1
|
Houl JH, Bagheri-Yarmand R, Kunnimalaiyaan M, Miranda Mendez P, Kidd JL, Dadbin A, Jurado Ruiz A, Parekh PA, Henderson YC, Chari NS, Thennavan AT, Powell RT, Stephan CC, Zhao X, Maniakas A, Nurieva R, Busaidy NL, Cabanillas ME, Dadu R, Zafereo M, Wang JR, Lai SY, Hofmann MC. Role of the ETV5/p38 signaling axis in aggressive thyroid cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.637322. [PMID: 40027641 PMCID: PMC11870521 DOI: 10.1101/2025.02.17.637322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Patients with poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) face a much poorer prognosis than those with differentiated thyroid cancers. Around 25% of PDTCs and 35% of ATCs carry the BRAFV600E mutation, which constitutively activates the MAPK pathway, a key driver of cell growth. Although combining BRAF and MEK inhibitors can shrink tumors, resistance often develops. The exact cause of this resistance remains unclear. We previously found that in PDTC and ATC cells the BRAFV600E mutation is strongly linked to the expression of ETV5, a transcription factor downstream of the MAPK pathway. In the current study, we observed a significant association between ETV5 expression and the activation of p38, a central component of the MAPK14 pathway. Upon reduction of ETV5 levels, p38 expression and activation decreased, along with its upstream regulators MKK3/MKK6. This suggests that the MAPK and p38/MAPK14 pathways are interconnected and that p38 has oncogenic properties in these cancers. Using high-throughput screening, we established that combining p38 inhibitors with the BRAF inhibitor dabrafenib showed strong synergy in vitro, including in cells resistant to dabrafenib and trametinib that had acquired a secondary TP53 mutation. We then tested this combination in a genetically engineered mouse model (GEMM) of ATC. Overall, our findings suggest an oncogenic link between the MAPK and p38/MAPK14 pathways and that combining p38 pathway inhibitors with dabrafenib-targeted therapy could improve treatment outcomes for aggressive thyroid cancers. However, more specific and effective p38 inhibitors are required to fully harness this potential.
Collapse
|
2
|
Zoltsman G, Dang TL, Kuchersky M, Faust O, Silva MS, Ilani T, Wentink AS, Bukau B, Rosenzweig R. A unique chaperoning mechanism in class A JDPs recognizes and stabilizes mutant p53. Mol Cell 2024; 84:1512-1526.e9. [PMID: 38508184 DOI: 10.1016/j.molcel.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified β-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the β-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP β-hairpin as a highly specific target for cancer therapeutics.
Collapse
Affiliation(s)
- Guy Zoltsman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Thi Lieu Dang
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Miriam Kuchersky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Ofrah Faust
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Micael S Silva
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Tal Ilani
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Anne S Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel.
| |
Collapse
|
3
|
Barati A, Rezaei Somee L, Shahsavani MB, Ghasemi A, Hoshino M, Hong J, Saboury AA, Moosavi-Movahedi AA, Agnetti G, Yousefi R. Insights into the dual nature of αB-crystallin chaperone activity from the p.P39L mutant at the N-terminal region. Sci Rep 2024; 14:7353. [PMID: 38548822 PMCID: PMC10978848 DOI: 10.1038/s41598-024-57651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
The substitution of leucine to proline at position 39 (p.P39L) in human αB-crystallin (αB-Cry) has been associated with conflicting interpretations of pathogenicity in cataracts and cardiomyopathy. This study aimed to investigate the effects of the p.P39L mutation on the structural and functional features of human αB-Cry. The mutant protein was expressed in Escherichia coli (E. coli) and purified using anion exchange chromatography. We employed a wide range of spectroscopic analyses, gel electrophoresis, transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques to investigate the structure, function, stability, and fibrillation propensity of the mutant protein. The p.P39L mutation caused significant changes in the secondary, tertiary, and quaternary structures of human αB-Cry and increased the thermal stability of the protein. The mutant αB-Cry exhibited an increased chaperone activity and an altered oligomeric size distribution, along with an increased propensity to form amyloid aggregates. It is worth mentioning, increased chaperone activity has important positive and negative effects on damaged cells related to cataracts and cardiomyopathy, particularly by interfering in the process of apoptosis. Despite the apparent positive nature of the increased chaperone activity, it is also linked to adverse consequences. This study provides important insights into the effect of proline substitution by leucine at the N-terminal region on the dual nature of chaperone activity in human αB-Cry, which can act as a double-edged sword.
Collapse
Affiliation(s)
- Anis Barati
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Leila Rezaei Somee
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng, 475000, People's Republic of China
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Giulio Agnetti
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Song B, Wang J, Ren Y, Su Y, Geng X, Yang F, Wang H, Zhang J. Butein inhibits cancer cell growth by rescuing the wild-type thermal stability of mutant p53. Biomed Pharmacother 2023; 163:114773. [PMID: 37156116 DOI: 10.1016/j.biopha.2023.114773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/15/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023] Open
Abstract
p53 is a transcription factor that activates the expression of various genes involved in the maintenance of genomic stability, and more than 50% of cancers harbor inactivating p53 mutations, which are indicative of highly aggressive cancer and poor prognosis. Pharmacological targeting of mutant p53 to restore the wild-type p53 tumor-suppressing function is a promising strategy for cancer therapy. In this study, we identified a small molecule, Butein, that reactivates mutant p53 activity in tumor cells harboring the R175H or R273H mutation. Butein restored wild-type-like conformation and DNA-binding ability in HT29 and SK-BR-3 cells harboring mutant p53-R175H and mutant p53-R273H, respectively. Moreover, Butein enabled the transactivation of p53 target genes and decreased the interactions of Hsp90 with mutant p53-R175H and mutant p53-R273H proteins, while Hsp90 overexpression reversed targeted p53 gene activation. In addition, Butein induced thermal stabilization of wild-type p53, mutant p53-R273H and mutant p53-R175H, as determined via CETSA. From docking study, we further proved that Butein binding to p53 stabilized the DNA-binding loop-sheet-helix motif of mutant p53-R175H and regulated its DNA-binding activity via an allosteric mechanism, conferring wild-type-like the DNA-binding activity of mutant p53. Collectively, the data suggest that Butein is a potential antitumor agent that restores p53 function in cancers harboring mutant p53-R273H or mutant p53-R175H. SIGNIFICANCE: Butein restores the ability of mutant p53 to bind DNA by reversing its transition to the Loop3 (L3) state, endows p53 mutants with thermal stability and re-establishes their transcriptional activity to induce cancer cell death.
Collapse
Affiliation(s)
- Bin Song
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jiajian Wang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yixin Ren
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yongnan Su
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Xueye Geng
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fan Yang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jihong Zhang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Province Clinical Research Center for Hematologic Disease, Kunming 650032, China.
| |
Collapse
|
5
|
The Journey of Mitochondrial Protein Import and the Roadmap to Follow. Int J Mol Sci 2023; 24:ijms24032479. [PMID: 36768800 PMCID: PMC9916854 DOI: 10.3390/ijms24032479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are double membrane-bound organelles that play critical functions in cells including metabolism, energy production, regulation of intrinsic apoptosis, and maintenance of calcium homeostasis. Mitochondria are fascinatingly equipped with their own genome and machinery for transcribing and translating 13 essential proteins of the oxidative phosphorylation system (OXPHOS). The rest of the proteins (99%) that function in mitochondria in the various pathways described above are nuclear-transcribed and synthesized as precursors in the cytosol. These proteins are imported into the mitochondria by the unique mitochondrial protein import system that consists of seven machineries. Proper functioning of the mitochondrial protein import system is crucial for optimal mitochondrial deliverables, as well as mitochondrial and cellular homeostasis. Impaired mitochondrial protein import leads to proteotoxic stress in both mitochondria and cytosol, inducing mitochondrial unfolded protein response (UPRmt). Altered UPRmt is associated with the development of various disease conditions including neurodegenerative and cardiovascular diseases, as well as cancer. This review sheds light on the molecular mechanisms underlying the import of nuclear-encoded mitochondrial proteins, the consequences of defective mitochondrial protein import, and the pathological conditions that arise due to altered UPRmt.
Collapse
|
6
|
Proteomic Analysis of Human Breast Cancer MCF-7 Cells to Identify Cellular Targets of the Anticancer Pigment OR3 from Streptomyces coelicolor JUACT03. Appl Biochem Biotechnol 2023; 195:236-252. [PMID: 36070163 DOI: 10.1007/s12010-022-04128-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Search for ideal compounds with known pathways of anticancer mechanism is still a priority research focus for cancer, as it continues to be a major health challenge across the globe. Hence, in the present study, anticancer potential of a yellow pigment fraction, OR3, isolated from Streptomyces coelicolor JUACT03 was assessed on the breast cancer cell line MCF-7. TLC-fractionated OR3 pigment was subjected to HPLC and GC-MS analysis for characterization and identification of the bioactive component. MCF-7 cells were treated with IC50 concentration of OR3 and the molecular alterations were analyzed using mass spectrometry-based quantitative proteomic analysis. Bioinformatics tools such as STRING analysis and Ingenuity Pathway Analysis were performed to analyze proteomics data and to identify dysregulated signaling pathways. As per our obtained data, OR3 treatment decreased cell proliferation and induced apoptotic cell death due to significant dysregulation of protein expressions in MCF-7 cells. Altered expression included the ribosomal, mRNA processing and vesicle-mediated transport proteins as a result of OR3 treatment. Downregulation of MAPK proteins, NFkB, and estradiol signaling was identified in OR3-treated MCF-7 cells. Mainly eIF2, mTOR, and eIF4 signaling pathways were altered in OR3-treated cells. GC-MS data indicated the presence of novel compounds in OR3 fraction. It can be concluded that OR3 exhibits potent anticancer activity on the breast cancer cells mainly through altering the expression and affecting the signaling proteins which are involved in different cell proliferation/apoptotic pathways thereby causing inhibition of cancer cell proliferation, survival and metastasis.
Collapse
|
7
|
Aguilar A, Wang S. Therapeutic Strategies to Activate p53. Pharmaceuticals (Basel) 2022; 16:24. [PMID: 36678521 PMCID: PMC9866379 DOI: 10.3390/ph16010024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
The p53 protein has appropriately been named the "guardian of the genome". In almost all human cancers, the powerful tumor suppressor function of p53 is compromised by a variety of mechanisms, including mutations with either loss of function or gain of function and inhibition by its negative regulators MDM2 and/or MDMX. We review herein the progress made on different therapeutic strategies for targeting p53.
Collapse
Affiliation(s)
- Angelo Aguilar
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Roszkowska KA, Piecuch A, Sady M, Gajewski Z, Flis S. Gain of Function (GOF) Mutant p53 in Cancer-Current Therapeutic Approaches. Int J Mol Sci 2022; 23:13287. [PMID: 36362074 PMCID: PMC9654280 DOI: 10.3390/ijms232113287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2023] Open
Abstract
Continuous development of personalized treatments is undoubtedly beneficial for oncogenic patients' comfort and survival rate. Mutant TP53 is associated with a worse prognosis due to the occurrence of metastases, increased chemoresistance, and tumor growth. Currently, numerous compounds capable of p53 reactivation or the destabilization of mutant p53 are being investigated. Several of them, APR-246, COTI-2, SAHA, and PEITC, were approved for clinical trials. This review focuses on these novel therapeutic opportunities, their mechanisms of action, and their significance for potential medical application.
Collapse
Affiliation(s)
- Katarzyna A. Roszkowska
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| | | | | | | | - Sylwia Flis
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| |
Collapse
|
9
|
Anticancer Therapeutic Strategies Targeting p53 Aggregation. Int J Mol Sci 2022; 23:ijms231911023. [PMID: 36232329 PMCID: PMC9569952 DOI: 10.3390/ijms231911023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
p53 is a tumor suppressor protein that is mutated in more than 50% of cancer cases. When mutated, it frequently results in p53 oncogenic gain of function (GOF), resulting in a greater tendency to aggregate in the phase separation and phase transition pathway. GOFs related to p53 aggregation include chemoresistance, which makes therapy even more difficult. The therapies available for the treatment of cancer are still quite limited, so the study of new molecules and therapeutic targets focusing on p53 aggregates is a promising strategy against cancer. In this review, we classify anticancer molecules with antiaggregation properties into four categories: thiol alkylating agents, designed peptides, agents with chaperone-based mechanisms that inhibit p53 aggregation, and miscellaneous compounds with anti-protein aggregation properties that have been studied in neurodegenerative diseases. Furthermore, we highlight autophagy as a possible degradation pathway for aggregated p53. Here, considering cancer as a protein aggregation disease, we review strategies that have been used to disrupt p53 aggregates, leading to cancer regression.
Collapse
|
10
|
Alberti G, Vergilio G, Paladino L, Barone R, Cappello F, Conway de Macario E, Macario AJL, Bucchieri F, Rappa F. The Chaperone System in Breast Cancer: Roles and Therapeutic Prospects of the Molecular Chaperones Hsp27, Hsp60, Hsp70, and Hsp90. Int J Mol Sci 2022; 23:ijms23147792. [PMID: 35887137 PMCID: PMC9324353 DOI: 10.3390/ijms23147792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BC) is a major public health problem, with key pieces of information needed for developing preventive and curative measures still missing. For example, the participation of the chaperone system (CS) in carcinogenesis and anti-cancer responses is poorly understood, although it can be predicted to be a crucial factor in these mechanisms. The chief components of the CS are the molecular chaperones, and here we discuss four of them, Hsp27, Hsp60, Hsp70, and Hsp90, focusing on their pro-carcinogenic roles in BC and potential for developing anti-BC therapies. These chaperones can be targets of negative chaperonotherapy, namely the elimination/blocking/inhibition of the chaperone(s) functioning in favor of BC, using, for instance, Hsp inhibitors. The chaperones can also be employed in immunotherapy against BC as adjuvants, together with BC antigens. Extracellular vesicles (EVs) in BC diagnosis and management are also briefly discussed, considering their potential as easily accessible carriers of biomarkers and as shippers of anti-cancer agents amenable to manipulation and controlled delivery. The data surveyed from many laboratories reveal that, to enhance the understanding of the role of the CS in BS pathogenesis, one must consider the CS as a physiological system, encompassing diverse members throughout the body and interacting with the ubiquitin–proteasome system, the chaperone-mediated autophagy machinery, and the immune system (IS). An integrated view of the CS, including its functional partners and considering its highly dynamic nature with EVs transporting CS components to reach all the cell compartments in which they are needed, opens as yet unexplored pathways leading to carcinogenesis that are amenable to interference by anti-cancer treatments centered on CS components, such as the molecular chaperones.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Giuseppe Vergilio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Correspondence:
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| |
Collapse
|
11
|
Albakova Z, Mangasarova Y, Albakov A, Gorenkova L. HSP70 and HSP90 in Cancer: Cytosolic, Endoplasmic Reticulum and Mitochondrial Chaperones of Tumorigenesis. Front Oncol 2022; 12:829520. [PMID: 35127545 PMCID: PMC8814359 DOI: 10.3389/fonc.2022.829520] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
HSP70 and HSP90 are two powerful chaperone machineries involved in survival and proliferation of tumor cells. Residing in various cellular compartments, HSP70 and HSP90 perform specific functions. Concurrently, HSP70 and HSP90 homologs may also translocate from their primary site under various stress conditions. Herein, we address the current literature on the role of HSP70 and HSP90 chaperone networks in cancer. The goal is to provide a comprehensive review on the functions of cytosolic, mitochondrial and endoplasmic reticulum HSP70 and HSP90 homologs in cancer. Given that high expression of HSP70 and HSP90 enhances tumor development and associates with tumor aggressiveness, further understanding of HSP70 and HSP90 chaperone networks may provide clues for the discoveries of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Zarema Albakova,
| | | | | | | |
Collapse
|
12
|
Jacobsen D, Bushara O, Mishra RK, Sun L, Liao J, Yang GY. Druggable sites/pockets of the p53-DNAJA1 protein–protein interaction: In silico modeling and in vitro/in vivo validation. Methods Enzymol 2022; 675:83-107. [DOI: 10.1016/bs.mie.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Kim HM, Oh S, Choi CH, Yang JY, Kim S, Kang D, Son KH, Byun K. Attenuation Effect of Radiofrequency Irradiation on UV-B-Induced Skin Pigmentation by Decreasing Melanin Synthesis and through Upregulation of Heat Shock Protein 70. Molecules 2021; 26:molecules26247648. [PMID: 34946730 PMCID: PMC8708156 DOI: 10.3390/molecules26247648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Excess melanin deposition in the skin causes cosmetic problems. HSP70 upregulation decreases microphthalmia-associated transcription factor (MITF) expression, which eventually decreases tyrosinase activity and melanogenesis. Ultraviolet (UV) radiation upregulates p53, which increases the melanocortin receptor (MC1R) and MITF. Furthermore, HSP70 decreases p53 and radiofrequency irradiation (RF) increases HSP70. We evaluated whether RF increased HSP70 and decreased p53, consequently decreasing the MITF/tyrosinase pathway and melanogenesis in UV-B radiated animal skin. Various RF combinations with 50, 100, and 150 ms and 5, 10, and 15 W were performed on the UV-B radiated mouse skin every 2 d for 28 d. When RF was performed with 100 ms/10 W, melanin deposition, evaluated by Fontana–Masson staining, decreased without skin crust formation in the UV-B radiated skin. Thus, we evaluated the effect of RF on decreasing melanogenesis in the HEMn and UV-B radiated skin at a setting of 100 ms/10 W. HSP70 expression was decreased in the UV-B radiated skin but was increased by RF. The expression of p53, MC1R, and MITF increased in the UV-B radiated skin but was decreased by RF. The expression of p53, MC1R, and MITF increased in the α-MSH treated HEMn but was decreased by RF. The decreasing effects of RF on p53, MC1R, CREB and MITF were higher than those of HSP70-overexpressed HEMn. The decreasing effect of RF on p53, MC1R, CREB, and MITF disappeared in the HSP70-silenced HEMn. MC1R, CREB, and MITF were not significantly decreased by the p53 inhibitor in α-MSH treated HEMn. RF induced a greater decrease in MC1R, CREB, and MITF than the p53 inhibitor. Therefore, RF may have decreased melanin synthesis by increasing HSP70 and decreasing p53, thus decreasing MC1R/CREB/MITF and tyrosinase activity.
Collapse
Affiliation(s)
- Hyoung Moon Kim
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Jin Young Yang
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Sunggeun Kim
- Jeisys Medical Inc., Seoul 08501, Korea; (S.K.); (D.K.)
| | - Donghwan Kang
- Jeisys Medical Inc., Seoul 08501, Korea; (S.K.); (D.K.)
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
- Correspondence: (K.H.S.); (K.B.)
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
- Correspondence: (K.H.S.); (K.B.)
| |
Collapse
|
14
|
Kaida A, Iwakuma T. Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members. Int J Mol Sci 2021; 22:13527. [PMID: 34948322 PMCID: PMC8706882 DOI: 10.3390/ijms222413527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist diverse cellular activities including protein folding, intracellular transportation, assembly or disassembly of protein complexes, and stabilization or degradation of misfolded or aggregated proteins. HSP40, also known as J-domain proteins (JDPs), is the largest family with over fifty members and contains highly conserved J domains responsible for binding to HSP70 and stimulation of the ATPase activity as a co-chaperone. Tumor suppressor p53 (p53), the most frequently mutated gene in human cancers, is one of the proteins that functionally interact with HSP40/JDPs. The majority of p53 mutations are missense mutations, resulting in acquirement of unexpected oncogenic activities, referred to as gain of function (GOF), in addition to loss of the tumor suppressive function. Moreover, stability and levels of wild-type p53 (wtp53) and mutant p53 (mutp53) are crucial for their tumor suppressive and oncogenic activities, respectively. However, the regulatory mechanisms of wtp53 and mutp53 are not fully understood. Accumulating reports demonstrate regulation of wtp53 and mutp53 levels and/or activities by HSP40/JDPs. Here, we summarize updated knowledge related to the link of HSP40/JDPs with p53 and cancer signaling to improve our understanding of the regulation of tumor suppressive wtp53 and oncogenic mutp53 GOF activities.
Collapse
Affiliation(s)
- Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| |
Collapse
|
15
|
Denney AS, Weems AD, McMurray MA. Selective functional inhibition of a tumor-derived p53 mutant by cytosolic chaperones identified using split-YFP in budding yeast. G3-GENES GENOMES GENETICS 2021; 11:6318398. [PMID: 34544131 PMCID: PMC8496213 DOI: 10.1093/g3journal/jkab230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022]
Abstract
Life requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate 3D structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in Saccharomyces cerevisiae septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here, we build upon our septin studies to develop a new approach for identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Hsp90 inhibition liberates mutant p53 to enter the nucleus. These findings provide new insights into the effects of missense mutations.
Collapse
Affiliation(s)
- Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew D Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
16
|
D-Propranolol Impairs EGFR Trafficking and Destabilizes Mutant p53 Counteracting AKT Signaling and Tumor Malignancy. Cancers (Basel) 2021; 13:cancers13143622. [PMID: 34298835 PMCID: PMC8305715 DOI: 10.3390/cancers13143622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cancer progression is frequently driven by altered functions of EGFR belonging to the tyrosine-kinase family of growth factor receptors and by the transcription factor p53, which is called the “genome guardian”. We report that D-Propranolol, previously used for other purposes in human patients, has antitumor effects involving a redistribution of cell surface EGFR to intracellular compartments and degradation of gain-of-function mutants of p53 (GOF-mutp53). These effects can be seen in cancer cell lines expressing EGFR and GOF-mutp53 and are reproduced in vivo, reducing tumor growth and prolonging survival of xenografted mice. D-Propranolol is proposed as a prototype drug for a new strategy against highly aggressive EGFR- and mutp53-expressing tumors. Abstract Cancer therapy may be improved by the simultaneous interference of two or more oncogenic pathways contributing to tumor progression and aggressiveness, such as EGFR and p53. Tumor cells expressing gain-of-function (GOF) mutants of p53 (mutp53) are usually resistant to EGFR inhibitors and display invasive migration and AKT-mediated survival associated with enhanced EGFR recycling. D-Propranolol (D-Prop), the non-beta blocker enantiomer of propranolol, was previously shown to induce EGFR internalization through a PKA inhibitory pathway that blocks the recycling of the receptor. Here, we first show that D-Prop decreases the levels of EGFR at the surface of GOF mutp53 cells, relocating the receptor towards recycling endosomes, both in the absence of ligand and during stimulation with high concentrations of EGF or TGF-α. D-Prop also inactivates AKT signaling and reduces the invasive migration and viability of these mutp53 cells. Unexpectedly, mutp53 protein, which is stabilized by interaction with the chaperone HSP90 and mediates cell oncogenic addiction, becomes destabilized after D-Prop treatment. HSP90 phosphorylation by PKA and its interaction with mutp53 are decreased by D-Prop, releasing mutp53 towards proteasomal degradation. Furthermore, a single daily dose of D-Prop reproduces most of these effects in xenografts of aggressive gallbladder cancerous G-415 cells expressing GOF R282W mutp53, resulting in reduced tumor growth and extended mice survival. D-Prop then emerges as an old drug endowed with a novel therapeutic potential against EGFR- and mutp53-driven tumor traits that are common to a large variety of cancers.
Collapse
|
17
|
Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021; 13:3344. [PMID: 34283062 PMCID: PMC8268744 DOI: 10.3390/cancers13133344] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| |
Collapse
|
18
|
Isermann T, Şener ÖÇ, Stender A, Klemke L, Winkler N, Neesse A, Li J, Wegwitz F, Moll UM, Schulz-Heddergott R. Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity. Nat Commun 2021; 12:4019. [PMID: 34188043 PMCID: PMC8242083 DOI: 10.1038/s41467-021-24064-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53-HSF1 axis as one driver of p53LOH. We find that the WTp53 allele in AOM/DSS chemically-induced colorectal tumors (CRC) of p53R248Q/+ mice retains partial activity and represses heat-shock factor 1 (HSF1), the master regulator of the proteotoxic stress response (HSR) that is ubiquitously activated in cancer. HSR is critical for stabilizing oncogenic proteins including mutp53. WTp53-retaining CRC tumors, tumor-derived organoids and human CRC cells all suppress the tumor-promoting HSF1 program. Mechanistically, retained WTp53 activates CDKN1A/p21, causing cell cycle inhibition and suppression of E2F target MLK3. MLK3 links cell cycle with the MAPK stress pathway to activate the HSR response. In p53R248Q/+ tumors WTp53 activation by constitutive stress represses MLK3, thereby weakening the MAPK-HSF1 response necessary for tumor survival. This creates selection pressure for p53LOH which eliminates the repressive WTp53-MAPK-HSF1 axis and unleashes tumor-promoting HSF1 functions, inducing mutp53 stabilization enabling invasion.
Collapse
Affiliation(s)
- Tamara Isermann
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Özge Çiçek Şener
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Adrian Stender
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Luisa Klemke
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Winkler
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Jinyu Li
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Ute M Moll
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
19
|
Klemke L, Fehlau CF, Winkler N, Toboll F, Singh SK, Moll UM, Schulz-Heddergott R. The Gain-of-Function p53 R248W Mutant Promotes Migration by STAT3 Deregulation in Human Pancreatic Cancer Cells. Front Oncol 2021; 11:642603. [PMID: 34178628 PMCID: PMC8226097 DOI: 10.3389/fonc.2021.642603] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Missense p53 mutations (mutp53) occur in approx. 70% of pancreatic ductal adenocarcinomas (PDAC). Typically, mutp53 proteins are aberrantly stabilized by Hsp90/Hsp70/Hsp40 chaperone complexes. Notably, stabilization is a precondition for specific mutp53 alleles to acquire powerful neomorphic oncogenic gain-of-functions (GOFs) that promote tumor progression in solid cancers mainly by increasing invasion and metastasis. In colorectal cancer (CRC), we recently established that the common hotspot mutants mutp53R248Q and mutp53R248W exert GOF activities by constitutively binding to and hyperactivating STAT3. This results in increased proliferation and invasion in an autochthonous CRC mouse model and correlates with poor survival in patients. Comparing a panel of p53 missense mutations in a series of homozygous human PDAC cell lines, we show here that, similar to CRC, the mutp53R248W protein again undergoes a strong Hsp90-mediated stabilization and selectively promotes migration. Highly stabilized mutp53 is degradable by the Hsp90 inhibitors Onalespib and Ganetespib, and correlates with growth suppression, possibly suggesting therapeutic vulnerabilities to target GOF mutp53 proteins in PDAC. In response to mutp53 depletion, only mutp53R248W harboring PDAC cells show STAT3 de-phosphorylation and reduced migration, again suggesting an allele-specific GOF in this cancer entity, similar to CRC. Moreover, mutp53R248W also exhibits the strongest constitutive complex formation with phosphorylated STAT3. The selective mutp53R248W GOF signals through enhancing the STAT3 axis, which was confirmed since targeting STAT3 by knockdown or pharmacological inhibition phenocopied mutp53 depletion and reduced cell viability and migration preferentially in mutp53R248W-containing PDAC cells. Our results confirm that mutp53 GOF activities are allele specific and can span across tumor entities.
Collapse
Affiliation(s)
- Luisa Klemke
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Clara F Fehlau
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Winkler
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Felicia Toboll
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | | |
Collapse
|
20
|
Abstract
In this review, Pilley et al. examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor. p53 is an important tumor suppressor, and the complexities of p53 function in regulating cancer cell behaviour are well established. Many cancers lose or express mutant forms of p53, with evidence that the type of alteration affecting p53 may differentially impact cancer development and progression. It is also clear that in addition to cell-autonomous functions, p53 status also affects the way cancer cells interact with each other. In this review, we briefly examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor.
Collapse
Affiliation(s)
- Steven Pilley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Tristan A Rodriguez
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | |
Collapse
|
21
|
Tong X, Xu D, Mishra RK, Jones RD, Sun L, Schiltz GE, Liao J, Yang GY. Identification of a druggable protein-protein interaction site between mutant p53 and its stabilizing chaperone DNAJA1. J Biol Chem 2021; 296:100098. [PMID: 33208462 PMCID: PMC7948449 DOI: 10.1074/jbc.ra120.014749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The TP53 gene is the most frequently mutated gene in human cancers, and the majority of TP53 mutations are missense mutations. As a result, these mutant p53 (mutp53) either directly lose wildtype p53 (wtp53) tumor suppressor function or exhibit a dominant negative effect over wtp53. In addition, some mutp53 have acquired new oncogenic function (gain of function). Therefore, targeting mutp53 for its degradation may serve as a promising strategy for cancer prevention and therapy. Based on our previous finding that farnesylated DNAJA1 is a crucial chaperone in maintaining mutp53 stabilization, and by using an in silico approach, we built 3D homology models of human DNAJA1 and mutp53R175H proteins, identified the interacting pocket in the DNAJA1-mutp53R175H complex, and found one critical druggable small molecule binding site in the DNAJA1 glycine/phenylalanine-rich region. We confirmed that the interacting pocket in the DNAJA1-mutp53R175H complex was crucial for stabilizing mutp53R175H using a site-directed mutagenesis approach. We further screened a drug-like library to identify a promising small molecule hit (GY1-22) against the interacting pocket in the DNAJA1-mutp53R175H complex. The GY1-22 compound displayed an effective activity against the DNAJA1-mutp53R175H complex. Treatment with GY1-22 significantly reduced mutp53 protein levels, enhanced Waf1p21 expression, suppressed cyclin D1 expression, and inhibited mutp53-driven pancreatic cancer growth both in vitro and in vivo. Together, our results indicate that the interacting pocket in the DNAJA1-mutp53R175H complex is critical for mutp53's stability and oncogenic function, and DNAJA1 is a robust therapeutic target for developing the efficient small molecule inhibitors against oncogenic mutp53.
Collapse
Affiliation(s)
- Xin Tong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dandan Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rama K Mishra
- Center for Molecular Innovation and Drug Discovery (CMIDD), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ryan D Jones
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leyu Sun
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gary E Schiltz
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Center for Molecular Innovation and Drug Discovery (CMIDD), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jie Liao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
22
|
Martinho MS, Nancarrow DJ, Lawrence TS, Beer DG, Ray D. Chaperones and Ubiquitin Ligases Balance Mutant p53 Protein Stability in Esophageal and Other Digestive Cancers. Cell Mol Gastroenterol Hepatol 2020; 11:449-464. [PMID: 33130332 PMCID: PMC7788241 DOI: 10.1016/j.jcmgh.2020.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
The incidence of esophageal adenocarcinoma (EAC) and other gastrointestinal (GI) cancers have risen dramatically, thus defining the oncogenic drivers to develop effective therapies are necessary. Patients with Barrett's Esophagus (BE), have an elevated risk of developing EAC. Around 70%-80% of BE cases that progress to dysplasia and cancer have detectable TP53 mutations. Similarly, in other GI cancers higher rates of TP53 mutation are reported, which provide a significant survival advantage to dysplastic/cancer cells. Targeting molecular chaperones that mediate mutant p53 stability may effectively induce mutant p53 degradation and improve cancer outcomes. Statins can achieve this via disrupting the interaction between mutant p53 and the chaperone DNAJA1, promoting CHIP-mediated degradation of mutant p53, and statins are reported to significantly reduce the risk of BE progression to EAC. However, statins demonstrated sub-optimal efficacy depending on cancer types and TP53 mutation specificity. Besides the well-established role of MDM2 in p53 stability, we reported that individual isoforms of the E3 ubiquitin ligase GRAIL (RNF128) are critical, tissue-specific regulators of mutant p53 stability in BE progression to EAC, and targeting the interaction of mutant p53 with these isoforms may help mitigate EAC development. In this review, we discuss the critical ubiquitin-proteasome and chaperone regulation of mutant p53 stability in EAC and other GI cancers with future insights as to how to affect mutant p53 stability, further noting how the precise p53 mutation may influence the efficacy of treatment strategies and identifying necessary directions for further research in this field.
Collapse
Affiliation(s)
- May San Martinho
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Derek J Nancarrow
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - David G Beer
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
23
|
Garufi A, Baldari S, Pettinari R, Gilardini Montani MS, D’Orazi V, Pistritto G, Crispini A, Giorno E, Toietta G, Marchetti F, Cirone M, D’Orazi G. A ruthenium(II)-curcumin compound modulates NRF2 expression balancing the cancer cell death/survival outcome according to p53 status. J Exp Clin Cancer Res 2020; 39:122. [PMID: 32605658 PMCID: PMC7325274 DOI: 10.1186/s13046-020-01628-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor progression and tumor response to anticancer therapies may be affected by activation of oncogenic pathways such as the antioxidant one induced by NRF2 (nuclear factor erythroid 2-related factor 2) transcription factor and the pathways modified by deregulation of oncosuppressor p53. Often, oncogenic pathways may crosstalk between them increasing tumor progression and resistance to anticancer therapies. Therefore, understanding that interplay is critical to improve cancer cell response to therapies. In this study we aimed at evaluating NRF2 and p53 in several cancer cell lines carrying different endogenous p53 status, using a novel curcumin compound since curcumin has been shown to target both NRF2 and p53 and have anti-tumor activity. METHODS We performed biochemical and molecular studies by using pharmacologic of genetic inhibition of NRF2 to evaluate the effect of curcumin compound in cancer cell lines of different tumor types bearing wild-type (wt) p53, mutant (mut) p53 or p53 null status. RESULTS We found that the curcumin compound induced a certain degree of cell death in all tested cancer cell lines, independently of the p53 status. At molecular level, the curcumin compound induced NRF2 activation, mutp53 degradation and/or wtp53 activation. Pharmacologic or genetic NRF2 inhibition further increased the curcumin-induced cell death in both mutp53- and wtp53-carrying cancer cell lines while it did not increase cell death in p53 null cells, suggesting a cytoprotective role for NRF2 and a critical role for functional p53 to achieve an efficient cancer cell response to therapy. CONCLUSIONS These findings underline the prosurvival role of curcumin-induced NRF2 expression in cancer cells even when cells underwent mutp53 downregulation and/or wtp53 activation. Thus, NRF2 inhibition increased cell demise particularly in cancer cells carrying p53 either wild-type or mutant suggesting that p53 is crucial for efficient cancer cell death. These results may represent a paradigm for better understanding the cancer cell response to therapies in order to design more efficient combined anticancer therapies targeting both NRF2 and p53.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- University “G. D’Annunzio”, School of Medicine, Chieti, Italy
| | - Silvia Baldari
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Medical, Surgical Sciences, and Biotechnologies, Sapienza University, Latina, Italy
| | - Riccardo Pettinari
- School of Pharmacy, Chemistry Section, University of Camerino, Camerino Macerata, Italy
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University, laboratory affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Rome, Italy
| | - Valerio D’Orazi
- Department of Surgical Sciences, Sapienza University, Rome, Italy
| | - Giuseppa Pistritto
- Italian medicines agency-Aifa, centralized procedure office, Rome, Italy
| | - Alessandra Crispini
- Department of Chemistry and Chemical Technologies, laboratory MAT-IN LAB, Calabria University, Rende, Italy
| | - Eugenia Giorno
- Department of Chemistry and Chemical Technologies, laboratory MAT-IN LAB, Calabria University, Rende, Italy
| | - Gabriele Toietta
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Marchetti
- School of Science and Technology, Chemistry Section, University of Camerino, Camerino Macerata, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University, laboratory affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Rome, Italy
| | - Gabriella D’Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
24
|
Sobhani N, D’Angelo A, Wang X, Young KH, Generali D, Li Y. Mutant p53 as an Antigen in Cancer Immunotherapy. Int J Mol Sci 2020; 21:4087. [PMID: 32521648 PMCID: PMC7312027 DOI: 10.3390/ijms21114087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
The p53 tumor suppressor plays a pivotal role in cancer and infectious disease. Many oncology treatments are now calling on immunotherapy approaches, and scores of studies have investigated the role of p53 antibodies in cancer diagnosis and therapy. This review summarizes the current knowledge from the preliminary evidence that suggests a potential role of p53 as an antigen in the adaptive immune response and as a key monitor of the innate immune system, thereby speculating on the idea that mutant p53 antigens serve as a druggable targets in immunotherapy. Except in a few cases, the vast majority of published work on p53 antibodies in cancer patients use wild-type p53 as the antigen to detect these antibodies and it is unclear whether they can recognize p53 mutants carried by cancer patients at all. We envision that an antibody targeting a specific mutant p53 will be effective therapeutically against a cancer carrying the exact same mutant p53. To corroborate such a possibility, a recent study showed that a T cell receptor-like (TCLR) antibody, initially made for a wild-type antigen, was capable of discriminating between mutant p53 and wild-type p53, specifically killing more cancer cells expressing mutant p53 than wild-type p53 in vitro and inhibiting the tumour growth of mice injected with mutant p53 cancer cells than mice with wild-type p53 cancer cells. Thus, novel antibodies targeting mutant p53, but not the wild-type isoform, should be pursued in preclinical and clinical studies.
Collapse
Affiliation(s)
- Navid Sobhani
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Alberto D’Angelo
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK;
| | - Xu Wang
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ken H. Young
- Department of Pathology, Duke University School of Medicine, Durham, NC 27708, USA;
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada Di Fiume 447, 34149 Trieste, Italy;
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
25
|
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Taranejoo S, Zali H. HSP90 and Co-chaperones: Impact on Tumor Progression and Prospects for Molecular-Targeted Cancer Therapy. Cancer Invest 2020; 38:310-328. [PMID: 32274949 DOI: 10.1080/07357907.2020.1752227] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heat shock protein 90 (HSP90), a highly and unique chaperone, presents as a double-edged sword. It plays an essential role in many physiological and pathological processes, including tumor development. The current review highlights a recent understanding of the roles of HSP90 in molecular mechanisms underlying cancer survival and progression. HSP90 and its client proteins through the regulation of oncoproteins including signaling proteins, receptors, and transcriptional factors involved in tumorigenesis. It also has potential clinical application as diagnostic and prognostic biomarkers for assessing cancer progression. In this way, using HSP90 to develop new anticancer therapeutic agents including HSP90 inhibitors, anti-HSP90 antibody, and HSP90-based vaccines has been promising.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrouz Taranejoo
- Wellman Centre for Photomedicine, Harvard-MIT Division of Health Sciences and Technology (HST), Boston, MA, USA
| | - Hakimeh Zali
- Department of Tissue engineering and applied cell, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Grosicki S, Bednarczyk M, Janikowska G. Heat shock proteins as a new, promising target of multiple myeloma therapy. Expert Rev Hematol 2020; 13:117-126. [PMID: 31971027 DOI: 10.1080/17474086.2020.1711730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The results of therapy of the multiple myeloma (MM) patients remain unsatisfactory despite the constantly observed progress in treatment.Areas covered: It has been shown that mechanisms regulated by heat shock proteins (HSPs) play an important role in pathogenesis of MM and resistance developing to treatment, which constitute a protective shield against external damaging factors in healthy and cancerous cells.Expert opinion: Inhibiting these mechanisms seems to be the natural way of therapy in MM patients. In vitro studies have shown promising effects in the form of an increase in the apoptosis index of MM cells exposed to HSP inhibitors. The observations are very promising in the early stages of clinical trials with HSP inhibitors, such as tanespimycin, in the relapsed/refractory MM patients. Effects were more pronounced when combined with bortezomib. It seems that enriching the range of anti-myeloma drugs with HSP inhibitors may be the next step in the future of extending life of patients with multiple myeloma.
Collapse
Affiliation(s)
- Sebastian Grosicki
- Department of Hematology and Cancer Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, Katowice, Poland
| | - Martyna Bednarczyk
- Department of Hematology and Cancer Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, Katowice, Poland
| | - Grażyna Janikowska
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
27
|
Systematic analysis of alterations in the ubiquitin proteolysis system reveals its contribution to driver mutations in cancer. ACTA ACUST UNITED AC 2019; 1:122-135. [DOI: 10.1038/s43018-019-0001-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022]
|
28
|
Hoter A, Naim HY. Heat Shock Proteins and Ovarian Cancer: Important Roles and Therapeutic Opportunities. Cancers (Basel) 2019; 11:E1389. [PMID: 31540420 PMCID: PMC6769485 DOI: 10.3390/cancers11091389] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is a serious cause of death in gynecological oncology. Delayed diagnosis and poor survival rates associated with late stages of the disease are major obstacles against treatment efforts. Heat shock proteins (HSPs) are stress responsive molecules known to be crucial in many cancer types including ovarian cancer. Clusterin (CLU), a unique chaperone protein with analogous oncogenic criteria to HSPs, has also been proven to confer resistance to anti-cancer drugs. Indeed, these chaperone molecules have been implicated in diagnosis, prognosis, metastasis and aggressiveness of various cancers. However, relative to other cancers, there is limited body of knowledge about the molecular roles of these chaperones in ovarian cancer. In the current review, we shed light on the diverse roles of HSPs as well as related chaperone proteins like CLU in the pathogenesis of ovarian cancer and elucidate their potential as effective drug targets.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
29
|
Heat Shock Proteins Are Essential Components in Transformation and Tumor Progression: Cancer Cell Intrinsic Pathways and Beyond. Int J Mol Sci 2019; 20:ijms20184507. [PMID: 31514477 PMCID: PMC6769451 DOI: 10.3390/ijms20184507] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 02/08/2023] Open
Abstract
Heat shock protein (HSP) synthesis is switched on in a remarkably wide range of tumor cells, in both experimental animal systems and in human cancer, in which these proteins accumulate in high levels. In each case, elevated HSP concentrations bode ill for the patient, and are associated with a poor outlook in terms of survival in most cancer types. The significance of elevated HSPs is underpinned by their essential roles in mediating tumor cell intrinsic traits such as unscheduled cell division, escape from programmed cell death and senescence, de novo angiogenesis, and increased invasion and metastasis. An increased HSP expression thus seems essential for tumorigenesis. Perhaps of equal significance is the pronounced interplay between cancer cells and the tumor milieu, with essential roles for intracellular HSPs in the properties of the stromal cells, and their roles in programming malignant cells and in the release of HSPs from cancer cells to influence the behavior of the adjacent tumor and infiltrating the normal cells. These findings of a triple role for elevated HSP expression in tumorigenesis strongly support the targeting of HSPs in cancer, especially given the role of such stress proteins in resistance to conventional therapies.
Collapse
|
30
|
Xue Y, San Luis B, Lane DP. Intratumour heterogeneity of p53 expression; causes and consequences. J Pathol 2019; 249:274-285. [PMID: 31322742 DOI: 10.1002/path.5328] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/23/2022]
Abstract
Genomic alterations in different types of cancer have been identified by comprehensive sequencing methodologies, revealing TP53 as the most frequently mutated gene across the majority of human cancer types. Cytotoxic treatments are still major cancer therapy strategies but cancer recurrence due to therapy resistance is a major challenge. Resistant cell populations may be associated with TP53 mutant clones exhibiting abnormal p53 expression patterns in tumours. Given data that levels of mutant p53 influence cancer cell growth and survival, understanding the mechanisms underlying intratumour heterogeneity of p53 can be exploited to design strategies that improve patient survival. The patterns of p53 protein examined by immunohistochemistry of both premalignant and malignant tissues are complex, ranging from intense staining of all tumour cell nuclei to complete absence of staining and with many intermediate phenotypes. Animal models that express only mutant proteins and adoption of international standards for terminology have brought greater clarity to understanding the causes of variation and are at the same time demonstrating the utility of p53 in oncology. In addition to p53 mutation, MDM2 and chaperone activities, gene copy number and TP53 mRNA levels linked to proliferative activity and differentiation are all now established as causes of variation in p53 staining, with clinical implications. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuezhen Xue
- p53 Laboratory, A*STAR, Singapore, Singapore
| | | | | |
Collapse
|
31
|
What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat 2019; 46:100643. [PMID: 31493711 DOI: 10.1016/j.drup.2019.100643] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Identification of multidrug (MDR) efflux transporters that belong to the ATP-Binding Cassette (ABC) superfamily, represented an important breakthrough for understanding cancer multidrug resistance (MDR) and its possible overcoming. However, recent data indicate that drug resistant cells have a complex intracellular physiology that involves constant changes in energetic and oxidative-reductive metabolic pathways, as well as in the molecular circuitries connecting mitochondria, endoplasmic reticulum (ER) and lysosomes. The aim of this review is to discuss the key molecular mechanisms of cellular reprogramming that induce and maintain MDR, beyond the presence of MDR efflux transporters. We specifically highlight how cancer cells characterized by high metabolic plasticity - i.e. cells able to shift the energy metabolism between glycolysis and oxidative phosphorylation, to survive both the normoxic and hypoxic conditions, to modify the cytosolic and mitochondrial oxidative-reductive metabolism, are more prone to adapt to exogenous stressors such as anti-cancer drugs and acquire a MDR phenotype. Similarly, we discuss how changes in mitochondria dynamics and mitophagy rates, changes in proteome stability ensuring non-oncogenic proteostatic mechanisms, changes in ubiquitin/proteasome- and autophagy/lysosome-related pathways, promote the cellular survival under stress conditions, along with the acquisition or maintenance of MDR. After dissecting the complex intracellular crosstalk that takes place during the development of MDR, we suggest that mapping the specific adaptation pathways underlying cell survival in response to stress and targeting these pathways with potent pharmacologic agents may be a new approach to enhance therapeutic efficacy against MDR tumors.
Collapse
|
32
|
SLMP53-2 Restores Wild-Type-Like Function to Mutant p53 through Hsp70: Promising Activity in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11081151. [PMID: 31405179 PMCID: PMC6721528 DOI: 10.3390/cancers11081151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Half of human cancers harbor TP53 mutations that render p53 inactive as a tumor suppressor. In these cancers, reactivation of mutant p53 (mutp53) through restoration of wild-type-like function constitutes a valuable anticancer therapeutic strategy. In order to search for mutp53 reactivators, a small library of tryptophanol-derived oxazoloisoindolinones was synthesized and the potential of these compounds as mutp53 reactivators and anticancer agents was investigated in human tumor cells and xenograft mouse models. By analysis of their anti-proliferative effect on a panel of p53-null NCI-H1299 tumor cells ectopically expressing highly prevalent mutp53, the compound SLMP53-2 was selected based on its potential reactivation of multiple structural mutp53. In mutp53-Y220C-expressing hepatocellular carcinoma (HCC) cells, SLMP53-2-induced growth inhibition was mediated by cell cycle arrest, apoptosis, and endoplasmic reticulum stress response. In these cells, SLMP53-2 restored wild-type-like conformation and DNA-binding ability of mutp53-Y220C by enhancing its interaction with the heat shock protein 70 (Hsp70), leading to the reestablishment of p53 transcriptional activity. Additionally, SLMP53-2 displayed synergistic effect with sorafenib, the only approved therapy for advanced HCC. Notably, it exhibited potent antitumor activity in human HCC xenograft mouse models with a favorable toxicological profile. Collectively, SLMP53-2 is a new mutp53-targeting agent with promising antitumor activity, particularly against HCC.
Collapse
|
33
|
Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J 2019; 476:1653-1677. [PMID: 31201219 DOI: 10.1042/bcj20170380] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
The Hsp70 family of chaperones works with its co-chaperones, the nucleotide exchange factors and J-domain proteins, to facilitate a multitude of cellular functions. Central players in protein homeostasis, these jacks-of-many-trades are utilized in a variety of ways because of their ability to bind with selective promiscuity to regions of their client proteins that are exposed when the client is unfolded, either fully or partially, or visits a conformational state that exposes the binding region in a regulated manner. The key to Hsp70 functions is that their substrate binding is transient and allosterically cycles in a nucleotide-dependent fashion between high- and low-affinity states. In the past few years, structural insights into the molecular mechanism of this allosterically regulated binding have emerged and provided deep insight into the deceptively simple Hsp70 molecular machine that is so widely harnessed by nature for diverse cellular functions. In this review, these structural insights are discussed to give a picture of the current understanding of how Hsp70 chaperones work.
Collapse
|
34
|
Toma-Jonik A, Vydra N, Janus P, Widłak W. Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction. Cell Oncol (Dordr) 2019; 42:579-589. [DOI: 10.1007/s13402-019-00452-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
|
35
|
Klimczak M, Biecek P, Zylicz A, Zylicz M. Heat shock proteins create a signature to predict the clinical outcome in breast cancer. Sci Rep 2019; 9:7507. [PMID: 31101846 PMCID: PMC6525249 DOI: 10.1038/s41598-019-43556-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/27/2019] [Indexed: 01/30/2023] Open
Abstract
Utilizing The Cancer Genome Atlas (TCGA) and KM plotter databases we identified six heat shock proteins associated with survival of breast cancer patients. The survival curves of samples with high and low expression of heat shock genes were compared by log-rank test (Mantel-Haenszel). Interestingly, patients overexpressing two identified HSPs – HSPA2 and DNAJC20 exhibited longer survival, whereas overexpression of other four HSPs – HSP90AA1, CCT1, CCT2, CCT6A resulted in unfavorable prognosis for breast cancer patients. We explored correlations between expression level of HSPs and clinicopathological features including tumor grade, tumor size, number of lymph nodes involved and hormone receptor status. Additionally, we identified a novel signature with the potential to serve as a prognostic model for breast cancer. Using univariate Cox regression analysis followed by multivariate Cox regression analysis, we built a risk score formula comprising prognostic HSPs (HSPA2, DNAJC20, HSP90AA1, CCT1, CCT2) and tumor stage to identify high-risk and low-risk cases. Finally, we analyzed the association of six prognostic HSP expression with survival of patients suffering from other types of cancer than breast cancer. We revealed that depending on cancer type, each of the six analyzed HSPs can act both as a positive, as well as a negative regulator of cancer development. Our study demonstrates a novel HSP signature for the outcome prediction of breast cancer patients and provides a new insight into ambiguous role of these proteins in cancer development.
Collapse
Affiliation(s)
- Marta Klimczak
- International Institute of Molecular and Cell Biology, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Przemyslaw Biecek
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Alicja Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
36
|
Hsp70- and Hsp90-Mediated Regulation of the Conformation of p53 DNA Binding Domain and p53 Cancer Variants. Mol Cell 2019; 74:831-843.e4. [DOI: 10.1016/j.molcel.2019.03.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/06/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
37
|
Dahiya V, Agam G, Lawatscheck J, Rutz DA, Lamb DC, Buchner J. Coordinated Conformational Processing of the Tumor Suppressor Protein p53 by the Hsp70 and Hsp90 Chaperone Machineries. Mol Cell 2019; 74:816-830.e7. [PMID: 31027879 DOI: 10.1016/j.molcel.2019.03.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022]
Abstract
p53, the guardian of the genome, requires chaperoning by Hsp70 and Hsp90. However, how the two chaperone machineries affect p53 conformation and regulate its function remains elusive. We found that Hsp70, together with Hsp40, unfolds p53 in an ATP-dependent reaction. This unfolded state of p53 is susceptible to aggregation after release induced by the nucleotide exchange factor Bag-1. However, when Hsp90 and the adaptor protein Hop are present, p53 is transferred from Hsp70 to Hsp90, allowing restoration of the native state upon ATP hydrolysis. Our results suggest that the p53 conformation is constantly remodeled by the two major chaperone machineries. This connects p53 activity to stress, and the levels of free molecular chaperones are important factors regulating p53 activity. Together, our findings reveal an intricate interplay and cooperation of Hsp70 and Hsp90 in regulating the conformation of a client.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Ganesh Agam
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilians University Munich, Munich, Germany
| | - Jannis Lawatscheck
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Daniel Andreas Rutz
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilians University Munich, Munich, Germany.
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
38
|
Kaur J, Bhardwaj A, Melancon BJ, Blagg BSJ. The succinct synthesis of AT13387, a clinically relevant Hsp90 inhibitor. SYNTHETIC COMMUN 2019; 49:1436-1443. [PMID: 33093687 DOI: 10.1080/00397911.2019.1602654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AT13387 is an orally bioavailable clinical candidate developed to inhibit theheat shock protein 90 (Hsp90). This article describes a modified synthetic route for the multi-gram production of AT13387 in 46% overall yield. The modified synthetic route is short, avoids stringent reaction conditions and difficult purifications, which led to increase in an overall yield.
Collapse
Affiliation(s)
- Jatinder Kaur
- Warren Family Research Center for Drug Discovery and Development, Department of Chemistry and Biochemistry,University of Notre Dame, Notre Dame, Indiana, USA
| | - Atul Bhardwaj
- Warren Family Research Center for Drug Discovery and Development, Department of Chemistry and Biochemistry,University of Notre Dame, Notre Dame, Indiana, USA
| | - Bruce J Melancon
- Warren Family Research Center for Drug Discovery and Development, Department of Chemistry and Biochemistry,University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian S J Blagg
- Warren Family Research Center for Drug Discovery and Development, Department of Chemistry and Biochemistry,University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
39
|
Kampinga HH, Andreasson C, Barducci A, Cheetham ME, Cyr D, Emanuelsson C, Genevaux P, Gestwicki JE, Goloubinoff P, Huerta-Cepas J, Kirstein J, Liberek K, Mayer MP, Nagata K, Nillegoda NB, Pulido P, Ramos C, De Los Rios P, Rospert S, Rosenzweig R, Sahi C, Taipale M, Tomiczek B, Ushioda R, Young JC, Zimmermann R, Zylicz A, Zylicz M, Craig EA, Marszalek J. Function, evolution, and structure of J-domain proteins. Cell Stress Chaperones 2019; 24:7-15. [PMID: 30478692 PMCID: PMC6363617 DOI: 10.1007/s12192-018-0948-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2018] [Indexed: 01/06/2023] Open
Abstract
Hsp70 chaperone systems are very versatile machines present in nearly all living organisms and in nearly all intracellular compartments. They function in many fundamental processes through their facilitation of protein (re)folding, trafficking, remodeling, disaggregation, and degradation. Hsp70 machines are regulated by co-chaperones. J-domain containing proteins (JDPs) are the largest family of Hsp70 co-chaperones and play a determining role functionally specifying and directing Hsp70 functions. Many features of JDPs are not understood; however, a number of JDP experts gathered at a recent CSSI-sponsored workshop in Gdansk (Poland) to discuss various aspects of J-domain protein function, evolution, and structure. In this report, we present the main findings and the consensus reached to help direct future developments in the field of Hsp70 research.
Collapse
Affiliation(s)
- Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Claes Andreasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Alessandro Barducci
- Inserm, U1054, CNRS, UMR 5048, Centre de Biochimie Structurale, Universite de Montpellier, Montpellier, France
| | | | - Douglas Cyr
- University of North Carolina, Chapel Hill, NC, USA
| | - Cecilia Emanuelsson
- Center for Molecular Protein Sciences, CMPS, Dept. Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), CNRS-Université de Toulouse, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Janine Kirstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Kazuhiro Nagata
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Nadinath B Nillegoda
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Australian Regenerative Medicine Institute (ARMI), Monash University, 15 Innovative Walk, Wellington Road, Clayton, VIC, 3800, Australia
| | - Pablo Pulido
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Planegg-Martinsried, 82152, Munich, Germany
| | - Carlos Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Paolo De Los Rios
- EPFL SB IPHYS LBS BSP 723 (Cubotron UNIL), Rte de la Sorge, CH-1015, Lausanne, Switzerland
| | - Sabine Rospert
- Institut fur Biochemie und Molekularbiologie, Universitat Freiburg, Freiburg, Germany
| | | | - Chandan Sahi
- Indian Institute of Science Education and Research Bhopal, Bhauri Bhopal, Madhya Pradesh, 462 066, India
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Bratłomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Jason C Young
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Alicja Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| |
Collapse
|
40
|
Galigniana MD. HSP90-Based Heterocomplex as Essential Regulator for Cancer Disease. HEAT SHOCK PROTEINS 2019:19-45. [DOI: 10.1007/978-3-030-23158-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|