1
|
Meng Y, Li Y, Gu H, Chen Z, Cui X, Wang X. Androgen receptors in corticotropin-releasing hormone neurons mediate the sexual dimorphism in restraint-induced thymic atrophy. Proc Natl Acad Sci U S A 2025; 122:e2426107122. [PMID: 40106355 PMCID: PMC11962470 DOI: 10.1073/pnas.2426107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Sexual dimorphism in immune responses is well documented, but the underlying mechanisms remain incompletely understood. Here, we identified a subset of corticotropin-releasing hormone (CRH) neurons that express androgen receptors (ARs) as key mediators of sex differences in restraint-induced immunosuppression. Mechanistically, androgens directly activate AR-positive CRH neurons, enhancing the hypothalamic-pituitary-adrenal axis activation. This results in elevated corticosterone levels in response to restraint stress, leading to increased immune cell apoptosis and immune organ atrophy in male mice. Conditional knockout of ARs in CRH neurons eliminated this sexual dimorphism, highlighting ARs in CRH neurons as pivotal regulators of sex-specific immune responses to stress.
Collapse
Affiliation(s)
- Yutong Meng
- National Institute of Biological Sciences, Beijing and Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Yaning Li
- National Institute of Biological Sciences, Beijing and Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Huating Gu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Ziyao Chen
- National Institute of Biological Sciences, Beijing and Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Xiaoyang Cui
- Zhili College, Tsinghua University, Beijing100084, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, Beijing and Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| |
Collapse
|
2
|
Luyckx B, Van Trimpont M, Declerck F, Staessens E, Verhee A, T'Sas S, Eyckerman S, Offner F, Van Vlierberghe P, Goossens S, Clarisse D, De Bosscher K. CCR1 inhibition sensitizes multiple myeloma cells to glucocorticoid therapy. Pharmacol Res 2025; 215:107709. [PMID: 40132675 DOI: 10.1016/j.phrs.2025.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Glucocorticoids (GC) are cornerstone drugs in the treatment of multiple myeloma (MM). Because MM cells exploit the bone marrow microenvironment to obtain growth and survival signals, resistance to glucocorticoid-induced apoptosis emerges, yet the underlying mechanisms remain poorly characterized. Here, we identify that the chemokine receptor CCR1, together with its main ligand CCL3, plays a pivotal role in reducing the glucocorticoid sensitivity of MM cells. We show that blocking CCR1 signaling with the antagonist BX471 enhances the anti-MM effects of the glucocorticoid dexamethasone in MM cell lines, primary patient material and a myeloma xenograft mouse model. Mechanistically, the drug combination shifts the balance between pro- and antiapoptotic proteins towards apoptosis and deregulates lysosomal proteins. Our findings suggest that CCR1 may play a role in glucocorticoid resistance, as the GC-induced downregulation of CCR1 mRNA and protein is blunted in a GC-resistance onset model. Moreover, we demonstrate that inhibiting CCR1 partially reverses this resistance, providing a promising strategy for resensitizing MM cells to GC treatment.
Collapse
Affiliation(s)
- Bert Luyckx
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Maaike Van Trimpont
- Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium; Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Fien Declerck
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Eleni Staessens
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Annick Verhee
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Sara T'Sas
- Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium; Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium; Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Dorien Clarisse
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Karolien De Bosscher
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium.
| |
Collapse
|
3
|
Chen D, Sun F, Miao M, Wang Y, Jin Y, Zhang X, Shao M, Zhou Y, Sun X, Ye H, Li Z. Dose effect of corticosteroids on peripheral lymphocyte profiles in patients with systemic lupus erythematosus. Clin Rheumatol 2025; 44:669-679. [PMID: 39760906 DOI: 10.1007/s10067-024-07254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE To investigate the dose effect of methylprednisolone (MP) on peripheral lymphocyte profiles in patients with systemic lupus erythematosus (SLE). This study investigated the impact of varied MP doses on peripheral lymphocyte subtypes in SLE patients. METHODS We conducted a prospective study involving 51 SLE patients, categorized into four groups (40 mg/day, 80 mg/day, 500 mg/day, and 1000 mg/day) based on the administered MP dosage during hospitalization. We analyzed the lymphocyte count and proportion in peripheral blood, along with their subpopulations, before and after MP treatment using the paired Mann-Whitney U test. RESULTS Treatment with a clinically rational dose of MP (40 mg/day or 80 mg/day) resulted in increased lymphocyte counts, encompassing total lymphocytes, T cells, CD4 + T cells, regulatory T cells (Treg), and effector T cells (Teff) in the short term. Conversely, the counts of these cells decreased with pulse MP (500 mg/day or 1000 mg/day). The percentage of Treg cells and the Treg/Teff ratio increased following 40 mg or 80 mg MP/day treatment, whereas they decreased after pulse therapy. A gradual augmentation in the count and percentage of Treg cells was observed during continuous administration of 40 mg or 80 mg MP/day for 1 week, while in patients receiving pulse therapy, Treg cells tended to decrease during the therapy but rapidly recovered upon MP reduction. CONCLUSION Lower doses of MP in the short term increased Treg cells, inhibiting systemic inflammation in SLE. High-dose pulse therapy exhibited a suppressive effect on Tregs. Key Points • Different dosages of methylprednisolone have variable effects on peripheral lymphocyte subsets. • Methylprednisolone pulse therapy leads to a rapid decrease in Treg cells. • Clinically rational methylprednisolone treatment leads to an increase in Treg cells.
Collapse
Affiliation(s)
- Da Chen
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
- Department of Rheumatology and Immunology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Feng Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Miao Miao
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Yifan Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Yuebo Jin
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiaoying Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Miao Shao
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Yunshan Zhou
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
4
|
Zhidkova EM, Oleynik ES, Mikhina EA, Stepanycheva DV, Grigoreva DD, Grebenkina LE, Gordeev KV, Savina ED, Matveev AV, Yakubovskaya MG, Lesovaya EA. Synthesis and Anti-Cancer Activity In Vitro of Synephrine Derivatives. Biomolecules 2024; 15:2. [PMID: 39858397 PMCID: PMC11762542 DOI: 10.3390/biom15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Glucocorticoids (GCs) are routinely used to treat hematological malignancies; however, long-term treatment with GCs can lead to atrophic and metabolic adverse effects. Selective glucocorticoid receptor agonists (SEGRAs) with reduced side effects may act as a superior alternative to GCs. More than 30 SEGRAs have been described so far, yet none of them reached clinical trials for anti-cancer treatment. In the present work, we propose a novel approach to increase the number of potential SEGRAs by obtaining derivatives of synephrine, a molecule of natural origin. We synthesized 26 novel compounds from the class of synephrine derivatives and characterized them by HRMS, and 1H and 13C NMR. We evaluated in vitro anti-cancer effects in leukemia K562 and lymphoma Granta cells using the MTT assay and studied their potential affinity for the glucocorticoid receptor (GR) in silico using the molecular docking approach. The novel derivative 1-[4-(benzyloxy)phenyl]-2-(hexylamino)ethanol (10S-E2) with the highest GR affinity in silico exhibited cytotoxic activity against K562 and Granta cells after 24 h of treatment at the concentration of approximately 13 µM which correlated with its highest MolDock Score. The other compound with high GR affinity, 2-(hexylamino)-1-(4-nitrophenyl)ethanol (13S-G2), demonstrated cytotoxicity in both cell lines at concentrations of 50-70 µM. Overall, our results may provide a solid rationale for developing and further investigating synephrine derivatives as SEGRAs with anti-cancer activity.
Collapse
Affiliation(s)
- Ekaterina M. Zhidkova
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center for Oncology, Kashirskoe Shosse 24-15, Moscow 115478, Russia; (E.M.Z.); (D.V.S.); (D.D.G.); (M.G.Y.)
| | - Evgeniya S. Oleynik
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Prospekt, Moscow 119571, Russia; (E.S.O.); (E.A.M.); (L.E.G.); (E.D.S.); (A.V.M.)
| | - Ekaterina A. Mikhina
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Prospekt, Moscow 119571, Russia; (E.S.O.); (E.A.M.); (L.E.G.); (E.D.S.); (A.V.M.)
| | - Daria V. Stepanycheva
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center for Oncology, Kashirskoe Shosse 24-15, Moscow 115478, Russia; (E.M.Z.); (D.V.S.); (D.D.G.); (M.G.Y.)
| | - Diana D. Grigoreva
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center for Oncology, Kashirskoe Shosse 24-15, Moscow 115478, Russia; (E.M.Z.); (D.V.S.); (D.D.G.); (M.G.Y.)
| | - Lyubov E. Grebenkina
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Prospekt, Moscow 119571, Russia; (E.S.O.); (E.A.M.); (L.E.G.); (E.D.S.); (A.V.M.)
| | - Kirill V. Gordeev
- Faculty of Pharmacy, Kuban State Medical University, Ministry of Health of Russia, 4 Mitrofan Sedin Str., Krasnodar 350063, Russia;
| | - Ekaterina D. Savina
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Prospekt, Moscow 119571, Russia; (E.S.O.); (E.A.M.); (L.E.G.); (E.D.S.); (A.V.M.)
| | - Andrey V. Matveev
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Prospekt, Moscow 119571, Russia; (E.S.O.); (E.A.M.); (L.E.G.); (E.D.S.); (A.V.M.)
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center for Oncology, Kashirskoe Shosse 24-15, Moscow 115478, Russia; (E.M.Z.); (D.V.S.); (D.D.G.); (M.G.Y.)
- Institute of Medicine, Peoples’ Friendship University of Russia, Miklukho-Maklaya St. 6, Moscow 117198, Russia
| | - Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center for Oncology, Kashirskoe Shosse 24-15, Moscow 115478, Russia; (E.M.Z.); (D.V.S.); (D.D.G.); (M.G.Y.)
- Institute of Medicine, Peoples’ Friendship University of Russia, Miklukho-Maklaya St. 6, Moscow 117198, Russia
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Vysokovol’tnaya Str. 9, Ryazan 390026, Russia
| |
Collapse
|
5
|
Ben Patel R, Barnwal SK, Saleh M A AM, Francis D. Leveraging nuclear receptor mediated transcriptional signaling for drug discovery: Historical insights and current advances. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:191-269. [PMID: 39843136 DOI: 10.1016/bs.apcsb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level. These receptors are involved in a wide range of pathological conditions, including cancer, metabolic disorders, chronic inflammatory diseases, and immune system-related disorders. Modulation of NR function through targeted drugs has shown therapeutic benefits in treating such conditions. NR-targeted drugs, which either completely or selectively activate or block receptor function, represent a significant class of clinically valuable therapeutics. However, the pathways of NR-mediated gene expression and the resulting physiological effects are complex, involving crosstalk between various biomolecular components. As a result, NR-targeted drug discovery is challenging. With improved understanding of how NRs regulate physiological functions and deeper insights into their molecular structure, the process of NR-targeted drug discovery has evolved. While many traditional NR-targeting drugs are associated with side effects of varying severity, new drug candidates are being designed to minimize these adverse effects. Given that NR activity varies according to the tissue in which they are expressed and the specific isoform that is activated or repressed, achieving selectivity in targeting specific tissues and isoform classes may help reduce systemic side effects. In a recent breakthrough, the isoform-selective, hepato-targeted thyroid hormone-β agonist, Resmetirom (marketed as Rezdiffra), was approved for the treatment of non-alcoholic steatohepatitis. This chapter explores the structural and mechanistic principles guiding NR-targeted drug discovery and provides insights into recent developments in this field.
Collapse
Affiliation(s)
- Riya Ben Patel
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Surbhi Kumari Barnwal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arabi Mohammed Saleh M A
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| |
Collapse
|
6
|
Pimentel VD, Acha BT, Gomes GF, Macedo de Sousa Cardoso JL, Sena da Costa CL, Carvalho Batista NJ, Rufino Arcanjo DD, Alves WDS, de Assis Oliveira F. Anti-inflammatory effect of Anadenanthera colubrina var. cebil (Griseb.) Altschul in experimental elastase-induced pulmonary emphysema in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118216. [PMID: 38642622 DOI: 10.1016/j.jep.2024.118216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants have shown promise in the search for new treatments of pulmonary emphysema. Anadenanthera colubrina, a species native to the Caatinga biome in northeastern Brazil, is widely recognized and traditionally employed in the treatment of pulmonary diseases. Many studies corroborate popular knowledge about the medicinal applications of A. colubrina, which has demonstrated a remarkable variety of pharmacological properties, however, its anti-inflammatory and antioxidant properties are highlighted. AIM OF THE STUDY The objective of this study was to investigate the anti-inflammatory potential of the crude hydroethanolic extract of A. colubrina var. cebil (Griseb.) Altschul on pulmonary emphysema in rats as well as to determine its potential genotoxic and cytotoxic effects using the micronucleus assay. MATERIALS AND METHODS The stem bark of the plant was collected in Pimenteiras-PI and sample was extracted by maceration using 70% ethanol. A portion of the extract underwent phytochemical analyses using TLC and HPLC. In this study, 8-week-old, male Wistar rats weighing approximately ±200 g was utilized following approval by local ethics committee for animal experimentation (No. 718/2022). Pulmonary emphysema was induced through orotracheal instillation of elastase, and treatment with A. colubrina extract or dexamethasone (positive control) concomitantly during induction. Twenty-eight days after the initiation of the protocol, plasma was used for cytokine measurement. Bronchoalveolar lavage (BAL) was used for leukocyte count. After euthanasia, lung samples were processed for histological analysis and quantification of oxidative stress markers. The micronucleus test was performed by evaluating the number of polychromatic erythrocytes (PCE) with micronuclei (MNPCE) to verify potential genotoxic effects of A. colubrina. A differential count of PCE and normochromatic erythrocytes (NCE) was performed to verify the potential cytotoxicity of the extract. Parametric data were subjected to normality analysis and subsequently to analysis of variance and Tukey or Dunnett post-test, non-parametric data were treated using the Kruskal-Wallis test with Dunn's post-test for unpaired samples. P value < 0.05 were considered significant. RESULTS The A. colubrina extract did not show a significant increase in the number of MNPCE (p > 0.05), demonstrating low genotoxicity. No changes were observed in the PCE/NCE ratio of treated animals, compared with the vehicle, suggesting low cytotoxic potential of the extract. A significant reduction (p < 0.05) in neutrophilic inflammation was observed in the lungs of rats treated with the extract, evidenced by presence of these cells in both the tissue and BAL. The extract also demonstrated pulmonary antioxidant activity, with a significant decrease (p < 0.05) in myeloperoxidase, malondialdehyde, and nitrite levels. TNFα, IL-1β, and IL-6 levels, as well as alveolar damage, were significantly reduced in animals treated with A. colubrina extract. Phytochemical analyses identified the presence of phenolic compounds and hydrolysable tannins in the A. colubrina extract. CONCLUSIONS The findings of this study highlights the safety of the hydroethanolic extract of Anadenanthera colubrina, and demonstrates its potential as a therapeutic approach in the treatment of emphysema. The observed properties of this medicinal plant provide an optimistic outlook in the development of therapies for the treatment of pulmonary emphysema.
Collapse
Affiliation(s)
- Vinicius Duarte Pimentel
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil.
| | - Boris Timah Acha
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Gabriel Felicio Gomes
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - João Luiz Macedo de Sousa Cardoso
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Charllyton Luis Sena da Costa
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Nelson Jorge Carvalho Batista
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Daniel Dias Rufino Arcanjo
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Wellington Dos Santos Alves
- Laboratory of Natural Products and Bioprospection (LabPNBio), State University of Piauí, Teresina, Piauí, Brazil
| | - Francisco de Assis Oliveira
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
7
|
Funahashi Y, Park SH, Hebert JF, Eiwaz MB, Munhall AC, Groat T, Zeng L, Kim J, Choi HS, Hutchens MP. Nanotherapeutic kidney cell-specific targeting to ameliorate acute kidney injury. Kidney Int 2024; 106:597-610. [PMID: 39067856 DOI: 10.1016/j.kint.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Acute kidney injury (AKI) increases the risk of in-hospital death, adds to expense of care, and risk of early chronic kidney disease. AKI often follows an acute event such that timely treatment could ameliorate AKI and potentially reduce the risk of additional disease. Despite therapeutic success of dexamethasone in animal models, clinical trials have not demonstrated broad success. To improve the safety and efficacy of dexamethasone for AKI, we developed and characterized a novel, kidney-specific nanoparticle enabling specific within-kidney targeting to proximal tubular epithelial cells provided by the megalin ligand cilastatin. Cilastatin and dexamethasone were complexed to H-Dot nanoparticles, which were constructed from generally recognized as safe components. Cilastatin/Dexamethasone/H-Dot nanotherapeutics were found to be stable at plasma pH and demonstrated salutary release kinetics at urine pH. In vivo, they were specifically biodistributed to the kidney and bladder, with 75% recovery in the urine and with reduced systemic toxicity compared to native dexamethasone. Cilastatin complexation conferred proximal tubular epithelial cell specificity within the kidney in vivo and enabled dexamethasone delivery to the proximal tubular epithelial cell nucleus in vitro. The Cilastatin/Dexamethasone/H-Dot nanotherapeutic improved kidney function and reduced kidney cellular injury when administered to male C57BL/6 mice in two translational models of AKI (rhabdomyolysis and bilateral ischemia reperfusion). Thus, our design-based targeting and therapeutic loading of a kidney-specific nanoparticle resulted in preservation of the efficacy of dexamethasone, combined with reduced off-target disposition and toxic effects. Hence, our study illustrates a potential strategy to target AKI and other diseases of the kidney.
Collapse
Affiliation(s)
- Yoshio Funahashi
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Seung Hun Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica F Hebert
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Mahaba B Eiwaz
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Adam C Munhall
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Tahnee Groat
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Lingxue Zeng
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Jonghan Kim
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael P Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA; Operative Care Division, Portland VA Medical Center, Portland, Oregon, USA.
| |
Collapse
|
8
|
Wu CJ, Livak F, Ashwell JD. The histone methyltransferase KMT2D maintains cellular glucocorticoid responsiveness by shielding the glucocorticoid receptor from degradation. J Biol Chem 2024; 300:107581. [PMID: 39025450 PMCID: PMC11350265 DOI: 10.1016/j.jbc.2024.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Because of their ability to induce lymphocyte apoptosis, glucocorticoids (GC) are widely used to treat hematological malignancies such as lymphomas and multiple myeloma. Their effectiveness is often limited, however, due to the development of glucocorticoid resistance by a variety of molecular mechanisms. Here we performed an unbiased genome-wide CRISPR screen with the human T-cell leukemia cell line Jurkat to find previously unidentified genes required for GC-induced apoptosis. One such gene was KMT2D (also known as MLL2 or MLL4), which encodes a histone lysine methyltransferase whose mutations are associated with a variety of cancers, blood malignancies in particular, and are considered markers of poor prognosis. Knockout of KMT2D by CRISPR/Cas9 gene editing in Jurkat and several multiple myeloma cell lines downregulated GR protein expression. Surprisingly, this was not due to a reduction in GR transcripts, but rather to a decrease in the protein's half-life, primarily due to proteasomal degradation. Reconstitution of KMT2D expression restored GR levels. In contrast to the known ability of KMT2D to control gene transcription through covalent histone methylation, KMT2D-mediated upregulation of GR levels did not require its methyltransferase activity. Co-immunoprecipitation and proximity ligation assays found constitutive binding of KMT2D to the GR, which was enhanced in the presence of GC. These observations reveal KMT2D to be essential for the stabilization of cellular GR levels, and suggest a possible mechanism by which KMT2D mutations may lead to GC resistance in some malignancies.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ferenc Livak
- Laboratory of Genome Integrity Flow Cytometry Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
9
|
Pedersen MA, Gormsen LC, Jakobsen LH, Eyre TA, Severinsen MT, Baech J, Dann EJ, Knapp A, Sahin D, Vestergaard P, El-Galaly TC, Jensen P. The impact of CHOP versus bendamustine on bone mineral density in patients with indolent lymphoma enrolled in the GALLIUM study. Br J Haematol 2024; 204:1271-1278. [PMID: 37957542 DOI: 10.1111/bjh.19194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Standard CHOP treatment includes a high cumulative dose of prednisone, and studies have shown increased fracture risk following CHOP. It is unclear whether reductions in bone mineral density (BMD) are caused by glucocorticoids or by the combination with chemotherapy. Our objective was to determine the effect of obinutuzumab (G)/rituximab (R)-bendamustine versus G/R-CHOP on BMD in follicular lymphoma patients. Patients in this GALLIUM post hoc study were ≥60 years old and in complete remission at induction treatment completion (ITC), following treatment with G or R in combination with bendamustine or CHOP. To assess BMD, Hounsfield units (HU) were measured in lumbar vertebra L1 on annual computed tomography. Furthermore, vertebral compression fractures were recorded. Of 173 patients included, 59 (34%) received CHOP and 114 (66%) received bendamustine. At baseline, there was no difference in HU between groups. The mean HU decrease from baseline to ITC was 27.8 after CHOP and 17.3 after bendamustine, corresponding to a difference of 10.4 (95% CI: 3.2-17.6). Vertebral fractures were recorded in 5/59 patients receiving CHOP and in 2/114 receiving bendamustine. CHOP was associated with a significant greater decrease in BMD and more frequent fractures. These results suggest that prophylaxis against BMD loss should be considered.
Collapse
Affiliation(s)
- Mette Abildgaard Pedersen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Lars C Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lasse H Jakobsen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Toby A Eyre
- Hematology and Cancer Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, UK
| | - Marianne T Severinsen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Joachim Baech
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Eldad J Dann
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Denis Sahin
- F. Hoffman-La Roche Ltd., Basel, Switzerland
| | - Peter Vestergaard
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
| | - Tarec C El-Galaly
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Hematology Research Unit, Department of Hematology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Paw Jensen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
10
|
Kárász N, Juhász O, Imrei M, Garami M. Long-Term Prognosis in Relation to Vitamin D Status in Pediatric Solid Tumor Patients. Nutrients 2023; 15:4571. [PMID: 37960224 PMCID: PMC10650320 DOI: 10.3390/nu15214571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Hypovitaminosis D is associated with oncogenesis, and the initial level of Vitamin D may play a role in determining long-term prognosis, relapse-free survival (RFS) and overall survival (OS). The purpose of our study was to follow up pediatric cancer patients for a long time in terms of their baseline Vitamin D level and disease outcomes. METHODS We collected data on the initial 25(OH)D concentration in 117 children and examined their RFS and OS using Kaplan-Meier curves. RESULTS The initial 25(OH)D mean value in the relapsed group was 20.35 ng/mL (SE: 2.05) and in children without relapse it was 26.14 ng/mL (SE: 1.13). Both the relapse-free and overall Kaplan-Meier curves showed a tendency for children with lower serum Vitamin D concentrations to experience cancer recurrence or fatal outcomes sooner than patients with normal serum levels. CONCLUSIONS Our results indicated a possible correlation between higher pretreatment serum Vitamin D concentrations and improved overall and relapse-free survival.
Collapse
Affiliation(s)
- Nóra Kárász
- Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary;
| | - Orsolya Juhász
- Pediatric Center, Semmelweis University, 1094 Budapest, Hungary;
| | - Marcell Imrei
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary;
- Heim Pál National Pediatric Institute, 1089 Budapest, Hungary
| | - Miklós Garami
- Pediatric Center, Semmelweis University, 1094 Budapest, Hungary;
| |
Collapse
|
11
|
Clarisse D, Prekovic S, Vlummens P, Staessens E, Van Wesemael K, Thommis J, Fijalkowska D, Acke G, Zwart W, Beck IM, Offner F, De Bosscher K. Crosstalk between glucocorticoid and mineralocorticoid receptors boosts glucocorticoid-induced killing of multiple myeloma cells. Cell Mol Life Sci 2023; 80:249. [PMID: 37578563 PMCID: PMC10425521 DOI: 10.1007/s00018-023-04900-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
The glucocorticoid receptor (GR) is a crucial drug target in multiple myeloma as its activation with glucocorticoids effectively triggers myeloma cell death. However, as high-dose glucocorticoids are also associated with deleterious side effects, novel approaches are urgently needed to improve GR action in myeloma. Here, we reveal a functional crosstalk between GR and the mineralocorticoid receptor (MR) that plays a role in improved myeloma cell killing. We show that the GR agonist dexamethasone (Dex) downregulates MR levels in a GR-dependent way in myeloma cells. Co-treatment of Dex with the MR antagonist spironolactone (Spi) enhances Dex-induced cell killing in primary, newly diagnosed GC-sensitive myeloma cells. In a relapsed GC-resistant setting, Spi alone induces distinct myeloma cell killing. On a mechanistic level, we find that a GR-MR crosstalk likely arises from an endogenous interaction between GR and MR in myeloma cells. Quantitative dimerization assays show that Spi reduces Dex-induced GR-MR heterodimerization and completely abolishes Dex-induced MR-MR homodimerization, while leaving GR-GR homodimerization intact. Unbiased transcriptomics analyses reveal that c-myc and many of its target genes are downregulated most by combined Dex-Spi treatment. Proteomics analyses further identify that several metabolic hallmarks are modulated most by this combination treatment. Finally, we identified a subset of Dex-Spi downregulated genes and proteins that may predict prognosis in the CoMMpass myeloma patient cohort. Our study demonstrates that GR-MR crosstalk is therapeutically relevant in myeloma as it provides novel strategies for glucocorticoid-based dose-reduction.
Collapse
Affiliation(s)
- Dorien Clarisse
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip Vlummens
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Eleni Staessens
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Karlien Van Wesemael
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Jonathan Thommis
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Daria Fijalkowska
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Guillaume Acke
- Department of Chemistry, Ghent University, Ghent, Belgium
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ilse M Beck
- Department of Health Sciences, Odisee University of Applied Sciences, Ghent, Belgium
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
12
|
Jamshidi V, Halabian R, Saeedi P, Bagheri H, Nobakht Motlagh Ghoochani BF. Accelerating synergistic effects of preconditioned mesenchymal stem cells with Crocin and dexamethasone in pulmonary epithelial cells injury. Toxicol Res (Camb) 2023; 12:369-380. [PMID: 37397913 PMCID: PMC10311171 DOI: 10.1093/toxres/tfad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 07/04/2023] Open
Abstract
Chemical warfare victims suffer from bronchiolitis and chronic pulmonary obstruction caused by sulfur mustard (SM) toxicity. Despite the mesenchymal stem cells capacity to alleviate inflammation, their low survival rate under oxidative stress severely limits their effectiveness. This study aimed to examine how natural (Crocin) and synthetic (Dexamethasone) antioxidants might affect MSC efficacy. MSCs were treated with the optimal doses of Crocin (Cr.), Dexamethasone (Dex.), and their combination. The A549 cells line was pretreated with the optimal dose of the CEES to mimic the lung disease. Then, the affected A549 cells were exposed to the preconditioned MSCs and conditioned media, and then their survival rates were estimated by MTTor2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Annexin-V PI apoptosis test was conducted for MSCs and A549 cells. Reactive Oxygen Species (ROS) assay and Enzyme-linked immunosorbent assay (ELISA) test demonstrated the percentage of production of ROS and the cytokines levels in A549/CEES, respectively. The results revealed significant increases in Cr. + Dex. treated MSCs (P < .01) and A549 cells treated with MSCs-CM/Cr/Dex (P < .01) groups' survival. The apoptosis rate and ROS production were reduced in the MSCs-CM/Cr/Dex. Also, considerable decreases in IL-1β (P < .01) and IL-6 (P < .01) and a significant increase in IL-10 (P < .05) in treated A549/CEES by Cr/Dex and MSCs-CM/Cr/Dex supported the synergistic effects of Crocin and Dexamethasone.
Collapse
Affiliation(s)
- Vahid Jamshidi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 14359-44711, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 14359-44711, Iran
| | - Pardis Saeedi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 14359-44711, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 14359-44711, Iran
| | | |
Collapse
|
13
|
Zhang F, Wei L, Wang L, Wang T, Xie Z, Luo H, Li F, Zhang J, Dong W, Liu G, Kang Q, Zhu X, Peng W. FAR591 promotes the pathogenesis and progression of SONFH by regulating Fos expression to mediate the apoptosis of bone microvascular endothelial cells. Bone Res 2023; 11:27. [PMID: 37217464 PMCID: PMC10203311 DOI: 10.1038/s41413-023-00259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
The specific pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) is still not fully understood, and there is currently no effective early cure. Understanding the role and mechanism of long noncoding RNAs (lncRNAs) in the pathogenesis of SONFH will help reveal the pathogenesis of SONFH and provide new targets for its early prevention and treatment. In this study, we first confirmed that glucocorticoid (GC)-induced apoptosis of bone microvascular endothelial cells (BMECs) is a pre-event in the pathogenesis and progression of SONFH. Then, we identified a new lncRNA in BMECs via lncRNA/mRNA microarray, termed Fos-associated lincRNA ENSRNOT00000088059.1 (FAR591). FAR591 is highly expressed during GC-induced BMEC apoptosis and femoral head necrosis. Knockout of FAR591 effectively blocked the GC-induced apoptosis of BMECs, which then alleviated the damage of GCs to the femoral head microcirculation and inhibited the pathogenesis and progression of SONFH. In contrast, overexpression of FAR591 significantly promoted the GC-induced apoptosis of BMECs, which then aggravated the damage of GCs to the femoral head microcirculation and promoted the pathogenesis and progression of SONFH. Mechanistically, GCs activate the glucocorticoid receptor, which translocates to the nucleus and directly acts on the FAR591 gene promoter to induce FAR591 gene overexpression. Subsequently, FAR591 binds to the Fos gene promoter (-245∼-51) to form a stable RNA:DNA triplet structure and then recruits TATA-box binding protein associated factor 15 and RNA polymerase II to promote Fos expression through transcriptional activation. Fos activates the mitochondrial apoptotic pathway by regulating the expression of Bcl-2 interacting mediator of cell death (Bim) and P53 upregulated modulator of apoptosis (Puma) to mediate GC-induced apoptosis of BMECs, which leads to femoral head microcirculation dysfunction and femoral head necrosis. In conclusion, these results confirm the mechanistic link between lncRNAs and the pathogenesis of SONFH, which helps reveal the pathogenesis of SONFH and provides a new target for the early prevention and treatment of SONFH.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Lei Wei
- Department of Orthopedics, Rhode Island Hospital, Brown University, Providence, Rhode Island, 02903, USA
| | - Lei Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhihong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Fanchao Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Jian Zhang
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wentao Dong
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Gang Liu
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Wuxun Peng
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
14
|
Angot L, Schneider P, Vannier JP, Abdoul-Azize S. Beyond Corticoresistance, A Paradoxical Corticosensitivity Induced by Corticosteroid Therapy in Pediatric Acute Lymphoblastic Leukemias. Cancers (Basel) 2023; 15:2812. [PMID: 37345151 DOI: 10.3390/cancers15102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Known as a key effector in relapse of acute lymphoblastic leukemia (ALL), resistance to drug-induced apoptosis, is tightly considered one of the main prognostic factors for the disease. ALL cells are constantly developing cellular strategies to survive and resist therapeutic drugs. Glucocorticoids (GCs) are one of the most important agents used in the treatment of ALL due to their ability to induce cell death. The mechanisms of GC resistance of ALL cells are largely unknown and intense research is currently focused on this topic. Such resistance can involve different cellular and molecular mechanisms, including the modulation of signaling pathways involved in the regulation of proliferation, apoptosis, autophagy, metabolism, epigenetic modifications and tumor suppressors. Recently, several studies point to the paradoxical role of GCs in many survival processes that may lead to therapy-induced resistance in ALL cells, which we called "paradoxical corticosensitivity". In this review, we aim to summarize all findings on cell survival pathways paradoxically activated by GCs with an emphasis on previous and current knowledge on gene expression and signaling pathways.
Collapse
Affiliation(s)
- Laure Angot
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
| | - Pascale Schneider
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
- Department of Pediatric Immuno-Hemato-Oncology, Rouen University Hospital, 76038 Rouen, France
| | | | | |
Collapse
|
15
|
Tang K, Li X, Hu Y, Zhang X, Lu N, Fang Q, Shao J, Li S, Xiu W, Song Y, Yang D, Zhang J. Recent advances in Prussian blue-based photothermal therapy in cancer treatment. Biomater Sci 2023. [PMID: 37067845 DOI: 10.1039/d3bm00509g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Malignant tumours are a serious threat to human health. Traditional chemotherapy has achieved breakthrough improvements but also has significant detrimental effects, such as the development of drug resistance, immunosuppression, and even systemic toxicity. Photothermal therapy (PTT) is an emerging cancer therapy. Under light irradiation, the phototherapeutic agent converts optical energy into thermal energy and induces the hyperthermic death of target cells. To date, numerous photothermal agents have been developed. Prussian blue (PB) nanoparticles are among the most promising photothermal agents due to their excellent physicochemical properties, including photoacoustic and magnetic resonance imaging properties, photothermal conversion performance, and enzyme-like activity. By the construction of suitably designed PB-based nanotherapeutics, enhanced photothermal performance, targeting ability, multimodal therapy, and imaging-guided cancer therapy can be effectively and feasibly achieved. In this review, the recent advances in PB-based photothermal combinatorial therapy and imaging-guided cancer therapy are comprehensively summarized. Finally, the potential obstacles of future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaonan Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Nan Lu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qiang Fang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weijun Xiu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
16
|
Zhang Y, Li N, Li H, Chen M, Jiang W, Guo W. Thiram, an inhibitor of 11ß-hydroxysteroid dehydrogenase type 2, enhances the inhibitory effects of hydrocortisone in the treatment of osteosarcoma through Wnt/β-catenin pathway. BMC Pharmacol Toxicol 2023; 24:20. [PMID: 36978114 PMCID: PMC10045229 DOI: 10.1186/s40360-023-00655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Background The anti-osteosarcoma effects of hydrocortisone and thiram, an inhibitor of type 2 11ß-hydroxysteroid dehydrogenase (11HSD2), have not been reported. The purpose of this study was to investigate the effects of hydrocortisone alone or the combination of hydrocortisone with thiram on osteosarcoma and the molecular mechanism, and determine whether they can be as new therapeutic agents for osteosarcoma. Methods Normal bone cells and osteosarcoma cells were treated with hydrocortisone or thiram alone or in combination. The cell proliferation, migration, cell cycle and apoptosis were detected by using CCK8 assay, wound healing assay, and flow cytometry, respectively. An osteosarcoma mouse model was established. The effect of drugs on osteosarcoma in vivo was assessed by measuring tumor volume. Transcriptome sequencing, bioinformatics analysis, RT–qPCR, Western blotting (WB), enzymelinked immunosorbent assay (ELISA) and siRNA transfection were performed to determine the molecular mechanisms. Results Hydrocortisone inhibited the proliferation and migration, and induced apoptosis and cell cycle arrest of osteosarcoma cells in vitro. Hydrocortisone also reduced the volume of osteosarcoma in mice in vivo. Mechanistically, hydrocortisone decreased the levels of Wnt/β-catenin pathway-associated proteins, and induced the expression of glucocorticoid receptor α (GCR), CCAAT enhancer-binding protein β (C/EBP-beta) and 11HSD2, resulting in a hydrocortisone resistance loop. Thiram inhibited the activity of the 11HSD2 enzyme, the combination of thiram and hydrocortisone further enhanced the inhibition of osteosarcoma through Wnt/β-catenin pathway. Conclusions Hydrocortisone inhibits osteosarcoma through the Wnt/β-catenin pathway. Thiram inhibits 11HSD2 enzyme activity, reducing hydrocortisone inactivation and promoting the effect of hydrocortisone through the same pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-023-00655-0.
Collapse
Affiliation(s)
- You Zhang
- grid.412901.f0000 0004 1770 1022Clinical Translational Innovation Center/Molecular Medicine Research Center, West China Hospital, Sichuan Univicity, Chengdu, Sichuan Province 610041 People’s Republic of China
| | - Nanjing Li
- grid.13291.380000 0001 0807 1581Division of of Radiotherapy, Cancer Center,West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041 People’s Republic of China
| | - He Li
- grid.13291.380000 0001 0807 1581West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610044 People’s Republic of China
| | - Maojia Chen
- grid.412901.f0000 0004 1770 1022Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, 610000 People’s Republic of China
| | - Wei Jiang
- grid.412901.f0000 0004 1770 1022Clinical Translational Innovation Center/Molecular Medicine Research Center, West China Hospital, Sichuan Univicity, Chengdu, Sichuan Province 610041 People’s Republic of China
| | - Wenhao Guo
- grid.412901.f0000 0004 1770 1022Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, Medical School, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu, Sichuan Province 610041 People’s Republic of China
| |
Collapse
|
17
|
Huang H, Wang W, Cui Y, Hu CX, Du M. Correlation between nuclear expression of heat shock protein 90 in dermis and glucocorticoid resistance in bullous dermatosis. Steroids 2023; 194:109223. [PMID: 36948346 DOI: 10.1016/j.steroids.2023.109223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND bullous dermatosis is a group of skin diseases that occur on the skin and mucous membrane, with blister and bulla as basic damage, mainly including pemphigus and bullous pemphigoid. Glucocorticoid (GC) is still the preferred drug for its treatment, but some patients respond poorly to GC and even develop glucocorticoid resistance (GCR). However, at present about the disease the understanding of the mechanisms for GCR is limited. OBJECTIVE This study attempted to investigate the molecular mechanism of GCR in bullous dermatosis with heat shock proteins 90 (HSP90) and glucocorticoid receptor (GR) as molecular targets. METHODS In this study, flow cytometry was used to measure and analyze the expression of HSP90 and GR in the lesions of patients with glucocorticoid-resistant bullosa dermatosis. Immunohistochemistry and immunofluorescence were used to observe the expression distribution and cell localization of HSP90 and GR. RESULTS The expression of HSP90 in skin lesions of GCR group was significantly higher than that of glucocorticoid-sensitive (GCS) group, while the expression level of GR was lower than that of GCS group. In the epidermis, the expression and distribution of HSP90 were not different between the GCR group and the GCS group. And in the dermis, HSP90 and GR were more likely to be expressed in the nucleus in the GCR group. CONCLUSION The overexpression and nuclear distribution of HSP90 may be related to the occurrence of GCR in patients with bullous dermatosis. And this correlation is more likely to occur in the dermis than in the epidermis.
Collapse
Affiliation(s)
- Huanming Huang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Wenqing Wang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yu Cui
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cai-Xia Hu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming Du
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Melatonin-mediated FKBP4 downregulation protects against stress-induced neuronal mitochondria dysfunctions by blocking nuclear translocation of GR. Cell Death Dis 2023; 14:146. [PMID: 36810730 PMCID: PMC9943853 DOI: 10.1038/s41419-023-05676-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
The physiological crosstalk between glucocorticoid and melatonin maintains neuronal homeostasis in regulating circadian rhythms. However, the stress-inducing level of glucocorticoid triggers mitochondrial dysfunction including defective mitophagy by increasing the activity of glucocorticoid receptors (GRs), leading to neuronal cell death. Melatonin then suppresses glucocorticoid-induced stress-responsive neurodegeneration; however, the regulatory mechanism of melatonin, i.e., associated proteins involved in GR activity, has not been elucidated. Therefore, we investigated how melatonin regulates chaperone proteins related to GR trafficking into the nucleus to suppress glucocorticoid action. In this study, the effects of glucocorticoid on suppressing NIX-mediated mitophagy, followed by mitochondrial dysfunction, neuronal cell apoptosis, and cognitive deficits were reversed by melatonin treatment by inhibiting the nuclear translocation of GRs in both SH-SY5Y cells and mouse hippocampal tissue. Moreover, melatonin selectively suppressed the expression of FKBP prolyl isomerase 4 (FKBP4), which is a co-chaperone protein that works with dynein, to reduce the nuclear translocation of GRs among the chaperone proteins and nuclear trafficking proteins. In both cells and hippocampal tissue, melatonin upregulated melatonin receptor 1 (MT1) bound to Gαq, which triggered the phosphorylation of ERK1. The activated ERK then enhanced DNA methyltransferase 1 (DNMT1)-mediated hypermethylation of FKBP52 promoter, reducing GR-mediated mitochondrial dysfunction and cell apoptosis, the effects of which were reversed by knocking down DNMT1. Taken together, melatonin has a protective effect against glucocorticoid-induced defective mitophagy and neurodegeneration by enhancing DNMT1-mediated FKBP4 downregulation that reduced the nuclear translocation of GRs.
Collapse
|
19
|
Huang H, Wang W. Molecular mechanisms of glucocorticoid resistance. Eur J Clin Invest 2023; 53:e13901. [PMID: 36346177 DOI: 10.1111/eci.13901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND As a powerful anti-inflammatory, immunosuppressive, and antiproliferative drug, glucocorticoid (GC) plays an important role in the treatment of various diseases. However, some patients may experience glucocorticoid resistance (GCR) in clinical, and its molecular mechanism have not been determined. METHODS The authors performed a review of the literature on GCR focusing on mutations in the NR3C1 gene and impaired glucocorticoid receptor (GR) signalling, using METSTR (2000 through May 2022) to identify original articles and reviews on this topic. The search terms included 'glucocorticoid resistance/insensitive', 'steroid resistance/insensitive', 'NR3C1', and 'glucocorticoid receptor'. RESULTS Primary GCR is mainly caused by NR3C1 gene mutation, and 31 NR3C1 gene mutations have been reported so far. Secondary GCR is caused by impaired GC signalling pathways, including decreased expression of GR, impaired nuclear translocation of GR, and impaired binding of GR to GC and GR to target genes. However, the current research is more on the expression level of GR, and there are relatively few studies on other mechanisms. In addition, methods for improving GC sensitivity are rarely reported. CONCLUSION The molecular mechanisms of GCR are complex and may differ in different diseases or different patients. In future studies, when exploring the mechanism of GCR, methods to improve GC sensitivity should also be investigated.
Collapse
Affiliation(s)
- Huanming Huang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Wenqing Wang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
20
|
Blanco-Nistal MM, Fernández-Fernández JA. Glucocorticoid Effect in Cancer Patients. Methods Mol Biol 2023; 2704:339-352. [PMID: 37642855 DOI: 10.1007/978-1-0716-3385-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The use of glucocorticoids is very varied in the context of cancer patients and includes the treatment of symptoms related to cancer, but also the management of the most common side effects of antitumor treatments or adverse events related to the immune system. There is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anticancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen-presenting cells such as dendritic cells (DCs). The classic strategies to improve the medical management of inflammation are aimed at exacerbating the host's immune response. Although successful in treating a number of diseases, these drugs have limited efficacy and variable responses can lead to unpredictable results. The ideal therapy should reduce inflammation without inducing immunosuppression and remains a challenge for healthcare personnel.
Collapse
|
21
|
Bruscoli S, Puzzovio PG, Zaimi M, Tiligada K, Levi-Schaffer F, Riccardi C. Glucocorticoids and COVID-19. Pharmacol Res 2022; 185:106511. [PMID: 36243331 PMCID: PMC9556882 DOI: 10.1016/j.phrs.2022.106511] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 19 (COVID-19) is associated with high morbidity and mortality rates globally, representing the greatest health and economic challenge today. Several drugs are currently approved for the treatment of COVID-19. Among these, glucocorticoids (GCs) have received particular attention due to their anti-inflammatory and immunosuppressive effects. In fact, GC are widely used in current clinical practice to treat inflammatory, allergic and autoimmune diseases. Major mechanisms of GC action include inhibition of innate and adaptive immune activity. In particular, an important role is played by the inhibition of pro-inflammatory cytokines and chemokines, and the induction of proteins with anti-inflammatory activity. Overall, as indicated by various national and international regulatory agencies, GCs are recommended for the treatment of COVID-19 in patients requiring oxygen therapy, with or without mechanical ventilation. Regarding the use of GCs for the COVID-19 treatment of non-hospitalized patients at an early stage of the disease, many controversial studies have been reported and regulatory agencies have not recommended their use. The decision to start GC therapy should be based not only on the severity of COVID-19 disease, but also on careful considerations of the benefit/risk profile in individual patients, including monitoring of adverse events. In this review we summarize the effects of GCs on the major cellular and molecular components of the inflammatory/immune system, the benefits and the adverse common reactions in the treatment of inflammatory/autoimmune diseases, as well as in the management of COVID-19.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Tiligada
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy.
| |
Collapse
|
22
|
Michalek S, Goj T, Plazzo AP, Marovca B, Bornhauser B, Brunner T. LRH
‐1/
NR5A2
interacts with the glucocorticoid receptor to regulate glucocorticoid resistance. EMBO Rep 2022; 23:e54195. [PMID: 35801407 PMCID: PMC9442305 DOI: 10.15252/embr.202154195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Svenja Michalek
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| | - Thomas Goj
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Anna Pia Plazzo
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Thomas Brunner
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| |
Collapse
|
23
|
Li K, Zong D, Sun J, Chen D, Ma M, Jia L. Rewiring of the Endocrine Network in Triple-Negative Breast Cancer. Front Oncol 2022; 12:830894. [PMID: 35847875 PMCID: PMC9280148 DOI: 10.3389/fonc.2022.830894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
The immunohistochemical definition of estrogen/progesterone receptors dictates endocrine feasibility in the treatment course of breast cancer. Characterized by the deficiency of estrogen receptor α, ERα-negative breast cancers are dissociated from any endocrine regimens in the routine clinical setting, triple-negative breast cancer in particular. However, the stereotype was challenged by triple-negative breast cancers’ retained sensitivity and vulnerability to endocrine agents. The interplay of hormone action and the carcinogenic signaling program previously underscored was gradually recognized along with the increasing investigation. In parallel, the overlooked endocrine-responsiveness in ERα-negative breast cancers attracted attention and supplied fresh insight into the therapeutic strategy in an ERα-independent manner. This review elaborates on the genomic and non-genomic steroid hormone actions and endocrine-related signals in triple-negative breast cancers attached to the hormone insensitivity label. We also shed light on the non-canonical mechanism detected in common hormone agents to showcase their pleiotropic effects.
Collapse
Affiliation(s)
- Kaixuan Li
- Department of Integrated Traditional Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
- Beijing University of Chinese medicine, Beijing, China
| | | | - Jianrong Sun
- School of Clinical Medicine. Beijing University of Chinese Medicine, Beijing, China
| | - Danxiang Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minkai Ma
- Department of Integrated Traditional Chinese and Western Medicine Oncology, The Fourth Central Hospital, Baoding, China
| | - Liqun Jia
- Department of Integrated Traditional Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia,
| |
Collapse
|
24
|
Eyre TA, Jensen P, Booth S, El-Galaly TC. Bone health and glucocorticoid-containing lymphoma therapy - a review of risk factors and preventative measures. Br J Haematol 2022; 198:431-442. [PMID: 35235226 DOI: 10.1111/bjh.18104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/20/2023]
Abstract
With survival outcomes ever improving for patients with a wide range of lymphoma histologies, the focus on reducing long-term complications of therapy has increased. Recently published, complimentary population and retrospective series have highlighted the importance of considering bone health in patients treated for lymphoma. Fracture-related events or the requirement for secondary bone prophylaxis, likely linked to glucocorticoid-induced osteoporosis (GIO) are substantial and clinically meaningful in a significant minority of patients following routinely employed steroid-containing immunochemotherapy. In this review, we describe the pathophysiology of GIO, the risk of GIO in observational front-line lymphoma studies and efficacy of prophylactic measures from several prospective clinical trials are summarized. Finally, areas of importance for future research are discussed and recommendations for GIO risk assessment and management in lymphoma are provided based on the current available literature.
Collapse
Affiliation(s)
- Toby A Eyre
- Department of Haematology, Haematology and Cancer Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paw Jensen
- Department of Haematology, Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
| | - Stephen Booth
- Department of Haematology, Royal Berkshire Hospital NHS Foundation Trust, Reading, UK
| | - Tarec Christoffer El-Galaly
- Department of Haematology, Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
25
|
Lesovaya EA, Chudakova D, Baida G, Zhidkova EM, Kirsanov KI, Yakubovskaya MG, Budunova IV. The long winding road to the safer glucocorticoid receptor (GR) targeting therapies. Oncotarget 2022; 13:408-424. [PMID: 35198100 PMCID: PMC8858080 DOI: 10.18632/oncotarget.28191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoids (Gcs) are widely used to treat inflammatory diseases and hematological malignancies, and despite the introduction of novel anti-inflammatory and anti-cancer biologics, the use of inexpensive and effective Gcs is expected to grow. Unfortunately, chronic treatment with Gcs results in multiple atrophic and metabolic side effects. Thus, the search for safer glucocorticoid receptor (GR)-targeted therapies that preserve therapeutic potential of Gcs but result in fewer adverse effects remains highly relevant. Development of selective GR agonists/modulators (SEGRAM) with reduced side effects, based on the concept of dissociation of GR transactivation and transrepression functions, resulted in limited success, and currently focus has shifted towards partial GR agonists. Additional approach is the identification and inhibition of genes associated with Gcs specific side effects. Others and we recently identified GR target genes REDD1 and FKBP51 as key mediators of Gcs-induced atrophy, and selected and validated candidate molecules for REDD1 blockage including PI3K/Akt/mTOR inhibitors. In this review, we summarized classic and contemporary approaches to safer GR-mediated therapies including unique concept of Gcs combination with REDD1 inhibitors. We discussed protective effects of REDD1 inhibitors against Gcs–induced atrophy in skin and bone and underlined the translational potential of this combination for further development of safer and effective Gcs-based therapies.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | - Daria Chudakova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Ekaterina M. Zhidkova
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Kirill I. Kirsanov
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Deparment of General Medical Practice, RUDN University, Moscow, Russia
| | - Marianna G. Yakubovskaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
26
|
Clarisse D, De Bosscher K. How the glucocorticoid receptor contributes to platinum-based therapy resistance in solid cancer. Nat Commun 2021; 12:4959. [PMID: 34400619 PMCID: PMC8367998 DOI: 10.1038/s41467-021-24847-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
Synthetic glucocorticoids serve as co-medication against solid malignant tumors. However, glucocorticoid receptor activation may promote unsolicited cancer resistance to chemotherapy. The Kang team elucidated a glucocorticoid receptor-centred chemotherapy-resistance mechanism to cisplatin and characterized avenues towards a viable escape strategy.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium.
| |
Collapse
|
27
|
Urwanisch L, Luciano M, Horejs-Hoeck J. The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia. Int J Mol Sci 2021; 22:1271. [PMID: 33525345 PMCID: PMC7865748 DOI: 10.3390/ijms22031271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation contributes to the development and progression of various tumors. Especially where the inflammation is mediated by cells of the innate immune system, the NLRP3 inflammasome plays an important role, as it senses and responds to a variety of exogenous and endogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and for the induction of a type of inflammatory cell death known as pyroptosis. Overactivation of the NLRP3 inflammasome can be a driver of various diseases. Since leukemia is known to be an inflammation-driven cancer and IL-1β is produced in elevated levels by leukemic cells, research on NLRP3 in the context of leukemia has increased in recent years. In this review, we summarize the current knowledge on leukemia-promoting inflammation and, in particular, the role of the NLRP3 inflammasome in different types of leukemia. Furthermore, we examine a connection between NLRP3, autophagy and leukemia.
Collapse
Affiliation(s)
- Laura Urwanisch
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.U.); (M.L.)
| | - Michela Luciano
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.U.); (M.L.)
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.U.); (M.L.)
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| |
Collapse
|