut microbiota, enhance the efficacy of standard cancer treatments, and mitigate the complications of chemotherapy. However, controversies and uncertainties remain regarding the specific mechanisms and clinical effects of KD as an adjunctive therapy for cancer. Therefore, this review summarizes the existing research and explores the intricate relationships between KD and cancer treatment.
Collapse
Affiliation(s)
- Shiyun Wan
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Long Zhang
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Cancer Center Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Jones AP, Haley MJ, Meadows MH, Gregory GE, Hannan CJ, Simmons AK, Bere LD, Lewis DG, Oliveira P, Smith MJ, King AT, Evans DGR, Paszek P, Brough D, Pathmanaban ON, Couper KN. Spatial mapping of immune cell environments in NF2-related schwannomatosis vestibular schwannoma. Nat Commun 2025; 16:2944. [PMID: 40140675 PMCID: PMC11947219 DOI: 10.1038/s41467-025-57586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
NF2-related Schwannomatosis (NF2 SWN) is a rare disease characterised by the growth of multiple nervous system neoplasms, including bilateral vestibular schwannoma (VS). VS tumours are characterised by extensive leucocyte infiltration. However, the immunological landscape in VS and the spatial determinants within the tumour microenvironment that shape the trajectory of disease are presently unknown. In this study, to elucidate the complex immunological networks across VS, we performed imaging mass cytometry (IMC) on clinically annotated VS samples from NF2 SWN patients. We reveal the heterogeneity in neoplastic cell, myeloid cell and T cell populations that co-exist within VS, and that distinct myeloid cell and Schwann cell populations reside within varied spatial contextures across characteristic Antoni A and B histomorphic niches. Interestingly, T-cell populations co-localise with tumour-associated macrophages (TAMs) in Antoni A regions, seemingly limiting their ability to interact with tumorigenic Schwann cells. This spatial landscape is altered in Antoni B regions, where T-cell populations appear to interact with PD-L1+ Schwann cells. We also demonstrate that prior bevacizumab treatment (VEGF-A antagonist) preferentially reduces alternatively activated-like TAMs, whilst enhancing CD44 expression, in bevacizumab-treated tumours. Together, we describe niche-dependent modes of T-cell regulation in NF2 SWN VS, indicating the potential for microenvironment-altering therapies for VS.
Collapse
Affiliation(s)
- Adam P Jones
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Michael J Haley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Miriam H Meadows
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Grace E Gregory
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Cathal J Hannan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Ana K Simmons
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Leoma D Bere
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Daniel G Lewis
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Pedro Oliveira
- Department of Pathology, The Christie Hospital, Manchester, UK
| | - Miriam J Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Andrew T King
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - D Gareth R Evans
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Pawel Paszek
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
| | - Omar N Pathmanaban
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK.
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Amiranda S, Succoio M, Anzilotti S, Cuomo O, Petrozziello T, Tedeschi V, Finizio A, Mele G, Parkkila S, Annunziato L, De Simone G, Pignataro G, Secondo A, Zambrano N. Pharmacological inhibition of carbonic anhydrases with a positively charged pyridinium sulfonamide phenocopies the neuroprotective effects of Car9 genetic ablation in a murine setting of oxygen/glucose deprivation followed by re-oxygenation and is associated with improved neuronal function in ischemic rats. Heliyon 2025; 11:e42457. [PMID: 40028587 PMCID: PMC11868941 DOI: 10.1016/j.heliyon.2025.e42457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Carbonic anhydrases constitute a family of metalloenzymes vital for maintaining acid-base balance and regulating pH in physio-pathological processes. These findings suggest carbonic anhydrases as potential therapeutic targets for treating pH-associated disorders, including cerebral ischemia, to mitigate hypoxia- and reoxygenation-induced neuronal damage. A focus on carbonic anhydrase IX showed that ischemic stress altered subcellular distributions of this enzyme in rodent neuronal populations. Given the enzyme's canonical membrane localization, we implemented pharmacological inhibition using a membrane-impermeant sulfonamide inhibitor in neuronal models of brain ischemia. The treatments exerted neuroprotective effects on neurons from Car9 knockout mice. Moreover, administration of the sulfonamide inhibitor to rats subjected to transient middle cerebral artery occlusion decreased infarct volumes and improved neurological deficits. Our results support the involvement of carbonic anhydrase IX in postischemic damage and pave the way for possible pharmacological interventions with selective inhibitors in the management of brain ischemia.
Collapse
Affiliation(s)
- Sara Amiranda
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Mariangela Succoio
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Serenella Anzilotti
- Department of Human Sciences and Quality of Life Promotion, Università San Raffaele, Rome, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Arianna Finizio
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Giorgia Mele
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | | | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Agnese Secondo
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| |
Collapse
|
4
|
Moriya Y, Kubota S, Iijima Y, Takasugi N, Uehara T. Epigenetic Regulation of Carbonic Anhydrase 9 Expression by Nitric Oxide in Human Small Airway Epithelial Cells. Biol Pharm Bull 2024; 47:1119-1122. [PMID: 38839363 DOI: 10.1248/bpb.b24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
DNA methylation is a crucial epigenetic modification that regulates gene expression and determines cell fate; however, the triggers that alter DNA methylation levels remain unclear. Recently, we showed that S-nitrosylation of DNA methyltransferase (DNMT) induces DNA hypomethylation and alters gene expression. Furthermore, we identified DBIC, a specific inhibitor of S-nitrosylation of DNMT3B, to suppress nitric oxide (NO)-induced gene alterations. However, it remains unclear how NO-induced DNA hypomethylation regulates gene expression and whether this mechanism is maintained in normal cells and triggers disease-related changes. To address these issues, we focused on carbonic anhydrase 9 (CA9), which is upregulated under nitrosative stress in cancer cells. We pharmacologically evaluated its regulatory mechanisms using human small airway epithelial cells (SAECs) and DBIC. We demonstrated that nitrosative stress promotes the recruitment of hypoxia-inducible factor 1 alpha to the CA9 promoter region and epigenetically induces CA9 expression in SAECs. Our results suggest that nitrosative stress is a key epigenetic regulator that may cause diseases by altering normal cell function.
Collapse
Affiliation(s)
- Yuto Moriya
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Sho Kubota
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yuta Iijima
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
5
|
Fantin J, Toutain J, Pérès EA, Bernay B, Mehani SM, Helaine C, Bourgeois M, Brunaud C, Chazalviel L, Pontin J, Corroyer-Dulmont A, Valable S, Cherel M, Bernaudin M. Assessment of hypoxia and oxidative-related changes in a lung-derived brain metastasis model by [ 64Cu][Cu(ATSM)] PET and proteomic studies. EJNMMI Res 2023; 13:102. [PMID: 38006431 PMCID: PMC10676347 DOI: 10.1186/s13550-023-01052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Brain metastases (BM) are the most frequent malignant brain tumors. The aim of this study was to characterize the tumor microenvironment (TME) of BM and particularly hypoxia and redox state, known to play a role in tumor growth and treatment resistance with multimodal PET and MRI imaging, immunohistochemical and proteomic approaches in a human lung cancer (H2030-BrM3)-derived BM model in rats. RESULTS First, in vitro studies confirmed that H2030-BrM3 cells respond to hypoxia with increasing expression of HIF-1, HIF-2 and their target genes. Proteomic analyses revealed, among expression changes, proteins associated with metabolism, oxidative stress, metal response and hypoxia signaling in particular in cortical BM. [64Cu][Cu(ATSM)] PET revealed a significant uptake by cortical BM (p < 0.01), while no uptake is observed in striatal BM 23 days after tumor implantation. Pimonidazole, HIF-1α, HIF-2α, CA-IX as well as GFAP, CTR1 and DMT1 immunostainings are positive in both BM. CONCLUSION Overall, [64Cu][Cu(ATSM)] imaging and proteomic results showed the presence of hypoxia and protein expression changes linked to hypoxia and oxidative stress in BM, which are more pronounced in cortical BM compared to striatal BM. Moreover, it emphasized the interest of [64Cu][Cu(ATSM)] PET to characterize TME of BM and depict inter-metastasis heterogeneity that could be useful to guide treatments.
Collapse
Affiliation(s)
- Jade Fantin
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Jérôme Toutain
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Elodie A Pérès
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Benoit Bernay
- Université de Caen Normandie, Normandie Univ., US EMerode, Plateforme Proteogen, F-14000, Caen, France
| | - Sarina Maya Mehani
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Charly Helaine
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Mickael Bourgeois
- CRCI2NA, INSERM UMR1307, CNRS-ERL6075, Université d'Angers, Université de Nantes, F-44000, Nantes, France
- GIP ARRONAX, F-44800, Saint-Herblain, France
| | - Carole Brunaud
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Laurent Chazalviel
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Julien Pontin
- Université de Caen Normandie, Normandie Univ., US EMerode, Plateforme Proteogen, F-14000, Caen, France
| | - Aurélien Corroyer-Dulmont
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
- Medical Physics Department, CLCC François Baclesse, F-14000, Caen, France
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Michel Cherel
- CRCI2NA, INSERM UMR1307, CNRS-ERL6075, Université d'Angers, Université de Nantes, F-44000, Nantes, France
- GIP ARRONAX, F-44800, Saint-Herblain, France
| | - Myriam Bernaudin
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France.
| |
Collapse
|
6
|
Yan J, Wang K, Gui L, Liu X, Ji Y, Lin J, Luo M, Xu H, Lv J, Tan F, Lin L, Yuan Z. Diagnosing Orthotopic Lung Tumor Using a NTR-Activatable Near-Infrared Fluorescent Probe by Tracheal Inhalation. Anal Chem 2023; 95:14402-14412. [PMID: 37698361 DOI: 10.1021/acs.analchem.3c02760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Nitroreductase (NTR) is an enzyme that is upregulated under tumor-depleted oxygen conditions. The majority of studies have been conducted on NTR, but many existing fluorescent imaging tools for monitoring NTR inevitably suffer from weak targeting, low sensitivity, and simple tumor models. Research on diagnosing lung tumors has been very popular in recent years, but targeting assays in orthotopic lung tumors is still of great research value, as such models better mimic the reality of cancer in the organism. Here, we developed a novel near-infrared (NIR) fluorescent probe IR-ABS that jointly targets NTR and carbonic anhydrase IX (CAIX). IR-ABS has excellent sensitivity and selectivity and shows exceptional NTR response in spectroscopic tests. The measurements ensured that this probe has good biosafety in both cells and mice. A better NTR response was found in hypoxic tumor cells at the cellular level, distinguishing tumor cells from normal cells. In vivo experiments demonstrated that IR-ABS achieves a hypoxic response at the zebrafish level and enables rapid and accurate tumor margin distinguishment in different mouse tumor models. More importantly, we successfully applied IR-ABS for NTR detection in orthotopic lung tumor models, further combined with tracheal inhalation drug delivery to improve targeting. To the best of our knowledge, we present for the first time a near-infrared imaging method for targeting lung cancerous tumor in situ via tracheal inhalation drug delivery, in contrast to the reported literature. This NIR fluorescence diagnostic strategy for targeting orthotopic lung cancer holds exciting potential for clinical aid in cancer diagnosis.
Collapse
Affiliation(s)
- Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Kaizhen Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Xian Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Yingying Ji
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Man Luo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Hong Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingxuan Lv
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Fang Tan
- Third Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, 650000 Kunming, Yunnan Province, China
| | - Liangting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| |
Collapse
|
7
|
Berna-Erro A, Granados MP, Rosado JA, Redondo PC. Thrombotic Alterations under Perinatal Hypoxic Conditions: HIF and Other Hypoxic Markers. Int J Mol Sci 2023; 24:14541. [PMID: 37833987 PMCID: PMC10572648 DOI: 10.3390/ijms241914541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Hypoxia is considered to be a stressful physiological condition, which may occur during labor and the later stages of pregnancy as a result of, among other reasons, an aged placenta. Therefore, when gestation or labor is prolonged, low oxygen supply to the tissues may last for minutes, and newborns may present breathing problems and may require resuscitation maneuvers. As a result, poor oxygen supply to tissues and to circulating cells may last for longer periods of time, leading to life-threatening conditions. In contrast to the well-known platelet activation that occurs after reperfusion of the tissues due to an ischemia/reperfusion episode, platelet alterations in response to reduced oxygen exposition following labor have been less frequently investigated. Newborns overcome temporal hypoxic conditions by changing their organ functions or by adaptation of the intracellular molecular pathways. In the present review, we aim to analyze the main platelet modifications that appear at the protein level during hypoxia in order to highlight new platelet markers linked to complications arising from temporal hypoxic conditions during labor. Thus, we demonstrate that hypoxia modifies the expression and activity of hypoxic-response proteins (HRPs), including hypoxia-induced factor (HIF-1), endoplasmic reticulum oxidase 1 (Ero1), and carbonic anhydrase (CIX). Finally, we provide updates on research related to the regulation of platelet function due to HRP activation, as well as the role of HRPs in intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology (Phycell), University of Extremadura, Avd de la Universidad s/n, 10003 Caceres, Spain; (A.B.-E.); (P.C.R.)
| | | | - Juan Antonio Rosado
- Department of Physiology (Phycell), University of Extremadura, Avd de la Universidad s/n, 10003 Caceres, Spain; (A.B.-E.); (P.C.R.)
| | - Pedro Cosme Redondo
- Department of Physiology (Phycell), University of Extremadura, Avd de la Universidad s/n, 10003 Caceres, Spain; (A.B.-E.); (P.C.R.)
| |
Collapse
|
8
|
Sharma G, Pund S, Govindan R, Nissa MU, Biswas D, Middha S, Ganguly K, Anand MP, Banerjee R, Srivastava S. A Proteomics Investigation of Cigarette Smoke Exposed Wistar Rats Revealed Improved Anti-Inflammatory Effects of the Cysteamine Nanoemulsions Delivered via Inhalation. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:338-360. [PMID: 37581495 DOI: 10.1089/omi.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Cigarette smoking is the major cause of chronic inflammatory diseases such as chronic obstructive pulmonary disease (COPD). It is paramount to develop pharmacological interventions and delivery strategies against the cigarette smoke (CS) associated oxidative stress in COPD. This study in Wistar rats examined cysteamine in nanoemulsions to counteract the CS distressed microenvironment. In vivo, 28 days of CS and 15 days of cysteamine nanoemulsions treatment starting on 29th day consisting of oral and inhalation routes were established in Wistar rats. In addition, we conducted inflammatory and epithelial-to-mesenchymal transition (EMT) studies in vitro in human bronchial epithelial cell lines (BEAS2B) using 5% CS extract. Inflammatory and anti-inflammatory markers, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, IL-8, IL-10, and IL-13, have been quantified in bronchoalveolar lavage fluid (BALF) to evaluate the effects of the cysteamine nanoemulsions in normalizing the diseased condition. Histopathological analysis of the alveoli and the trachea showed the distorted, lung parenchyma and ciliated epithelial barrier, respectively. To obtain mechanistic insights into the CS COPD rat model, "shotgun" proteomics of the lung tissues have been carried out using high-resolution mass spectrometry wherein genes such as ABI1, PPP3CA, PSMA2, FBLN5, ACTG1, CSNK2A1, and ECM1 exhibited significant differences across all the groups. Pathway analysis showed autophagy, signaling by receptor tyrosine kinase, cytokine signaling in immune system, extracellular matrix organization, and hemostasis, as the major contributing pathways across all the studied groups. This work offers new preclinical findings on how cysteamine taken orally or inhaled can combat CS-induced oxidative stress.
Collapse
Affiliation(s)
- Gautam Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Swati Pund
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Biobay, Ahmedabad, India
| | - Rajkumar Govindan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biomedical Engineering, Hajim School of Engineering & Applied Sciences, University of Rochester, Rochester, New York, USA
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanniya Middha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
9
|
Succoio M, Amiranda S, Sasso E, Marciano C, Finizio A, De Simone G, Garbi C, Zambrano N. Carbonic anhydrase IX subcellular localization in normoxic and hypoxic SH-SY5Y neuroblastoma cells is assisted by its C-terminal protein interaction domain. Heliyon 2023; 9:e18885. [PMID: 37600419 PMCID: PMC10432983 DOI: 10.1016/j.heliyon.2023.e18885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
The human carbonic anhydrase IX (CA IX) is a hypoxia-induced transmembrane protein belonging to the α-CA enzyme family. It has a crucial role in pH regulation in hypoxic cells and acts by buffering intracellular acidosis induced by hypoxia. Indeed, it is frequently expressed in cancer cells, where it contributes to tumor progression. CA IX is also able to localize in the nucleus, where it contributes to 47S rRNA precursor genes transcription; however, the mechanisms assisting its nuclear translocation still remain unclear. The aim of our study was to deepen the understanding of the mechanisms involved in CA IX subcellular distribution. To this purpose, we implemented a site-directed mutagenesis approach targeting the C-terminal domain of CA IX and evaluated the subcellular distribution of the wild-type and mutant proteins in the SH-SY5Y cell line. The mutant proteins showed impaired binding ability and altered subcellular distribution in both normoxic and hypoxic conditions. Our data suggest that CA IX nuclear translocation depends on its transit through the secretory and the endocytic pathways.
Collapse
Affiliation(s)
- Mariangela Succoio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5 80131, Napoli, Italy
- CEINGE Biotecnologie avanzate Franco Salvatore SCaRL, Via G. Salvatore, 486 80145, Napoli, Italy
| | - Sara Amiranda
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5 80131, Napoli, Italy
- CEINGE Biotecnologie avanzate Franco Salvatore SCaRL, Via G. Salvatore, 486 80145, Napoli, Italy
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5 80131, Napoli, Italy
- CEINGE Biotecnologie avanzate Franco Salvatore SCaRL, Via G. Salvatore, 486 80145, Napoli, Italy
| | - Carmen Marciano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5 80131, Napoli, Italy
- CEINGE Biotecnologie avanzate Franco Salvatore SCaRL, Via G. Salvatore, 486 80145, Napoli, Italy
| | - Arianna Finizio
- CEINGE Biotecnologie avanzate Franco Salvatore SCaRL, Via G. Salvatore, 486 80145, Napoli, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Corrado Garbi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5 80131, Napoli, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5 80131, Napoli, Italy
- CEINGE Biotecnologie avanzate Franco Salvatore SCaRL, Via G. Salvatore, 486 80145, Napoli, Italy
| |
Collapse
|
10
|
Peerzada M, Vullo D, Paoletti N, Bonardi A, Gratteri P, Supuran CT, Azam A. Discovery of Novel Hydroxyimine-Tethered Benzenesulfonamides as Potential Human Carbonic Anhydrase IX/XII Inhibitors. ACS Med Chem Lett 2023; 14:810-819. [PMID: 37312840 PMCID: PMC10258898 DOI: 10.1021/acsmedchemlett.3c00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/15/2023] Open
Abstract
To discover novel carbonic anhydrase (CA, EC 4.2.1.1) inhibitors for cancer treatment, a series of 4-{4-[(hydroxyimino)methyl]piperazin-1-yl}benzenesulfonamides were designed and synthesized using SLC-0111 as the lead molecule. The developed novel compounds 27-34 were investigated for the inhibition of human (h) isoforms hCA I, hCA II, hCA IX, and hCA XII. The hCA I was inhibited by compound 29 with a Ki value of 3.0 nM, whereas hCA II was inhibited by compound 32 with a Ki value of 4.4 nM. The tumor-associated hCA IX isoform was inhibited by compound 30 effectively with an Ki value of 43 nM, whereas the activity of another cancer-related isoform, hCA XII, was significantly inhibited by 29 and 31 with a Ki value of 5 nM. Molecular modeling showed that drug molecule 30 participates in significant hydrophobic and hydrogen bond interactions with the active site of the investigated hCAs and binds to zinc through the deprotonated sulfonamide group.
Collapse
Affiliation(s)
- Mudasir
Nabi Peerzada
- Medicinal
Chemistry and Drug Discovery Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India
| | - Daniela Vullo
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Niccolò Paoletti
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessandro Bonardi
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Paola Gratteri
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Amir Azam
- Medicinal
Chemistry and Drug Discovery Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India
| |
Collapse
|
11
|
Shamis SAK, Edwards J, McMillan DC. The relationship between carbonic anhydrase IX (CAIX) and patient survival in breast cancer: systematic review and meta-analysis. Diagn Pathol 2023; 18:46. [PMID: 37061698 PMCID: PMC10105416 DOI: 10.1186/s13000-023-01325-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/14/2023] [Indexed: 04/17/2023] Open
Abstract
PURPOSE Hypoxia is a characteristic of many solid tumours and an adverse prognostic factor for cancer therapy. Hypoxia results in upregulation of carbonic anhydrase IX (CAIX) expression, a pH-regulating enzyme. Many human tissue studies have examined the prognostic value of CAIX expression in breast cancer but have yielded inconsistent results. Therefore, a systematic review and meta-analysis was undertaken to assess the prognostic value of CAIX expression for breast cancer patients. METHODS The electronic databases were systematically searched to identify relevant papers. The clinical outcomes included disease-free survival (DFS), recurrence-free survival (RFS) and overall survival (OS) in breast cancer patients. Review Manager version 5.4 was employed to analysis data from 23 eligible studies (containing 8390 patients). RESULTS High CAIX expression was associated with poorer RFS [HR = 1.42, 95% CI (1.32-1.51), p < 0.00001], DFS [HR = 1.64, 95% CI (1.34-2.00), p < 0.00001], and OS [HR = 1.48, 95% CI (1.22-1.80), p < 0.0001]. Heterogeneity was observed across the studies. There was an effect of the CAIX antibody employed, scoring methods, and tumour localisation on CAIX expression. CONCLUSION CAIX overexpression was significantly associated with poorer RFS, DFS, and OS in breast cancer patients. However, further work in high quantity tissue cohorts is required to define the optimal methodological approach.
Collapse
Affiliation(s)
- Suad A K Shamis
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, G31 2ER, UK.
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| | - Joanne Edwards
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, G31 2ER, UK
| |
Collapse
|
12
|
Numprasit W, Yangngam S, Prasopsiri J, Quinn JA, Edwards J, Thuwajit C. Carbonic anhydrase IX-related tumoral hypoxia predicts worse prognosis in breast cancer: A systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1087270. [PMID: 37007798 PMCID: PMC10063856 DOI: 10.3389/fmed.2023.1087270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/17/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundTumoral hypoxia is associated with aggressiveness in many cancers including breast cancer. However, measuring hypoxia is complicated. Carbonic anhydrase IX (CAIX) is a reliable endogenous marker of hypoxia under the control of the master regulator hypoxia-inducible factor-1α (HIF-1α). The expression of CAIX is associated with poor prognosis in many solid malignancies; however, its role in breast cancer remains controversial.MethodsThe present study performed a meta-analysis to evaluate the correlation between CAIX expression and disease-free survival (DFS) and overall survival (OS) in breast cancer.ResultsA total of 2,120 publications from EMBASE, PubMed, Cochrane, and Scopus were screened. Of these 2,120 publications, 272 full texts were reviewed, and 27 articles were included in the meta-analysis. High CAIX was significantly associated with poor DFS (HR = 1.70, 95% CI = 1.39–2.07, p < 0.00001) and OS (HR = 2.02, 95% CI 1.40–2.91, p = 0.0002) in patients with breast cancer. When stratified by subtype, the high CAIX group was clearly associated with shorter DFS (HR = 2.09, 95% CI =1.11–3.92, p = 0.02) and OS (HR = 2.50, 95% CI =1.53–4.07, p = 0.0002) in TNBC and shorter DFS in ER+ breast cancer (HR = 1.81 95% CI =1.38–2.36, p < 0.0001).ConclusionHigh CAIX expression is a negative prognostic marker of breast cancer regardless of the subtypes.
Collapse
Affiliation(s)
- Warapan Numprasit
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Supaporn Yangngam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jaturawitt Prasopsiri
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Chanitra Thuwajit,
| |
Collapse
|
13
|
Eloranta K, Pihlajoki M, Liljeström E, Nousiainen R, Soini T, Lohi J, Cairo S, Wilson DB, Parkkila S, Heikinheimo M. SLC-0111, an inhibitor of carbonic anhydrase IX, attenuates hepatoblastoma cell viability and migration. Front Oncol 2023; 13:1118268. [PMID: 36776327 PMCID: PMC9909558 DOI: 10.3389/fonc.2023.1118268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Background In response to hypoxia, tumor cells undergo transcriptional reprogramming including upregulation of carbonic anhydrase (CA) IX, a metalloenzyme that maintains acid-base balance. CAIX overexpression has been shown to correlate with poor prognosis in various cancers, but the role of this CA isoform in hepatoblastoma (HB) has not been examined. Methods We surveyed the expression of CAIX in HB specimens and assessed the impact of SLC-0111, a CAIX inhibitor, on cultured HB cells in normoxic and hypoxic conditions. Results CAIX immunoreactivity was detected in 15 out of 21 archival pathology HB specimens. The CAIX-positive cells clustered in the middle of viable tumor tissue or next to necrotic areas. Tissue expression of CAIX mRNA was associated with metastasis and poor clinical outcome of HB. Hypoxia induced a striking upregulation of CAIX mRNA and protein in three HB cell models: the immortalized human HB cell line HUH6 and patient xenograft-derived lines HB-295 and HB-303. Administration of SLC-0111 abrogated the hypoxia-induced upregulation of CAIX and decreased HB cell viability, both in monolayer and spheroid cultures. In addition, SLC-0111 reduced HB cell motility in a wound healing assay. Transcriptomic changes triggered by SLC-0111 administration differed under normoxic vs. hypoxic conditions, although SLC-0111 elicited upregulation of several tumor suppressor genes under both conditions. Conclusion Hypoxia induces CAIX expression in HB cells, and the CAIX inhibitor SLC-0111 has in vitro activity against these malignant cells.
Collapse
Affiliation(s)
- Katja Eloranta
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,*Correspondence: Marjut Pihlajoki,
| | - Emmi Liljeström
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ruth Nousiainen
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tea Soini
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stefano Cairo
- Xentech, Evry, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy,Champions Oncology, Hackensack, NJ, United States
| | - David B. Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,FICAN Mid, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
| |
Collapse
|
14
|
Qin M, Liu Q, Yang W, Wang Q, Xiang Z. IGFL2‐AS1
‐induced suppression of
HIF
‐1α degradation promotes cell proliferation and invasion in colorectal cancer by upregulating
CA9. Cancer Med 2022; 12:8415-8432. [PMID: 36537608 PMCID: PMC10134350 DOI: 10.1002/cam4.5562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The lncRNA IGFL2-AS1 is a known cancer-promoting factor in colorectal cancer (CRC); nonetheless, the mechanism of its carcinogenic effects has not yet been elucidated. This study elaborated on the role and underlying molecular mechanism of IGFL2-AS1 in promoting CRC cell functions. METHODS IGLF2-AS1 expression levels in CRC tissue/normal tissue and CRC cell line/normal colon epithelial cell line were detected by quantitative real-time polymerase chain reaction. Cell counting kit-8, colony formation assay, and EdU assay were performed to assess the effect of IGFL2-AS1 knockdown or overexpression on the proliferative capacity of CRC cells. The migration and invasion abilities of LoVo cells were measured using transwell assay. The expression relationship between IGFL2-AS1 and carbonic anhydrase 9 (CA9) and the CA9 expression level in CRC tissues and cells was verified by transcriptome sequencing, western blotting, and immunohistochemical staining. Treatment with MG132 and cycloheximide was utilized to explore the mechanism by which IGFL2-AS1 affects the hypoxia-inducible factor-1α (HIF-1α)/CA9 pathway. A nude mouse xenograft model was constructed to evaluate the effect of IGFL2-AS1 on CRC growth in vivo. RESULTS We discovered that IGFL2-AS1 was highly upregulated in CRC tumor tissues and cells. IGFL2-AS1 can functionally promote CRC cell proliferation, migration, and invasion in vitro and accelerate CRC occurrence in vivo. Mechanistic studies demonstrated that IGFL2-AS1 upregulated the CA9 level by affecting the degradation pathway of HIF-1α, which elucidates its pro-proliferative effect in CRC. The lncRNA IGFL2-AS1 mediated the inhibition of HIF-1α degradation in CRC and increased CA9 expression, thereby promoting CRC progression. CONCLUSION Our findings suggested that IGFL2-AS1 is expected to be a promising new diagnostic marker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Mengdi Qin
- Department of Gastrointestinal Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Department of General Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Qiang Liu
- Department of Gastrointestinal Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Department of General Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Wei Yang
- Department of Gastrointestinal Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Qiaofeng Wang
- Department of Gastrointestinal Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Zheng Xiang
- Department of Gastrointestinal Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Department of General Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
15
|
Yoon M, Lee HK, Park EY, Kim JH, Lee JH, Kim YS, Kim HJ, Kim H, Yoo CW, Lee S, Hong EK, Kim TH, Kim TS, Seo SS, Kang S, Chang SJ, Shin HJ, Uong TNT, Lee S, Kim JY. Randomized multicenter phase II trial of prophylactic irradiation of para-aortic lymph nodes in advanced cervical cancer according to tumor hypoxia: Korean Radiation Oncology Group (KROG 07-01) study. Int J Cancer 2022; 151:2182-2194. [PMID: 35751421 DOI: 10.1002/ijc.34190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
We conducted a prospective phase II study on whether extended-field irradiation (EFI) confers survival benefits depending on hypoxic markers in locally advanced uterine cervical cancer (LAUCC). RNA-seq was performed to identify immune and hypoxic gene signatures. A total of 288 patients were randomized to either EFI or pelvic radiotherapy (PRT). All patients completed chemoradiotherapy. Overall, significantly higher 5-year para-aortic recurrence free survival (PARFS) rate occurred in EFI (97.6%) than in PRT group (87.2%), with marginal tendency to improve disease-free survival (DFS; 78% vs 70%, P = .066). Subgroup analyses were performed based on carbonic anhydrase 9 (CA9)-only positive, CA9/hypoxia-inducible factor (HIF) double positive and CA9 negative. In the CA9-only positive, EFI successfully increased 5-year PARFS (100% vs 76.4%, P = .010), resulting in significantly improved long-term DFS (85.7% vs 54.7%, P = .023) compared to the PRT, while there was no such benefit of EFI in the CA9/HIFs double positive. RNA-seq analysis identified distinct immunehigh subgroup with negative correlation with hypoxia gene signatures (R = -.37, P < .01), which showed a higher 5-year DFS than the immunelow (P = .032). Hypoxia-related genes were upregulated in the CA9/HIFs double positive compared to CA9 negative (P < .05). Only 17.4% of patients in CA9-negative group showed immunelow signatures, while 40.0% of patients in the double-positive group exhibited immunelow signatures. In conclusion, EFI improved PARFS significantly in all patients, but therapeutic efficacy of EFI in terms of improved DFS was solely observed in CA9-only positive LAUCC, and not in CA9/HIFs double-positive subgroup. RNA-seq analysis suggested that hypoxia-induced immunosuppression may be related to treatment resistance in LAUCC.
Collapse
Affiliation(s)
- Meesun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Hyo Kyung Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Eun Young Park
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Jin Hee Kim
- Department of Radiation Oncology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea
| | - Jong Hoon Lee
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University, Seoul, South Korea
| | - Young Seok Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, South Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University, College of Medicine, Seoul, South Korea
| | - Hunjung Kim
- Department of Radiation Oncology, Inha University Hospital, Inha University, School of Medicine, Incheon, South Korea
| | - Chong Woo Yoo
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Sun Lee
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Kyung Hong
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Tae Hyun Kim
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Tae-Sung Kim
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Sang-Soo Seo
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Sokbom Kang
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Suk-Joon Chang
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, South Korea
| | - Hye Jin Shin
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Tung Nguyen Thanh Uong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Joo-Young Kim
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| |
Collapse
|
16
|
Kosim MY, Fukazawa T, Miyauchi M, Hirohashi N, Tanimoto K. p53 status modifies cytotoxic activity of lactoferrin under hypoxic conditions. Front Pharmacol 2022; 13:988335. [PMID: 36199689 PMCID: PMC9527284 DOI: 10.3389/fphar.2022.988335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Lactoferrin (LF) is an iron binding glycoprotein of the transferrin family with a wide spectrum of biological effects, including anti-cancer activity. However, the detailed molecular mechanisms of anti-cancer activity of LF have not been fully determined. In this study, we tried to clarify cytotoxic functions of LF on various cell lines under hypoxic conditions and elucidate those molecular mechanisms. Cytotoxic activity of LF on cell lines was found to have a range of sensitivities. Hypoxia decreased sensitivity to LF in KD (lip fibroblast) but increased that in HSC2 (oral squamous cell carcinoma). Expression analyses further revealed that LF treatments increased hypoxic HIF-1α, -2α and p53 proteins in KD but attenuated them in HSC2 cells, and decreased HIF-1 target gene, DEC2, in KD but increased it in HSC2, suggesting a possible relationship between LF-modified DEC2 expression and HIF-α protein. MTT assay strikingly demonstrated that cells expressing mutant-type p53 (MT5) were more sensitive to LF than control HepG2 (hepatoma), suggesting an important role of the p53 signal. Knock-down of TP53 (p53 gene) interestingly reduced sensitivity to LF in HepG2, suggesting that p53 may be a target of LF cytotoxic activity. Further analyses with a ferroptosis promoter or inhibitor demonstrated that LF increased ACSL4 in hypoxic MT5, suggesting LF-induced ferroptosis in cells expressing mutant-type p53. In conclusion, hypoxia was found to regulate cytotoxic activities of LF differently among various cell lines, possibly through the p53 signaling pathway. LF further appeared to regulate ferroptosis through a modification of ACSL4 expression.
Collapse
Affiliation(s)
- Maryami Yuliana Kosim
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takahiro Fukazawa
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima , Japan
| | - Nobuyuki Hirohashi
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Keiji Tanimoto
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- *Correspondence: Keiji Tanimoto,
| |
Collapse
|
17
|
Fagundes RR, Bourgonje AR, Hu S, Barbieri R, Jansen BH, Sinnema N, Blokzijl T, Taylor CT, Weersma RK, Faber KN, Dijkstra G. HIF1α-Dependent Induction of TFRC by a Combination of Intestinal Inflammation and Systemic Iron Deficiency in Inflammatory Bowel Disease. Front Physiol 2022; 13:889091. [PMID: 35755436 PMCID: PMC9214203 DOI: 10.3389/fphys.2022.889091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/20/2022] [Indexed: 01/04/2023] Open
Abstract
Background and Aims: Iron deficiency (ID) is a frequent extra-intestinal manifestation in patients with Inflammatory Bowel Disease (IBD), who often do not respond to iron supplementation. Iron is a cofactor for hydroxylases that suppress the hypoxia-inducible factor-1α (HIF1α), a transcription factor regulating iron homeostasis. We hypothesized that iron deficiency affects mucosal HIF1α activity in IBD. Methods: IBD patients (n = 101) were subdivided based on iron status (ferritin levels or transferrin saturation) and systemic inflammation (C-reactive protein levels). 154 corresponding ileal and colonic biopsies were analyzed for differential expression of 20 HIF1α pathway-associated genes and related to iron and inflammation status. In vitro expression of selected HIF1α pathway genes were analyzed in wild-type and HIF1A-null Caco-2 cells. Results: Gene expression of the mucosal HIF1α pathway was most affected by intestinal location and inflammatory status. Especially, ileal mucosal TFRC expression, encoding the transferrin receptor TFR1, was increased in inflamed tissue (p < 0.001), and further enhanced in ID. Accordingly, TFRC expression in inflamed tissue associated negatively with serum iron levels, which was not observed in the non-inflamed mucosa. The HIF1α pathway agonist DMOG increased TFRC expression in Caco-2 cells, which was blunted in HIF1A-null cells. Conclusion: We demonstrate that inflammation and anatomical location primarily determine HIF1α pathway activation and downstream TFRC expression in the intestinal mucosa. IBD patients with ID may benefit from treatment with HIF1α-agonists by 1) increasing TFRC-mediated iron absorption in non-inflamed tissue and 2) decreasing mucosal inflammation, thereby improving their responsiveness to oral iron supplementation.
Collapse
Affiliation(s)
- Raphael R Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ruggero Barbieri
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bernadien H Jansen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nienke Sinnema
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tjasso Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Cormac T Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Takei J, Fukasawa N, Tanaka T, Yamamoto Y, Tamura R, Sasaki H, Akasaki Y, Kamata Y, Murahashi M, Shimoda M, Murayama Y. Impact of Neoadjuvant Bevacizumab on Neuroradiographic Response and Histological Findings Related to Tumor Stemness and the Hypoxic Tumor Microenvironment in Glioblastoma: Paired Comparison Between Newly Diagnosed and Recurrent Glioblastomas. Front Oncol 2022; 12:898614. [PMID: 35785200 PMCID: PMC9247463 DOI: 10.3389/fonc.2022.898614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background Previously, we reported that bevacizumab (Bev) produces histological and neuroradiographic alterations including changes in tumor oxygenation, induction of an immunosupportive tumor microenvironment, and inhibition of stemness. To confirm how those effects vary during Bev therapy, paired samples from the same patients with newly diagnosed glioblastoma (GBM) who received preoperative neoadjuvant Bev (neoBev) were investigated with immunohistochemistry before and after recurrence. Methods Eighteen samples from nine patients with newly diagnosed GBM who received preoperative neoBev followed by surgery and chemoradiotherapy and then autopsy or salvage surgery after recurrence were investigated. The expression of carbonic anhydrase 9 (CA9), hypoxia-inducible factor-1 alpha (HIF-1α), nestin, and Forkhead box M1 (FOXM1) was evaluated with immunohistochemistry. For comparison between neoBev and recurrent tumors, we divided the present cohort into two groups based on neuroradiographic response: good and poor responders (GR and PR, respectively) to Bev were defined by the tumor regression rate on T1-weighted images with gadolinium enhancement (T1Gd) and fluid-attenuated inversion recovery images. Patterns of recurrence after Bev therapy were classified as cT1 flare-up and T2-diffuse/T2-circumscribed. Furthermore, we explored the possibility of utilizing FOXM1 as a biomarker of survival in this cohort. Results A characteristic “pseudo-papillary”-like structure containing round-shaped tumor cells clustered adjacent to blood vessels surrounded by spindle-shaped tumor cells was seen only in recurrent tumors. Tumor cells at the outer part of the “pseudo-papillary” structure were CA9-positive (CA9+)/HIF-1α+, whereas cells at the inner part of this structure were CA9−/HIF-1α+ and nestin+/FOXM1+. CA9 and HIF-1α expression was lower in T1Gd-GR and decreased in the “T2-circumscribed/T2-diffuse” pattern compared with the “T1 flare-up” pattern, suggesting that tumor oxygenation was frequently observed in T1Gd-GR in initial tumors and in the “T2-circumscribed/T2-diffuse” pattern in recurrent tumors. FOXM1 low-expression tumors tended to have a better prognosis than that of FOXM1 high-expression tumors. Conclusion A “pseudo-papillary” structure was seen in recurrent GBM after anti-vascular endothelial growth factor therapy. Bev may contribute to tumor oxygenation, leading to inhibition of stemness and correlation with a neuroimaging response during Bev therapy. FOXM1 may play a role as a biomarker of survival during Bev therapy.
Collapse
Affiliation(s)
- Jun Takei
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Nei Fukasawa
- Department of Pathology, Jikei University School of Medicine, Tokyo, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Kashiwa, Japan
- *Correspondence: Toshihide Tanaka,
| | - Yohei Yamamoto
- Department of Neurosurgery, Jikei University School of Medicine Daisan Hospital, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Mutsunori Murahashi
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Kciuk M, Gielecińska A, Mujwar S, Mojzych M, Marciniak B, Drozda R, Kontek R. Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. J Enzyme Inhib Med Chem 2022; 37:1278-1298. [PMID: 35506234 PMCID: PMC9090362 DOI: 10.1080/14756366.2022.2052868] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbonic anhydrases IX and CAXII (CAIX/CAXII) are transmembrane zinc metalloproteins that catalyze a very basic but crucial physiological reaction: the conversion of carbon dioxide into bicarbonate with a release of the proton. CA, especially CAIX and CAXII isoforms gained the attention of many researchers interested in anticancer drug design due to pivotal functions of enzymes in the cancer cell metastasis and response to hypoxia, and their expression restricted to malignant cells. This offers an opportunity to develop new targeted therapies with fewer side effects. Continuous efforts led to the discovery of a series of diverse compounds with the most abundant sulphonamide derivatives. Here we review current knowledge considering small molecule and antibody-based targeting of CAIX/CAXII in cancer.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland.,Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Somdutt Mujwar
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Rafał Drozda
- Department of Gastrointestinal Endoscopy, Wl. Bieganski Hospital, Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
The Synergistic Cooperation between TGF-β and Hypoxia in Cancer and Fibrosis. Biomolecules 2022; 12:biom12050635. [PMID: 35625561 PMCID: PMC9138354 DOI: 10.3390/biom12050635] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine regulating homeostasis and immune responses in adult animals and humans. Aberrant and overactive TGF-β signaling promotes cancer initiation and fibrosis through epithelial–mesenchymal transition (EMT), as well as the invasion and metastatic growth of cancer cells. TGF-β is a key factor that is active during hypoxic conditions in cancer and is thereby capable of contributing to angiogenesis in various types of cancer. Another potent role of TGF-β is suppressing immune responses in cancer patients. The strong tumor-promoting effects of TGF-β and its profibrotic effects make it a focus for the development of novel therapeutic strategies against cancer and fibrosis as well as an attractive drug target in combination with immune regulatory checkpoint inhibitors. TGF-β belongs to a family of cytokines that exert their function through signaling via serine/threonine kinase transmembrane receptors to intracellular Smad proteins via the canonical pathway and in combination with co-regulators such as the adaptor protein and E3 ubiquitin ligases TRAF4 and TRAF6 to promote non-canonical pathways. Finally, the outcome of gene transcription initiated by TGF-β is context-dependent and controlled by signals exerted by other growth factors such as EGF and Wnt. Here, we discuss the synergistic cooperation between TGF-β and hypoxia in development, fibrosis and cancer.
Collapse
|
21
|
Liu Y, Kong XX, He JJ, Xu YB, Zhang JK, Zou LY, Ding KF, Xu D. OLA1 promotes colorectal cancer tumorigenesis by activation of HIF1α/CA9 axis. BMC Cancer 2022; 22:424. [PMID: 35440019 PMCID: PMC9020043 DOI: 10.1186/s12885-022-09508-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/05/2022] [Indexed: 12/19/2022] Open
Abstract
Background Obg-like ATPase 1 (OLA1) is a highly conserved GTPase, which was over expressed in a variety of malignant tumors, but its role in colorectal cancer (CRC) was poorly studied. Patients and methods Three public CRC gene databases were applied for OLA1 mRNA expression detection. The clinical data of 111 CRC patients were retrospectively collected from the Second Affiliated Hospital of Zhejiang University (SAHZU) for OLA1 protein expression and Kaplan-Meier Survival analysis. OLA1 stably knocked out CRC cell lines were conducted by CRISPR-Cas9 for experiments in vitro and in vivo. Results OLA1 was highly expressed in 84% CRC compared to matched surrounding tissues. Patients with OLA1 high expression had a significantly lower 5-year survival rate (47%) than those with OLA1 low expression (75%). OLA1 high expression was an independent factor of poor prognosis in CRC patients. OLA1-KO CRC cell lines showed lower ability of growth and tumorigenesis in vitro and in vivo. By mRNA sequence analysis, we found 113 differential express genes in OLA1-KO cell lines, of which 63 were hypoxic related. HIF1α was a key molecule in hypoxic regulation. Further molecular mechanisms showed HIF1α /CA9 mRNA and/or protein levels were heavily downregulated in OLA1-KO cell lines, which could explain the impaired tumorigenesis. According to previous studies, HIF1α was a downstream gene of GSK3β, we verified GSK3β was over-activated in OLA1-KO cell lines. Conclusion OLA1 was a new gene that was associated with carcinogenesis and poor outcomes in CRC by activation of HIF1α/CA9 axis, which may be interpreted by GSK3β. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09508-1.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xiang-Xing Kong
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jin-Jie He
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yan-Bo Xu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jian-Kun Zhang
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Lu-Yang Zou
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Ke-Feng Ding
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China. .,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China.
| | - Dong Xu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China. .,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China.
| |
Collapse
|
22
|
Ren Z, Liang H, Galbo PM, Dharmaratne M, Kulkarni AS, Fard AT, Aoun ML, Martinez-Lopez N, Suyama K, Benard O, Zheng W, Liu Y, Albanese J, Zheng D, Mar JC, Singh R, Prystowsky MB, Norton L, Hazan RB. Redox signaling by glutathione peroxidase 2 links vascular modulation to metabolic plasticity of breast cancer. Proc Natl Acad Sci U S A 2022; 119:e2107266119. [PMID: 35193955 PMCID: PMC8872779 DOI: 10.1073/pnas.2107266119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
In search of redox mechanisms in breast cancer, we uncovered a striking role for glutathione peroxidase 2 (GPx2) in oncogenic signaling and patient survival. GPx2 loss stimulates malignant progression due to reactive oxygen species/hypoxia inducible factor-α (HIF1α)/VEGFA (vascular endothelial growth factor A) signaling, causing poor perfusion and hypoxia, which were reversed by GPx2 reexpression or HIF1α inhibition. Ingenuity Pathway Analysis revealed a link between GPx2 loss, tumor angiogenesis, metabolic modulation, and HIF1α signaling. Single-cell RNA analysis and bioenergetic profiling revealed that GPx2 loss stimulated the Warburg effect in most tumor cell subpopulations, except for one cluster, which was capable of oxidative phosphorylation and glycolysis, as confirmed by coexpression of phosphorylated-AMPK and GLUT1. These findings underscore a unique role for redox signaling by GPx2 dysregulation in breast cancer, underlying tumor heterogeneity, leading to metabolic plasticity and malignant progression.
Collapse
Affiliation(s)
- Zuen Ren
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Huizhi Liang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Malindrie Dharmaratne
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, 4072 QLD, Australia
| | - Ameya S Kulkarni
- Department of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, 4072 QLD, Australia
| | - Marie Louise Aoun
- Department of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Nuria Martinez-Lopez
- Department of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kimita Suyama
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Wei Zheng
- Department of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Joseph Albanese
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, 4072 QLD, Australia
| | - Rajat Singh
- Department of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Larry Norton
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Rachel B Hazan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461;
| |
Collapse
|
23
|
Horikawa M, Sabe H, Onodera Y. Dual roles of AMAP1 in the transcriptional regulation and intracellular trafficking of carbonic anhydrase IX. Transl Oncol 2022; 15:101258. [PMID: 34742153 PMCID: PMC8577137 DOI: 10.1016/j.tranon.2021.101258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The cell-surface enzyme carbonic anhydrase IX (CAIX/CA9) promotes tumor growth, survival, invasion, and metastasis, mainly via its pH-regulating functions. Owing to its tumor-specific expression, CAIX-targeting antibodies/chemicals are utilized for therapeutic and diagnostic purposes. However, mechanisms of CAIX trafficking, which affects such CAIX-targeting modalities remain unclear. In this study, roles of the AMAP1-PRKD2 pathway, which mediates integrin recycling of invasive cancer cells, in CAIX trafficking were investigated. METHODS Using highly invasive MDA-MB-231 breast cancer cells, the physical association and colocalization of endogenous proteins were analyzed by immunoprecipitation and immunofluorescence, protein/mRNA levels were quantified by western blotting/qPCR, and cell-surface transport and intracellular/extracellular pH regulation were measured by biotin-labeling and fluorescent dye-based assays, respectively. The correlation between mRNA levels and patients' prognoses was analyzed using a TCGA breast cancer dataset. RESULTS AMAP1 associated with the CAIX protein complex, and they colocalized at the plasma membrane and tubulovesicular structures. AMAP1 knockdown reduced total/surface CAIX, induced its lysosomal accumulation and degradation, and affected intracellular/extracellular pH. PRKD2 knockdown excluded AMAP1 from the CAIX complex and reduced total CAIX in a lysosome-dependent manner. Unexpectedly, AMAP1 knockdown also reduced CAIX mRNA. AMAP1 interacted with PIAS3, which stabilizes HIF-1α, a transcriptional regulator of CA9. AMAP1 knockdown inhibited the PIAS3-HIF-1α interaction and destabilized the HIF-1α protein. High-ASAP1 (AMAP1-encoding gene) together with high-PIAS3 correlated with high-CA9 and an unfavorable prognosis in breast cancer. CONCLUSION The AMAP1-PRKD2 pathway regulates CAIX trafficking, and modulates its total/surface expression. The AMAP1-PIAS3 interaction augments CA9 transcription by stabilizing HIF-1α, presumably contributing to an unfavorable prognosis.
Collapse
Affiliation(s)
- Mei Horikawa
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Yasuhito Onodera
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
24
|
Phan MAT, Madigan MC, Stapleton F, Willcox M, Golebiowski B. Human meibomian gland epithelial cell culture models: Current progress, challenges, and future directions. Ocul Surf 2021; 23:96-113. [PMID: 34843998 DOI: 10.1016/j.jtos.2021.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
The widely used immortalised human meibomian gland epithelia cell (iHMGEC) line has made possible extensive studies of the biology and pathophysiology of meibomian glands (MG). Tissue culture protocols for iHMGEC have been revised and modified to optimise the growth conditions for cell differentiation and lipid accumulation. iHMGEC proliferate in serum-free medium but require serum or other appropriate exogenous factors to differentiate. Several supplements can enhance differentiation and neutral lipid accumulation in iHMGEC grown in serum-containing medium. In serum-free medium, rosiglitazone, a peroxisome proliferator activator receptor-γ (PPARγ) agonist, is reported to induce iHMGEC differentiation, neutral lipid accumulation and expression of key biomarkers of differentiation. iHMGEC cultured in serum-containing medium under hypoxia or with azithromycin increases DNAse 2 activity, a biomarker of terminal differentiation in sebocytes. The production of lipids with composition similar to meibum has not been observed in vitro and this remains a major challenge for iHMGEC culture. Innovative methodologies such as 3D ex vivo culture of MG and generation of MG organoids from stem cells are important for further developing a model that more closely mimics the in vivo biology of human MG and to facilitate the next generation of studies of MG disease and dry eye.
Collapse
Affiliation(s)
- Minh Anh Thu Phan
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia.
| | - Michele C Madigan
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Blanka Golebiowski
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| |
Collapse
|
25
|
Nortunen M, Parkkila S, Saarnio J, Huhta H, Karttunen TJ. Carbonic Anhydrases II and IX in Non-ampullary Duodenal Adenomas and Adenocarcinoma. J Histochem Cytochem 2021; 69:677-690. [PMID: 34636283 DOI: 10.1369/00221554211050133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Non-ampullary duodenal adenocarcinoma (DAC) is a rare malignancy. Little information is available concerning the histopathological prognostic factors associated with DAC. Carbonic anhydrases (CAs) are metalloenzymes catalyzing the universal reaction of CO2 hydration. Isozymes CAII, CAIX, and CAXII are associated with prognosis in various cancers. Our aim was to analyze the immunohistochemical expressions of CAII, CAIX, and CAXII in normal duodenal epithelium, duodenal adenomas, and adenocarcinoma and their associations with clinicopathological variables and survival. Our retrospective study included all 27 DACs treated in Oulu University Hospital during years 2000-2020. For comparison, samples of 42 non-ampullary adenomas were collected. CAII expression was low in duodenal adenomas and adenocarcinoma. CAIX expression in adenomas and adenocarcinoma was comparable with the high expression of normal duodenal crypts. Expression patterns in carcinomas were largely not related to clinicopathological features. However, low expression of CAII associated with poorer differentiation of the tumor (p=0.049) and low expression of CAIX showed a trend for association with nodal spread, although statistical significance was not reached (p=0.091). CAII and CAIX lost their epithelial polarization and staining intensity in adenomas. CAXII expression was not detected in the studied samples. CAs were not associated with survival. The prognostic value of CAII and CAIX downregulation should be further investigated. Both isozymes may serve as biomarkers of epithelial dysplasia in the duodenum.
Collapse
Affiliation(s)
- Minna Nortunen
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University and Fimlab Ltd, Tampere University Hospital, Tampere, Finland (SP)
| | - Juha Saarnio
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tuomo J Karttunen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
26
|
Regulation of Tumor Metabolism and Extracellular Acidosis by the TIMP-10-CD63 Axis in Breast Carcinoma. Cells 2021; 10:cells10102721. [PMID: 34685701 PMCID: PMC8535136 DOI: 10.3390/cells10102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
A hallmark of malignant solid tumor is extracellular acidification coupled with metabolic switch to aerobic glycolysis. Using the human MCF10A progression model of breast cancer, we show that glycolytic switch and extracellular acidosis in aggressive cancer cells correlate with increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), known to induce intracellular signal transduction through the interaction with its cell surface receptor CD63, independent of its metalloproteinase inhibitory function. We found that, in aggressive breast carcinoma, the TIMP-1–CD63 signaling axis induced a metabolic switch by upregulating the rate of aerobic glycolysis, lowering mitochondrial respiration, preventing intracellular acidification, and inducing extracellular acidosis. Carbonic anhydrase IX (CAIX), a regulator of cellular pH through the hydration of metabolically released pericellular CO2, was identified as a downstream mediator of the TIMP-1–CD63 signaling axis responsible for extracellular acidosis. Consistently with our previous study, the TIMP-1–CD63 signaling promoted survival of breast cancer cells. Interestingly, breast carcinoma cell survival was drastically reduced upon shRNA-mediated knockdown of CAIX expression, demonstrating the significance of CAIX-regulated pH in the TIMP-1–CD63-mediated cancer cell survival. Taken together, the present study demonstrates the functional significance of TIMP-1–CD63–CAXI signaling axis in the regulation of tumor metabolism, extracellular acidosis, and survival of breast carcinoma. We propose that this axis may serve as a novel therapeutic target.
Collapse
|
27
|
Post-translational modifications in tumor-associated carbonic anhydrases. Amino Acids 2021; 54:543-558. [PMID: 34436666 DOI: 10.1007/s00726-021-03063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Human carbonic anhydrases IX (hCA IX) and XII (hCA XII) are two proteins associated with tumor formation and development. These enzymes have been largely investigated both from a biochemical and a functional point of view. However, limited data are currently available on the characterization of their post-translational modifications (PTMs) and the functional implication of these structural changes in the tumor environment. In this review, we summarize existing literature data on PTMs of hCA IX and hCA XII, such as disulphide bond formation, phosphorylation, O-/N-linked glycosylation, acetylation and ubiquitination, highlighting, when possible, their specific role in cancer pathological processes.
Collapse
|
28
|
Trojan SE, Dudzik P, Totoń-Żurańska J, Laidler P, Kocemba-Pilarczyk KA. Expression of Alternative Splice Variants of 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase-4 in Normoxic and Hypoxic Melanoma Cells. Int J Mol Sci 2021; 22:8848. [PMID: 34445551 PMCID: PMC8396304 DOI: 10.3390/ijms22168848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer-specific isoenzyme of phosphofructokinase II (PFKFB4), as our previous research has shown, may be one of the most important enzymes contributing to the intensification of glycolysis in hypoxic malignant melanoma cells. Although the PFKFB4 gene seems to play a crucial role in the progression of melanoma, so far there are no complete data on the expression of PFKFB4 at the isoform level and the influence of hypoxia on alternative splicing. Using RT-qPCR and semi-quantitative RT-PCR, we presented the PFKFB4 gene expression profile at the level of six isoforms described in the OMIM NCBI database in normoxic and hypoxic melanoma cells. Additionally, using VMD software, we analyzed the structure of isoforms at the protein level, concluding about the catalytic activity of individual isoforms. Our research has shown that five isoforms of PFKFB4 are expressed in melanoma cells, of which the D and F isoforms are highly constitutive, while the canonical B isoform seems to be the main isoform induced in hypoxia. Our results also indicate that the expression profile at the level of the PFKFB4 gene does not reflect the expression at the level of individual isoforms. Our work clearly indicates that the PFKFB4 gene expression profile should be definitely analyzed at the level of individual isoforms. Moreover, the analysis at the protein level allowed the selection of those isoforms whose functional validation should be performed to fully understand the importance of PFKFB4 expression in the metabolic adaptation of malignant melanoma cells.
Collapse
Affiliation(s)
- Sonia E. Trojan
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Paulina Dudzik
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Justyna Totoń-Żurańska
- Jagiellonian University Medical College, Center for Medical Genomics-OMICRON, 31-034 Krakow, Poland;
| | - Piotr Laidler
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Kinga A. Kocemba-Pilarczyk
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| |
Collapse
|
29
|
First Comparison between [18f]-FMISO and [18f]-Faza for Preoperative Pet Imaging of Hypoxia in Lung Cancer. Cancers (Basel) 2021; 13:cancers13164101. [PMID: 34439254 PMCID: PMC8392878 DOI: 10.3390/cancers13164101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary The definition of the tumor hypoxia is important in oncology because this characteristic is linked to a poor prognosis. In this context, we compared two hypoxia tracers, FMISO and FAZA, before surgery for lung cancer. Hypoxia tracers correlate well with each other and FMISO is superior to FAZA in defining the hypoxia volume of lung cancers. However, there is no correlation with immunohistochemical findings (GLUT-1, CAIX, LDH-5, and HIF1-Alpha). Abstract Hypoxic areas are typically resistant to treatment. However, the fluorine-18-fluoroazomycin-arabinoside (FAZA) and fluorine 18 misonidazole (FMISO) tracers have never been compared in non small cell lung cancer (NSCLC). This study compares the capability of 18F-FAZA PET/CT with that of 18F-FMISO PET/CT for detecting hypoxic tumour regions in early and locally advanced NSCLC patients. We prospectively evaluated patients who underwent preoperative PET scans before surgery for localised NSCLC (i.e., fluorodeoxyglucose (FDG)-PET, FMISO-PET, and FAZA-PET). The PET data of the three tracers were compared with each other and then compared to immunohistochemical analysis (GLUT-1, CAIX, LDH-5, and HIF1-Alpha) after tumour resection. Overall, 19 patients with a mean age of 68.2 ± 8 years were included. There were 18 lesions with significant uptake (i.e., SUVmax >1.4) for the F-MISO and 17 for FAZA. The mean SUVmax was 3 (±1.4) with a mean volume of 25.8 cc (±25.8) for FMISO and 2.2 (±0.7) with a mean volume of 13.06 cc (±13.76) for FAZA. The SUVmax of F-MISO was greater than that of FAZA (p = 0.0003). The SUVmax of F-MISO shows a good correlation with that of FAZA at 0.86 (0.66–0.94). Immunohistochemical results are not correlated to hypoxia PET regardless of the staining. The two tracers show a good correlation with hypoxia, with FMISO being superior to FAZA. FMISO, therefore, remains the reference tracer for defining hypoxic volumes.
Collapse
|
30
|
Hypoxic Jumbo Spheroids On-A-Chip (HOnAChip): Insights into Treatment Efficacy. Cancers (Basel) 2021; 13:cancers13164046. [PMID: 34439199 PMCID: PMC8394550 DOI: 10.3390/cancers13164046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is a key characteristic of the tumor microenvironment, too rarely considered during drug development due to the lack of a user-friendly method to culture naturally hypoxic 3D tumor models. In this study, we used soft lithography to engineer a microfluidic platform allowing the culture of up to 240 naturally hypoxic tumor spheroids within an 80 mm by 82.5 mm chip. These jumbo spheroids on a chip are the largest to date (>750 µm), and express gold-standard hypoxic protein CAIX at their core only, a feature absent from smaller spheroids of the same cell lines. Using histopathology, we investigated response to combined radiotherapy (RT) and hypoxic prodrug Tirapazamine (TPZ) on our jumbo spheroids produced using two sarcoma cell lines (STS117 and SK-LMS-1). Our results demonstrate that TPZ preferentially targets the hypoxic core (STS117: p = 0.0009; SK-LMS-1: p = 0.0038), but the spheroids' hypoxic core harbored as much DNA damage 24 h after irradiation as normoxic spheroid cells. These results validate our microfluidic device and jumbo spheroids as potent fundamental and pre-clinical tools for the study of hypoxia and its effects on treatment response.
Collapse
|
31
|
Fu X, Feng Y, Shao B, Zhang Y. Taxifolin Protects Dental Pulp Stem Cells under Hypoxia and Inflammation Conditions. Cell Transplant 2021; 30:9636897211034452. [PMID: 34292054 PMCID: PMC8312191 DOI: 10.1177/09636897211034452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Dental pulp stem cells (DPSCs) are a unique source for future clinical application in dentistry such as periodontology or endodontics. However, DPSCs are prone to apoptosis under abnormal conditions. Taxifolin is a natural flavonoid and possesses many pharmacological activities including anti-hypoxic and anti-inflammatory. We aimed to elucidate the mechanisms of taxifolin protects DPSC under hypoxia and inflammatory conditions. Methods: DPSCs from human dental pulp tissue was purchased from Lonza (cat. no. PT-5025. Basel, Switzerland)) and identified by DPSC’s biomarkers. DPSC differentiation in vitro following the manufacturers’ instructions. ARS staining and Oil red staining verify the efficiency of differentiation in vitro after 2 weeks. The changes of various genes and proteins were identified by Q-PCR and western-blot, respectively. Cell viability was determined by the CCK-8 method, while apoptosis was determined by Annexin V/PI staining. Results: DPSC differentiation in vitro shows that hypoxia and TNF-α synergistically inhibit the survival and osteogenesis of DPSCs. A final concentration of 10 μM Taxifolin can significantly reduce the apoptosis of DPSCs under inflammation and hypoxia conditions. Taxifolin substantially increases carbonic anhydrase IX (CA9) expression but not HIF1a, and inhibitions of CA9 expression nullify the protective role of taxifolin under hypoxia and inflammatory condition. Conclusion: Taxifolin significantly increased the expression of CA9 when it inhibits DPSC apoptosis and taxifolin synergistically to protect DPSCs against apoptosis with CA9 under hypoxia and inflammatory conditions. Taxifolin can be used as a potential drug for clinical treatment of DPSC-related diseases.
Collapse
Affiliation(s)
- Xiaohui Fu
- Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China
| | - Yimiao Feng
- Department of Orthodontics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Bingyi Shao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, P. R. China
| | - Yanzhen Zhang
- Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China
| |
Collapse
|
32
|
El-Benhawy SA, Ebeid SA, Abd El Moneim NA, Arab ARR, Ramadan R. Repression of protocadherin 17 is correlated with elevated angiogenesis and hypoxia markers in female patients with breast cancer. Cancer Biomark 2021; 31:139-148. [PMID: 33896826 DOI: 10.3233/cbm-201593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Altered cadherin expression plays a vital role in tumorigenesis, angiogenesis and tumor progression. However, the function of protocadherin 17 (PCDH17) in breast cancer remains unclear. OBJECTIVE Our target is to explore PCDH17 gene expression in breast carcinoma tissues and its relation to serum angiopoietin-2 (Ang-2), carbonic anhydrase IX (CAIX) and % of circulating CD34+ cells in breast cancer patients (BCPs). METHODS This study included Fifty female BCPs and 50 healthy females as control group. Cancerous and neighboring normal breast tissues were collected from BCPs as well as blood samples at diagnosis. PCDH17 gene expression was evaluated by RT-PCR. Serum Ang-2, CAIX levels were measured by ELISA and % CD34+ cells were assessed by flow cytometry. RESULTS PCDH17 was downregulated in cancerous breast tissues and its repression was significantly correlated with advanced stage and larger tumor size. Low PCDH17 was significantly correlated with serum Ang-2, % CD34+ cells and serum CAIX levels. Serum CAIX, Ang-2 and % CD34+ cells levels were highly elevated in BCPs and significantly correlated with clinical stage. CONCLUSIONS PCDH17 downregulation correlated significantly with increased angiogenic and hypoxia biomarkers. These results explore the role of PCDH17 as a tumor suppressor gene inhibiting tumor growth and proliferation.
Collapse
Affiliation(s)
- Sanaa A El-Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Samia A Ebeid
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nadia A Abd El Moneim
- Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amal R R Arab
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rabie Ramadan
- Experimental and Clinical Surgery Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma. Int J Mol Sci 2021; 22:ijms22115518. [PMID: 34073734 PMCID: PMC8197239 DOI: 10.3390/ijms22115518] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the center of the expanding tumor mass leads to the glycolytic and angiogenic switch, accompanied by upregulation of different glycolytic enzymes, transporters, and other metabolites. These processes render the tumor microenvironment more acidic, remodel the extracellular matrix, and create energy gradients for the metabolic communication between different cancer cells in distinct tumor zones. Escape mechanisms from hypoxia-induced cell death and energy deprivation are the result. The functional consequences are more aggressive and malignant behavior with enhanced proliferation and survival, migration and invasiveness, and the induction of angiogenesis. In this review, we go from the biochemical principles of aerobic and anaerobic glycolysis over the glycolytic switch, regulated by the key transcription factor hypoxia-inducible factor (HIF)-1α, to other important metabolic players like the monocarboxylate transporters (MCTs)1 and 4. We discuss the metabolic symbiosis model via lactate shuttling in the acidic tumor microenvironment and highlight the functional consequences of the glycolytic switch on glioma malignancy. Furthermore, we illustrate regulation by micro ribonucleic acids (miRNAs) and the connection between isocitrate dehydrogenase (IDH) mutation status and glycolytic metabolism. Finally, we give an outlook about the diagnostic and therapeutic implications of the glycolytic switch and the relation to tumor immunity in malignant glioma.
Collapse
|
34
|
Apanovich N, Apanovich P, Mansorunov D, Kuzevanova A, Matveev V, Karpukhin A. The Choice of Candidates in Survival Markers Based on Coordinated Gene Expression in Renal Cancer. Front Oncol 2021; 11:615787. [PMID: 34046336 PMCID: PMC8144703 DOI: 10.3389/fonc.2021.615787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
We aimed to identify and investigate genes that are essential for the development of clear cell renal cell carcinoma (ccRCC) and sought to shed light on the mechanisms of its progression and create prognostic markers for the disease. We used real-time PCR to study the expression of 20 genes that were preliminarily selected based on their differential expression in ccRCC, in 68 paired tumor/normal samples. Upon ccRCC progression, seven genes that showed an initial increase in expression showed decreased expression. The genes whose expression levels did not significantly change during progression were associated mainly with metabolic and inflammatory processes. The first group included CA9, NDUFA4L2, EGLN3, BHLHE41, VWF, IGFBP3, and ANGPTL4, whose expression levels were coordinately decreased during tumor progression. This expression coordination and gene function is related to the needs of tumor development at different stages. Specifically, the high correlation coefficient of EGLN3 and NDUFA4L2 expression may indicate the importance of the coordinated regulation of glycolysis and mitochondrial metabolism. A panel of CA9, EGLN3, BHLHE41, and VWF enabled the prediction of survival for more than 3.5 years in patients with ccRCC, with a probability close to 90%. Therefore, a coordinated change in the expression of a gene group during ccRCC progression was detected, and a new panel of markers for individual survival prognosis was identified.
Collapse
Affiliation(s)
- Natalya Apanovich
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Pavel Apanovich
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Danzan Mansorunov
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Anna Kuzevanova
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Vsevolod Matveev
- Department of Oncourology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Karpukhin
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
35
|
Garcia-Soto AE, McKenzie ND, Whicker ME, Pearson JM, Jimenez EA, Portelance L, Hu JJ, Lucci JA, Qureshi R, Kossenkov A, Schwartz L, Mills GB, Maity A, Lin LL, Simpkins F. Phase 1 trial of nelfinavir added to standard cisplatin chemotherapy with concurrent pelvic radiation for locally advanced cervical cancer. Cancer 2021; 127:2279-2293. [PMID: 33932031 PMCID: PMC8252376 DOI: 10.1002/cncr.33449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/08/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nelfinavir (NFV), an HIV-1 protease inhibitor, has been shown to sensitize cancer cells to chemoradiation (CRT). The objectives of this phase 1 trial were to evaluate safety and identify the recommended phase 2 dose of NFV added to concurrent CRT for locally advanced cervical cancer. METHODS Two dose levels of NFV were evaluated: 875 mg orally twice daily (dose level 1 [DL1]) and 1250 mg twice daily (DL2). NFV was initiated 7 days before CRT and continued through CRT completion. Toxicity, radiographic responses, and pathologic responses were evaluated. Serial tumor biopsies (baseline, after NFV monotherapy, on NFV + CRT, and posttreatment) were evaluated by immunohistochemistry, NanoString, and reverse-phase-protein-array analyses. RESULTS NFV sensitized cervical cancer cells to radiation, increasing apoptosis and tumor suppression in vivo. Patients (n = 13) with International Federation of Gynecology and Obstetrics stage IIA through IVA squamous cell cervical carcinoma were enrolled, including 7 patients at DL1 and 6 patients at DL2. At DL1, expansion to 6 patients was required after a patient developed a dose-limiting toxicity, whereas no dose-limiting toxicities occurred at DL2. Therefore, DL2 was established as the recommended phase 2 dose. All patients at DL2 completed CRT, and 1 of 6 experienced grade 3 or 4 anemia, nausea, and diarrhea. One recurrence was noted at DL2, with disease outside the radiation field. Ten of 11 evaluable patients remained without evidence of disease at a median follow-up of 50 months. NFV significantly decreased phosphorylated Akt levels in tumors. Cell cycle and cancer pathways also were reduced by NFV and CRT. CONCLUSIONS NFV with CRT is well tolerated. The response rate is promising compared with historic controls in this patient population and warrants further investigation.
Collapse
Affiliation(s)
- Arlene E Garcia-Soto
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Nathalie D McKenzie
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Margaret E Whicker
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Joseph M Pearson
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Edward A Jimenez
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Lorraine Portelance
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jennifer J Hu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Joseph A Lucci
- The University of Texas Health Science Center at Houston, Houston, Texas
| | | | | | - Lauren Schwartz
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Gordon B Mills
- The Knight Cancer Institute, Oregon Health Sciences University, Portland, Oregon
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lilie L Lin
- The University of Texas MD Anderson Cancer Center, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Fiona Simpkins
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Braun DA, Bakouny Z, Hirsch L, Flippot R, Van Allen EM, Wu CJ, Choueiri TK. Beyond conventional immune-checkpoint inhibition - novel immunotherapies for renal cell carcinoma. Nat Rev Clin Oncol 2021; 18:199-214. [PMID: 33437048 PMCID: PMC8317018 DOI: 10.1038/s41571-020-00455-z] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/29/2023]
Abstract
The management of advanced-stage renal cell carcinoma (RCC) has been transformed by the development of immune-checkpoint inhibitors (ICIs). Nonetheless, most patients do not derive durable clinical benefit from these agents. Importantly, unlike other immunotherapy-responsive solid tumours, most RCCs have only a moderate mutational burden, and paradoxically, high levels of tumour CD8+ T cell infiltration are associated with a worse prognosis in patients with this disease. Building on the successes of antibodies targeting the PD-1 and CTLA4 immune checkpoints, multiple innovative immunotherapies are now in clinical development for the treatment of patients with RCC, including ICIs with novel targets, co-stimulatory pathway agonists, modified cytokines, metabolic pathway modulators, cell therapies and therapeutic vaccines. However, the successful development of such novel immune-based treatments and of immunotherapy-based combinations will require a disease-specific framework that incorporates a deep understanding of RCC immunobiology. In this Review, using the structure provided by the well-described cancer-immunity cycle, we outline the key steps required for a successful antitumour immune response in the context of RCC, and describe the development of promising new immunotherapies within the context of this framework. With this approach, we summarize and analyse the most encouraging targets of novel immune-based therapies within the RCC microenvironment, and review the landscape of emerging antigen-directed therapies for this disease.
Collapse
Affiliation(s)
- David A Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laure Hirsch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Becker HM, Deitmer JW. Proton Transport in Cancer Cells: The Role of Carbonic Anhydrases. Int J Mol Sci 2021; 22:ijms22063171. [PMID: 33804674 PMCID: PMC8003680 DOI: 10.3390/ijms22063171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3−-coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined “transport metabolon”. While transport metabolons built with HCO3−-coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Holger M. Becker
- Zoology and Animal Physiology, Institute of Zoology, TU Dresden, D-01217 Dresden, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
38
|
Carbonic Anhydrase IX Promotes Human Cervical Cancer Cell Motility by Regulating PFKFB4 Expression. Cancers (Basel) 2021; 13:cancers13051174. [PMID: 33803236 PMCID: PMC7967120 DOI: 10.3390/cancers13051174] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Carbonic anhydrase IX (CAIX) is a hypoxia-induced protein that is highly expressed in numerous human cancers. However, the molecular mechanisms involved in CAIX and human cervical cancer metastasis remain poorly understood. Our study found that CAIX overexpression increases PFKFB4 expression and EMT, promoting cervical cancer cell migration. CAIX could contribute to cervical cancer cell metastasis and its inhibition could be a cervical cancer treatment strategy. Abstract Carbonic anhydrase IX (CAIX) is a hypoxia-induced protein that is highly expressed in numerous human cancers. However, the molecular mechanisms involved in CAIX and human cervical cancer metastasis remain poorly understood. In this study, CAIX overexpression in SiHa cells increased cell migration and epithelial-to-mesenchymal transition (EMT). Silencing CAIX in the Caski cell line decreased the motility of cells and EMT. Furthermore, the RNA-sequencing analysis identified a target gene, bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB4), which is influenced by CAIX overexpression and knockdown. A positive correlation was found between CAIX expression and PFKFB4 levels in the cervical cancer of the TCGA database. Mechanistically, CAIX overexpression activated the phosphorylation of extracellular signal-regulated kinases (ERKs) to induce EMT and promote cell migration. In clinical results, human cervical cancer patients with CAIXhigh/PFKFB4high expression in the late stage had higher rates of lymph node metastasis and the shortest survival time. Our study found that CAIX overexpression increases PFKFB4 expression and EMT, promoting cervical cancer cell migration. CAIX could contribute to cervical cancer cell metastasis and its inhibition could be a cervical cancer treatment strategy.
Collapse
|
39
|
Ozensoy Guler O, Supuran CT, Capasso C. Carbonic anhydrase IX as a novel candidate in liquid biopsy. J Enzyme Inhib Med Chem 2020; 35:255-260. [PMID: 31790601 PMCID: PMC6896409 DOI: 10.1080/14756366.2019.1697251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Among the diagnostic techniques for the identification of tumour biomarkers, the liquid biopsy is considered one that offers future research on precision diagnosis and treatment of tumours in a non-invasive manner. The approach consists of isolating tumor-derived components, such as circulating tumour cells (CTC), tumour cell-free DNA (ctDNA), and extracellular vesicles (EVs), from the patient peripheral blood fluids. These elements constitute a source of genomic and proteomic information for cancer treatment. Within the tumour-derived components of the body fluids, the enzyme indicated with the acronym CA IX and belonging to the superfamily of carbonic anhydrases (CA, EC 4.2.1.1) is a promising aspirant for checking tumours. CA IX is a transmembrane-CA isoform that is strongly overexpressed in many cancers being not much diffused in healthy tissues except the gastrointestinal tract. Here, it is summarised the role of CA IX as tumour-associated protein and its putative relationship in liquid biopsyfor diagnosing and monitoring cancer progression.
Collapse
Affiliation(s)
- Ozen Ozensoy Guler
- Department of Medical Biology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Claudiu. T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
40
|
Matsumoto T, Chino H, Akiya M, Hashimura M, Yokoi A, Tochimoto M, Nakagawa M, Jiang Z, Saegusa M. Requirements of LEFTY and Nodal overexpression for tumor cell survival under hypoxia in glioblastoma. Mol Carcinog 2020; 59:1409-1419. [PMID: 33111989 DOI: 10.1002/mc.23265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023]
Abstract
Glioblastomas (GBM) contain numerous hypoxic foci associated with a rare fraction of glioma stem cells (GSCs). Left-right determination factor (LEFTY) and Nodal, members of the transforming growth factor β (TGF-β) superfamily, have glycogen synthase kinase 3β (GSK-3β) phosphorylation motifs and are linked with stemness in human malignancies. Herein, we investigated the roles of LEFTY and Nodal in GBM hypoxic foci. In clinical samples, significantly higher expression of LEFTY, Nodal, phospho (p) GSK-3β, pSmad2, and Nestin, as well as higher apoptotic and lower proliferation rates, were observed in nonpseudopalisading (non-Ps) perinecrotic lesions as compared to Ps and non-necrotic tumor lesions, with a positive correlation between LEFTY, Nodal, pGSK-3β, or pSmad2 scores. In KS-1, a GBM cell line that lacks endogenous Nodal expression, treatment with the hypoxic mimetic CoCl2 increased LEFTY, pGSK-3β, and pSmad2 levels, but decreased pAkt levels. Moreover, the promoter for LEFTY, but not Nodal, was activated by Smad2 or TGF-β1, suggesting that overexpression of LEFTY and Nodal may be due to Akt-independent GSK-3β inactivation, with or without cooperation of the TGF-β1/Smad2 axis. LEFTY and Nodal overexpression increased proliferation rates and reduced susceptibility to CoCl2 -induced apoptosis, and increased the expression of epithelial-mesenchymal transition (EMT)/GSC-related markers. An increased ALDH1high population and more efficient spheroid formation was also observed in LEFTY-overexpressing cells. These findings suggest that LEFTY and Nodal may contribute to cell survival in non-Ps GBM perinecrotic lesions, leading to alterations in apoptosis, proliferation, or EMT/GCS features.
Collapse
Affiliation(s)
- Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiromi Chino
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masashi Akiya
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masataka Tochimoto
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Mayu Nakagawa
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Zesong Jiang
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
41
|
Fan GL, Yuan P, Deng FA, Liu LS, Miao YL, Wang C, Qiu XZ, Yu XY, Cheng H, Li SY. Self-Delivery Photodynamic Nanoinhibitors for Tumor Targeted Therapy and Metastasis Inhibition. ACS APPLIED BIO MATERIALS 2020; 3:6124-6130. [PMID: 35021745 DOI: 10.1021/acsabm.0c00706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Simultaneous inhibitions of primary tumor growth and distant metastasis are very critical for cancer patients to improve their survival and cure rates. Although photodynamic therapy (PDT) shows great potential for primary tumor treatment, it often exacerbates hypoxia with a reduced therapeutic efficacy and subsequently contributes to carcinoma progression and metastatic dissemination. To solve these issues, self-delivery photodynamic nanoinhibitors (PNI) are developed for tumor targeted therapy and metastasis inhibition. PNI are composed of a carbonic anhydrase inhibitor (CAi), a hydrophilic poly(ethylene glycol) (PEG) linker, and a hydrophobic photosensitizer protoporphyrin IX (PpIX). Such self-delivery design of PNI avoids the premature release and heterogeneous distribution of CAi and PpIX to enhance the availability and synergism. Briefly, the CAi-based nanoinhibitors improve the selectivity of CAi for specific recognition and inhibition of tumor-associated isoform carbonic anhydrase (CA) IX, which would not only facilitate the targeted drug delivery of PNI but also regulate the hypoxia-induced signaling cascade and PDT resistance. Benefiting from the CA IX inhibition and targeted PDT, PNI exhibit a robust inhibitory effect on primary tumor growth and distant metastasis. This targeted self-delivery strategy sheds light on the photosensitizer-based molecular design to overcome the defect of traditional PDT.
Collapse
Affiliation(s)
- Gui-Ling Fan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Ping Yuan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Fu-An Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Ling-Shan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ying-Ling Miao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Chang Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xiao-Zhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Hong Cheng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shi-Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
42
|
Kreuzer M, Banerjee A, Birts CN, Darley M, Tavassoli A, Ivan M, Blaydes JP. Glycolysis, via NADH-dependent dimerisation of CtBPs, regulates hypoxia-induced expression of CAIX and stem-like breast cancer cell survival. FEBS Lett 2020; 594:2988-3001. [PMID: 32618367 DOI: 10.1002/1873-3468.13874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Adaptive responses to hypoxia are mediated by the hypoxia-inducible factor (HIF) family of transcription factors. These responses include the upregulation of glycolysis to maintain ATP production. This also generates acidic metabolites, which require HIF-induced carbonic anhydrase IX (CAIX) for their neutralisation. C-terminal binding proteins (CtBPs) are coregulators of gene transcription and couple glycolysis with gene transcription due to their regulation by the glycolytic coenzyme NADH. Here, we find that experimental manipulation of glycolysis and CtBP function in breast cancer cells through multiple complementary approaches supports a hypothesis whereby the expression of known HIF-inducible genes, and CAIX in particular, adapts to available glucose in the microenvironment through a mechanism involving CtBPs. This novel pathway promotes the survival of stem cell-like cancer (SCLC) cells in hypoxia.
Collapse
Affiliation(s)
- Mira Kreuzer
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| | - Arindam Banerjee
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK
| | - Charles N Birts
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| | - Matthew Darley
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK
| | - Ali Tavassoli
- Institute for Life Sciences, University of Southampton, Southampton, Hants, UK.,School of Chemistry, University of Southampton, Southampton, Hants, UK
| | - Mircea Ivan
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeremy P Blaydes
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| |
Collapse
|
43
|
Liu Y, Wang J, Chen D, Kam WR, Sullivan DA. The Role of Hypoxia-Inducible Factor 1α in the Regulation of Human Meibomian Gland Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 61:1. [PMID: 32150252 PMCID: PMC7401459 DOI: 10.1167/iovs.61.3.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose We recently discovered that a hypoxic environment is beneficial for meibomian gland (MG) function. The mechanisms underlying this effect are unknown, but we hypothesize that it is due to an increase in the levels of hypoxia-inducible factor 1α (HIF1α). In other tissues, HIF1α is the primary regulator of cellular responses to hypoxia, and HIF1α expression can be induced by multiple stimuli, including hypoxia and hypoxia-mimetic agents. The objective of this study was to test our hypothesis. Methods Human eyelid tissues were stained for HIF1α. Immortalized human MG epithelial cells (IHMGECs) were cultured for varying time periods under normoxic (21% O2) or hypoxic (1% O2) conditions, in the presence or absence of the hypoxia-mimetic agent roxadustat (Roxa). IHMGECs were then processed for the analysis of cell number, HIF1α expression, lipid-containing vesicles, neutral and polar lipid content, DNase II activity, and intracellular pH. Results Our results show that HIF1α protein is present in human MG acinar epithelial cells in vivo. Our findings also demonstrate that exposure to 1% O2 or to Roxa increases the expression of HIF1α, the number of lipid-containing vesicles, the content of neutral lipids, and the activity of DNase II and decreases the pH in IHMGECs in vitro. Conclusions Our data support our hypothesis that the beneficial effect of hypoxia on the MG is mediated through an increased expression of HIF1α.
Collapse
|
44
|
Lee SH, Griffiths JR. How and Why Are Cancers Acidic? Carbonic Anhydrase IX and the Homeostatic Control of Tumour Extracellular pH. Cancers (Basel) 2020; 12:cancers12061616. [PMID: 32570870 PMCID: PMC7352839 DOI: 10.3390/cancers12061616] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The acidic tumour microenvironment is now recognized as a tumour phenotype that drives cancer somatic evolution and disease progression, causing cancer cells to become more invasive and to metastasise. This property of solid tumours reflects a complex interplay between cellular carbon metabolism and acid removal that is mediated by cell membrane carbonic anhydrases and various transport proteins, interstitial fluid buffering, and abnormal tumour-associated vessels. In the past two decades, a convergence of advances in the experimental and mathematical modelling of human cancers, as well as non-invasive pH-imaging techniques, has yielded new insights into the physiological mechanisms that govern tumour extracellular pH (pHe). In this review, we examine the mechanisms by which solid tumours maintain a low pHe, with a focus on carbonic anhydrase IX (CAIX), a cancer-associated cell surface enzyme. We also review the accumulating evidence that suggest a role for CAIX as a biological pH-stat by which solid tumours stabilize their pHe. Finally, we highlight the prospects for the clinical translation of CAIX-targeted therapies in oncology.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
- Correspondence:
| | - John R. Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK;
| |
Collapse
|
45
|
Nakada N, Mikami T, Horie K, Nagashio R, Sakurai Y, Sanoyama I, Yoshida T, Sada M, Kobayashi K, Sato Y, Okayasu I, Murakumo Y. Expression of CA2 and CA9 carbonic anhydrases in ulcerative colitis and ulcerative colitis-associated colorectal cancer. Pathol Int 2020; 70:523-532. [PMID: 32410301 DOI: 10.1111/pin.12949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammation in the colonic mucosa and submucosa with repeating relapse and remission, but the pathogenesis is unknown. Patients with long-standing UC are at high risk of neoplasm development. The aim of the present study was to identify molecules whose expression is associated with UC and UC-associated colorectal cancer (UCCA). Biopsy specimens from UC and normal colonic mucosae were analyzed using a proteomics approach, in which carbonic anhydrase 2 (CA2) was identified as a molecule downregulated in UC mucosae. Immunohistochemically, CA2 expression was detected in normal and diverticulitis mucosal epithelia, and its expression decreased as UC activity increased. CA2 expression was almost undetectable in UCCA. We also analyzed the expression of another carbonic anhydrase, CA9, and its upstream molecule, hypoxia-inducible factor-1α (HIF-1α), both of which are induced under hypoxic conditions. It was revealed that CA9 expression was relatively low in normal, diverticulitis and UC mucosae, and was upregulated in UCCA. HIF-1α expression was consistently low in all tissue types examined. In conclusion, these results suggest that CA2 and CA9 may be possible indicators of UC activity and UCCA development, respectively.
Collapse
Affiliation(s)
- Norihiro Nakada
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan.,Department of Pathology, Nakagami Hospital, Okinawa, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Aomori, Japan
| | - Ryo Nagashio
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Yasutaka Sakurai
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Itaru Sanoyama
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Tsutomu Yoshida
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Miwa Sada
- Department of Gastroenterology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kiyonori Kobayashi
- Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Isao Okayasu
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
46
|
Bergmann N, Delbridge C, Gempt J, Feuchtinger A, Walch A, Schirmer L, Bunk W, Aschenbrenner T, Liesche-Starnecker F, Schlegel J. The Intratumoral Heterogeneity Reflects the Intertumoral Subtypes of Glioblastoma Multiforme: A Regional Immunohistochemistry Analysis. Front Oncol 2020; 10:494. [PMID: 32391260 PMCID: PMC7193089 DOI: 10.3389/fonc.2020.00494] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent and aggressive primary brain tumor in adults. Despite extensive therapy the prognosis for GBM patients remains poor and the extraordinary therapy resistance has been attributed to intertumoral heterogeneity of glioblastoma. Different prognostic relevant GBM tumor subtypes have been identified based on their molecular profile. This approach, however, neglects the heterogeneity within individual tumors, that is, the intratumoral heterogeneity. Here, we detected the regional immunoreactivity by immunohistochemistry and immunofluorescence using nine different markers on resected GBM specimens (IDH wildtype, WHO grade IV). We found repetitive expression profiles, that could be classified into clusters. These clusters could then be assigned to five pathophysiologically relevant groups that reflect the previously described subclasses of GBM, including mesenchymal, classical, and proneural subtype. Our data indicate the presence of tumor differentiations and tumor subclasses that occur within individual tumors, and might therefore contribute to develop adapted, individual-based therapies.
Collapse
Affiliation(s)
- Natalie Bergmann
- Division of Neuropathology, Technische Universität München, München, Germany
| | - Claire Delbridge
- Institute of Pathology, Technische Universität München, München, Germany
| | - Jens Gempt
- Department of Neurosurgery, Technische Universität München, München, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Lucas Schirmer
- Department of Neurology, Universitätsklinikum Mannheim, Mannheim, Germany
| | - Wolfram Bunk
- Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany
| | | | | | - Jürgen Schlegel
- Division of Neuropathology, Technische Universität München, München, Germany
| |
Collapse
|
47
|
Effect of Hypoxia on Gene Expression in Cell Populations Involved in Wound Healing. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2626374. [PMID: 31534956 PMCID: PMC6724439 DOI: 10.1155/2019/2626374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/25/2019] [Indexed: 01/27/2023]
Abstract
Wound healing is a complex process regulated by multiple signals and consisting of several phases known as haemostasis, inflammation, proliferation, and remodelling. Keratinocytes, endothelial cells, macrophages, and fibroblasts are the major cell populations involved in wound healing process. Hypoxia plays a critical role in this process since cells sense and respond to hypoxic conditions by changing gene expression. This study assessed the in vitro expression of 77 genes involved in angiogenesis, metabolism, cell growth, proliferation and apoptosis in human keratinocytes (HaCaT), microvascular endothelial cells (HMEC-1), differentiated macrophages (THP-1), and dermal fibroblasts (HDF). Results indicated that the gene expression profiles induced by hypoxia were cell-type specific. In HMEC-1 and differentiated THP-1, most of the genes modulated by hypoxia encode proteins involved in angiogenesis or belonging to cytokines and growth factors. In HaCaT and HDF, hypoxia mainly affected the expression of genes encoding proteins involved in cell metabolism. This work can help to enlarge the current knowledge about the mechanisms through which a hypoxic environment influences wound healing processes at the molecular level.
Collapse
|
48
|
Takei N, Yoneda A, Kosaka M, Sakai-Sawada K, Tamura Y. ERO1α is a novel endogenous marker of hypoxia in human cancer cell lines. BMC Cancer 2019; 19:510. [PMID: 31142270 PMCID: PMC6542132 DOI: 10.1186/s12885-019-5727-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hypoxia is an important factor that contributes to tumour aggressiveness and correlates with poor prognosis and resistance to conventional therapy. Therefore, identifying hypoxic environments within tumours is extremely useful for understanding cancer biology and developing novel therapeutic strategies. Several studies have suggested that carbonic anhydrase 9 (CA9) is a reliable biomarker of hypoxia and a potential therapeutic target, while pimonidazole has been identified as an exogenous hypoxia marker. However, other studies have suggested that CA9 expression is not directly induced by hypoxia and it is not expressed in all types of tumours. Thus, in this study, we focused on endoplasmic reticulum disulphide oxidase 1α (ERO1α), a protein that localises in the endoplasmic reticulum and is involved in the formation of disulphide bonds in proteins, to determine whether it could serve as a potential tumour-hypoxia biomarker. Methods Using quantitative real-time polymerase chain reaction, we analysed the mRNA expression of ERO1α and CA9 in different normal and cancer cell lines. We also determined the protein expression levels of ERO1α and CA9 in these cell lines by western blotting. We then investigated the hypoxia-inducible ERO1α and CA9 expression and localisation in HCT116 and HeLa cells, which express low (CA9-low) and high (CA9-high) levels of CA9, respectively. A comparative analysis was performed using pimonidazole, an exogenous hypoxic marker, as a positive control. The expression and localisation of ERO1α and CA9 in tumour spheres during hypoxia were analysed by a tumour sphere formation assay. Finally, we used a mouse model to investigate the localisation of ERO1α and CA9 in tumour xenografts using several cell lines. Results We found that ERO1α expression increased under chronic hypoxia. Our results show that ERO1α was hypoxia-induced in all the tested cancer cell lines. Furthermore, in the comparative analysis using CA9 and pimonidazole, ERO1α had a similar localisation to pimonidazole in both CA9-low and CA9-high cell lines. Conclusion ERO1α can serve as a novel endogenous chronic hypoxia marker that is more reliable than CA9 and can be used as a diagnostic biomarker and therapeutic target for cancer. Electronic supplementary material The online version of this article (10.1186/s12885-019-5727-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norio Takei
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan.
| | - Akihiro Yoneda
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Marina Kosaka
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Kaori Sakai-Sawada
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Yasuaki Tamura
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
49
|
Van Nest SJ, Nicholson LM, Pavey N, Hindi MN, Brolo AG, Jirasek A, Lum JJ. Raman spectroscopy detects metabolic signatures of radiation response and hypoxic fluctuations in non-small cell lung cancer. BMC Cancer 2019; 19:474. [PMID: 31109312 PMCID: PMC6528330 DOI: 10.1186/s12885-019-5686-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/08/2019] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Radiation therapy is a standard form of treating non-small cell lung cancer, however, local recurrence is a major issue with this type of treatment. A better understanding of the metabolic response to radiation therapy may provide insight into improved approaches for local tumour control. Cyclic hypoxia is a well-established determinant that influences radiation response, though its impact on other metabolic pathways that control radiosensitivity remains unclear. METHODS We used an established Raman spectroscopic (RS) technique in combination with immunofluorescence staining to measure radiation-induced metabolic responses in human non-small cell lung cancer (NSCLC) tumour xenografts. Tumours were established in NOD.CB17-Prkdcscid/J mice, and were exposed to radiation doses of 15 Gy or left untreated. Tumours were harvested at 2 h, 1, 3 and 10 days post irradiation. RESULTS We report that xenografted NSCLC tumours demonstrate rapid and stable metabolic changes, following exposure to 15 Gy radiation doses, which can be measured by RS and are dictated by the extent of local tissue oxygenation. In particular, fluctuations in tissue glycogen content were observed as early as 2 h and as late as 10 days post irradiation. Metabolically, this signature was correlated to the extent of tumour regression. Immunofluorescence staining for γ-H2AX, pimonidazole and carbonic anhydrase IX (CAIX) correlated with RS-identified metabolic changes in hypoxia and reoxygenation following radiation exposure. CONCLUSION Our results indicate that RS can identify sequential changes in hypoxia and tumour reoxygenation in NSCLC, that play crucial roles in radiosensitivity.
Collapse
Affiliation(s)
- Samantha J. Van Nest
- Department of Physics and Astronomy, University of Victoria, PO BOX 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, BC V8R 6V5 Canada
| | - Leah M. Nicholson
- Trev and Joyce Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, BC V8R 6V5 Canada
| | - Nils Pavey
- Trev and Joyce Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, BC V8R 6V5 Canada
| | - Mathew N. Hindi
- Trev and Joyce Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, BC V8R 6V5 Canada
| | - Alexandre G. Brolo
- Department of Chemistry, University of Victoria, PO BOX 3065, Victoria, BC V8W 3V6 Canada
| | - Andrew Jirasek
- Department of Physics, I.K. Barber School of Arts and Sciences, University of British Columbia-Okanagan, 3187 University Way, Kelowna, BC V1V 1V7 Canada
| | - Julian J. Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, BC V8R 6V5 Canada
- Department of Biochemistry and Microbiology, University of Victoria, PO BOX 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| |
Collapse
|
50
|
Logozzi M, Capasso C, Di Raimo R, Del Prete S, Mizzoni D, Falchi M, Supuran CT, Fais S. Prostate cancer cells and exosomes in acidic condition show increased carbonic anhydrase IX expression and activity. J Enzyme Inhib Med Chem 2019; 34:272-278. [PMID: 30734594 PMCID: PMC6327996 DOI: 10.1080/14756366.2018.1538980] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acidity and hypoxia are crucial phenotypes of tumour microenvironment both contributing to the selection of malignant cells under a micro evolutionistic pressure. During the tumour progression, nanovesicles, called exosomes and the metalloenzyme carbonic anhydrase IX (CA IX) affect the tumour growth and proliferation. Exosomes are released into the tumour microenvironment and spilt all over the body, while CA IX is a tumour-associated protein overexpressed in many different solid tumours. In the present study, to better understand the relationships between exosomes and CA IX, it has been used an in vitro cellular model of cells cultured in different pH conditions. The results showed that the acidic microenvironment induced upregulation of both expression and activity of CA IX in cancer cells and their exosomes, together with increasing the number of released exosomes. These data strongly support the importance of CA IX as a cancer biomarker and as a valuable target of new anticancer therapies.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- a Department of Oncology and Molecular Medicine , National Institute of Health , Rome , Italy
| | - Clemente Capasso
- b National Research Council , Institute of Biosciences and BioResources , Naples , Italy
| | - Rossella Di Raimo
- a Department of Oncology and Molecular Medicine , National Institute of Health , Rome , Italy
| | - Sonia Del Prete
- b National Research Council , Institute of Biosciences and BioResources , Naples , Italy
| | - Davide Mizzoni
- a Department of Oncology and Molecular Medicine , National Institute of Health , Rome , Italy
| | - Mario Falchi
- c National AIDS Center , National Institute of Health , Rome , Italy
| | - Claudiu T Supuran
- d NEUROFARBA Department , University of Florence, Section of Pharmaceutical Chemistry , Florence , Italy
| | - Stefano Fais
- a Department of Oncology and Molecular Medicine , National Institute of Health , Rome , Italy
| |
Collapse
|