1
|
Simoes RV, Henriques RN, Olesen JL, Cardoso BM, Fernandes FF, Monteiro MAV, Jespersen SN, Carvalho T, Shemesh N. Deuterium metabolic imaging phenotypes mouse glioblastoma heterogeneity through glucose turnover kinetics. eLife 2025; 13:RP100570. [PMID: 40035743 PMCID: PMC11879113 DOI: 10.7554/elife.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Glioblastomas are aggressive brain tumors with dismal prognosis. One of the main bottlenecks for developing more effective therapies for glioblastoma stems from their histologic and molecular heterogeneity, leading to distinct tumor microenvironments and disease phenotypes. Effectively characterizing these features would improve the clinical management of glioblastoma. Glucose flux rates through glycolysis and mitochondrial oxidation have been recently shown to quantitatively depict glioblastoma proliferation in mouse models (GL261 and CT2A tumors) using dynamic glucose-enhanced (DGE) deuterium spectroscopy. However, the spatial features of tumor microenvironment phenotypes remain hitherto unresolved. Here, we develop a DGE Deuterium Metabolic Imaging (DMI) approach for profiling tumor microenvironments through glucose conversion kinetics. Using a multimodal combination of tumor mouse models, novel strategies for spectroscopic imaging and noise attenuation, and histopathological correlations, we show that tumor lactate turnover mirrors phenotype differences between GL261 and CT2A mouse glioblastoma, whereas recycling of the peritumoral glutamate-glutamine pool is a potential marker of invasion capacity in pooled cohorts, linked to secondary brain lesions. These findings were validated by histopathological characterization of each tumor, including cell density and proliferation, peritumoral invasion and distant migration, and immune cell infiltration. Our study bodes well for precision neuro-oncology, highlighting the importance of mapping glucose flux rates to better understand the metabolic heterogeneity of glioblastoma and its links to disease phenotypes.
Collapse
Affiliation(s)
- Rui Vasco Simoes
- Preclinical MRI, Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Neuroengineering and Computational Neuroscience, Institute for Research and Innovation in Health (i3S)PortoPortugal
| | | | - Jonas L Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus UniversityAarhusDenmark
| | - Beatriz M Cardoso
- Preclinical MRI, Champalimaud Research, Champalimaud FoundationLisbonPortugal
| | | | - Mariana AV Monteiro
- Histopathology Platform, Champalimaud Research, Champalimaud FoundationLisbonPortugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus UniversityAarhusDenmark
| | - Tânia Carvalho
- Histopathology Platform, Champalimaud Research, Champalimaud FoundationLisbonPortugal
| | - Noam Shemesh
- Preclinical MRI, Champalimaud Research, Champalimaud FoundationLisbonPortugal
| |
Collapse
|
2
|
Berrell N, Sadeghirad H, Blick T, Bidgood C, Leggatt GR, O'Byrne K, Kulasinghe A. Metabolomics at the tumor microenvironment interface: Decoding cellular conversations. Med Res Rev 2024; 44:1121-1146. [PMID: 38146814 DOI: 10.1002/med.22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Cancer heterogeneity remains a significant challenge for effective cancer treatments. Altered energetics is one of the hallmarks of cancer and influences tumor growth and drug resistance. Studies have shown that heterogeneity exists within the metabolic profile of tumors, and personalized-combination therapy with relevant metabolic interventions could improve patient response. Metabolomic studies are identifying novel biomarkers and therapeutic targets that have improved treatment response. The spatial location of elements in the tumor microenvironment are becoming increasingly important for understanding disease progression. The evolution of spatial metabolomics analysis now allows scientists to deeply understand how metabolite distribution contributes to cancer biology. Recently, these techniques have spatially resolved metabolite distribution to a subcellular level. It has been proposed that metabolite mapping could improve patient outcomes by improving precision medicine, enabling earlier diagnosis and intraoperatively identifying tumor margins. This review will discuss how altered metabolic pathways contribute to cancer progression and drug resistance and will explore the current capabilities of spatial metabolomics technologies and how these could be integrated into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Naomi Berrell
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Charles Bidgood
- APCRC-Q, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Graham R Leggatt
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ken O'Byrne
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
4
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Petővári G, Tóth G, Turiák L, L. Kiss A, Pálóczi K, Sebestyén A, Pesti A, Kiss A, Baghy K, Dezső K, Füle T, Tátrai P, Kovalszky I, Reszegi A. Dynamic Interplay in Tumor Ecosystems: Communication between Hepatoma Cells and Fibroblasts. Int J Mol Sci 2023; 24:13996. [PMID: 37762298 PMCID: PMC10530979 DOI: 10.3390/ijms241813996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Tumors are intricate ecosystems where cancer cells and non-malignant stromal cells, including cancer-associated fibroblasts (CAFs), engage in complex communication. In this study, we investigated the interaction between poorly (HLE) and well-differentiated (HuH7) hepatoma cells and LX2 fibroblasts. We explored various communication channels, including soluble factors, metabolites, extracellular vesicles (EVs), and miRNAs. Co-culture with HLE cells induced LX2 to produce higher levels of laminin β1, type IV collagen, and CD44, with pronounced syndecan-1 shedding. Conversely, in HuH7/LX2 co-culture, fibronectin, thrombospondin-1, type IV collagen, and cell surface syndecan-1 were dominant matrix components. Integrins α6β4 and α6β1 were upregulated in HLE, while α5β1 and αVβ1 were increased in HuH7. HLE-stimulated LX2 produced excess MMP-2 and 9, whereas HuH7-stimulated LX2 produced excess MMP-1. LX2 activated MAPK and Wnt signaling in hepatoma cells, and conversely, hepatoma-derived EVs upregulated MAPK and Wnt in LX2 cells. LX2-derived EVs induced over tenfold upregulation of SPOCK1/testican-1 in hepatoma EV cargo. We also identified liver cancer-specific miRNAs in hepatoma EVs, with potential implications for early diagnosis. In summary, our study reveals tumor type-dependent communication between hepatoma cells and fibroblasts, shedding light on potential implications for tumor progression. However, the clinical relevance of liver cancer-specific miRNAs requires further investigation.
Collapse
Affiliation(s)
- Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Anna L. Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Krisztina Pálóczi
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1085 Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Adrián Pesti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Tibor Füle
- Thermo Fisher Scientific Inc., Váci út. 41-43, H-1134 Budapest, Hungary
| | - Péter Tátrai
- Charles River Laboratories Hungary, Irinyi József utca 4-20, H-1117 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Andrea Reszegi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Assem M, El-Araby RE, Al-Karmalawy AA, Nabil R, Kamal MAM, Belal A, Ghamry HI, Abourehab MAS, Ghoneim MM, Alshahrani MY, El Leithy AA. Promoter methylation might shift the balance of Galectin-3 & 12 expression in de novo adult acute myeloid leukemia patients. Front Genet 2023; 14:1122864. [PMID: 36861129 PMCID: PMC9968970 DOI: 10.3389/fgene.2023.1122864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Acute myeloid leukemia (AML) was reported as the most common type of leukemia among adults. Galectins constitute a family of galactose-binding proteins reported to play a critical role in many malignancies including AML. Galectin-3 and -12 are members of the mammalian galectin family. To understand the contribution of galectin-3 and -12 promoter methylation to their expression, we performed bisulfite methylation-specific (MSP)-PCR and bisulfite genomic sequencing (BGS) of primary leukemic cells in patients with de novo AML before receiving any therapy. Here, we show a significant loss of LGALS12 gene expression in association with promoter methylation. The lowest degree of expression was found in the methylated (M) group while the highest degree was in the unmethylated (U) group and the partially methylated (P) group expression lies in between. This was not the case with galectin-3 in our cohort unless the CpG sites analyzed were outside the frame of the studied fragment. We were also able to identify four CpG sites (CpG number 1, 5, 7& 8) in the promoter region of galectin-12; these sites must be unmethylated so that expression can be induced. As far as the authors know, these findings were not previously concluded in earlier studies.
Collapse
Affiliation(s)
- Magda Assem
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rady E. El-Araby
- Division of Oral Biology, Department of Periodontology, Tufts University School of Medicine, Boston, MA, United States,Central Lab, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt,*Correspondence: Ahmed A. Al-Karmalawy, ; Asmaa A. El Leithy,
| | - Reem Nabil
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed A. M. Kamal
- Clinical Pathology Department, El-Hussein University Hospital, Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt,Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Asmaa A. El Leithy
- College of Biotechnology, Misr University for Science and Technology (MUST), Giza, Egypt,*Correspondence: Ahmed A. Al-Karmalawy, ; Asmaa A. El Leithy,
| |
Collapse
|
7
|
Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resist Updat 2021; 59:100790. [PMID: 34924279 DOI: 10.1016/j.drup.2021.100790] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third cause of cancer death in men worldwide, and its increasing incidence can be explained by the increasing occurrence of non-alcoholic steatohepatitis (NASH). HCC prognosis is poor, as its 5-year overall survival is approximately 18 % and most cases are diagnosed at an inoperable advanced stage. Moreover, tumor sensitivity to conventional chemotherapeutics (particularly to cisplatin-based regimen), trans-arterial chemoembolization (cTACE), tyrosine kinase inhibitors, anti-angiogenic molecules and immune checkpoint inhibitors is limited. Oncogenic signaling pathways, such as HIF-1α and RAS/PI3K/AKT, may provoke drug resistance by enhancing the aerobic glycolysis ("Warburg effect") in cancer cells. Indeed, this metabolism, which promotes cancer cell development and aggressiveness, also induces extracellular acidity. In turn, this acidity promotes the protonation of drugs, hence abrogating their internalization, since they are most often weakly basic molecules. Consequently, targeting the Warburg effect in these cancer cells (which in turn would reduce the extracellular acidification) could be an effective strategy to increase the delivery of drugs into the tumor. Phosphofructokinase-1 (PFK1) and its activator PFK2 are the main regulators of glycolysis, and they also couple the enhancement of glycolysis to the activation of key signaling cascades and cell cycle progression. Therefore, targeting this "Gordian Knot" in HCC cells would be of crucial importance. Here, we suggest that this could be achieved by citrate administration at high concentration, because citrate is a physiologic inhibitor of PFK1 and PFK2. As shown in various in vitro studies, including HCC cell lines, administration of high concentrations of citrate inhibits PFK1 and PFK2 (and consequently glycolysis), decreases ATP production, counteracts HIF-1α and PI3K/AKT signaling, induces apoptosis, and sensitizes cells to cisplatin treatment. Administration of high concentrations of citrate in animal models (including Ras-driven tumours) has been shown to effectively inhibit cancer growth, reverse cell dedifferentiation, and neutralize intratumor acidity, without apparent toxicity in animal studies. Citrate may also induce a rapid secretion of pro-inflammatory cytokines by macrophages, and it could favour the destruction of cancer stem cells (CSCs) sustaining tumor recurrence. Consequently, this "citrate strategy" could improve the tumor sensitivity to current treatments of HCC by reducing the extracellular acidity, thus enhancing the delivery of chemotherapeutic drugs into the tumor. Therefore, we propose that this strategy should be explored in clinical trials, in particular to enhance cTACE effectiveness.
Collapse
|
8
|
Icard P, Loi M, Wu Z, Ginguay A, Lincet H, Robin E, Coquerel A, Berzan D, Fournel L, Alifano M. Metabolic Strategies for Inhibiting Cancer Development. Adv Nutr 2021; 12:1461-1480. [PMID: 33530098 PMCID: PMC8321873 DOI: 10.1093/advances/nmaa174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies for targeting each cancer tumor, novel techniques must be developed, such as new tracers for positron emission tomography/computed tomography scan and immunohistochemical markers to characterize the metabolic phenotype of cancer cells and their microenvironment. Pending personalized strategies that specifically target all metabolic components of cancer development in a patient, simple metabolic interventions could be tested in clinical trials in combination with standard cancer therapies, such as short cycles of fasting or the administration of sodium citrate or weakly toxic compounds (such as curcumin, metformin, lipoic acid) that target autophagy and biosynthetic or signaling pathways.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Medical School, CHU de Caen, Caen, France
- Normandie Université, UNICAEN, INSERM U1086, Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer Centre François Baclesse, Caen, France
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Mauro Loi
- Radiotherapy Department, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Zherui Wu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Antonin Ginguay
- Service de Biochimie, Hôpital Cochin, Hôpitaux Universitaires Paris-Centre, AP-HP, Paris, France
- EA4466 Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie de Paris, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Hubert Lincet
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | - Edouard Robin
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Antoine Coquerel
- INSERM U1075, Comete “Mobilités: Attention, Orientation, Chronobiologie”, Université Caen, Caen, France
| | - Diana Berzan
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM U1138, Integrative Cancer Immunology, Paris, France
| |
Collapse
|
9
|
Bhaktavalsala Suresh A, Kilingar Nadumane V. The metabolite 5-methyl-1,3-benzenediol and its derivative methyl-2,4-dihydroxy-6-methylbenzoate from the lichen Parmotrema tinctorum with potent apoptotic and anti-angiogenesis effects. 3 Biotech 2021; 11:346. [PMID: 34178568 PMCID: PMC8212346 DOI: 10.1007/s13205-021-02883-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/06/2021] [Indexed: 01/21/2023] Open
Abstract
Nature has been a rich resource of novel anticancer agents, one such source being lichens, which represent the symbiosis between algae and fungi with diverse range of secondary metabolites having therapeutic significance. With respect to this, the present study evaluates the in vitro apoptogenic profile of secondary metabolites from the lichen Parmotrema tinctorum towards cancer cell lines. Treatment with TLC-purified fraction 1 from P. tinctorum resulted in significant reduction in the cell viabilities of cancer cells with IC50 values ranging between 1.2 and 12.8 μg/ml. The potential anticancer effect of the bioactive fraction was further supported by Trypan blue cell viability, LDH and DNA fragmentation assays. At the cellular level, induction of apoptosis was confirmed through the activation of the caspase cascade and apoptotic cells accumulating in the Sub-G1 phase of cell cycle. Angiogenesis being one of the major characteristics needed for cancer growth, the ability of the lichen fraction to inhibit angiogenesis was checked through in ovo Yolk Sac Membrane (YSM) assay and was found to be significant. The study also verified the non-toxic nature of the bioactive fraction towards normal human peripheral lymphocytes. HPLC analysis and GC-MS characterisation of the bioactive fraction indicated the presence of 5-methyl-1,3-benzenediol and its derivative methyl-2,4-dihydroxy-6-methylbenzoate.
Collapse
Affiliation(s)
- Ashrini Bhaktavalsala Suresh
- Department of Biotechnology, School of Sciences, Block-I, Jain (Deemed-to-be-University), #18/3, 9th Main, III Block, Jayanagar, Bangalore, 560 011 India
| | - Varalakshmi Kilingar Nadumane
- Department of Biotechnology, School of Sciences, Block-I, Jain (Deemed-to-be-University), #18/3, 9th Main, III Block, Jayanagar, Bangalore, 560 011 India
| |
Collapse
|
10
|
Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update. Int J Mol Sci 2021; 22:ijms22126587. [PMID: 34205414 PMCID: PMC8235534 DOI: 10.3390/ijms22126587] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Citrate plays a central role in cancer cells’ metabolism and regulation. Derived from mitochondrial synthesis and/or carboxylation of α-ketoglutarate, it is cleaved by ATP-citrate lyase into acetyl-CoA and oxaloacetate. The rapid turnover of these molecules in proliferative cancer cells maintains a low-level of citrate, precluding its retro-inhibition on glycolytic enzymes. In cancer cells relying on glycolysis, this regulation helps sustain the Warburg effect. In those relying on an oxidative metabolism, fatty acid β-oxidation sustains a high production of citrate, which is still rapidly converted into acetyl-CoA and oxaloacetate, this latter molecule sustaining nucleotide synthesis and gluconeogenesis. Therefore, citrate levels are rarely high in cancer cells. Resistance of cancer cells to targeted therapies, such as tyrosine kinase inhibitors (TKIs), is frequently sustained by aerobic glycolysis and its key oncogenic drivers, such as Ras and its downstream effectors MAPK/ERK and PI3K/Akt. Remarkably, in preclinical cancer models, the administration of high doses of citrate showed various anti-cancer effects, such as the inhibition of glycolysis, the promotion of cytotoxic drugs sensibility and apoptosis, the neutralization of extracellular acidity, and the inhibition of tumors growth and of key signalling pathways (in particular, the IGF-1R/AKT pathway). Therefore, these preclinical results support the testing of the citrate strategy in clinical trials to counteract key oncogenic drivers sustaining cancer development and resistance to anti-cancer therapies.
Collapse
|
11
|
Ferraresi A, Girone C, Esposito A, Vidoni C, Vallino L, Secomandi E, Dhanasekaran DN, Isidoro C. How Autophagy Shapes the Tumor Microenvironment in Ovarian Cancer. Front Oncol 2020; 10:599915. [PMID: 33364196 PMCID: PMC7753622 DOI: 10.3389/fonc.2020.599915] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is characterized by a high mortality rate due to the late diagnosis and the elevated metastatic potential. Autophagy, a lysosomal-driven catabolic process, contributes to the macromolecular turnover, cell homeostasis, and survival, and as such, it represents a pathway targetable for anti-cancer therapies. It is now recognized that the vascularization and the cellular composition of the tumor microenvironment influence the development and progression of OC by controlling the availability of nutrients, oxygen, growth factors, and inflammatory and immune-regulatory soluble factors that ultimately impinge on autophagy regulation in cancer cells. An increasing body of evidence indicates that OC carcinogenesis is associated, at least in the early stages, to insufficient autophagy. On the other hand, when the tumor is already established, autophagy activation provides a survival advantage to the cancer cells that face metabolic stress and protects from the macromolecules and organelles damages induced by chemo- and radiotherapy. Additionally, upregulation of autophagy may lead cancer cells to a non-proliferative dormant state that protects the cells from toxic injuries while preserving their stem-like properties. Further to complicate the picture, autophagy is deregulated also in stromal cells. Thus, changes in the tumor microenvironment reflect on the metabolic crosstalk between cancer and stromal cells impacting on their autophagy levels and, consequently, on cancer progression. Here, we present a brief overview of the role of autophagy in OC hallmarks, including tumor dormancy, chemoresistance, metastasis, and cell metabolism, with an emphasis on the bidirectional metabolic crosstalk between cancer cells and stromal cells in shaping the OC microenvironment.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carlo Girone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
12
|
Katz L, Woolman M, Tata A, Zarrine-Afsar A. Potential impact of tissue molecular heterogeneity on ambient mass spectrometry profiles: a note of caution in choosing the right disease model. Anal Bioanal Chem 2020; 413:2655-2664. [PMID: 33247337 DOI: 10.1007/s00216-020-03054-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
This review provides a summary of known molecular alterations in commonly used cancer models and strives to stipulate how they may affect ambient mass spectrometry profiles. Immortalized cell lines are known to accumulate mutations, and xenografts derived from cell lines are known to contain tumour microenvironment elements from the host animal. While the use of human specimens for mass spectrometry profiling studies is highly encouraged, patient-derived xenografts with low passage numbers could provide an alternative means of amplifying material for ambient MS research when needed. Similarly, genetic preservation of patient tissue seen in some organoid models, further verified by qualitative proteomic and transcriptomic analyses, may argue in favor of organoid suitability for certain ambient profiling studies. However, to choose the appropriate model, pre-evaluation of the model's molecular characteristics in the context of the research question(s) being asked will likely provide the most appropriate strategy to move research forward. This can be achieved by performing comparative ambient MS analysis of the disease model of choice against a small amount of patient tissue to verify concordance. Disease models, however, will continue to be useful tools to orthogonally validate metabolic states of patient tissues through controlled genetic alterations that are not possible with patient specimens.
Collapse
Affiliation(s)
- Lauren Katz
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON, M5G 1P5, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Michael Woolman
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON, M5G 1P5, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico delle Venezie, Viale Fiume 78, 36100, Vicenza, Italy
| | - Arash Zarrine-Afsar
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON, M5G 1P5, Canada. .,Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada. .,Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada. .,Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
| |
Collapse
|
13
|
Samson F, Patrick AT, Fabunmi TE, Yahaya MF, Madu J, He W, Sripathi SR, Tyndall J, Raji H, Jee D, Gutsaeva DR, Jahng WJ. Oleic Acid, Cholesterol, and Linoleic Acid as Angiogenesis Initiators. ACS OMEGA 2020; 5:20575-20585. [PMID: 32832811 PMCID: PMC7439708 DOI: 10.1021/acsomega.0c02850] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/23/2020] [Indexed: 05/03/2023]
Abstract
The current study determined the natural angiogenic molecules using an unbiased metabolomics approach. A chick chorioallantoic membrane (CAM) model was used to examine pro- and antiangiogenic molecules, followed by gas chromatography-mass spectrometry (GCMS) analysis. Vessel formation was analyzed quantitatively using the angiogenic index (p < 0.05). At embryonic day one, a white streak or circle area was observed when vessel formation begins. GCMS analysis and database search demonstrated that angiogenesis may initiate when oleic, cholesterol, and linoleic acids increased in the area of angiogenic reactions. The gain of function study was conducted by the injection of cholesterol and oleic acid into a chick embryo to determine the role of each lipid in angiogenesis. We propose that oleic acid, cholesterol, and linoleic acid are natural molecules that set the platform for the initiation stage of angiogenesis before other proteins including the vascular endothelial growth factor, angiopoietin, angiotensin, and erythropoietin join as the angiome in sprout extension and vessel maturation.
Collapse
Affiliation(s)
| | - Ambrose Teru Patrick
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Tosin Esther Fabunmi
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | | | - Joshua Madu
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Weilue He
- Department
of Biomedical Engineering, Michigan Technological
University, Houghton Michigan 49931, United
States
| | - Srinivas R. Sripathi
- Department
of Ophthalmology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jennifer Tyndall
- Department
of Natural and Environmental Sciences, American
University of Nigeria, Yola 640101, Nigeria
| | - Hayatu Raji
- Department
of Natural and Environmental Sciences, American
University of Nigeria, Yola 640101, Nigeria
| | - Donghyun Jee
- Department
of Ophthalmology and Visual Science, St. Vincent’s Hospital,
College of Medicine, The Catholic University
of Korea, Suwon 16247, Korea
| | - Diana R. Gutsaeva
- Department
of Ophthalmology, Augusta University, Augusta, Georgia 30912, United States
| | - Wan Jin Jahng
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
- . Phone: +234-805-550-1032
| |
Collapse
|
14
|
Icard P, Ollivier L, Forgez P, Otz J, Alifano M, Fournel L, Loi M, Thariat J. Perspective: Do Fasting, Caloric Restriction, and Diets Increase Sensitivity to Radiotherapy? A Literature Review. Adv Nutr 2020; 11:1089-1101. [PMID: 32492154 PMCID: PMC7490158 DOI: 10.1093/advances/nmaa062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Caloric starvation, as well as various diets, has been proposed to increase the oxidative DNA damage induced by radiotherapy (RT). However, some diets could have dual effects, sometimes promoting cancer growth, whereas proposing caloric restriction may appear counterproductive during RT considering that the maintenance of weight is a major factor for the success of this therapy. A systematic review was performed via a PubMed search on RT and fasting, or caloric restriction, ketogenic diet (>75% of fat-derived energy intake), protein starvation, amino acid restriction, as well as the Warburg effect. Twenty-six eligible original articles (17 preclinical studies and 9 clinical noncontrolled studies on low-carbohydrate, high-fat diets popularized as ketogenic diets, representing a total of 77 patients) were included. Preclinical experiments suggest that a short period of fasting prior to radiation, and/or transient caloric restriction during treatment course, can increase tumor responsiveness. These regimens promote accumulation of oxidative lesions and insufficient repair, subsequently leading to cancer cell death. Due to their more flexible metabolism, healthy cells should be less sensitive, shifting their metabolism to support survival and repair. Interestingly, these regimens might stimulate an acute anticancer immune response, and may be of particular interest in tumors with high glucose uptake on positron emission tomography scan, a phenotype associated with poor survival and resistance to RT. Preclinical studies with ketogenic diets yielded more conflicting results, perhaps because cancer cells can sometimes metabolize fatty acids and/or ketone bodies. Randomized trials are awaited to specify the role of each strategy according to the clinical setting, although more stringent definitions of proposed diet, nutritional status, and consensual criteria for tumor response assessment are needed. In conclusion, dietary interventions during RT could be a simple and medically economical and inexpensive method that may deserve to be tested to improve efficiency of radiation.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer, Centre François Baclesse, Caen, France,Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,Address correspondence to PI (e-mail: )
| | - Luc Ollivier
- Centre Hospitalier de Brest, Université de Bretagne Occidentale, Brest, France,Centre François Baclesse, Radiotherapy Unit, Caen, France
| | - Patricia Forgez
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Joelle Otz
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Mauro Loi
- Department of Radiation Oncology, Paris Est University Hospitals, AP-HP, Paris, France
| | - Juliette Thariat
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Centre François Baclesse, Radiotherapy Unit, Caen, France,Laboratoire de Physique Corpusculaire, IN2P3, Normandie University/UNICAEN/CNRS, Caen, France
| |
Collapse
|
15
|
Delineating cell behavior and metabolism of non-melanoma skin cancer in vitro. In Vitro Cell Dev Biol Anim 2020; 56:165-180. [PMID: 31970645 DOI: 10.1007/s11626-019-00416-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
Non-melanoma skin cancers - basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) - are the most frequent forms of malignant neoplasm in humans worldwide. The etiology of these carcinomas is multifactorial. In addition to the harmful effect of UV light, altered cross-talk between neoplastic epithelial cells and the supporting dermal fibroblasts contributes to the regulation of tumor cell behavior, growth and survival. Metabolic cooperation between these cell types allows them to adapt and react to changes in their surrounding microenvironment by modifying their cellular bioenergetics and biosynthesis. We characterized the growth, behavior, and metabolic activity of human BCC cells, E-cadherin-competent SCC cells and E-cadherin-suppressed SCC cells in the presence or absence of dermal fibroblasts. In mono-cultures and co-cultures, BCC and SCC cells demonstrated distinct morphology, growth and organizational patterns. These tumor cells also exhibited unique patterns of consumption and secretion profiles of glucose, lactate, acetate, glutamine, glutamate, and pyruvate. In comparison to mono-cultures, growth of fibroblasts with either BCC cells or SCC cells enriched the cell growth environment, allowed for metabolic cooperation between these two cell types, and resulted in alterations in the metabolic profiles of the co-cultures. These alterations were affected by the cancer cell type, culture confluence and the composition of the growth medium. Characterizing the bioenergetics of BCC and SCC cells in the context of tumor-stromal interactions is not only important for further understanding of tumor pathogenesis, but also can illuminate potential new targets for novel, metabolic-based therapies for non-melanoma skin cancers.
Collapse
|
16
|
Vara-Perez M, Maes H, Van Dingenen S, Agostinis P. BNIP3 contributes to the glutamine-driven aggressive behavior of melanoma cells. Biol Chem 2019; 400:187-193. [PMID: 29924728 DOI: 10.1515/hsz-2018-0208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/15/2018] [Indexed: 02/04/2023]
Abstract
Aerobic glycolysis ('Warburg effect') is used by cancer cells to fuel tumor growth. Interestingly, metastatic melanoma cells rely on glutaminolysis rather than aerobic glycolysis for their bioenergetic needs through the tricarboxylic acid (TCA) cycle. Here, we compared the effects of glucose or glutamine on melanoma cell proliferation, migration and oxidative phosphorylation in vitro. We found that glutamine-driven melanoma cell's aggressive traits positively correlated with increased expression of HIF1α and its pro-autophagic target BNIP3. BNIP3 silencing reduced glutamine-mediated effects on melanoma cell growth, migration and bioenergetics. Hence, BNIP3 is a vital component of the mitochondria quality control required for glutamine-driven melanoma aggressiveness.
Collapse
Affiliation(s)
- Monica Vara-Perez
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, O&N1 Building from Campus Gasthuisberg, KU Leuven University of Leuven, Herenstraat 49, B-3000 Leuven, Belgium
| | - Hannelore Maes
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, O&N1 Building from Campus Gasthuisberg, KU Leuven University of Leuven, Herenstraat 49, B-3000 Leuven, Belgium
| | - Sarah Van Dingenen
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, O&N1 Building from Campus Gasthuisberg, KU Leuven University of Leuven, Herenstraat 49, B-3000 Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, O&N1 Building from Campus Gasthuisberg, KU Leuven University of Leuven, Herenstraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
17
|
Chen RR, Yung MMH, Xuan Y, Zhan S, Leung LL, Liang RR, Leung THY, Yang H, Xu D, Sharma R, Chan KKL, Ngu SF, Ngan HYS, Chan DW. Targeting of lipid metabolism with a metabolic inhibitor cocktail eradicates peritoneal metastases in ovarian cancer cells. Commun Biol 2019; 2:281. [PMID: 31372520 PMCID: PMC6668395 DOI: 10.1038/s42003-019-0508-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is an intra-abdominal tumor in which the presence of ascites facilitates metastatic dissemination, and associated with poor prognosis. However, the significance of metabolic alterations in ovarian cancer cells in the ascites microenvironment remains unclear. Here we show ovarian cancer cells exhibited increased aggressiveness in ascites microenvironment via reprogramming of lipid metabolism. High lipid metabolic activities are found in ovarian cancer cells when cultured in the ascites microenvironment, indicating a metabolic shift from aerobic glycolysis to β-oxidation and lipogenesis. The reduced AMP-activated protein kinase (AMPK) activity due to the feedback effect of high energy production led to the activation of its downstream signaling, which in turn, enhanced the cancer growth. The combined treatment of low toxic AMPK activators, the transforming growth factor beta-activated kinase 1 (TAK1) and fatty acid synthase (FASN) inhibitors synergistically impair oncogenic augmentation of ovarian cancer. Collectively, targeting lipid metabolism signaling axis impede ovarian cancer peritoneal metastases.
Collapse
Affiliation(s)
- Rain R. Chen
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Mingo M. H. Yung
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yang Xuan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
| | - Shijie Zhan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
| | - Leanne L. Leung
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Rachel R. Liang
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Thomas H. Y. Leung
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Huijuan Yang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 P.R. China
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 P.R. China
| | - Rakesh Sharma
- Proteomics & Metabolomics Core Facility, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Karen K. L. Chan
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Siew-Fei Ngu
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Hextan Y. S. Ngan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - David W. Chan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
18
|
Gao Y, Stybayeva G, Revzin A. Fabrication of composite microfluidic devices for local control of oxygen tension in cell cultures. LAB ON A CHIP 2019; 19:306-315. [PMID: 30547179 PMCID: PMC9555225 DOI: 10.1039/c8lc00825f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Oxygen tension is a central component of the cellular microenvironment and can serve as a trigger for changes in cell phenotype and function. There is a strong need to precisely control and modulate oxygen tension in cell culture systems in order to more accurately model the physiology and pathophysiology observed in vivo. The objective of this paper was to develop a simple, yet effective strategy for local control of oxygen tension in microfluidic cell cultures. Our strategy relied on fabrication of microfluidic devices using oxygen-permeable and impermeable materials. This composite device was designed so as to incorporate regions of gas permeability into the roof of the cell culture chamber and was outfitted with a reservoir for the oxygen-consuming chemical pyrogallol. When assembled and filled with pyrogallol, this device allowed oxygen depletion to occur within a specific region of the microfluidic culture chamber. The geometry and dimensions of the hypoxic region inside a microfluidic chamber were controlled by features fabricated into the oxygen-impermeable layer. Oxygen tension as low as 0.5% could be achieved using this strategy. To prove the utility of this device, we demonstrated that hypoxia induced anaerobic metabolism in a group of liver cancer cells, and that neighboring cancer cells residing under normoxic conditions upregulated the expression of transporters for taking up lactate - a product of anaerobic respiration. The microfluidic devices described here may be broadly applicable for mimicking multiple physiological scenarios where oxygen tension varies on the length scale of tens of micrometers including the cancer microenvironment, liver zonation, and luminal microenvironment of the gut.
Collapse
Affiliation(s)
- Yandong Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55901
- Corresponding authors: Yandong Gao Ph.D. , Alexander Revzin Ph.D.
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55901
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55901
- Corresponding authors: Yandong Gao Ph.D. , Alexander Revzin Ph.D.
| |
Collapse
|
19
|
Dal Monte M, Calvani M, Cammalleri M, Favre C, Filippi L, Bagnoli P. β-Adrenoceptors as drug targets in melanoma: novel preclinical evidence for a role of β 3 -adrenoceptors. Br J Pharmacol 2018; 176:2496-2508. [PMID: 30471093 DOI: 10.1111/bph.14552] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Stress plays a role in tumourigenesis through catecholamines acting at β-adrenoceptors including β1 -, β2 - and β3 -adrenoceptors, and the use of β-adrenoceptor antagonists seems to counteract tumour growth and progression. Preclinical evidence and meta-analysis data demonstrate that melanoma shows a positive response to β-adrenoceptor blockers and in particular to propranolol acting mainly at β1 - and β2 -adrenoceptors. Although evidence suggesting that β3 -adrenoceptors may play a role as a therapeutic target in infantile haemangiomas has been recently reviewed, a comprehensive analysis of the data available from preclinical studies supporting a possible role of β3 -adrenoceptors in melanoma was not available. Here, we review data from the literature demonstrating that propranolol may be effective at counteracting melanoma growth, and we provide preclinical evidence that β3 -adrenoceptors may also play a role in the pathophysiology of melanoma, thus opening the door for further clinical assays trying to explore β3 -adrenoceptor blockers as novel alternatives for its treatment. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
| | - Maura Calvani
- Onco-hematology Unit, Department of Pediatric Oncology, Meyer University Children's Hospital, Florence, Italy
| | | | - Claudio Favre
- Onco-hematology Unit, Department of Pediatric Oncology, Meyer University Children's Hospital, Florence, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, Meyer University Children's Hospital, Florence, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L. Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. Cell Biosci 2018; 8:56. [PMID: 30410721 PMCID: PMC6215344 DOI: 10.1186/s13578-018-0257-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023] Open
Abstract
Contrary to Warburg’s hypothesis, mitochondrial oxidative phosphorylation (OXPHOS) contributes significantly to fueling cancer cells. Several recent studies have demonstrated that radiotherapy-resistant and chemotherapy-resistant cancer cells depend on OXPHOS for survival and progression. Several cancers exhibit an increased risk in association with heme intake. Mitochondria are widely known to carry out oxidative phosphorylation. In addition, mitochondria are also involved in heme synthesis. Heme serves as a prosthetic group for several proteins that constitute the complexes of mitochondrial electron transport chain. Therefore, heme plays a pivotal role in OXPHOS and oxygen consumption. Further, lung cancer cells exhibit heme accumulation and require heme for proliferation and invasion in vitro. Abnormalities in mitochondrial biogenesis and mutations are implicated in cancer. This review delves into mitochondrial OXPHOS and lesser explored area of heme metabolism in lung cancer.
Collapse
Affiliation(s)
| | - Keely E FitzGerald
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX USA
| | | | - Chantal Vidal
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX USA
| |
Collapse
|
21
|
Bartrons R, Simon-Molas H, Rodríguez-García A, Castaño E, Navarro-Sabaté À, Manzano A, Martinez-Outschoorn UE. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front Oncol 2018; 8:331. [PMID: 30234009 PMCID: PMC6131595 DOI: 10.3389/fonc.2018.00331] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 01/28/2023] Open
Abstract
For a long time, pioneers in the field of cancer cell metabolism, such as Otto Warburg, have focused on the idea that tumor cells maintain high glycolytic rates even with adequate oxygen supply, in what is known as aerobic glycolysis or the Warburg effect. Recent studies have reported a more complex situation, where the tumor ecosystem plays a more critical role in cancer progression. Cancer cells display extraordinary plasticity in adapting to changes in their tumor microenvironment, developing strategies to survive and proliferate. The proliferation of cancer cells needs a high rate of energy and metabolic substrates for biosynthesis of biomolecules. These requirements are met by the metabolic reprogramming of cancer cells and others present in the tumor microenvironment, which is essential for tumor survival and spread. Metabolic reprogramming involves a complex interplay between oncogenes, tumor suppressors, growth factors and local factors in the tumor microenvironment. These factors can induce overexpression and increased activity of glycolytic isoenzymes and proteins in stromal and cancer cells which are different from those expressed in normal cells. The fructose-6-phosphate/fructose-1,6-bisphosphate cycle, catalyzed by 6-phosphofructo-1-kinase/fructose 1,6-bisphosphatase (PFK1/FBPase1) isoenzymes, plays a key role in controlling glycolytic rates. PFK1/FBpase1 activities are allosterically regulated by fructose-2,6-bisphosphate, the product of the enzymatic activity of the dual kinase/phosphatase family of enzymes: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFKFB1-4) and TP53-induced glycolysis and apoptosis regulator (TIGAR), which show increased expression in a significant number of tumor types. In this review, the function of these isoenzymes in the regulation of metabolism, as well as the regulatory factors modulating their expression and activity in the tumor ecosystem are discussed. Targeting these isoenzymes, either directly or by inhibiting their activating factors, could be a promising approach for treating cancers.
Collapse
Affiliation(s)
- Ramon Bartrons
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Helga Simon-Molas
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Ana Rodríguez-García
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Esther Castaño
- Centres Científics i Tecnològics, Universitat de Barcelona, Catalunya, Spain
| | - Àurea Navarro-Sabaté
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Anna Manzano
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | | |
Collapse
|
22
|
Nakashima C, Yamamoto K, Fujiwara‐Tani R, Luo Y, Matsushima S, Fujii K, Ohmori H, Sasahira T, Sasaki T, Kitadai Y, Kirita T, Kuniyasu H. Expression of cytosolic malic enzyme (ME1) is associated with disease progression in human oral squamous cell carcinoma. Cancer Sci 2018; 109:2036-2045. [PMID: 29601126 PMCID: PMC5989842 DOI: 10.1111/cas.13594] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Malic enzyme 1 (ME1) is a multifunctional protein involved in glycolysis, the citric acid cycle, NADPH production, glutamine metabolism, and lipogenesis. It is overexpressed in various cancers. We examined the expression of ME1 in 119 oral squamous cell carcinomas (OSCCs) using immunohistochemistry. Malic enzyme 1 expression was moderate to strong in 57 (48%) OSCCs and correlated with pT, pN, clinical stage, and histological grade. In 37 cases with prognostic evaluation, moderate to strong ME1 expression indicated a worse prognosis than did weak ME1 expression. Malic enzyme 1 knockdown or inactivation by lanthanide inhibited cell proliferation and motility and suppressed the epithelial-mesenchymal transition in HSC3 human OSCC cells. Knockdown of ME1 also shifted energy metabolism from aerobic glycolysis and lactate fermentation to mitochondrial oxidative phosphorylation, and the redox status from reductive to oxidative. In a mouse tumor model, lanthanide suppressed tumor growth and increased survival time. These findings reveal that ME1 is a valid target for molecular therapy in OSCC.
Collapse
Affiliation(s)
- Chie Nakashima
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
- Department of Oral and Maxillofacial SurgeryNara Medical UniversityKashiharaJapan
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial SurgeryNara Medical UniversityKashiharaJapan
| | | | - Yi Luo
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
- Jiangsu Province Key Laboratory of NeuroregenerationNantong UniversityNantongChina
| | - Sayako Matsushima
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| | - Kiyomu Fujii
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| | - Hitoshi Ohmori
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| | - Tomonori Sasahira
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| | - Takamitsu Sasaki
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| | - Yasuhiko Kitadai
- Department of Health and SciencePrefectural University of HiroshimaHiroshimaJapan
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial SurgeryNara Medical UniversityKashiharaJapan
| | - Hiroki Kuniyasu
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| |
Collapse
|
23
|
Thuwajit C, Ferraresi A, Titone R, Thuwajit P, Isidoro C. The metabolic cross-talk between epithelial cancer cells and stromal fibroblasts in ovarian cancer progression: Autophagy plays a role. Med Res Rev 2017; 38:1235-1254. [PMID: 28926101 PMCID: PMC6032948 DOI: 10.1002/med.21473] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022]
Abstract
Cancer and stromal cells, which include (cancer‐associated) fibroblasts, adipocytes, and immune cells, constitute a mixed cellular ecosystem that dynamically influences the behavior of each component, creating conditions that ultimately favor the emergence of malignant clones. Ovarian cancer cells release cytokines that recruit and activate stromal fibroblasts and immune cells, so perpetuating a state of inflammation in the stroma that hampers the immune response and facilitates cancer survival and propagation. Further, the stroma vasculature impacts the metabolism of the cells by providing or limiting the availability of oxygen and nutrients. Autophagy, a lysosomal catabolic process with homeostatic and prosurvival functions, influences the behavior of cancer cells, affecting a variety of processes such as the survival in metabolic harsh conditions, the invasive growth, the development of immune and chemo resistance, the maintenance of stem‐like properties, and dormancy. Further, autophagy is involved in the secretion and the signaling of promigratory cytokines. Cancer‐associated fibroblasts can influence the actual level of autophagy in ovarian cancer cells through the secretion of pro‐inflammatory cytokines and the release of autophagy‐derived metabolites and substrates. Interrupting the metabolic cross‐talk between cancer cells and cancer‐associated fibroblasts could be an effective therapeutic strategy to arrest the progression and prevent the relapse of ovarian cancer.
Collapse
Affiliation(s)
- Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Rossella Titone
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy.,Visiting Professor at Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Ramamonjisoa N, Ackerstaff E. Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging. Front Oncol 2017; 7:3. [PMID: 28197395 PMCID: PMC5281579 DOI: 10.3389/fonc.2017.00003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors are often characterized by hypoxia, vascular abnormalities, low extracellular pH, increased interstitial fluid pressure, altered choline-phospholipid metabolism, and aerobic glycolysis (Warburg effect). The impact of these tumor characteristics has been investigated extensively in the context of tumor development, progression, and treatment response, resulting in a number of non-invasive imaging biomarkers. More recent evidence suggests that cancer cells undergo metabolic reprograming, beyond aerobic glycolysis, in the course of tumor development and progression. The resulting altered metabolic content in tumors has the ability to affect cell signaling and block cellular differentiation. Additional emerging evidence reveals that the interaction between tumor and stroma cells can alter tumor metabolism (leading to metabolic reprograming) as well as tumor growth and vascular features. This review will summarize previous and current preclinical, non-invasive, multimodal imaging efforts to characterize the tumor microenvironment, including its stromal components and understand tumor-stroma interaction in cancer development, progression, and treatment response.
Collapse
Affiliation(s)
- Nirilanto Ramamonjisoa
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
25
|
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16:10. [PMID: 28137309 PMCID: PMC5282724 DOI: 10.1186/s12943-016-0577-4] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is one of the major tools of cancer treatment, and is widely used for a variety of malignant tumours. Radiotherapy causes DNA damage directly by ionization or indirectly via the generation of reactive oxygen species (ROS), thereby destroying cancer cells. However, ionizing radiation (IR) paradoxically promotes metastasis and invasion of cancer cells by inducing the epithelial-mesenchymal transition (EMT). Metastasis is a major obstacle to successful cancer therapy, and is closely linked to the rates of morbidity and mortality of many cancers. ROS have been shown to play important roles in mediating the biological effects of IR. ROS have been implicated in IR-induced EMT, via activation of several EMT transcription factors—including Snail, HIF-1, ZEB1, and STAT3—that are activated by signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/Akt, and MAPK. Cancer cells that undergo EMT have been shown to acquire stemness and undergo metabolic changes, although these points are debated. IR is known to induce cancer stem cell (CSC) properties, including dedifferentiation and self-renewal, and to promote oncogenic metabolism by activating these EMT-inducing pathways. Much accumulated evidence has shown that metabolic alterations in cancer cells are closely associated with the EMT and CSC phenotypes; specifically, the IR-induced oncogenic metabolism seems to be required for acquisition of the EMT and CSC phenotypes. IR can also elicit various changes in the tumour microenvironment (TME) that may affect invasion and metastasis. EMT, CSC, and oncogenic metabolism are involved in radioresistance; targeting them may improve the efficacy of radiotherapy, preventing tumour recurrence and metastasis. This study focuses on the molecular mechanisms of IR-induced EMT, CSCs, oncogenic metabolism, and alterations in the TME. We discuss how IR-induced EMT/CSC/oncogenic metabolism may promote resistance to radiotherapy; we also review efforts to develop therapeutic approaches to eliminate these IR-induced adverse effects.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Eui Kyong Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Kyung Ju
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Hyun Min Jeon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Young Kim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Pusan, 619-953, Korea
| | - Cho Hee Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.,DNA Identification Center, National Forensic Service, Seoul, 158-707, Korea
| | - Hye Gyeong Park
- Nanobiotechnology Center, Pusan National University, Pusan, 609-735, Korea
| | - Song Iy Han
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju, 501-759, Korea
| | - Ho Sung Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.
| |
Collapse
|
26
|
Patel BB, Ackerstaff E, Serganova IS, Kerrigan JE, Blasberg RG, Koutcher JA, Banerjee D. Tumor stroma interaction is mediated by monocarboxylate metabolism. Exp Cell Res 2017; 352:20-33. [PMID: 28132882 DOI: 10.1016/j.yexcr.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/13/2017] [Accepted: 01/25/2017] [Indexed: 12/31/2022]
Abstract
Human breast tumors contain significant amounts of stromal cells. There exists strong evidence that these stromal cells support cancer development and progression by altering various pathways (e.g. downregulation of tumor suppressor genes or autocrine signaling loops). Here, we suggest that stromal carcinoma-associated fibroblasts (CAFs), shown to be generated from bone marrow-derived mesenchymal stem cells, may (i) recycle tumor-derived lactate for their own energetic requirements, thereby sparing glucose for neighboring glycolytic tumor cells, and (ii) subsequently secrete surplus energetically and biosynthetically valuable metabolites of lactate oxidation, such as pyruvate, to support tumor growth. Lactate, taken up by stromal CAFs, is converted to pyruvate, which is then utilized by CAFs for energy needs as well as excreted and shared with tumor cells. We have interrogated lactate oxidation in CAFs to determine what metabolites may be secreted, and how they may affect the metabolism and growth of MDA-MB-231 breast cancer cells. We found that CAFs secrete pyruvate as a metabolite of lactate oxidation. Further, we show that pyruvate is converted to lactate to promote glycolysis in MDA-MB-231 cells and helps to control elevated ROS levels in these tumor cells. Finally, we found that inhibiting or interfering with ROS management, using the naturally occurring flavonoid phloretin (found in apple tree leaves), adds to the cytotoxicity of the conventional chemotherapeutic agent doxorubicin. Our work demonstrates that a lactate-pyruvate, reciprocally-supportive metabolic relationship may be operative within the tumor microenvironment (TME) to support tumor growth, and may be a useful drug target.
Collapse
Affiliation(s)
- Brijesh B Patel
- Department of Pharmacology and Graduate School of Biomedical Sciences, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08854, United States
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Inna S Serganova
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - John E Kerrigan
- Department of Bioinformatics, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08854, United States
| | - Ronald G Blasberg
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Jason A Koutcher
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Weill Cornell Medicine, Graduate School of Medical Sciences, 1300 York Ave., New York, NY 10065, United States
| | - Debabrata Banerjee
- Department of Pharmacology and Graduate School of Biomedical Sciences, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08854, United States.
| |
Collapse
|
27
|
Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, Han C, Baddour J, Marini JC, Ni J, Nakahara R, Wahlig S, Chiba L, Kim SH, Morse J, Pradeep S, Nagaraja AS, Haemmerle M, Kyunghee N, Derichsweiler M, Plackemeier T, Mercado-Uribe I, Lopez-Berestein G, Moss T, Ram PT, Liu J, Lu X, Mok SC, Sood AK, Nagrath D. Targeting Stromal Glutamine Synthetase in Tumors Disrupts Tumor Microenvironment-Regulated Cancer Cell Growth. Cell Metab 2016; 24:685-700. [PMID: 27829138 PMCID: PMC7329194 DOI: 10.1016/j.cmet.2016.10.011] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/16/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
Reactive stromal cells are an integral part of tumor microenvironment (TME) and interact with cancer cells to regulate their growth. Although targeting stromal cells could be a viable therapy to regulate the communication between TME and cancer cells, identification of stromal targets that make cancer cells vulnerable has remained challenging and elusive. Here, we identify a previously unrecognized mechanism whereby metabolism of reactive stromal cells is reprogrammed through an upregulated glutamine anabolic pathway. This dysfunctional stromal metabolism confers atypical metabolic flexibility and adaptive mechanisms in stromal cells, allowing them to harness carbon and nitrogen from noncanonical sources to synthesize glutamine in nutrient-deprived conditions existing in TME. Using an orthotopic mouse model for ovarian carcinoma, we find that co-targeting glutamine synthetase in stroma and glutaminase in cancer cells reduces tumor weight, nodules, and metastasis. We present a synthetic lethal approach to target tumor stroma and cancer cells simultaneously for desirable therapeutic outcomes.
Collapse
Affiliation(s)
- Lifeng Yang
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Tsz-Lun Yeung
- Department of Gynecological Oncology and Reproductive Medicine, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Lingegowda S Mangala
- Department of Gynecological Oncology and Reproductive Medicine, University of Texas, MD Anderson, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Dahai Jiang
- Department of Gynecological Oncology and Reproductive Medicine, University of Texas, MD Anderson, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Cecil Han
- Department of Cancer Biology, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Joelle Baddour
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | | | - Joseph Ni
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Ryuichi Nakahara
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Stephen Wahlig
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Lisa Chiba
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Sun Hye Kim
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Joshua Morse
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA
| | - Sunila Pradeep
- Department of Gynecological Oncology and Reproductive Medicine, University of Texas, MD Anderson, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Archana Sidalaghatta Nagaraja
- Department of Gynecological Oncology and Reproductive Medicine, University of Texas, MD Anderson, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Monika Haemmerle
- Department of Gynecological Oncology and Reproductive Medicine, University of Texas, MD Anderson, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Noh Kyunghee
- Department of Gynecological Oncology and Reproductive Medicine, University of Texas, MD Anderson, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas, MD Anderson, Houston, TX 77030, USA; Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mathew Derichsweiler
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Thomas Plackemeier
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Imelda Mercado-Uribe
- Department of Pathology, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Tyler Moss
- Department of Systems Biology, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Prahlad T Ram
- Department of Systems Biology, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Xiongbin Lu
- Department of Cancer Biology, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Samuel C Mok
- Department of Gynecological Oncology and Reproductive Medicine, University of Texas, MD Anderson, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecological Oncology and Reproductive Medicine, University of Texas, MD Anderson, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas, MD Anderson, Houston, TX 77030, USA.
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
28
|
Yoshino S, Hara T, Nakaoka HJ, Kanamori A, Murakami Y, Seiki M, Sakamoto T. The ERK signaling target RNF126 regulates anoikis resistance in cancer cells by changing the mitochondrial metabolic flux. Cell Discov 2016; 2:16019. [PMID: 27462466 PMCID: PMC4960523 DOI: 10.1038/celldisc.2016.19] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022] Open
Abstract
Loss of anchorage to the extracellular matrix leads to apoptosis (anoikis) in normal cells, but cancerous cells are usually resistant to such stress. Here we report the pivotal role of an E3 ubiquitin ligase, ring-finger protein 126 (RNF126), in the resistance of cancer cells to the stress associated with non-adherent conditions. Non-adherent cancer cells exhibited increased flux through the tricarboxylic acid cycle via increased conversion of pyruvate to acetyl-CoA. RNF126 was found to act as a ubiquitin ligase for pyruvate dehydrogenase kinases (PDKs), resulting in their proteasomal degradation. This decrease in PDK levels allowed pyruvate dehydrogenases to catalyze the conversion of pyruvate to acetyl-CoA. Moreover, depletion of RNF126 or increased expression of PDK1 in cancer cells suppressed colony formation in soft agar as well as tumorigenicity in mice. RNF126 expression in cancer cells was found to be under the control of the extracellular signal-regulated kinase signaling pathway, which is essential for anoikis resistance. Thus, RNF126 is an attractive molecule for treating cancer by selectively targeting anchorage-independent growth.
Collapse
Affiliation(s)
- Seiko Yoshino
- Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshiro Hara
- Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroki J Nakaoka
- Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akane Kanamori
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takeharu Sakamoto
- Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Poli G, Ceni E, Armignacco R, Ercolino T, Canu L, Baroni G, Nesi G, Galli A, Mannelli M, Luconi M. 2D-DIGE proteomic analysis identifies new potential therapeutic targets for adrenocortical carcinoma. Oncotarget 2016; 6:5695-706. [PMID: 25691058 PMCID: PMC4467395 DOI: 10.18632/oncotarget.3299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/02/2015] [Indexed: 01/29/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare aggressive tumor with poor prognosis when metastatic at diagnosis. The tumor biology is still mostly unclear, justifying the limited specificity and efficacy of the anti-cancer drugs currently available. This study reports the first proteomic analysis of ACC by using two-dimensional-differential-in-gel-electrophoresis (2D-DIGE) to evaluate a differential protein expression profile between adrenocortical carcinoma and normal adrenal. Mass spectrometry, associated with 2D-DIGE analysis of carcinomas and normal adrenals, identified 22 proteins in 27 differentially expressed 2D spots, mostly overexpressed in ACC. Gene ontology analysis revealed that most of the proteins concurs towards a metabolic shift, called the Warburg effect, in adrenocortical cancer. The differential expression was validated by Western blot for Aldehyde-dehydrogenase-6-A1,Transferrin, Fascin-1,Lamin A/C,Adenylate-cyclase-associated-protein-1 and Ferredoxin-reductase. Moreover, immunohistochemistry performed on paraffin-embedded ACC and normal adrenal specimens confirmed marked positive staining for all 6 proteins diffusely expressed by neoplastic cells, compared with normal adrenal cortex. In conclusion, our preliminary findings reveal a different proteomic profile in adrenocortical carcinoma compared with normal adrenal cortex characterized by overexpression of mainly metabolic enzymes, thus suggesting the Warburg effect also occurs in ACC. These proteins may represent promising novel ACC biomarkers and potential therapeutic targets if validated in larger cohorts of patients.
Collapse
Affiliation(s)
- Giada Poli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisabetta Ceni
- Gastroenterology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Roberta Armignacco
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Tonino Ercolino
- Endocrinology Unit, Careggi Hospital, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gianna Baroni
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Gabriella Nesi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Andrea Galli
- Gastroenterology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Massimo Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Istituto Toscano Tumori, Florence, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Istituto Toscano Tumori, Florence, Italy
| |
Collapse
|
30
|
Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance. Br J Pharmacol 2016; 173:970-9. [PMID: 26750865 PMCID: PMC4793921 DOI: 10.1111/bph.13422] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
: The Warburg effect describes the increased utilization of glycolysis rather than oxidative phosphorylation by tumour cells for their energy requirements under physiological oxygen conditions. This effect has been the basis for much speculation on the survival advantage of tumour cells, tumourigenesis and the microenvironment of tumours. More recently, studies have begun to reveal how the Warburg effect could influence drug efficacy and how our understanding of tumour energetics could be exploited to improve drug development. In particular, evidence is emerging demonstrating how better modelling of the tumour metabolic microenvironment could lead to a better prediction of drug efficacy and the identification of new combination strategies. This review will provide details of the current understanding of the complex interplay between glucose metabolism and pharmacology and discuss opportunities for utilizing the Warburg effect in future drug development.
Collapse
Affiliation(s)
| | | | - Richie Soong
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of PathologyNational University of SingaporeSingapore
| |
Collapse
|
31
|
A holistic view of cancer bioenergetics: mitochondrial function and respiration play fundamental roles in the development and progression of diverse tumors. Clin Transl Med 2016; 5:3. [PMID: 26812134 PMCID: PMC4728164 DOI: 10.1186/s40169-016-0082-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/11/2016] [Indexed: 02/01/2023] Open
Abstract
Since Otto Warburg made the first observation that tumor cells exhibit altered metabolism and bioenergetics in the 1920s, many scientists have tried to further the understanding of tumor bioenergetics. Particularly, in the past decade, the application of the state-of the-art metabolomics and genomics technologies has revealed the remarkable plasticity of tumor metabolism and bioenergetics. Firstly, a wide array of tumor cells have been shown to be able to use not only glucose, but also glutamine for generating cellular energy, reducing power, and metabolic building blocks for biosynthesis. Secondly, many types of cancer cells generate most of their cellular energy via mitochondrial respiration and oxidative phosphorylation. Glutamine is the preferred substrate for oxidative phosphorylation in tumor cells. Thirdly, tumor cells exhibit remarkable versatility in using bioenergetics substrates. Notably, tumor cells can use metabolic substrates donated by stromal cells for cellular energy generation via oxidative phosphorylation. Further, it has been shown that mitochondrial transfer is a critical mechanism for tumor cells with defective mitochondria to restore oxidative phosphorylation. The restoration is necessary for tumor cells to gain tumorigenic and metastatic potential. It is also worth noting that heme is essential for the biogenesis and proper functioning of mitochondrial respiratory chain complexes. Hence, it is not surprising that recent experimental data showed that heme flux and function are elevated in non-small cell lung cancer (NSCLC) cells and that elevated heme function promotes intensified oxygen consumption, thereby fueling tumor cell proliferation and function. Finally, emerging evidence increasingly suggests that clonal evolution and tumor genetic heterogeneity contribute to bioenergetic versatility of tumor cells, as well as tumor recurrence and drug resistance. Although mutations are found only in several metabolic enzymes in tumors, diverse mutations in signaling pathways and networks can cause changes in the expression and activity of metabolic enzymes, which likely enable tumor cells to gain their bioenergetic versatility. A better understanding of tumor bioenergetics should provide a more holistic approach to investigate cancer biology and therapeutics. This review therefore attempts to comprehensively consider and summarize the experimental data supporting our latest view of cancer bioenergetics.
Collapse
|
32
|
MicroRNA-144 mediates metabolic shift in ovarian cancer cells by directly targeting Glut1. Tumour Biol 2015; 37:6855-60. [PMID: 26662316 DOI: 10.1007/s13277-015-4558-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022] Open
Abstract
Warburg effect is characterized by an increased utilization of glucose via glycolysis in cancer cells, even when enough oxygen is present to properly respire. Recent studies demonstrate that deregulation of microRNAs contributes to the Warburg effect. In the present study, we show that miR-144 is downregulated while glucose transporter 1 (Glut1) is upregulated in ovarian cancers. In vitro studies further showed that miR-144 inhibits Glut1 expression through targeting its 3'-untranslated region. As a result, cells overexpressing miR-144 exhibited a metabolic shift, including enhanced glucose uptake and lactate production. The altered glucose metabolism induced by miR-144 also leads to a rapid growth of ovarian cancer cells. Taken together, our results indicate that miR-144 may serve as a molecular switch to regulate glycolysis in ovarian cancer by targeting the expression of Glut1.
Collapse
|
33
|
Koparal AT. Anti-angiogenic and antiproliferative properties of the lichen substances (-)-usnic acid and vulpinic acid. ACTA ACUST UNITED AC 2015; 70:159-64. [PMID: 26136299 DOI: 10.1515/znc-2014-4178] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 06/01/2015] [Indexed: 11/15/2022]
Abstract
The anti-proliferative activities of the lichen substances (-)-usnic acid and vulpinic acid on the viability of HepG2 hepatocarcinoma cells, NS20Y neuroblastoma cells and HUVEC endothelial cells were studied by the MTT assay. The anti-angiogenic potential of the substances was determined by the endothelial tube formation assay. Both lichen substances exhibited strong anti-angiogenic activity and were more cytotoxic to the cancer cell lines than to the normal cell line, but vulpinic acid has more potential as an anti-angiogenic substance because of its low cytotoxicity and stronger anti-angiogenic activity on the HUVEC cell line.
Collapse
|
34
|
Dickerson EB, Bryan BA. Beta Adrenergic Signaling: A Targetable Regulator of Angiosarcoma and Hemangiosarcoma. Vet Sci 2015; 2:270-292. [PMID: 29061946 PMCID: PMC5644640 DOI: 10.3390/vetsci2030270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 01/07/2023] Open
Abstract
Human angiosarcomas and canine hemangiosarcomas are highly aggressive cancers thought to arise from cells of vascular origin. The pathological features, morphological organization, and clinical behavior of canine hemangiosarcomas are virtually indistinct from those of human angiosarcomas. Overall survival with current standard-of-care approaches remains dismal for both humans and dogs, and each is likely to succumb to their disease within a short duration. While angiosarcomas in humans are extremely rare, limiting their study and treatment options, canine hemangiosarcomas occur frequently. Therefore, studies of these sarcomas in dogs can be used to advance treatment approaches for both patient groups. Emerging data suggest that angiosarcomas and hemangiosarcomas utilize beta adrenergic signaling to drive their progression by regulating the tumor cell niche and fine-tuning cellular responses within the tumor microenvironment. These discoveries indicate that inhibition of beta adrenergic signaling could serve as an Achilles heel for these tumors and emphasize the need to design therapeutic strategies that target tumor cell and stromal cell constituents. In this review, we summarize recent discoveries and present new hypotheses regarding the roles of beta adrenergic signaling in angiosarcomas and hemangiosarcomas. Because the use of beta adrenergic receptor antagonists is well established in human and veterinary medicine, beta blockade could provide an immediate adjunct therapy for treatment along with a tangible opportunity to improve upon the outcomes of both humans and dogs with these diseases.
Collapse
Affiliation(s)
- Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA.
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79912, USA.
| |
Collapse
|
35
|
Liu B, Ezeogu L, Zellmer L, Yu B, Xu N, Joshua Liao D. Protecting the normal in order to better kill the cancer. Cancer Med 2015; 4:1394-403. [PMID: 26177855 PMCID: PMC4567024 DOI: 10.1002/cam4.488] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy is the only option for oncologists when a cancer has widely spread to different body sites. However, almost all currently available chemotherapeutic drugs will eventually encounter resistance after their initial positive effect, mainly because cancer cells develop genetic alterations, collectively coined herein as mutations, to adapt to the therapy. Some patients may still respond to a second chemo drug, but few cases respond to a third one. Since it takes time for cancer cells to develop new mutations and then select those life-sustaining ones via clonal expansion, "run against time for mutations to emerge" should be a crucial principle for treatment of those currently incurable cancers. Since cancer cells constantly change to adapt to the therapy whereas normal cells are stable, it may be a better strategy to shift our focus from killing cancer cells per se to protecting normal cells from chemotherapeutic toxicity. This new strategy requires the development of new drugs that are nongenotoxic and can quickly, in just hours or days, kill cancer cells without leaving the still-alive cells with time to develop mutations, and that should have their toxicities confined to only one or few organs, so that specific protections can be developed and applied.
Collapse
Affiliation(s)
- Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, 200025, China
| | - Lewis Ezeogu
- Hormel Institute, University of MinnesotaAustin, Minnesota, 55912
| | - Lucas Zellmer
- Hormel Institute, University of MinnesotaAustin, Minnesota, 55912
| | - Baofa Yu
- Beijing Baofa Cancer Hospital, Shahe Wangzhuang Gong Ye YuanChang Pin Qu, Beijing, 102206, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical ScienceBeijing, 100021, China
| | | |
Collapse
|
36
|
Role of host β1- and β2-adrenergic receptors in a murine model of B16 melanoma: functional involvement of β3-adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1317-31. [PMID: 26285646 DOI: 10.1007/s00210-015-1165-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023]
Abstract
Complex interactions between tumor cells and their surrounding compartment are strongly influenced by the host in which the tumor grows. In melanoma, for instance, stress-associated norephinephrine (NE), acting at β-adrenergic receptors (β-ARs), stimulates melanoma cell proliferation and tumor angiogenesis. Among β-ARs, β3-ARs play a role acting not only at tumor cells but also at non-neoplastic stromal cells within the melanoma. In the present study, we used a murine model of B16 melanoma to evaluate the role of the host β1- and β2-ARs in melanoma growth and we determined whether the role of β3-ARs can be influenced by the absence of stromal β1- and β2-ARs. As compared to wild-type mice, β1/2-AR knockout mice displayed (i) increased intratumoral levels of both NE and β3-ARs, as evidentiated at both messenger and protein levels; (ii) increased tumor vascularization; (iii) decreased tumor cell proliferation but increased tumor cell apoptosis; and (iv) increased responsiveness to intratumoral injection of the β3-AR blocker L-748,337 in terms of decrease in tumor growth, tumor vascular response, tumor cell proliferation, and increase in tumor cell death. These findings together validate the role of β-AR signaling in melanoma microenvironment suggesting that non-neoplastic stromal cells may be targeted by β-AR-related drugs. The additional fact that β3-ARs play an important role in melanoma growth suggests selective β3-AR antagonists as important proapoptotic agents.
Collapse
|
37
|
Grillon E, Farion R, Reuveni M, Glidle A, Rémy C, Coles JA. Spatial profiles of markers of glycolysis, mitochondria, and proton pumps in a rat glioma suggest coordinated programming for proliferation. BMC Res Notes 2015; 8:207. [PMID: 26032618 PMCID: PMC4467611 DOI: 10.1186/s13104-015-1191-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
Background In cancer cells in vitro, the glycolytic pathway and the mitochondrial tricarboxylic acid (TCA) cycle are programmed to produce more precursor molecules, and relatively less ATP, than in differentiated cells. We address the questions of whether and where these changes occur in vivo in glioblastomas grown from C6 cells in rat brain. These gliomas show some spatial organization, notably in the upregulation of membrane proton transporters near the rim. Results We immunolabeled pairs of proteins (as well as DNA) on sections of rat brains containing gliomas, measured the profiles of fluorescence intensity on strips 200 µm wide and at least 3 mm long running perpendicular to the tumor rim, and expressed the intensity in the glioma relative to that outside. On averaged profiles, labeling of a marker of the glycolytic pathway, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was, as expected, greater in the glioma. Over distances up to 2.5 mm into the glioma, expression of a marker of the TCA cycle, Tom20, a pre-protein receptor on the translocation complex of the mitochondrial outer membrane, was also upregulated. The ratio of upregulation of Tom20 to upregulation of GAPDH was, on average, slightly greater than one. Near the rim (0.4–0.8 mm), GAPDH was expressed less and there was a peak in the mean ratio of 1.16, SEM = 0.001, N = 16 pairs of profiles. An antibody to V-ATPase, which, by pumping protons into vacuoles contributes to cell growth, also indicated upregulation by about 40%. When compared directly with GAPDH, upregulation of V-ATPase was only 0.764, SD = 0.016 of GAPDH upregulation. Conclusions Although there was considerable variation between individual measured profiles, on average, markers of the glycolytic pathway, of mitochondria, and of cell proliferation showed coherent upregulation in C6 gliomas. There is a zone, close to the rim, where mitochondrial presence is upregulated more than the glycolytic pathway, in agreement with earlier suggestions that lactate is taken up by cells near the rim. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1191-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emmanuelle Grillon
- Université Grenoble Alpes, IRMaGe, 3800, Grenoble, France. .,Inserm, US 17, 3800, Grenoble, France. .,CNRS, UMS 3552, 3800, Grenoble, France. .,CHU de Grenoble, Hopital Michallon, IRMaGe, 3800, Grenoble, France.
| | - Régine Farion
- Université Grenoble Alpes, IRMaGe, 3800, Grenoble, France. .,Inserm, US 17, 3800, Grenoble, France. .,CNRS, UMS 3552, 3800, Grenoble, France. .,CHU de Grenoble, Hopital Michallon, IRMaGe, 3800, Grenoble, France.
| | - Moshe Reuveni
- Institute of Plant Sciences, The Volcan Center, Bet Dagan, Israel.
| | - Andrew Glidle
- Department of Engineering, University of Glasgow, Glasgow, UK.
| | - Chantal Rémy
- Université Grenoble Alpes, IRMaGe, 3800, Grenoble, France. .,Inserm, U 836, 3800, Grenoble, France.
| | - Jonathan A Coles
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
38
|
Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 2014; 25:198-213. [PMID: 25540894 DOI: 10.1016/j.tcb.2014.11.006] [Citation(s) in RCA: 552] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/08/2023]
Abstract
The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis but also has profound effects on therapeutic efficacy. In the case of microenvironment-mediated resistance this can involve an intrinsic response, including the co-option of pre-existing structural elements and signaling networks, or an acquired response of the tumor stroma following the therapeutic insult. Alternatively, in other contexts, the TME has a multifaceted ability to enhance therapeutic efficacy. This review examines recent advances in our understanding of the contribution of the TME during cancer therapy and discusses key concepts that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Florian Klemm
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|