1
|
Goyal A, Afzal M, Khan NH, Goyal K, Srinivasamurthy SK, Gupta G, Benod Kumar K, Ali H, Rana M, Wong LS, Kumarasamy V, Subramaniyan V. Targeting p53-p21 signaling to enhance mesenchymal stem cell regenerative potential. Regen Ther 2025; 29:352-363. [PMID: 40248767 PMCID: PMC12004386 DOI: 10.1016/j.reth.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are properties of self-renewal and differentiation potentials and thus are very appealing to regenerative medicine. Nevertheless, their therapeutic potential is frequently constrained by senescence, limited proliferation, and stress-induced apoptosis. The key role of the p53-p21 biology in MSC biology resides in safeguarding genomic stability while promoting senescence and limiting regenerative capacity upon over-activation demonstrated. This pathway is a key point for improving MSC function and exploiting the inherent limitations. Recent advances indicate that senescence can be delayed by targeting the p53-p21 signaling and improved MSC proliferation and differentiation capacity. PFT-α pharmacological agents transiently inhibit p53 from increasing proliferation and lineage-specific differentiation, while antioxidants such as hydrogen-rich saline and epigallocatechin 3 gallate (EGCG) suppress oxidative stress and attenuate p53 p21 signaling. Genetic tools like CRISPR-Cas9 and RNA interference also precisely modulate TP53 and CDKN1A expression to optimize MSC functionality. The interplay of p53-p21 with pathways like Wnt/β-catenin and MAPK further highlights opportunities for combinatorial therapies to enhance MSC resilience and regenerative outcomes. This review aims to offer a holistic view of how p53-p21 targeting can further the regenerative potential of MSCs, resolving senescence, proliferation, and stress resilience towards advanced therapeutics built on MSCs.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical & Health Sciences University, P.O. Box 11172, Ras Al Khaimah, United Arab Emirates
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - K. Benod Kumar
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Wang X, Wang Z, Liu Z, Huang F, Pan Z, Zhang Z, Liu T. Nutritional strategies in oncology: The role of dietary patterns in modulating tumor progression and treatment response. Biochim Biophys Acta Rev Cancer 2025; 1880:189322. [PMID: 40228747 DOI: 10.1016/j.bbcan.2025.189322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Dietary interventions can influence tumor growth by restricting tumor-specific nutritional requirements, altering the nutrient availability in the tumor microenvironment, or enhancing the cytotoxicity of anticancer drugs. Metabolic reprogramming of tumor cells, as a significant hallmark of tumor progression, has a profound impact on immune regulation, severely hindering tumor eradication. Dietary interventions can modify tumor metabolic processes to some extent, thereby further improving the efficacy of tumor treatment. In this review, we emphasize the impact of dietary patterns on tumor progression. By exploring the metabolic differences of nutrients in normal cells versus cancer cells, we further clarify how dietary patterns influence cancer treatment. We also discuss the effects of dietary patterns on traditional treatments such as immunotherapy, chemotherapy, radiotherapy, and the gut microbiome, thereby underscoring the importance of precision nutrition.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zeyao Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zihan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Fanxuan Huang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China; Departments of Cardiology and Pharmacy and Breast Cancer surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China.
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| |
Collapse
|
3
|
Li X, Xu S, Su Z, Shao Z, Huang X. Unleashing the Potential of Metal Ions in cGAS-STING Activation: Advancing Nanomaterial-Based Tumor Immunotherapy. ACS OMEGA 2025; 10:11723-11742. [PMID: 40191377 PMCID: PMC11966298 DOI: 10.1021/acsomega.4c10865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 04/09/2025]
Abstract
Immunotherapy is a critical modality in cancer treatment with diverse activation pathways. In recent years, the stimulator of interferon genes (STING) signaling pathway has exhibited significant potential in tumor immunotherapy. This pathway exerts notable antitumor effects by activating innate and adaptive immunity and regulating the tumor immune microenvironment. Various metal ions have been identified as effective activators of the STING pathway and, through the design and synthesis of nanodelivery platforms, have been applied in immunotherapy as well as in combination therapies, such as chemotherapy, chemodynamic therapy, photodynamic therapy, and cancer vaccines. Metal nanomaterials showcase unique advantages in immunotherapy; however, there are still aspects that require optimization. This review systematically examines existing metal-based nanomaterials, elaborates on the mechanisms by which different metal ions activate the STING pathway, and discusses their application models in tumor combination therapies. We also provide a comparative analysis of the advantages of metal nanomaterials over other treatment methods. Our exploration highlights the broad application prospects of metal nanomaterials in cancer treatment, offering new insights and directions for the advancement of tumor immunotherapy.
Collapse
Affiliation(s)
- Xingyin Li
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaojie Xu
- Department
of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziliang Su
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Huang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Wang W, Aguilar M, Datta S, Alley A, Tadesse M, Wang X, Gao X, Zhang R. Dual inhibitor of MDM2 and NFAT1 for experimental therapy of breast cancer: in vitro and in vivo anticancer activities and newly discovered effects on cancer metabolic pathways. Front Pharmacol 2025; 16:1531667. [PMID: 40046748 PMCID: PMC11879958 DOI: 10.3389/fphar.2025.1531667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction The oncogene MDM2 has garnered attention not only for its role in cancer as a negative regulator of the tumor suppressor p53 but also for its p53-independent oncogenic activities. MDM2 also involves metabolic reprogramming, such as serine metabolism, respiration, mitochondrial functions, the folate cycle, and redox balance. Traditional MDM2 inhibitors blocking the protein-protein binding between MDM2 and p53 have shown limited clinical success in various stages of clinical trials, most likely due to low efficacy, drug toxicity, and drug resistance, highlighting the need for a novel, p53-independent strategy to inhibit MDM2. The present study investigated the antitumor effects of MA242, a novel MDM2 and NFAT1 inhibitor, in breast cancer models. Methods The anticancer activity and underlying mechanisms of MA242 were evaluated in vitro using breast cancer cell lines with different p53 backgrounds and in vivo using orthotopic and patient-derived xenograft models. Results We demonstrated that MA242 significantly inhibited cell viability and induced apoptosis in breast cancer cells, regardless of p53 status. Metabolic analysis revealed that MA242 notably disrupted nicotinamide metabolism, modified nucleotide metabolism, and elevated cellular oxidative stress by disturbing the redox balance. Furthermore, in animal models, MA242 reduced MDM2 expression and effectively inhibited tumor growth dependent on MDM2 expression without causing host toxicity. Discussion These findings highlight the potential of MA242 as a modulator of cancer metabolism and support its further development as a therapeutic option for aggressive breast cancers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
- Drug Discovery Institute, University of Houston, Houston, TX, United States
| | - Marlene Aguilar
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Abigail Alley
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Meheret Tadesse
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Xinshi Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Xia Gao
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
- Drug Discovery Institute, University of Houston, Houston, TX, United States
| |
Collapse
|
5
|
Li B, Zhang C, Xu X, Shen Q, Luo S, Hu J. Manipulating the cGAS-STING Axis: advancing innovative strategies for osteosarcoma therapeutics. Front Immunol 2025; 16:1539396. [PMID: 39991153 PMCID: PMC11842356 DOI: 10.3389/fimmu.2025.1539396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
This paper explored the novel approach of targeting the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) pathway for the treatment of osteosarcoma (OS). Osteosarcoma is a common malignancy in adolescents. Most patients die from lung metastasis. It reviewed the epidemiology and pathological characteristics of OS, highlighting its highly malignant nature and tendency for pulmonary metastasis, underscoring the importance of identifying new therapeutic targets. The cGAS-STING pathway was closely associated with the malignant biological behaviors of OS cells, suggesting that targeting this pathway could be a promising therapeutic strategy. Currently, research on the role of the cGAS-STING pathway in OS treatment has been limited, and the underlying mechanisms remain unclear. Therefore, further investigation into the mechanisms of the cGAS-STING pathway in OS and the exploration of therapeutic strategies based on this pathway are of great significance for developing more effective treatments for OS. This paper offered a fresh perspective on the treatment of OS, providing hope for new therapeutic options for OS patients by targeting the cGAS-STING pathway.
Collapse
Affiliation(s)
- BingBing Li
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Cheng Zhang
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - XiaoJuan Xu
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - QiQin Shen
- Department of Orthopedics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - ShuNan Luo
- Department of Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - JunFeng Hu
- Department of Pain, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
6
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Higurashi M, Mori K, Nakagawa H, Uchida M, Ishikawa F, Shibanuma M. Respiratory complex I-mediated NAD + regeneration regulates cancer cell proliferation through the transcriptional and translational control of p21 Cip1 expression by SIRT3 and SIRT7. Mol Oncol 2025. [PMID: 39873399 DOI: 10.1002/1878-0261.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
The role of the electron transport chain (ETC) in cell proliferation control beyond its crucial function in supporting ATP generation has recently emerged. In this study, we found that, among the four ETC complexes, the complex I (CI)-mediated NAD+ regeneration is important for cancer cell proliferation. In cancer cells, a decrease in CI activity by RNA interference (RNAi) against NADH:ubiquinone oxidoreductase core subunit V1 (NDUFV1) arrested the cell cycle at the G1/S phase, accompanying upregulation of p21Cip1 cyclin-dependent kinase inhibitor expression. Mechanistically, a decrease in the NAD+/NADH ratio downregulated SIRT3 and SIRT7 function, which suppressed p21Cip1 expression at the translational and transcriptional levels, respectively, resulting in the upregulation of the antiproliferative molecule. Importantly, high expression levels of the core subunits of CI correlated with poor prognosis in patients with the hormone receptor(+)/human epidermal growth factor receptor 2(-) (HR+/HER2-) subtype of breast cancer. Therefore, NDUFV1 and SIRT3/7 have emerged as promising therapeutic targets against this breast cancer subtype.
Collapse
Affiliation(s)
- Masato Higurashi
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Hidetsugu Nakagawa
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Momoko Uchida
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | | | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University Graduate School of Pharmacy, Tokyo, Japan
| |
Collapse
|
8
|
Hu M, Zhang Y, Zhang P, Liu K, Zhang M, Li L, Yu Z, Zhang X, Zhang W, Xu Y. Targeting APE1: Advancements in the Diagnosis and Treatment of Tumors. Protein Pept Lett 2025; 32:18-33. [PMID: 39648425 DOI: 10.2174/0109298665338519241114103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 12/10/2024]
Abstract
With the emergence of the precision medicine era, targeting specific proteins has emerged as a pivotal breakthrough in tumor diagnosis and treatment. Apurinic/apyrimidinic Endonuclease 1 (APE1) is a multifunctional protein that plays a crucial role in DNA repair and cellular redox regulation. This article comprehensively explores the fundamental mechanisms of APE1 as a multifunctional enzyme in biology, with particular emphasis on its potential significance in disease diagnosis and strategies for tumor treatment. Firstly, this article meticulously analyzes the intricate biological functions of APE1 at a molecular level, establishing a solid theoretical foundation for subsequent research endeavors. In terms of diagnostic applications, the presence of APE1 can be detected in patient serum samples, biopsy tissues, and through cellular in situ testing. The precise detection methods enable changes in APE1 levels to serve as reliable biomarkers for predicting tumor occurrence, progression, and patient prognosis. Moreover, this article focuses on elucidating the potential role of APE1 in tumor treatment by exploring various inhibitors, including nucleic acid-based inhibitors and small molecule drug inhibitors categories, and revealing their unique advantages in disrupting DNA repair function and modulating oxidative-reduction activity. Finally, the article provides an outlook on future research directions for APE1 while acknowledging major technical difficulties and clinical challenges that need to be overcome despite its immense potential as a target for tumor therapy.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Kangbo Liu
- Henan Institute for Drug and Medical Device Inspection (Henan Vaccine Issuance Center), Zhengzhou, 450018, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Ying Xu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| |
Collapse
|
9
|
Caporali S, Butera A, Ruzza A, Zampieri C, Bantula' M, Scharsich S, Ückert AK, Celardo I, Kouzel IU, Leanza L, Gruber A, Montero J, D'Alessandro A, Brunner T, Leist M, Amelio I. Selective metabolic regulations by p53 mutant variants in pancreatic cancer. J Exp Clin Cancer Res 2024; 43:310. [PMID: 39587609 PMCID: PMC11590503 DOI: 10.1186/s13046-024-03232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Approximately half of all human cancers harbour mutations in the p53 gene, leading to the generation of neomorphic p53 mutant proteins. These mutants can exert gain-of-function (GOF) effects, potentially promoting tumour progression. However, the clinical significance of p53 GOF mutations, as well as the selectivity of individual variants, remains controversial and unclear. METHODS To elucidate the metabolic regulations and molecular underpinnings associated with the specific p53R270H and p53R172H mutant variants (the mouse equivalents of human p53R273H and p53R175H, respectively), we employed a comprehensive approach. This included integrating global metabolomic analysis with epigenomic and transcriptomic profiling in mouse pancreatic cancer cells. Additionally, we assessed metabolic parameters such as oxygen consumption rate and conducted analyses of proliferation and cell-cell competition to validate the biological impact of metabolic changes on pancreatic ductal adenocarcinoma (PDAC) phenotype. Our findings were further corroborated through analysis of clinical datasets from human cancer cohorts. RESULTS Our investigation revealed that the p53R270H variant, but not p53R172H, sustains mitochondrial function and energy production while also influencing cellular antioxidant capacity. Conversely, p53R172H, while not affecting mitochondrial metabolism, attenuates the activation of pro-tumorigenic metabolic pathways such as the urea cycle. Thus, the two variants selectively control different metabolic pathways in pancreatic cancer cells. Mechanistically, p53R270H induces alterations in the expression of genes associated with oxidative stress and reduction in mitochondrial respiration. In contrast, p53R172H specifically impacts the expression levels of enzymes involved in the urea metabolism. However, our analysis of cell proliferation and cell competition suggested that the expression of either p53R270H or p53R172H does not influence confer any selective advantage to this cellular model in vitro. Furthermore, assessment of mitochondrial priming indicated that the p53R270H-driven mitochondrial effect does not alter cytochrome c release or the apoptotic propensity of pancreatic cancer cells. CONCLUSIONS Our study elucidates the mutant-specific impact of p53R270H and p53R172H on metabolism of PDAC cancer cells, highlighting the need to shift from viewing p53 mutant variants as a homogeneous group of entities to a systematic assessment of each specific p53 mutant protein. Moreover, our finding underscores the importance of further exploring the significance of p53 mutant proteins using models that more accurately reflect tumor ecology.
Collapse
Affiliation(s)
- Sabrina Caporali
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alessio Butera
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alessia Ruzza
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Carlotta Zampieri
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, San Diego, CA, USA
| | - Marina Bantula'
- Department of Biomedical Sciences, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain
| | - Sandra Scharsich
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anna-Katerina Ückert
- Chair for in Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Ivana Celardo
- Chair for in Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Ian U Kouzel
- Applied Bioinformatic Group, University of Konstanz, Constance, Germany
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy
| | - Andreas Gruber
- Applied Bioinformatic Group, University of Konstanz, Constance, Germany
| | - Joan Montero
- Department of Biomedical Sciences, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | | | - Thomas Brunner
- Chair for in Biochemical Pharmacology, University of Konstanz, Constance, Germany
| | - Marcel Leist
- Chair for in Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Ivano Amelio
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
10
|
Cordova RA, Sommers NR, Law AS, Klunk AJ, Brady KE, Goodrich DW, Anthony TG, Brault JJ, Pili R, Wek RC, Staschke KA. Coordination between the eIF2 kinase GCN2 and p53 signaling supports purine metabolism and the progression of prostate cancer. Sci Signal 2024; 17:eadp1375. [PMID: 39591412 PMCID: PMC11826925 DOI: 10.1126/scisignal.adp1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Cancers invoke various pathways to mitigate external and internal stresses to continue their growth and progression. We previously reported that the eIF2 kinase GCN2 and the integrated stress response are constitutively active in prostate cancer (PCa) and are required to maintain amino acid homeostasis needed to fuel tumor growth. However, although loss of GCN2 function reduces intracellular amino acid availability and PCa growth, there is no appreciable cell death. Here, we discovered that the loss of GCN2 in PCa induces prosenescent p53 signaling. This p53 activation occurred through GCN2 inhibition-dependent reductions in purine nucleotides that impaired ribosome biogenesis and, consequently, induced the impaired ribosome biogenesis checkpoint. p53 signaling induced cell cycle arrest and senescence that promoted the survival of GCN2-deficient PCa cells. Depletion of GCN2 combined with loss of p53 or pharmacological inhibition of de novo purine biosynthesis reduced proliferation and enhanced cell death in PCa cell lines, organoids, and xenograft models. Our findings highlight the coordinated interplay between GCN2 and p53 regulation during nutrient stress and provide insight into how they could be targeted in developing new therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Ricardo A. Cordova
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| | - Noah R. Sommers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| | - Andrew S. Law
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health; Indianapolis, IN 46202, USA
| | - Angela J. Klunk
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - Katherine, E. Brady
- Department of Biology, Indiana University School of Science; Indianapolis, IN 46202, USA
| | - David W. Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center; Buffalo, NY, 14203, USA
| | - Tracy G. Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jeffrey J. Brault
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health; Indianapolis, IN 46202, USA
| | - Roberto Pili
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo; Buffalo, NY 14203, USA
| | - Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Sánchez-Castillo A, Kampen KR. Understanding serine and glycine metabolism in cancer: a path towards precision medicine to improve patient's outcomes. Discov Oncol 2024; 15:652. [PMID: 39538085 PMCID: PMC11561223 DOI: 10.1007/s12672-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
In this perspective, we highlight and reflect on the current knowledge with respect to serine/glycine metabolism in cancer, therapeutic resistance, and precision medicine opportunities for therapeutic targeting and treatment follow-up. Cancer subtypes with high mortality rates include lung cancer and glioblastomas. In order to improve future therapeutic opportunities, patient stratification need to be performed to select patients that might benefit from adjuvant serine/glycine targeting compounds. In an effort to identify the group of patients for stratification purposes, we analyzed publicly available TCGA patient datasets to test associations between serine/glycine metabolism enzyme expression and important cancer drivers in lung cancer and glioblastoma. These patients presenting serine/glycine pathway overexpression might benefit from adjuvant sertraline treatment in the future.
Collapse
Affiliation(s)
- Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands.
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Louvain, Belgium.
| |
Collapse
|
12
|
Lenihan‐Geels G, Garcia Carrizo F, Leer M, Gohlke S, Oster M, Pöhle‐Kronawitter S, Ott C, Chadt A, Reinisch IN, Galhuber M, Li C, Jonas W, Jähnert M, Klaus S, Al‐Hasani H, Grune T, Schürmann A, Madl T, Prokesch A, Schupp M, Schulz TJ. Skeletal muscle p53-depletion uncovers a mechanism of fuel usage suppression that enables efficient energy conservation. J Cachexia Sarcopenia Muscle 2024; 15:1772-1784. [PMID: 39010299 PMCID: PMC11446685 DOI: 10.1002/jcsm.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The ability of skeletal muscle to respond adequately to changes in nutrient availability, known as metabolic flexibility, is essential for the maintenance of metabolic health and loss of flexibility contributes to the development of diabetes and obesity. The tumour suppressor protein, p53, has been linked to the control of energy metabolism. We assessed its role in the acute control of nutrient allocation in skeletal muscle in the context of limited nutrient availability. METHODS A mouse model with inducible deletion of the p53-encoding gene, Trp53, in skeletal muscle was generated using the Cre-loxP-system. A detailed analysis of nutrient metabolism in mice with control and knockout genotypes was performed under ad libitum fed and fasting conditions and in exercised mice. RESULTS Acute deletion of p53 in myofibres of mice activated catabolic nutrient usage pathways even under ad libitum fed conditions, resulting in significantly increased overall energy expenditure (+10.6%; P = 0.0385) and a severe nutrient deficit in muscle characterized by depleted intramuscular glucose and glycogen levels (-62,0%; P < 0.0001 and -52.7%; P < 0.0001, respectively). This was accompanied by changes in marker gene expression patterns of circadian rhythmicity and hyperactivity (+57.4%; P = 0.0068). These metabolic changes occurred acutely, within 2-3 days after deletion of Trp53 was initiated, suggesting a rapid adaptive response to loss of p53, which resulted in a transient increase in lactate release to the circulation (+46.6%; P = 0.0115) from non-exercised muscle as a result of elevated carbohydrate mobilization. Conversely, an impairment of proteostasis and amino acid metabolism was observed in knockout mice during fasting. During endurance exercise testing, mice with acute, muscle-specific Trp53 inactivation displayed an early exhaustion phenotype with a premature shift in fuel usage and reductions in multiple performance parameters, including a significantly reduced running time and distance (-13.8%; P = 0.049 and -22.2%; P = 0.0384, respectively). CONCLUSIONS These findings suggest that efficient nutrient conservation is a key element of normal metabolic homeostasis that is sustained by p53. The homeostatic state in metabolic tissues is actively maintained to coordinate efficient energy conservation and metabolic flexibility towards nutrient stress. The acute deletion of Trp53 unlocks mechanisms that suppress the activity of nutrient catabolic pathways, causing substantial loss of intramuscular energy stores, which contributes to a fasting-like state in muscle tissue. Altogether, these findings uncover a novel function of p53 in the short-term regulation of nutrient metabolism in skeletal muscle and show that p53 serves to maintain metabolic homeostasis and efficient energy conservation.
Collapse
Affiliation(s)
- Georgia Lenihan‐Geels
- Department of Adipocyte Development and NutritionGerman Institute of Human Nutrition Potsdam‐Rehbrücke (DIfE)NuthetalGermany
| | - Francisco Garcia Carrizo
- Department of Adipocyte Development and NutritionGerman Institute of Human Nutrition Potsdam‐Rehbrücke (DIfE)NuthetalGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Marina Leer
- Department of Adipocyte Development and NutritionGerman Institute of Human Nutrition Potsdam‐Rehbrücke (DIfE)NuthetalGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Sabrina Gohlke
- Department of Adipocyte Development and NutritionGerman Institute of Human Nutrition Potsdam‐Rehbrücke (DIfE)NuthetalGermany
| | - Moritz Oster
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular‐Metabolic‐Renal ResearchBerlinGermany
| | - Sophie Pöhle‐Kronawitter
- Department of Molecular ToxicologyGerman Institute of Human Nutrition Potsdam‐RehbrückeNuthetalGermany
| | - Christiane Ott
- Department of Molecular ToxicologyGerman Institute of Human Nutrition Potsdam‐RehbrückeNuthetalGermany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine UniversityDüsseldorfGermany
| | - Isabel N. Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and EmbryologyMedical University of GrazGrazAustria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and EmbryologyMedical University of GrazGrazAustria
| | - Chen Li
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular‐Metabolic‐Renal ResearchBerlinGermany
| | - Wenke Jonas
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam‐RehbrückeNuthetalGermany
| | - Markus Jähnert
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam‐RehbrückeNuthetalGermany
| | - Susanne Klaus
- Department Physiology of Energy MetabolismGerman Institute of Human Nutrition Potsdam‐RehbrückeNuthetalGermany
| | - Hadi Al‐Hasani
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine UniversityDüsseldorfGermany
| | - Tilman Grune
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Molecular ToxicologyGerman Institute of Human Nutrition Potsdam‐RehbrückeNuthetalGermany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam‐RehbrückeNuthetalGermany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and BiochemistryMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and EmbryologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Michael Schupp
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular‐Metabolic‐Renal ResearchBerlinGermany
| | - Tim J. Schulz
- Department of Adipocyte Development and NutritionGerman Institute of Human Nutrition Potsdam‐Rehbrücke (DIfE)NuthetalGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam‐RehbrückeNuthetalGermany
| |
Collapse
|
13
|
Zhang Z, Wu C, Liu N, Wang Z, Pan Z, Jiang Y, Tian J, Sun M. Modified Banxiaxiexin decoction benefitted chemotherapy in treating gastric cancer by regulating multiple targets and pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118277. [PMID: 38697407 DOI: 10.1016/j.jep.2024.118277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemotherapy tolerance weakened efficacy of chemotherapy drugs in the treating gastric cancer (GC). Banxiaxiexin decoction (BXXXD) was widely used in digestive diseases for thousands of years in Traditional Chinese medicine (TCM). In order to better treat GC, three other herbs were added to BXXXD to create a new prescription named Modified Banxiaxiexin decoction (MBXXXD). Although MBXXXD potentially treated GC by improving chemotherapy tolerance, the possible mechanisms were still unknown. AIM OF THE STUDY To explore the therapeutic effect of MBXXXD on GC patients and explore the possible anti-cancer mechanism. MATERIALS AND METHODS A randomized controlled trial (n = 146) was conducted to evaluate the clinical efficacy between MBXXXD + chemotherapy (n = 73) and placebo + chemotherapy (n = 73) in GC patients by testing overall survival, progression free survival, clinical symptoms, quality of life score, tumor markers, T cell subpopulation, and adverse reactions. Network pharmacology was conducted to discover the potential mechanism of MBXXXD in treating GC. Metabolic activity assay, cell clone colony formation and mitochondrial apoptosis were detected in human GC cell lines including AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD. Multiple pathways including P53, AKT, IκB, P65, P38, ERK, JNK p-AKT, p-P65, p-P38, p-ERK and p-JNK in AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy were also detected. RESULTS MBXXXD + chemotherapy promoted overall survival and progression free survival, improved clinical symptoms and quality of life score, increased T4 lymphocyte ratio and T8 lymphocyte ratio as well as T4/T8 lymphocyte ratio, and alleviated adverse reactions in GC patients. Network pharmacology predicted multiple targets and pathways of MBXXXD in treating GC including apoptosis, P53 pathway, AKT pathway, MAPK pathway. MBXXXD inhibited cell viability, decreased cell clone colony formation, and promoted mitochondrial apoptosis by producing reactive oxygen species (ROS), promoting mitochondrial permeability transition pore (MPTP) and the cleavage of pro-caspase-3 and pro-caspase-9, and decreasing mito-tracker red Chloromethyl-X-rosamine (CMXRos) in AGS cell, KNM-45 cell and SGC7901 cell. MBXXXD up-regulated the expression of P53 and IκB, and down-regulated the expression of p-AKT, p-P65, p-P38, p-ERK, p-JNK, AKT, P65, P38, ERK and JNK AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy. CONCLUSION MBXXXD benefitted chemotherapy for GC by regulating multiple targets and pathways.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, 200071, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chao Wu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ningning Liu
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Cancer Institute of Integrative Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ziyuan Wang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ziyang Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yulang Jiang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianhui Tian
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, 200071, China; Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, 200071, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
14
|
Li Y, Liu Y, Li Y, Cao Y, Zhang H, Yuan P, Dong B, Shen L. Integrated lipidomics and network pharmacology analysis to determine how Gu Fu Sheng Capsule improves lipid metabolism in rats with steroid-induced osteonecrosis of the femoral head. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
15
|
Konaté MM, Krushkal J, Li MC, Chen L, Kotliarov Y, Palmisano A, Pauly R, Xie Q, Williams PM, McShane LM, Zhao Y. Insights into gemcitabine resistance in pancreatic cancer: association with metabolic reprogramming and TP53 pathogenicity in patient derived xenografts. J Transl Med 2024; 22:733. [PMID: 39103840 DOI: 10.1186/s12967-024-05528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND With poor prognosis and high mortality, pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies. Standard of care therapies for PDAC have included gemcitabine for the past three decades, although resistance often develops within weeks of chemotherapy initiation through an array of possible mechanisms. METHODS We reanalyzed publicly available RNA-seq gene expression profiles of 28 PDAC patient-derived xenograft (PDX) models before and after a 21-day gemcitabine treatment using our validated analysis pipeline to identify molecular markers of intrinsic and acquired resistance. RESULTS Using normalized RNA-seq quantification measurements, we first identified oxidative phosphorylation and interferon alpha pathways as the two most enriched cancer hallmark gene sets in the baseline gene expression profile associated with intrinsic gemcitabine resistance and sensitivity, respectively. Furthermore, we discovered strong correlations between drug-induced expression changes in glycolysis and oxidative phosphorylation genes and response to gemcitabine, which suggests that these pathways may be associated with acquired gemcitabine resistance mechanisms. Thus, we developed prediction models using baseline gene expression profiles in those pathways and validated them in another dataset of 12 PDAC models from Novartis. We also developed prediction models based on drug-induced expression changes in genes from the Molecular Signatures Database (MSigDB)'s curated 50 cancer hallmark gene sets. Finally, pathogenic TP53 mutations correlated with treatment resistance. CONCLUSION Our results demonstrate that concurrent upregulation of both glycolysis and oxidative phosphorylation pathways occurs in vivo in PDAC PDXs following gemcitabine treatment and that pathogenic TP53 status had association with gemcitabine resistance in these models. Our findings may elucidate the molecular basis for gemcitabine resistance and provide insights for effective drug combination in PDAC chemotherapy.
Collapse
Affiliation(s)
- Mariam M Konaté
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Ming-Chung Li
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Li Chen
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21704, USA
| | - Yuri Kotliarov
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Alida Palmisano
- General Dynamics Information Technology (GDIT), Falls Church, VA, 22042, USA
| | - Rini Pauly
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21704, USA
| | - Qian Xie
- General Dynamics Information Technology (GDIT), Falls Church, VA, 22042, USA
| | - P Mickey Williams
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21704, USA
| | - Lisa M McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA.
| |
Collapse
|
16
|
Uboveja A, Aird KM. Interplay between altered metabolism and DNA damage and repair in ovarian cancer. Bioessays 2024; 46:e2300166. [PMID: 38873912 PMCID: PMC11955923 DOI: 10.1002/bies.202300166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Ovarian cancer is the most lethal gynecological malignancy and is often associated with both DNA repair deficiency and extensive metabolic reprogramming. While still emerging, the interplay between these pathways can affect ovarian cancer phenotypes, including therapeutic resistance to the DNA damaging agents that are standard-of-care for this tumor type. In this review, we will discuss what is currently known about cellular metabolic rewiring in ovarian cancer that may impact DNA damage and repair in addition to highlighting how specific DNA repair proteins also promote metabolic changes. We will also discuss relevant data from other cancers that could be used to inform ovarian cancer therapeutic strategies. Changes in the choice of DNA repair mechanism adopted by ovarian cancer are a major factor in promoting therapeutic resistance. Therefore, the impact of metabolic reprogramming on DNA repair mechanisms in ovarian cancer has major clinical implications for targeted combination therapies for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Apoorva Uboveja
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Katherine M Aird
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Varghese N, Grimm A, Cader MZ, Eckert A. From Young to Old: Mimicking Neuronal Aging in Directly Converted Neurons from Young Donors. Cells 2024; 13:1260. [PMID: 39120291 PMCID: PMC11311457 DOI: 10.3390/cells13151260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
A substantial challenge in human brain aging is to find a suitable model to mimic neuronal aging in vitro as accurately as possible. Using directly converted neurons (iNs) from human fibroblasts is considered a promising tool in human aging since it retains the aging-associated mitochondrial donor signature. Still, using iNs from aged donors can pose certain restrictions due to their lower reprogramming and conversion efficacy than those from younger individuals. To overcome these limitations, our study aimed to establish an in vitro neuronal aging model mirroring features of in vivo aging by acute exposure on young iNs to either human stress hormone cortisol or the mitochondrial stressor rotenone, considering stress as a trigger of in vivo aging. The impact of rotenone was evident in mitochondrial bioenergetic properties by showing aging-associated deficits in mitochondrial respiration, cellular ATP, and MMP and a rise in glycolysis, mitochondrial superoxide, and mitochondrial ROS; meanwhile, cortisol only partially induced an aging-associated mitochondrial dysfunction. To replicate the in vivo aging-associated mitochondrial dysfunctions, using rotenone, a mitochondrial complex I inhibitor, proved to be superior to the cortisol model. This work is the first to use stress on young iNs to recreate aging-related mitochondrial impairments.
Collapse
Affiliation(s)
- Nimmy Varghese
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland; (N.V.); (A.G.)
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland; (N.V.); (A.G.)
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - M. Zameel Cader
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DS, UK;
| | - Anne Eckert
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland; (N.V.); (A.G.)
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| |
Collapse
|
18
|
Varlı M, Kim E, Oh S, Pulat S, Zhou R, Gamage CDB, Gökalsın B, Sesal NC, Kim KK, Paik MJ, Kim H. Chrysophanol inhibits of colorectal cancer cell motility and energy metabolism by targeting the KITENIN/ErbB4 oncogenic complex. Cancer Cell Int 2024; 24:253. [PMID: 39030594 PMCID: PMC11264950 DOI: 10.1186/s12935-024-03434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Expression of the KITENIN/ErbB4 oncogenic complex is associated with metastasis of colorectal cancer to distant organs and lymph nodes and is linked with poor prognosis and poor survival. METHODS Here, we used in vitro and in silico methods to test the ability of chrysophanol, a molecule of natural origin, to suppress the progression of colorectal cancer by targeting the KITENIN/ErbB4 complex. RESULTS Chrysophanol binds to ErbB4, disrupting the ErbB4/KITENIN complex and causing autophagic degradation of KITENIN. We demonstrated that chrysophanol binds to ErbB4 according to a molecular docking model. Chrysophanol reversed KITENIN-mediated effects on cell motility, aerobic glycolysis, and expression of downstream effector genes. Moreover, under conditions of KITENIN overexpression, chrysophanol suppressed the production of onco-metabolites. CONCLUSION Chrysophanol suppresses oncogenic activities by targeting the KITENIN/ErbB4 complex.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, 146 Chosundae-gil, Gwangju, 61452, Republic of Korea
| | - Songjin Oh
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Chathurika D B Gamage
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Barış Gökalsın
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Türkiye
| | - Nüzhet Cenk Sesal
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Türkiye
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Gwangju, 61469, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
19
|
Simon-Molas H, Montironi C, Kabanova A, Eldering E. Metabolic reprogramming in the CLL TME; potential for new therapeutic targets. Semin Hematol 2024; 61:155-162. [PMID: 38493076 DOI: 10.1053/j.seminhematol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells circulate between peripheral (PB) blood and lymph node (LN) compartments, and strictly depend on microenvironmental factors for proliferation, survival and drug resistance. All cancer cells display metabolic reprogramming and CLL is no exception - though the inert status of the PB CLL cells has hampered detailed insight into these processes. We summarize previous work on reactive oxygen species (ROS), oxidative stress, and hypoxia, as well as the important roles of Myc, and PI3K/Akt/mTor pathways. In vitro co-culture systems and gene expression analyses have provided a partial picture of CLL LN metabolism. New broad omics techniques allow to obtain molecular and also single-cell level understanding of CLL plasticity and metabolic reprogramming. We summarize recent developments and describe the new concept of glutamine addiction for CLL, which may hold therapeutic promise.
Collapse
Affiliation(s)
- Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Chiara Montironi
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Anna Kabanova
- Tumour Immunology Unit, Toscana Life Sciences Foundation, Siena, Italy
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Montironi C, Chen Z, Derks IA, Cretenet G, Krap EA, Eldering E, Simon-Molas H. Metabolic signature and response to glutamine deprivation are independent of p53 status in B cell malignancies. iScience 2024; 27:109640. [PMID: 38680661 PMCID: PMC11053310 DOI: 10.1016/j.isci.2024.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/03/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
The tumor suppressor p53 has been described to control various aspects of metabolic reprogramming in solid tumors, but in B cell malignancies that role is as yet unknown. We generated pairs of p53 functional and knockout (KO) clones from distinct B cell malignancies (acute lymphoblastic leukemia, chronic lymphocytic leukemia, diffuse large B cell lymphoma, and multiple myeloma). Metabolomics and isotope tracing showed that p53 loss did not drive a common metabolic signature. Instead, cell lines segregated according to cell of origin. Next, we focused on glutamine as a crucial energy source in the B cell tumor microenvironment. In both TP53 wild-type and KO cells, glutamine deprivation induced cell death through the integrated stress response, via CHOP/ATF4. Lastly, combining BH3 mimetic drugs with glutamine starvation emerged as a possibility to target resistant clones. In conclusion, our analyses do not support a common metabolic signature of p53 deficiency in B cell malignancies and suggest therapeutic options for exploration based on glutamine dependency.
Collapse
Affiliation(s)
- Chiara Montironi
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Zhenghao Chen
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Ingrid A.M. Derks
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Gaspard Cretenet
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Esmée A. Krap
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
| | - Eric Eldering
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Helga Simon-Molas
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Hematology, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Bahena Culhuac E, Bello M. Unveiling the Mechanisms of EGCG-p53 Interactions through Molecular Dynamics Simulations. ACS OMEGA 2024; 9:20066-20085. [PMID: 38737068 PMCID: PMC11080030 DOI: 10.1021/acsomega.3c10523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Green tea consumption is associated with protective and preventive effects against various types of cancer. These effects are attributed to polyphenols, particularly epigallocatechin-3-gallate (EGCG). EGCG acts by directly inhibiting tumor suppressor protein p53. The binding mechanism by which EGCG inhibits p53 activity is associated with residues Trp23-Lys24 and Pro47-Thr55 within the p53 N-terminal domain (NTD). However, the structural and thermodynamic aspects of the interaction between EGCG and p53 are poorly understood. Therefore, based on crystallographic data, we combine docking, molecular dynamics (MD) simulations, and molecular mechanics generalized Born surface area approaches to explore the intricacies of the EGCG-p53 binding mechanism. A triplicate microsecond MD simulation for each system is initially performed to capture diverse p53 NTD conformations. From the start, the most populated cluster of the second run (R2-1) stands out due to a unique opening between Trp23 and Trp53. During MD simulations, this conformation allows EGCG to sustain a high level of stability and affinity while interacting with both regions of interest and deepening the binding pocket. Structural analysis emphasizes the significance of pyrogallol motifs in EGCG binding. Therefore, the conformational shift in this gap is pivotal, enabling EGCG to impede p53 interactions and manifest its anticancer properties. These findings enhance the present comprehension of the anticancer properties of green tea polyphenols and pave the way for future therapeutic developments.
Collapse
Affiliation(s)
- Erick Bahena Culhuac
- Laboratorio
de Diseño y Desarrollo de Nuevos Fármacos e Innovación
Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
- Universidad
Autónoma del Estado de México Facultad de Ciencias, Toluca 50000, Mexico
| | - Martiniano Bello
- Laboratorio
de Diseño y Desarrollo de Nuevos Fármacos e Innovación
Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
22
|
Sun L, Gao H, Wang H, Zhou J, Ji X, Jiao Y, Qin X, Ni D, Zheng X. Nanoscale Metal-Organic Frameworks-Mediated Degradation of Mutant p53 Proteins and Activation of cGAS-STING Pathway for Enhanced Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307278. [PMID: 38225693 DOI: 10.1002/advs.202307278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/04/2023] [Indexed: 01/17/2024]
Abstract
Activating cGAS-STING pathway has great potential to achieve effective antitumor immunotherapy. However, mutant p53 (mutp53), a commonly observed genetic alteration in over 50% of human cancer, will impede the therapeutic performance of the cGAS-STING pathway. Herein, multifunctional ZIF-8@MnO2 nanoparticles are constructed to degrade mutp53 and facilitate the cGAS-STING pathway. The synthesized ZIF-8@MnO2 can release Zn2+ and Mn2+ in cancer cells to induce oxidative stress and cytoplasmic leakage of fragmented mitochondrial double-stranded DNAs (dsDNAs). Importantly, the released Zn2+ induces variable degradation of multifarious p53 mutants through proteasome ubiquitination, which can alleviate the inhibitory effects of mutp53 on the cGAS-STING pathway. In addition, the released Mn2+ further increases the sensitivity of cGAS to dsDNAs as immunostimulatory signals. Both in vitro and in vivo results demonstrate that ZIF-8@MnO2 effectively promotes the cGAS-STING pathway and synergizes with PD-L1 checkpoint blockades, leading to remarkable regression of local tumors as well as distant metastases of breast cancer. This study proposes an inorganic metal ion-based nanoplatform to enhance the cGAS-STING-mediated antitumor immunotherapy, especially to those tumors with mutp53 expression.
Collapse
Affiliation(s)
- Li Sun
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hongbo Gao
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jingwei Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiuru Ji
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yuxin Jiao
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiaojia Qin
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
23
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
24
|
Liu D, Che X, Wu G. Deciphering the role of neddylation in tumor microenvironment modulation: common outcome of multiple signaling pathways. Biomark Res 2024; 12:5. [PMID: 38191508 PMCID: PMC10773064 DOI: 10.1186/s40364-023-00545-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
Neddylation is a post-translational modification process, similar to ubiquitination, that controls several biological processes. Notably, it is often aberrantly activated in neoplasms and plays a critical role in the intricate dynamics of the tumor microenvironment (TME). This regulatory influence of neddylation permeates extensively and profoundly within the TME, affecting the behavior of tumor cells, immune cells, angiogenesis, and the extracellular matrix. Usually, neddylation promotes tumor progression towards increased malignancy. In this review, we highlight the latest understanding of the intricate molecular mechanisms that target neddylation to modulate the TME by affecting various signaling pathways. There is emerging evidence that the targeted disruption of the neddylation modification process, specifically the inhibition of cullin-RING ligases (CRLs) functionality, presents a promising avenue for targeted therapy. MLN4924, a small-molecule inhibitor of the neddylation pathway, precisely targets the neural precursor cell-expressed developmentally downregulated protein 8 activating enzyme (NAE). In recent years, significant advancements have been made in the field of neddylation modification therapy, particularly the integration of MLN4924 with chemotherapy or targeted therapy. This combined approach has demonstrated notable success in the treatment of a variety of hematological and solid tumors. Here, we investigated the inhibitory effects of MLN4924 on neddylation and summarized the current therapeutic outcomes of MLN4924 against various tumors. In conclusion, this review provides a comprehensive, up-to-date, and thorough overview of neddylation modifications, and offers insight into the critical importance of this cellular process in tumorigenesis.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
25
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
26
|
Zhao J, Liang G, Huang H, Yang W, Pan J, Luo M, Zeng L, Liu J. Potential Mechanisms Underlying the Therapeutic Roles of Gancao fuzi Decoction in Cold-dampness Obstruction Syndrome-type Knee Osteoarthritis. Curr Comput Aided Drug Des 2024; 20:384-395. [PMID: 37282569 PMCID: PMC10661966 DOI: 10.2174/1573409919666230605115940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/23/2023] [Accepted: 04/19/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The key active components and potential molecular mechanism of Gancao Fuzi decoction (GFD) in the treatment of cold-dampness obstruction-type knee osteoarthritis (KOA) remain unclear. OBJECTIVES To explore the mechanism of GFD in the treatment of cold-dampness obstruction syndrome-type KOA by network pharmacology. METHODS The potential active components and targets of the four herbs in GFD (Fuzi, Guizhi, Baizhu, and Gancao) were screened using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The targets of KOA were obtained with the Comparative Toxicogenomics Database (CTD), the GeneCards database, and the DisGeNET database, and the common targets of the drugs and disease were ultimately obtained. Cytoscape (v.3.7.1) was used to draw the active component-target network, and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) (v.11.0) database was used to construct the protein interaction network. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for the Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the intersecting targets. RESULTS A total of 102 potential active components and 208 targets of GFD in the treatment of cold-dampness obstruction syndrome-type KOA were screened. GFD treatment was found to be closely related to many inflammatory signalling pathways in the treatment of KOA. CONCLUSION The effect of GFD on cold-dampness obstruction syndrome-type KOA is mediated by multicomponent, multitarget, and multichannel mechanisms, which provides the basis for further experimental study of its pharmacodynamic material basis and mechanism.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Guihong Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Hetao Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Weiyi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Jianke Pan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Minghui Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Lingfeng Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Second Chinese Medicine Hospital Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, 510095, China
| |
Collapse
|
27
|
Wu YQ, Zhang CS, Xiong J, Cai DQ, Wang CZ, Wang Y, Liu YH, Wang Y, Li Y, Wu J, Wu J, Lan B, Wang X, Chen S, Cao X, Wei X, Hu HH, Guo H, Yu Y, Ghafoor A, Xie C, Wu Y, Xu Z, Zhang C, Zhu M, Huang X, Sun X, Lin SY, Piao HL, Zhou J, Lin SC. Low glucose metabolite 3-phosphoglycerate switches PHGDH from serine synthesis to p53 activation to control cell fate. Cell Res 2023; 33:835-850. [PMID: 37726403 PMCID: PMC10624847 DOI: 10.1038/s41422-023-00874-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.
Collapse
Affiliation(s)
- Yu-Qing Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dong-Qi Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Zhe Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yiming Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Center, Xiamen University, Xiamen, Fujian, China
| | - Bin Lan
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Xiamen, Fujian, China
| | - Xuefeng Wang
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Xiamen, Fujian, China
| | - Siwei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xianglei Cao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui-Hui Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaxin Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Abdul Ghafoor
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Jianyin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
28
|
Fang D, Hu H, Zhao K, Xu A, Yu C, Zhu Y, Yu N, Yao B, Tang S, Wu X, Mei Y. MLF2 Negatively Regulates P53 and Promotes Colorectal Carcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303336. [PMID: 37438558 PMCID: PMC10502657 DOI: 10.1002/advs.202303336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Inactivation of the p53 pathway is linked to a variety of human cancers. As a critical component of the p53 pathway, ubiquitin-specific protease 7 (USP7) acts as a deubiquitinase for both p53 and its ubiquitin E3 ligase mouse double minute 2 homolog. Here, myeloid leukemia factor 2 (MLF2) is reported as a new negative regulator of p53. MLF2 interacts with both p53 and USP7. Via these interactions, MLF2 inhibits the binding of USP7 to p53 and antagonizes USP7-mediated deubiquitination of p53, thereby leading to p53 destabilization. Functionally, MLF2 plays an oncogenic role in colorectal cancer, at least partially, via the negative regulation of p53. Clinically, MLF2 is elevated in colorectal cancer and its high expression is associated with poor prognosis in patients with colorectal cancer. In wild-type-p53-containing colorectal cancer, MLF2 and p53 expressions are inversely correlated. These findings establish MLF2 as an important suppressor of p53 function. The study also reveals a critical role for the MLF2-p53 axis in promoting colorectal carcinogenesis.
Collapse
Affiliation(s)
- Debao Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Hao Hu
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Kailiang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Aman Xu
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Changjun Yu
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Yong Zhu
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Ning Yu
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Bo Yao
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Suyun Tang
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xianning Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Yide Mei
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHMDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
29
|
Guan SW, Lin Q, Wu XD, Yu HB. Weighted gene coexpression network analysis and machine learning reveal oncogenome associated microbiome plays an important role in tumor immunity and prognosis in pan-cancer. J Transl Med 2023; 21:537. [PMID: 37573394 PMCID: PMC10422781 DOI: 10.1186/s12967-023-04411-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND For many years, the role of the microbiome in tumor progression, particularly the tumor microbiome, was largely overlooked. The connection between the tumor microbiome and the tumor genome still requires further investigation. METHODS The TCGA microbiome and genome data were obtained from Haziza et al.'s article and UCSC Xena database, respectively. Separate WGCNA networks were constructed for the tumor microbiome and genomic data after filtering the datasets. Correlation analysis between the microbial and mRNA modules was conducted to identify oncogenome associated microbiome module (OAM) modules, with three microbial modules selected for each tumor type. Reactome analysis was used to enrich biological processes. Machine learning techniques were implemented to explore the tumor type-specific enrichment and prognostic value of OAM, as well as the ability of the tumor microbiome to differentiate TP53 mutations. RESULTS We constructed a total of 182 tumor microbiome and 570 mRNA WGCNA modules. Our results show that there is a correlation between tumor microbiome and tumor genome. Gene enrichment analysis results suggest that the genes in the mRNA module with the highest correlation with the tumor microbiome group are mainly enriched in infection, transcriptional regulation by TP53 and antigen presentation. The correlation analysis of OAM with CD8+ T cells or TAM1 cells suggests the existence of many microbiota that may be involved in tumor immune suppression or promotion, such as Williamsia in breast cancer, Biostraticola in stomach cancer, Megasphaera in cervical cancer and Lottiidibacillus in ovarian cancer. In addition, the results show that the microbiome-genome prognostic model has good predictive value for short-term prognosis. The analysis of tumor TP53 mutations shows that tumor microbiota has a certain ability to distinguish TP53 mutations, with an AUROC value of 0.755. The tumor microbiota with high importance scores are Corallococcus, Bacillus and Saezia. Finally, we identified a potential anti-cancer microbiota, Tissierella, which has been shown to be associated with improved prognosis in tumors including breast cancer, lung adenocarcinoma and gastric cancer. CONCLUSION There is an association between the tumor microbiome and the tumor genome, and the existence of this association is not accidental and could change the landscape of tumor research.
Collapse
Affiliation(s)
- Shi-Wei Guan
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Quan Lin
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Xi-Dong Wu
- Department of Neurosurgery Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Hai-Bo Yu
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
30
|
Shomali N, Kamrani A, Nasiri H, Heris JA, Shahabi P, Yousefi M, Mohammadinasab R, Sadeghvand S, Akbari M. An updated review of a novel method for examining P53 mutations in different forms of cancer. Pathol Res Pract 2023; 248:154585. [PMID: 37302277 DOI: 10.1016/j.prp.2023.154585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
In the past fifteen years, it has been clear that tumor-associated p53 mutations can cause behaviors distinct from those brought on by a simple loss of p53's tumor-suppressive function in its wild-type form. Many of these mutant p53 proteins develop oncogenic characteristics that allow them to encourage cell survival, invasion, and metastasis. But it is now understood that the immune response is also significantly influenced by the cancer cell's p53 status. The recruitment and activity of myeloid and T cells can be impacted by p53 loss or mutation in malignancies, allowing immune evasion and accelerating cancer growth. Additionally, p53 can work in immune cells, which can have various effects that either hinder or assist the growth of tumors. In this review article, we examined different mutations of P53 in some significant cancers, such as liver, colorectal, and prostate, and reviewed some new therapeutic approaches.
Collapse
Affiliation(s)
- Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Su Y, Luo Y, Zhang P, Lin H, Pu W, Zhang H, Wang H, Hao Y, Xiao Y, Zhang X, Wei X, Nie S, Zhang K, Fu Q, Chen H, Huang N, Ren Y, Wu M, Chow BKC, Chen X, Jin W, Wang F, Zhao L, Rao F. Glucose-induced CRL4 COP1-p53 axis amplifies glycometabolism to drive tumorigenesis. Mol Cell 2023:S1097-2765(23)00432-X. [PMID: 37390815 DOI: 10.1016/j.molcel.2023.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/19/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Abstract
The diabetes-cancer association remains underexplained. Here, we describe a glucose-signaling axis that reinforces glucose uptake and glycolysis to consolidate the Warburg effect and overcome tumor suppression. Specifically, glucose-dependent CK2 O-GlcNAcylation impedes its phosphorylation of CSN2, a modification required for the deneddylase CSN to sequester Cullin RING ligase 4 (CRL4). Glucose, therefore, elicits CSN-CRL4 dissociation to assemble the CRL4COP1 E3 ligase, which targets p53 to derepress glycolytic enzymes. A genetic or pharmacologic disruption of the O-GlcNAc-CK2-CSN2-CRL4COP1 axis abrogates glucose-induced p53 degradation and cancer cell proliferation. Diet-induced overnutrition upregulates the CRL4COP1-p53 axis to promote PyMT-induced mammary tumorigenesis in wild type but not in mammary-gland-specific p53 knockout mice. These effects of overnutrition are reversed by P28, an investigational peptide inhibitor of COP1-p53 interaction. Thus, glycometabolism self-amplifies via a glucose-induced post-translational modification cascade culminating in CRL4COP1-mediated p53 degradation. Such mutation-independent p53 checkpoint bypass may represent the carcinogenic origin and targetable vulnerability of hyperglycemia-driven cancer.
Collapse
Affiliation(s)
- Yang Su
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yifan Luo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China; School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Peitao Zhang
- Department of Thyroid and Neck Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Hong Lin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weijie Pu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hongyun Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Huifang Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yi Hao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yihang Xiao
- School of Science, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, and Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaozhe Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiayun Wei
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Siyue Nie
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong, 518083, China
| | - Qiuyu Fu
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Hao Chen
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Niu Huang
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Yan Ren
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingxuan Wu
- School of Science, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, and Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | | | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenfei Jin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| | - Li Zhao
- Department of Thyroid and Neck Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Feng Rao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
32
|
Hu H, Zhao K, Fang D, Wang Z, Yu N, Yao B, Liu K, Wang F, Mei Y. The RNA binding protein RALY suppresses p53 activity and promotes lung tumorigenesis. Cell Rep 2023; 42:112288. [PMID: 36952348 DOI: 10.1016/j.celrep.2023.112288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
The tumor suppressor p53 plays a pivotal role in tumor prevention. The activity of p53 is mainly restrained by the ubiquitin E3 ligase Mdm2. However, it is not well understood how the Mdm2-p53 pathway is intricately regulated. Here we report that the RNA binding protein RALY functions as an oncogenic factor in lung cancer. RALY simultaneously binds to Mdm2 and the deubiquitinating enzyme USP7. Via these interactions, RALY not only stabilizes Mdm2 by stimulating the deubiquitinating activity of USP7 toward Mdm2 but also increases the trans-E3 ligase activity of Mdm2 toward p53. Consequently, RALY enhances Mdm2-mediated ubiquitination and degradation of p53. Functionally, RALY promotes lung tumorigenesis, at least partially, via negative regulation of p53. These findings suggest that RALY destabilizes p53 by modulating the function of Mdm2 at multiple levels. Our study also indicates a critical role for RALY in promoting lung tumorigenesis via p53 inhibition.
Collapse
Affiliation(s)
- Hao Hu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Kailiang Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Debao Fang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Zhongyu Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Ning Yu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Bo Yao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Kaiyue Liu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Fang Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Yide Mei
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
33
|
Hu YX, Liu Z, Zhang Z, Deng Z, Huang Z, Feng T, Zhou QH, Mei S, Yi C, Zhou Q, Zeng PH, Pei G, Tian S, Tian XF. Antihepatoma peptide, scolopentide, derived from the centipede scolopendra subspinipes mutilans. World J Gastroenterol 2023; 29:1875-1898. [PMID: 37032730 PMCID: PMC10080696 DOI: 10.3748/wjg.v29.i12.1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND Centipedes have been used to treat tumors for hundreds of years in China. However, current studies focus on antimicrobial and anticoagulation agents rather than tumors. The molecular identities of antihepatoma bioactive components in centipedes have not yet been extensively investigated. It is a challenge to isolate and characterize the effective components of centipedes due to limited peptide purification technologies for animal-derived medicines.
AIM To purify, characterize, and synthesize the bioactive components with the strongest antihepatoma activity from centipedes and determine the antihepatoma mechanism.
METHODS An antihepatoma peptide (scolopentide) was isolated and identified from the centipede scolopendra subspinipes mutilans using a combination of enzymatic hydrolysis, a Sephadex G-25 column, and two steps of high-performance liquid chromatography (HPLC). Additionally, the CCK8 assay was used to select the extracted fraction with the strongest antihepatoma activity. The molecular weight of the extracted scolopentide was characterized by quadrupole time of flight mass spectrometry (QTOF MS), and the sequence was matched by using the Mascot search engine. Based on the sequence and molecular weight, scolopentide was synthesized using solid-phase peptide synthesis methods. The synthetic scolopentide was confirmed by MS and HPLC. The antineoplastic effect of extracted scolopentide was confirmed by CCK8 assay and morphological changes again in vitro. The antihepatoma effect of synthetic scolopentide was assessed by the CCK8 assay and Hoechst staining in vitro and tumor volume and tumor weight in vivo. In the tumor xenograft experiments, qualified model mice (male 5-week-old BALB/c nude mice) were randomly divided into 2 groups (n = 6): The scolopentide group (0.15 mL/d, via intraperitoneal injection of synthetic scolopentide, 500 mg/kg/d) and the vehicle group (0.15 mL/d, via intraperitoneal injection of normal saline). The mice were euthanized by cervical dislocation after 14 d of continuous treatment. Mechanistically, flow cytometry was conducted to evaluate the apoptosis rate of HepG2 cells after treatment with extracted scolopentide in vitro. A Hoechst staining assay was also used to observe apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro. CCK8 assays and morphological changes were used to compare the cytotoxicity of synthetic scolopentide to liver cancer cells and normal liver cells in vitro. Molecular docking was performed to clarify whether scolopentide tightly bound to death receptor 4 (DR4) and DR5. qRT-PCR was used to measure the mRNA expression of DR4, DR5, fas-associated death domain protein (FADD), Caspase-8, Caspase-3, cytochrome c (Cyto-C), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), x-chromosome linked inhibitor-of-apoptosis protein and Cellular fas-associated death domain-like interleukin-1β converting enzyme inhibitory protein in hepatocarcinoma subcutaneous xenograft tumors from mice. Western blot assays were used to measure the protein expression of DR4, DR5, FADD, Caspase-8, Caspase-3, and Cyto-C in the tumor tissues. The reactive oxygen species (ROS) of tumor tissues were tested.
RESULTS In the process of purification, characterization and synthesis of scolopentide, the optimal enzymatic hydrolysis conditions (extract ratio: 5.86%, IC50: 0.310 mg/mL) were as follows: Trypsin at 0.1 g (300 U/g, centipede-trypsin ratio of 20:1), enzymolysis temperature of 46 °C, and enzymolysis time of 4 h, which was superior to freeze-thawing with liquid nitrogen (IC50: 3.07 mg/mL). A peptide with the strongest antihepatoma activity (scolopentide) was further purified through a Sephadex G-25 column (obtained A2) and two steps of HPLC (obtained B5 and C3). The molecular weight of the extracted scolopentide was 1018.997 Da, and the peptide sequence was RAQNHYCK, as characterized by QTOF MS and Mascot. Scolopentide was synthesized in vitro with a qualified molecular weight (1018.8 Da) and purity (98.014%), which was characterized by MS and HPLC. Extracted scolopentide still had an antineoplastic effect in vitro, which inhibited the proliferation of Eca-109 (IC50: 76.27 μg/mL), HepG2 (IC50: 22.06 μg/mL), and A549 (IC50: 35.13 μg/mL) cells, especially HepG2 cells. Synthetic scolopentide inhibited the proliferation of HepG2 cells (treated 6, 12, and 24 h) in a concentration-dependent manner in vitro, and the inhibitory effects were the strongest at 12 h (IC50: 208.11 μg/mL). Synthetic scolopentide also inhibited the tumor volume (Vehicle vs Scolopentide, P = 0.0003) and weight (Vehicle vs Scolopentide, P = 0.0022) in the tumor xenograft experiment. Mechanistically, flow cytometry suggested that the apoptosis ratios of HepG2 cells after treatment with extracted scolopentide were 5.01% (0 μg/mL), 12.13% (10 μg/mL), 16.52% (20 μg/mL), and 23.20% (40 μg/mL). Hoechst staining revealed apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro. The CCK8 assay and morphological changes indicated that synthetic scolopentide was cytotoxic and was significantly stronger in HepG2 cells than in L02 cells. Molecular docking suggested that scolopentide tightly bound to DR4 and DR5, and the binding free energies were-10.4 kcal/mol and-7.1 kcal/mol, respectively. In subcutaneous xenograft tumors from mice, quantitative real-time polymerase chain reaction and western blotting suggested that scolopentide activated DR4 and DR5 and induced apoptosis in SMMC-7721 Liver cancer cells by promoting the expression of FADD, caspase-8 and caspase-3 through a mitochondria-independent pathway.
CONCLUSION Scolopentide, an antihepatoma peptide purified from centipedes, may inspire new antihepatoma agents. Scolopentide activates DR4 and DR5 and induces apoptosis in liver cancer cells through a mitochondria-independent pathway.
Collapse
Affiliation(s)
- Yu-Xing Hu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhuo Liu
- Department of Scientific Research, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha 410208, Hunan Province, China
| | - Zhen Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Department of Scientific Research, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha 410208, Hunan Province, China
| | - Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhen Huang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Ting Feng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qing-Hong Zhou
- Department of Pediatric, Shenzhen Hospital of Beijing University of Chinese Medicine, Shenzhen 518000, Guangdong Province, China
| | - Si Mei
- Department of Physiology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Chun Yi
- Department of Pathology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qing Zhou
- Department of Andrology, First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Pu-Hua Zeng
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha 410208, Hunan Province, China
| | - Gang Pei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Sha Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau 999078, China
| | - Xue-Fei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
34
|
Abstract
Tumours exhibit notable metabolic alterations compared with their corresponding normal tissue counterparts. These metabolic alterations can support anabolic growth, enable survival in hostile environments and regulate gene expression programmes that promote malignant progression. Whether these metabolic changes are selected for during malignant transformation or can themselves be drivers of tumour initiation is unclear. However, intriguingly, many of the major bottlenecks for tumour initiation - control of cell fate, survival and proliferation - are all amenable to metabolic regulation. In this article, we review evidence demonstrating a critical role for metabolic pathways in processes that support the earliest stages of tumour development. We discuss how cell-intrinsic factors, such as the cell of origin or transforming oncogene, and cell-extrinsic factors, such as local nutrient availability, promote or restrain tumour initiation. Deeper insight into how metabolic pathways control tumour initiation will improve our ability to design metabolic interventions to limit tumour incidence.
Collapse
Affiliation(s)
- Julia S Brunner
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
35
|
Zhang J, Zou S, Fang L. Metabolic reprogramming in colorectal cancer: regulatory networks and therapy. Cell Biosci 2023; 13:25. [PMID: 36755301 PMCID: PMC9906896 DOI: 10.1186/s13578-023-00977-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
With high prevalence and mortality, together with metabolic reprogramming, colorectal cancer is a leading cause of cancer-related death. Metabolic reprogramming gives tumors the capacity for long-term cell proliferation, making it a distinguishing feature of cancer. Energy and intermediate metabolites produced by metabolic reprogramming fuel the rapid growth of cancer cells. Aberrant metabolic enzyme-mediated tumor metabolism is regulated at multiple levels. Notably, tumor metabolism is affected by nutrient levels, cell interactions, and transcriptional and posttranscriptional regulation. Understanding the crosstalk between metabolic enzymes and colorectal carcinogenesis factors is particularly important to advance research for targeted cancer therapy strategies via the investigation into the aberrant regulation of metabolic pathways. Hence, the abnormal roles and regulation of metabolic enzymes in recent years are reviewed in this paper, which provides an overview of targeted inhibitors for targeting metabolic enzymes in colorectal cancer that have been identified through tumor research or clinical trials.
Collapse
Affiliation(s)
- Jieping Zhang
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Shaomin Zou
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Lekun Fang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangzhou, 510655, China.
| |
Collapse
|
36
|
Zhao J, Zhou X, Chen B, Lu M, Wang G, Elumalai N, Tian C, Zhang J, Liu Y, Chen Z, Zhou X, Wu M, Li M, Prochownik EV, Tavassoli A, Jiang C, Li Y. p53 promotes peroxisomal fatty acid β-oxidation to repress purine biosynthesis and mediate tumor suppression. Cell Death Dis 2023; 14:87. [PMID: 36750554 PMCID: PMC9905075 DOI: 10.1038/s41419-023-05625-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
The metabolic pathways through which p53 functions as a potent tumor suppressor are incompletely understood. Here we report that, by associating with the Vitamin D receptor (VDR), p53 induces numerous genes encoding enzymes for peroxisomal fatty acid β-oxidation (FAO). This leads to increased cytosolic acetyl-CoA levels and acetylation of the enzyme 5-Aminoimidazole-4-Carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase (ATIC), which catalyzes the last two steps in the purine biosynthetic pathway. This acetylation step, mediated by lysine acetyltransferase 2B (KAT2B), occurs at ATIC Lys 266, dramatically inhibits ATIC activity, and inversely correlates with colorectal cancer (CRC) tumor growth in vitro and in vivo, and acetylation of ATIC is downregulated in human CRC samples. p53-deficient CRCs with high levels of ATIC is more susceptible to ATIC inhibition. Collectively, these findings link p53 to peroxisomal FAO, purine biosynthesis, and CRC pathogenesis in a manner that is regulated by the levels of ATIC acetylation.
Collapse
Affiliation(s)
- Jianhong Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Baoxiang Chen
- Department of colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, 430071, China
| | - Mingzhu Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Genxin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | | | - Chenhui Tian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jinmiao Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yanliang Liu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhiqiang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xinyi Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Mingzhi Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Mengjiao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK
| | - Congqing Jiang
- Department of colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, 430071, China.
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
37
|
Abstract
Reprogrammed metabolism is a hallmark of colorectal cancer (CRC). CRC cells are geared toward rapid proliferation, requiring nutrients and the removal of cellular waste in nutrient-poor environments. Intestinal stem cells (ISCs), the primary cell of origin for CRCs, must adapt their metabolism along the adenoma-carcinoma sequence to the unique features of their complex microenvironment that include interactions with intestinal epithelial cells, immune cells, stromal cells, commensal microbes, and dietary components. Emerging evidence implicates modifiable risk factors related to the environment, such as diet, as important in CRC pathogenesis. Here, we focus on describing the metabolism of ISCs, diets that influence CRC initiation, CRC genetics and metabolism, and the tumor microenvironment. The mechanistic links between environmental factors, metabolic adaptations, and the tumor microenvironment in enhancing or supporting CRC tumorigenesis are becoming better understood. Thus, greater knowledge of CRC metabolism holds promise for improved prevention and treatment.
Collapse
Affiliation(s)
- Joseph C Sedlak
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Massachusetts General Hospital, Department of Pathology, Boston, Massachusetts, USA
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA;
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
38
|
Ren L, Meng L, Gao J, Lu M, Guo C, Li Y, Rong Z, Ye Y. PHB2 promotes colorectal cancer cell proliferation and tumorigenesis through NDUFS1-mediated oxidative phosphorylation. Cell Death Dis 2023; 14:44. [PMID: 36658121 PMCID: PMC9852476 DOI: 10.1038/s41419-023-05575-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
The alteration of cellular energy metabolism is a hallmark of colorectal cancer (CRC). Accumulating evidence has suggested oxidative phosphorylation (OXPHOS) is upregulated to meet the demand for energy in tumor initiation and development. However, the role of OXPHOS and its regulatory mechanism in CRC tumorigenesis and progression remain unclear. Here, we reveal that Prohibitin 2 (PHB2) expression is elevated in precancerous adenomas and CRC, which promotes cell proliferation and tumorigenesis of CRC. Additionally, knockdown of PHB2 significantly reduces mitochondrial OXPHOS levels in CRC cells. Meanwhile, NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1), as a PHB2 binding partner, is screened and identified by co-immunoprecipitation and mass spectrometry. Furthermore, PHB2 directly interacts with NDUFS1 and they co-localize in mitochondria, which facilitates NDUFS1 binding to NADH:ubiquinone oxidoreductase core subunit V1 (NDUFV1), regulating the activity of complex I. Consistently, partial inhibition of complex I activity also abrogates the increased cell proliferation induced by overexpression of PHB2 in normal human intestinal epithelial cells and CRC cells. Collectively, these results indicate that increased PHB2 directly interacts with NDUFS1 to stabilize mitochondrial complex I and enhance its activity, leading to upregulated OXPHOS levels, thereby promoting cell proliferation and tumorigenesis of CRC. Our findings provide a new perspective for understanding CRC energy metabolism, as well as novel intervention strategies for CRC therapeutics.
Collapse
Affiliation(s)
- Lin Ren
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Blood Transfusion, Anhui Public Health Clinical Center, Hefei, China
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing Gao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mingdian Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengyu Guo
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yunyun Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
39
|
Hoxha M, Zappacosta B. A review on the role of fatty acids in colorectal cancer progression. Front Pharmacol 2022; 13:1032806. [PMID: 36578540 PMCID: PMC9791100 DOI: 10.3389/fphar.2022.1032806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of mortality in cancer patients. The role of fatty acids (FA) and their metabolism in cancer, particularly in CRC raises a growing interest. In particular, dysregulation of synthesis, desaturation, elongation, and mitochondrial oxidation of fatty acids are involved. Here we review the current evidence on the link between cancer, in particular CRC, and fatty acids metabolism, not only to provide insight on its pathogenesis, but also on the development of novel biomarkers and innovative pharmacological therapies that are based on FAs dependency of cancer cells.
Collapse
|
40
|
Wang P, Bao W, Liu X, Xi W. LncRNA miR143HG inhibits the proliferation of glioblastoma cells by sponging miR-504. Int J Neurosci 2022; 132:1137-1142. [PMID: 33461388 DOI: 10.1080/00207454.2020.1865950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
AIM It is known that miR-504 can target p53 to promote cancer progression. Our bioinformatics analysis revealed that miR-504 could bind miR-143 host gene (miR143HG), suggesting that miR143HG might also have crosstalk with p53 in cancer progression. This study aimed to analyze the function of miR143HG in glioblastoma (GBM). METHODS This study selected 64 GBM patients. GBM and non-tumor tissues were obtained from the patients. RT-qPCR was used to analyze gene expression. Survival curve analysis was performed to analyze the prognostic values of miR143HG for GBM. The crosstalk between miR143HG and miR-504 was analyzed by overexpressing them in GBM cells, followed by RT-qPCRs to detect their expression. CCK-8 assay was used to detect the cell proliferation ability. RESULTS We found that miR143HG was downregulated in GBM and predicted poor survival. The mRNA expression levels of miR143HG and p53 were positively correlated in GBM tissues. Bioinformatics analysis suggested that miR143HG could form base paring with miR-504, which has been reported to target p53. Overexpression experiments revealed that miR143HG overexpression upregulated the expression of p53, while miR-504 overexpression inhibited the effect of miR143HG overexpression on the expression of p53. Moreover, overexpression of miR143HG and p53 decreased GBM cell proliferation, while overexpression of miR-504 increased GBM cell proliferation. In addition, overexpression of miR-504 attenuated the effect of miR143HG overexpression on GBM cell proliferation. CONCLUSION Therefore, miR143HG may decrease the proliferation of GBM cells by sponging miR-504 to upregulate p53.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Wenjuan Bao
- Department of Anesthesiology, Children's Hospital of Hebei Province, Shijiazhuang City, China
| | - Xiaopeng Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Wang Xi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| |
Collapse
|
41
|
Nedara K, Reinhardt C, Lebraud E, Arena G, Gracia C, Buard V, Pioche-Durieu C, Castelli F, Colsch B, Bénit P, Rustin P, Albaud B, Gestraud P, Baulande S, Servant N, Deutsch E, Verbavatz JM, Brenner C, Milliat F, Modjtahedi N. Relevance of the TRIAP1/p53 axis in colon cancer cell proliferation and adaptation to glutamine deprivation. Front Oncol 2022; 12:958155. [DOI: 10.3389/fonc.2022.958155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Human TRIAP1 (TP53-regulated inhibitor of apoptosis 1; also known as p53CSV for p53-inducible cell survival factor) is the homolog of yeast Mdm35, a well-known chaperone that interacts with the Ups/PRELI family proteins and participates in the intramitochondrial transfer of lipids for the synthesis of cardiolipin (CL) and phosphatidylethanolamine. Although recent reports indicate that TRIAP1 is a prosurvival factor abnormally overexpressed in various types of cancer, knowledge about its molecular and metabolic function in human cells is still elusive. It is therefore critical to understand the metabolic and proliferative advantages that TRIAP1 expression provides to cancer cells. Here, in a colorectal cancer cell model, we report that the expression of TRIAP1 supports cancer cell proliferation and tumorigenesis. Depletion of TRIAP1 perturbed the mitochondrial ultrastructure, without a major impact on CL levels and mitochondrial activity. TRIAP1 depletion caused extramitochondrial perturbations resulting in changes in the endoplasmic reticulum-dependent lipid homeostasis and induction of a p53-mediated stress response. Furthermore, we observed that TRIAP1 depletion conferred a robust p53-mediated resistance to the metabolic stress caused by glutamine deprivation. These findings highlight the importance of TRIAP1 in tumorigenesis and indicate that the loss of TRIAP1 has extramitochondrial consequences that could impact on the metabolic plasticity of cancer cells and their response to conditions of nutrient deprivation.
Collapse
|
42
|
Zhou X, Jung JH, Lu H. Editorial: The expanding network of p53 signaling: Reaching to the unknown of cancer. Front Cell Dev Biol 2022; 10:978056. [PMID: 36313566 PMCID: PMC9615036 DOI: 10.3389/fcell.2022.978056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/04/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Xiang Zhou, ; Ji Hoon Jung, Hua Lu,
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Xiang Zhou, ; Ji Hoon Jung, Hua Lu,
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Xiang Zhou, ; Ji Hoon Jung, Hua Lu,
| |
Collapse
|
43
|
Liu J, Li Y, Xiao Q, Li Y, Peng Y, Gan Y, Shu G, Yi H, Yin G. Identification of CPT2 as a prognostic biomarker by integrating the metabolism-associated gene signature in colorectal cancer. BMC Cancer 2022; 22:1038. [PMID: 36195841 PMCID: PMC9531485 DOI: 10.1186/s12885-022-10126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The incidence of colorectal cancer (CRC) is considered to be the third-highest malignant tumor among all carcinomas. The alterations in cellular bioenergetics (metabolic reprogramming) are associated with several malignant phenotypes in CRC, such as tumor cell proliferation, invasion, metastasis, chemotherapy resistance, as well as promotes its immune escape. However, the expression pattern of metabolism-associated genes that mediate metabolic reprogramming in CRC remains unknown. METHODS In this study, we screened out CPT2 by investigating the function of a series of metabolism-related genes in CRC progression by integrating the data from the TCGA and GEO databases. Next, we collected CRC tissues (n = 24) and adjacent non-tumor tissues (n = 8) and analyzed mRNA levels by qRT-PCR, and proteins levels of CPT2 in CRC cell lines by western blotting. CCK-8 assay, colony formation assay, Edu assay and flow cytometry assay were performed to assess the effects of CPT2 on proliferation in vitro. RESULTS We identified 236 metabolism-related genes that are differentially expressed in colorectal cancer, of which 49 up-regulated and 187 down-regulated, and found CPT2 as the most significant gene associated with favorable prognosis in CRC. It was revealed that CPT2 expression was consistently down-regulated in CRC cell lines and tissues. Moreover, knockdown of CPT2 could promote the proliferative ability of CRC cells, whereas over-expression of CPT2 significantly suppressed the cell growth. CONCLUSION In summary, CPT2 can provide new insights about the progression and occurrence of the tumor as it acts as an independent prognostic factor in CRC sufferers.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, 410000, China
| | - Yimin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, 410000, China
| | - Qing Xiao
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, 410000, China
| | - Yuanyuan Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, 410000, China
| | - Yuqian Peng
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yaqi Gan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, 410000, China
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, 410000, China
| | - Hanxi Yi
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China.
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, 410000, China.
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
44
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
45
|
Ali Khadem Z, Abdul Wadood Al-Shammaree S. Prognostic Value of Intracellular Transcription of Factors HIF-1α and p53 and Their Relation to Estradiol and TNM Parameters of Breast Cancer Tissues in Women with Invasive Ductal Carcinoma in Thi-Qar Province, Iraq. ARCHIVES OF RAZI INSTITUTE 2022; 77:1341-1348. [PMID: 36883155 PMCID: PMC9985786 DOI: 10.22092/ari.2022.357640.2080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/20/2022] [Indexed: 03/09/2023]
Abstract
Breast cancer is the most common malignancy affecting women's health, with an increasing incidence worldwide. This study aimed to measure the intracellular concentration of the hypoxia-inducible factor 1 α (HIF-1α), tumor suppression protein p53, and estradiol (E2) in tumor tissues of adult females with breast cancer and their relation to tumor grade, tumor size, and lymph node metastases (LNM). The study was conducted on 65 adult female participants with breast mass admitted to the operating theater in Al-Hussein Teaching Hospital and Al-Habboby Teaching Hospital in Nasiriyah, Iraq, from January to November 2021. Fresh breast tumor tissues were collated and homogenized for intracellular biochemical analysis using the enzyme-linked immunosorbent assay method. In total, 44 (58%) out of 65 patients, in the age range of 18-42 years and the mean±SD age of 32.55±6.40 years, had fibroadenomas, and other 21 (42%) cases, in the age range of 32-80 years and the mean±SD age of 56±14.4 years had invasive ductal carcinoma (IDC) breast cancer. Intracellular levels of HIF-1α, p53, and E2 were elevated significantly (P<0.001) in IDC cases compared to the benign group. The most malignant tumors of IDC cases were in grade III and sizes T2 and T3. The tissue concentrations of HIF-1α, P53, and E2 were significantly elevated in patients with tumor stage T3 compared to T2 and T1. A significant elevation was found in the levels of HIF-1α, p53, and E2 in the positive LNM subgroup compared to the negative LNM group. Based on the obtained results, the prognostic value of the intracellular HIF-1α is considered to be a useful prognostic factor in Iraqi women with ICD and the combination of a HIF-1α protein with the nonfunctional p53 and E2 tends to indicate the proliferation, invasiveness, and metastases of the breast tumors.
Collapse
Affiliation(s)
- Z Ali Khadem
- Department of Clinical Biochemistry, College of Medicine, University of Thi-Qar, Thi-Qar, Iraq
| | | |
Collapse
|
46
|
TP53-Status-Dependent Oncogenic EZH2 Activity in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14143451. [PMID: 35884510 PMCID: PMC9320674 DOI: 10.3390/cancers14143451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Epigenetic alterations contribute to the aggressiveness and therapy resistance of Pancreatic Ductal Adenocarcinoma (PDAC). However, epigenetic regulators, including Enhancer of Zeste Homolog 2 (EZH2), reveal a strong context-dependent activity. Our study aimed to examine the context-defining molecular prerequisites of oncogenic EZH2 activity in PDAC to assess the therapeutic efficacy of targeting EZH2. Our preclinical study using diverse PDAC models demonstrates that the TP53 status determines oncogenic EZH2 activity. Only in TP53-wildtype (wt) PDAC subtypes was EZH2 blockade associated with a favorable PDAC prognosis mainly through cell-death response. We revealed that EZH2 depletion increases p53wt stability by the de-repression of CDKN2A. Therefore, our study provides preclinical evidence that an intact CDKN2A-p53wt axis is indispensable for a beneficial outcome of EZH2 depletion and highlights the significance of molecular stratification to improve epigenetic targeting in PDAC. Abstract Pancreatic Ductal Adenocarcinoma (PDAC) represents a lethal malignancy with a consistently poor outcome. Besides mutations in PDAC driver genes, the aggressive tumor biology of the disease and its remarkable therapy resistance are predominantly installed by potentially reversible epigenetic dysregulation. However, epigenetic regulators act in a context-dependent manner with opposing implication on tumor progression, thus critically determining the therapeutic efficacy of epigenetic targeting. Herein, we aimed at exploring the molecular prerequisites and underlying mechanisms of oncogenic Enhancer of Zeste Homolog 2 (EZH2) activity in PDAC progression. Preclinical studies in EZH2 proficient and deficient transgenic and orthotopic in vivo PDAC models and transcriptome analysis identified the TP53 status as a pivotal context-defining molecular cue determining oncogenic EZH2 activity in PDAC. Importantly, the induction of pro-apoptotic gene signatures and processes as well as a favorable PDAC prognosis upon EZH2 depletion were restricted to p53 wildtype (wt) PDAC subtypes. Mechanistically, we illustrate that EZH2 blockade de-represses CDKN2A transcription for the subsequent posttranslational stabilization of p53wt expression and function. Together, our findings suggest an intact CDKN2A-p53wt axis as a prerequisite for the anti-tumorigenic consequences of EZH2 depletion and emphasize the significance of molecular stratification for the successful implementation of epigenetic targeting in PDAC.
Collapse
|
47
|
Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells 2022; 11:cells11142155. [PMID: 35883598 PMCID: PMC9318640 DOI: 10.3390/cells11142155] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is the fourth leading cause of cancer death world-wide. Therapies for PDAC are largely ineffective due to the dense desmoplastic tumor microenvironment which prevents chemotherapeutic drugs and small molecule inhibitors from exerting effective anti-cancer effects. In this review, we will discuss the roles of TP53 and miRs on the PDAC tumor microenvironment and how loss of the normal functions of TP53 promote tumor progression. The TP53 gene is mutated in approximately 50% of pancreatic cancers. Often, these TP53 mutations are point mutations which confer additional functions for the TP53 proteins. These are called gain of function (GOF) mutations (mut). Another class of TP53 mutations are deletions which result in loss of the TP53 protein; these are referred to TP53-null mutations. We have organized this review into various components/properties of the PDAC microenvironment and how they may be altered in the presence of mutant TP53 and loss of certain miR expression.
Collapse
|
48
|
Han Y, Liu Y, Zhen J, Hou S, Zhang B, Cui Z, Wan Q, Feng H. P53 regulates mitochondrial biogenesis via transcriptionally induction of mitochondrial ribosomal protein L12. Exp Cell Res 2022; 418:113249. [PMID: 35691378 DOI: 10.1016/j.yexcr.2022.113249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
The well-documented tumor suppressor p53 is also a major stress response factor for its diverse regulation on cellular energetics. However, the effect of p53 on mitochondrial biogenesis, which plays a predominant role in response to the elevated energy demands, appears to be pleiotropic in various conditions and has not reached agreement. Mitochondrial ribosomal protein L12 (MRPL12), reported as a bi-functional protein for its roles in both mitochondrial ribosomes and transcriptional complexes, is a core regulatory component in mitochondrial biogenesis. Here we proved that MRPL12 is transcriptionally regulated by p53. Furthermore, the p53/MRPL12 regulation of mitochondria is part of the signaling pathway that maintains the basal mitochondrial content and positively coordinates the mitochondrial biogenesis and oxidative phosphorylation (OXPHOS) in response to metabolic perturbation. Since p53 serves as the'Guardian of the Genome', our findings may revealed a new mechanism underlying the conditions when more ATP is warranted to maintain the genome integrity and cell survival. Therefore the pharmacological intervention or metabolic modulation (e.g., through fasting or exercise) of the p53/MRPL12 pathway promises to be a therapeutic approach that can safeguard health.
Collapse
Affiliation(s)
- Yitong Han
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China; Department of Critical Care Medicine, Zibo First Hospital, Weifang Medical University, Zibo, Shandong, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospidhandongtal Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
| | - Junhui Zhen
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaoshuai Hou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Bo Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - ZhengGuo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, University of Fukui, Fukui, Japan
| | - Qiang Wan
- Department of Cell Metabolism and Disease Laboratory, Jinan Central Hospital, Qilu Medical College, Shandong University, Jinan, 250012, China.
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
49
|
Reinisch I, Klymiuk I, Michenthaler H, Moyschewitz E, Galhuber M, Krstic J, Domingo M, Zhang F, Karbiener M, Vujić N, Kratky D, Schreiber R, Schupp M, Lenihan-Geels G, Schulz TJ, Malli R, Madl T, Prokesch A. p53 Regulates a miRNA-Fructose Transporter Axis in Brown Adipose Tissue Under Fasting. Front Genet 2022; 13:913030. [PMID: 35734423 PMCID: PMC9207587 DOI: 10.3389/fgene.2022.913030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Active thermogenic adipocytes avidly consume energy substrates like fatty acids and glucose to maintain body temperature upon cold exposure. Despite strong evidence for the involvement of brown adipose tissue (BAT) in controlling systemic energy homeostasis upon nutrient excess, it is unclear how the activity of brown adipocytes is regulated in times of nutrient scarcity. Therefore, this study aimed to scrutinize factors that modulate BAT activity to balance thermogenic and energetic needs upon simultaneous fasting and cold stress. For an unbiased view, we performed transcriptomic and miRNA sequencing analyses of BAT from acutely fasted (24 h) mice under mild cold exposure. Combining these data with in-depth bioinformatic analyses and in vitro gain-of-function experiments, we define a previously undescribed axis of p53 inducing miR-92a-1-5p transcription that is highly upregulated by fasting in thermogenic adipocytes. p53, a fasting-responsive transcription factor, was previously shown to control genes involved in the thermogenic program and miR-92a-1-5p was found to negatively correlate with human BAT activity. Here, we identify fructose transporter Slc2a5 as one direct downstream target of this axis and show that fructose can be taken up by and metabolized in brown adipocytes. In sum, this study delineates a fasting-induced pathway involving p53 that transactivates miR-92a-1-5p, which in turn decreases Slc2a5 expression, and suggests fructose as an energy substrate in thermogenic adipocytes.
Collapse
Affiliation(s)
- Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Ingeborg Klymiuk
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Magnus Domingo
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | | | - Nemanja Vujić
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
| | - Michael Schupp
- Cardiovascular Metabolic Renal (CMR)- Research Center, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin, Germany
| | - Georgia Lenihan-Geels
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Tim J. Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Roland Malli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- *Correspondence: Andreas Prokesch,
| |
Collapse
|
50
|
Li J, Qu P, Zhou XZ, Ji YX, Yuan S, Liu SP, Zhang QG. Pimozide inhibits the growth of breast cancer cells by alleviating the Warburg effect through the P53 signaling pathway. Biomed Pharmacother 2022; 150:113063. [PMID: 35658233 DOI: 10.1016/j.biopha.2022.113063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
The Warburg effect is a promising target for the diagnosis and treatment of cancer, referring to the ability of cancer cells to generate energy through high levels of glycolysis even in the presence of oxygen, allowing them to grow and proliferate rapidly. The antipsychotic Pimozide has strong anti-breast cancer effects both in vivo and in vitro, whether Pimozide has an inhibitory effect on aerobic glycolysis has not been elucidated. In this study, Pimozide inhibited the Warburg effect of breast cancer cells by hindering glucose uptake, ATP level and lactate production; reducing the extracellular acidification rate (ECAR); suppressing the expression of PKM2, a rate-limiting enzyme in glycolysis. Intriguingly, Pimozide was significantly involved in reprogramming glucose metabolism in breast cancer cells through a p53-dependent manner. Mechanistic studies demonstrated Pimozide increased the expression of p53 through inhibition of the PI3K/Akt/MDM2 signaling pathway, which in turn downregulated the expression of PKM2. In sum, our results suggest that Pimozide mediates the p53 signaling pathway through PI3K/AKT/MDM2 to inhibit the Warburg effect and breast cancer growth, and it may be a potential aerobic glycolysis inhibitor for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jiao Li
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002 Jilin, China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
| | - Peng Qu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
| | - Xing-Zhi Zhou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
| | - Yun-Xia Ji
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
| | - Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002 Jilin, China
| | - Shuang-Ping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China.
| | - Qing-Gao Zhang
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002 Jilin, China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China.
| |
Collapse
|