1
|
Hülskötter K, Jin W, Allnoch L, Hansmann F, Schmidtke D, Rohn K, Flügel A, Lühder F, Baumgärtner W, Herder V. Double-edged effects of tamoxifen-in-oil-gavage on an infectious murine model for multiple sclerosis. Brain Pathol 2021; 31:e12994. [PMID: 34137105 PMCID: PMC8549030 DOI: 10.1111/bpa.12994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Tamoxifen gavage is a commonly used method to induce genetic modifications in cre-loxP systems. As a selective estrogen receptor modulator (SERM), the compound is known to have immunomodulatory and neuroprotective properties in non-infectious central nervous system (CNS) disorders. It can even cause complete prevention of lesion development as seen in experimental autoimmune encephalitis (EAE). The effect on infectious brain disorders is scarcely investigated. In this study, susceptible SJL mice were infected intracerebrally with Theiler's murine encephalomyelitis virus (TMEV) and treated three times with a tamoxifen-in-oil-gavage (TOG), resembling an application scheme for genetically modified mice, starting at 0, 18, or 38 days post infection (dpi). All mice developed 'TMEV-induced demyelinating disease' (TMEV-IDD) resulting in inflammation, axonal loss, and demyelination of the spinal cord. TOG had a positive effect on the numbers of oligodendrocytes and oligodendrocyte progenitor cells, irrespective of the time point of application, whereas late application (starting 38 dpi) was associated with increased demyelination of the spinal cord white matter 85 dpi. Furthermore, TOG had differential effects on the CD4+ and CD8+ T cell infiltration into the CNS, especially a long lasting increase of CD8+ cells was detected in the inflamed spinal cord, depending of the time point of TOG application. Number of TMEV-positive cells, astrogliosis, astrocyte phenotype, apoptosis, clinical score, and motor function were not measurably affected. These data indicate that tamoxifen gavage has a double-edged effect on TMEV-IDD with the promotion of oligodendrocyte differentiation and proliferation, but also increased demyelination, depending on the time point of application. The data of this study suggest that tamoxifen has also partially protective functions in infectious CNS disease. These effects should be considered in experimental studies using the cre-loxP system, especially in models investigating neuropathologies.
Collapse
Affiliation(s)
- Kirsten Hülskötter
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Wen Jin
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Lisa Allnoch
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Florian Hansmann
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
- Institute of Veterinary PathologyLeipzig UniversityLeipzigGermany
| | - Daniel Schmidtke
- Center for Systems NeuroscienceHannoverGermany
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Karl Rohn
- Institute of Biometry, Epidemiology, and Information ProcessingUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Alexander Flügel
- Center for Systems NeuroscienceHannoverGermany
- Institute for Neuroimmunology and Multiple Sclerosis ResearchUniversity Medical Center GöttingenGöttingenGermany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis ResearchUniversity Medical Center GöttingenGöttingenGermany
| | - Wolfgang Baumgärtner
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Vanessa Herder
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| |
Collapse
|
2
|
Shimba A, Ejima A, Ikuta K. Pleiotropic Effects of Glucocorticoids on the Immune System in Circadian Rhythm and Stress. Front Immunol 2021; 12:706951. [PMID: 34691020 PMCID: PMC8531522 DOI: 10.3389/fimmu.2021.706951] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids (GCs) are a class of steroid hormones secreted from the adrenal cortex. Their production is controlled by circadian rhythm and stress, the latter of which includes physical restraint, hunger, and inflammation. Importantly, GCs have various effects on immunity, metabolism, and cognition, including pleiotropic effects on the immune system. In general, GCs have strong anti-inflammatory and immunosuppressive effects. Indeed, they suppress inflammatory cytokine expression and cell-mediated immunity, leading to increased risks of some infections. However, recent studies have shown that endogenous GCs induced by the diurnal cycle and dietary restriction enhance immune responses against some infections by promoting the survival, redistribution, and response of T and B cells via cytokine and chemokine receptors. Furthermore, although GCs are reported to reduce expression of Th2 cytokines, GCs enhance type 2 immunity and IL-17-associated immunity in some stress conditions. Taken together, GCs have both immunoenhancing and immunosuppressive effects on the immune system.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Yang J, Wang Q, Zhang S, Li Z, Jiang W. Immune response of frontline medical workers providing medical support for Wuhan COVID-19 patients, China. Int Immunopharmacol 2021; 94:107479. [PMID: 33618296 PMCID: PMC7885632 DOI: 10.1016/j.intimp.2021.107479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022]
Abstract
The outbreak of novel coronavirus disease 2019 (COVID-19) posed a great challenge and stress to frontline medical workers in China. Stress is closely related to immunity. However, the immune response of frontline medical workers providing medical support for COVID-19 patients is unclear. Here, we reported the immune response of 76 frontline medical workers and 152 controls from the Second Affiliated Hospital of Xi'an Jiaotong University. The frontline medical workers were involved in the care for Wuhan COVID-19 patients from February 8 to March 31, 2020 in Tongji Hospital of Huazhong University of Science and Technology. The controls were medical workers of our hospital who had not been in contact with COVID-19 patients during the same period. Demographic and clinical data, including routine blood test data were extracted from the electronic health examination record and retrospectively analyzed. The post-stress frontline medical workers had higher lymphocyte (LYM) count compared with controls or pre-stress. However, the post-stress frontline medical workers had lower monocyte (MONO) count, neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR) and neutrophil (NEUT) ratio than controls or pre-stress. Interestingly, we found the differences were more significantly in female subgroup and nurse subgroup. Together, these data indicated that changes of immune response were found in frontline medical workers providing medical support for Wuhan COVID-19 patients, especially in females and nurses. Those maybe caused by psychological stress and we recommend to pay more attention to mental health of frontline medical workers, and provide appropriate psychological interventions for them.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Health Management, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Qian Wang
- Department of Health Management, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shuqun Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zongfang Li
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, China.
| | - Wei Jiang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Shimba A, Ikuta K. Control of immunity by glucocorticoids in health and disease. Semin Immunopathol 2020; 42:669-680. [PMID: 33219395 DOI: 10.1007/s00281-020-00827-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
Animals receive environmental stimuli from neural signals in order to produce hormones that control immune responses. Glucocorticoids (GCs) are a group of steroid hormones produced in the adrenal cortex and well-known mediators for the nervous and immune systems. GC secretion is induced by circadian rhythm and stress, and plasma GC levels are high at the active phase of animals and under stress condition. Clinically, GCs are used for allergies, autoimmunity, and chronic inflammation, because they have strong anti-inflammatory effects and induce the apoptosis of lymphocytes. Glucocorticoid receptor (GR) acts as a transcription factor and represses the expression of inflammatory cytokines, chemokines, and prostaglandins by binding to its motif, glucocorticoid-response element, or to other transcription factors. In mice, GR suppresses the antigen-stimulated inflammation mediated by macrophages, dendritic cells, and epithelial cells, and impairs cytotoxic immune responses by downregulating interferon-γ production and inhibiting the development of type-1 helper T cells, CD8+ T cells, and natural killer cells. These immune inhibitory effects prevent lethality by excessive inflammation, but at the same time increase the susceptibility to infection and cancer. GCs can also activate the immune system. The circadian cycle of GC secretion controls the diurnal oscillations of the distribution and response of T cells, thus supporting T cell maintenance and effective immune protection against infection. Moreover, several reports have shown that GR has the potential to enhance the activities of Th2, Th17, and immunoglobulin-producing B cells. Stress has two different effects on immune responses: immune suppression to cause mortality by infection and cancer, and excessive immune activation to induce chronic inflammation and autoimmune disease. Consistently, stress-induced GCs strongly suppress cell-mediated immunity and cause viral infection and tumor development. They may also enhance the development of pathogenic helper T cells and cause tissue damage through neural and intestinal inflammation. Past studies have reported the positive and negative effects of GCs on the immune system. These opposing properties of GCs may regulate the immune balance between the responsiveness to antigens and excessive inflammation in steady-state and stress conditions.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.,Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Rudak PT, Gangireddy R, Choi J, Burhan AM, Summers KL, Jackson DN, Inoue W, Haeryfar SMM. Stress-elicited glucocorticoid receptor signaling upregulates TIGIT in innate-like invariant T lymphocytes. Brain Behav Immun 2019; 80:793-804. [PMID: 31108170 DOI: 10.1016/j.bbi.2019.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/22/2019] [Accepted: 05/16/2019] [Indexed: 12/17/2022] Open
Abstract
Stress is known to impede certain host defense mechanisms, including those governed by conventional T lymphocytes. However, whether innate-like T lymphocytes, such as invariant natural killer T (iNKT) and mucosa-associated invariant T (MAIT) cells, are impacted by stress is unclear. Herein, we report that prolonged psychological stress caused by physical confinement results in robust upregulation of T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), an immune checkpoint receptor that controls antitumor and antiviral immune responses. Elevated TIGIT expression was found not only on NK and conventional T cells, but also on iNKT and MAIT cells. Stress-provoked TIGIT upregulation was reversed through treatment with the glucocorticoid receptor (GR) antagonist RU486, but not with 6-hydroxydopamine that induces chemical sympathectomy. A Cre/Lox gene targeting model in which GR was ablated in cells expressing Lck under its proximal promoter revealed that TIGIT upregulation in stressed animals stems from direct GR signaling in T and iNKT cells. In fact, long-term oral administration of exogenous corticosterone (CS) to wild-type C57BL/6 (B6) mice was sufficient to increase TIGIT expression levels on T and iNKT cells. In vitro treatment with CS also potently and selectively upregulated TIGIT, but not CTLA-4 or LAG-3, on mouse iNKT and MAIT hybridomas. These results were recapitulated using primary hepatic iNKT and MAIT cells from wild-type B6 and B6.MAITCAST mice, respectively. Subjecting B6.MAITCAST mice to physical restraint also raised the frequency of TIGIT+ cells among hepatic MAIT cells in a GR-dependent manner. Finally, we found that TIGIT is similarly upregulated in a chronic variable stress model in which animals are exposed to unpredictable heterotypic stressors without developing habituation. Taken together, our findings link, for the first time to our knowledge, GR signaling to TIGIT expression. We propose that glucocorticoid hormones dampen immune responses, in part, by enhancing TIGIT expression across multiple critical subsets of effector lymphocytes, including innate-like T cells. Therefore, TIGIT may constitute an attractive target in immune-enhancing interventions for sustained physiological stress.
Collapse
Affiliation(s)
- Patrick T Rudak
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Rakshith Gangireddy
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Joshua Choi
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Amer M Burhan
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Kelly L Summers
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Wataru Inoue
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Department of Medicine, Division of Clinical Immunology and Allergy, Western University, London, Ontario, Canada; Department of Surgery, Division of General Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
6
|
Juda MB, Brooks AK, Towers AE, Freund GG, McCusker RH, Steelman AJ. Indoleamine 2,3-dioxygenase 1 deletion promotes Theiler's virus-induced seizures in C57BL/6J mice. Epilepsia 2019; 60:626-635. [PMID: 30770561 DOI: 10.1111/epi.14675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Viral encephalitis increases the risk for developing seizures and epilepsy. Indoleamine 2,3-dioxygenase 1 (Ido1) is induced by inflammatory cytokines and functions to metabolize tryptophan to kynurenine. Kynurenine can be further metabolized to produce kynurenic acid and the N-methyl-d-aspartate receptor agonist quinolinic acid (QuinA). In the present study, we sought to determine the role of Ido1 in promoting seizures in an animal model of viral encephalitis. METHODS C57BL/6J and Ido1 knockout mice (Ido1-KO) were infected with Theiler's murine encephalomyelitis virus (TMEV). Quantitative real-time polymerase chain reaction was used to evaluate hippocampal expression of proinflammatory cytokines, Ido1, and viral RNA. Body weights and seizure scores were recorded daily. Elevated zero maze was used to assess differences in behavior, and hippocampal pathology was determined by immunohistochemistry. RESULTS Infected C57BL/6J mice up-regulated proinflammatory cytokines, Ido1, and genes encoding the enzymatic cascade responsible for QuinA production in the kynurenine pathway prior to the onset of seizures. Seizure incidence was elevated in Ido1-KO compared to C57BL/6J mice. Infection increased locomotor activity in Ido1-KO compared to C57BL/6J mice. Furthermore, the occurrence of seizures was associated with hyperexcitability. Neither expression of proinflammatory cytokines nor viral RNA was altered as a result of genotype. Immunohistochemical analysis revealed increased hippocampal pathology in Ido1-KO mice. SIGNIFICANCE Our findings suggest that Ido1 deletion promotes seizures and neuropathogenesis during acute TMEV encephalitis.
Collapse
Affiliation(s)
- Michal B Juda
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois
| | - Alexandra K Brooks
- Neuroscience Program, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Albert E Towers
- Division of Nutritional Sciences, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Gregory G Freund
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois.,Division of Nutritional Sciences, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Pathology, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Robert H McCusker
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois.,Neuroscience Program, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Pathology, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Andrew J Steelman
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, Urbana, Illinois.,Neuroscience Program, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois.,Division of Nutritional Sciences, College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
7
|
Chronic psychological stress impairs germinal center response by repressing miR-155. Brain Behav Immun 2019; 76:48-60. [PMID: 30414952 DOI: 10.1016/j.bbi.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/25/2022] Open
Abstract
Germinal centers (GC) are vital to adaptive immunity. BCL6 and miR-155 are implicated in control of GC reaction and lymphomagenesis. FBXO11 causes BCL6 degradation through ubiquitination in B-cell lymphomas. Chronic psychological stress is known to drive immunosuppression. Corticosterone (CORT) is an adrenal hormone expressed in response to stress and can similarly impair immune functions. However, whether GC formation is disrupted by chronic psychological stress and its molecular mechanism remain to be elucidated. To address this issue, we established a GC formation model in vivo, and a GC B cell differentiation model in vitro. Comparing Naive B cells to GC B cells in vivo and in vitro, the differences of BCL6 and FBXO11 mRNA do not match the changes at the protein level and miR-155 levels that were observed. Next we demonstrated that CORT increase, induced by chronic psychological stress, reduced GC response, IgG1 antibody production and miR-155 level in vivo. The effect of chronic psychological stress can be blocked by a glucocorticoid receptor (GR) antagonist. Similarly, impaired GC B cell generation and isotope class switching were observed. Furthermore, we found that miR-155 and BCL6 expression were downregulated, but FBXO11 expression was upregulated in GC B cells treated with CORT in vitro. In addition, we demonstrated that miR-155 directly down-regulated FBXO11 expression by binding to its 3́-untranslated region. The subsequent overexpression of miR-155 significantly blocked the stress-induced impairment of GC response, due to changes in FBXO11 and BCL6 expression, as well as increased apoptosis in B cells both in vivo and in vitro. Our findings suggest perturbation of GC reaction may play a role in chronic psychological stress-induced immunosuppression through a glucocorticoid pathway, and miR-155-mediated post-transcriptional regulation of FBXO11 and BCL6 expression may contribute to the impaired GC response.
Collapse
|
8
|
Meknatkhah S, Sharif Dashti P, Mousavi MS, Zeynali A, Ahmadian S, Karima S, Saboury AA, Riazi GH. Psychological stress effects on myelin degradation in the cuprizone-induced model of demyelination. Neuropathology 2018; 39:14-21. [PMID: 30536911 DOI: 10.1111/neup.12522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is known as the most common demyelinating disease worldwide in which previous studies have shown that stress is a risk factor for the disease's onset and progression. Nevertheless, further studies are needed to investigate the consequences of stress in MS pathology. In this study, after 5 days of exposure to psychological and physical stress as a repetitive distress modality, rats were treated with cuprizone. The demyelination degree was compared in animal groups using Luxol fast blue staining, immunohistochemical staining for myelin basic protein and transmission electron microscopy. Outcomes revealed that animals exposed to stress prior to cuprizone ingestion, elicit more intense demyelination. Continuous psychological distress has more severe effects on myelin sheath destruction in the preclinical stage.
Collapse
Affiliation(s)
- Sogol Meknatkhah
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Pouya Sharif Dashti
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Amirbahador Zeynali
- Department of Physics, Iran University of Science and Technology, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Saeed Karima
- Clinical Biochemistry Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
9
|
Jiang W, Li Y, Sun J, Li L, Li JW, Zhang C, Huang C, Yang J, Kong GY, Li ZF. Spleen contributes to restraint stress induced changes in blood leukocytes distribution. Sci Rep 2017; 7:6501. [PMID: 28747688 PMCID: PMC5529540 DOI: 10.1038/s41598-017-06956-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Psychological stress has great impacts on the immune system, particularly the leukocytes distribution. Although the impacts of acute stress on blood leukocytes distribution are well studied, however, it remains unclear how chronic stress affects leukocytes distribution in peripheral circulation. Furthermore, there is no report about the role of spleen in the blood leukocytes distribution induced by stress. Here we show that spleen contributes to the alteration of restraint stress induced blood leukocytes distribution. Our data confirmed that restraint stress induced anxiety-like behavior in mice. Furthermore, we found that restraint stress decreased the CD4/CD8 ratio and elevated the percentages of natural killer cells, monocytes and polymorphonuclear myeloid-derived suppressor cell. We demonstrated that activation of hypothalamic-pituitary-adrenal axis (HPA) and sympathetic nervous system (SNS) contributes to restraint stress induced alteration of blood leukocyte distribution. Interestingly, we found that splenectomy could reverse the change of CD4/CD8 ratio induced by restraint stress. Together, our findings suggest that activation of HPA axis and SNS was responsible for the blood leukocyte subsets changes induced by restraint stress. Spleen, at least in part, contributed to the alteration in peripheral circulation induced by restraint stress.
Collapse
Affiliation(s)
- Wei Jiang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Yu Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Jiang-Wei Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Jun Yang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Pathology, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Guang-Yao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zong-Fang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China.
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China.
| |
Collapse
|
10
|
Blackmore S, Hernandez J, Juda M, Ryder E, Freund GG, Johnson RW, Steelman AJ. Influenza infection triggers disease in a genetic model of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2017; 114:E6107-E6116. [PMID: 28696309 PMCID: PMC5544260 DOI: 10.1073/pnas.1620415114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. Most MS patients experience periods of symptom exacerbation (relapses) followed by periods of partial recovery (remission). Interestingly, upper-respiratory viral infections increase the risk for relapse. Here, we used an autoimmune-prone T-cell receptor transgenic mouse (2D2) and a mouse-adapted human influenza virus to test the hypothesis that upper-respiratory viral infection can cause glial activation, promote immune cell trafficking to the CNS, and trigger disease. Specifically, we inoculated 2D2 mice with influenza A virus (Puerto Rico/8/34; PR8) and then monitored them for symptoms of inflammatory demyelination. Clinical and histological experimental autoimmune encephalomyelitis was observed in ∼29% of infected 2D2 mice. To further understand how peripheral infection could contribute to disease onset, we inoculated wild-type C57BL/6 mice and measured transcriptomic alterations occurring in the cerebellum and spinal cord and monitored immune cell surveillance of the CNS by flow cytometry. Infection caused temporal alterations in the transcriptome of both the cerebellum and spinal cord that was consistent with glial activation and increased T-cell, monocyte, and neutrophil trafficking to the brain at day 8 post infection. Finally, Cxcl5 expression was up-regulated in the brains of influenza-infected mice and was elevated in cerebrospinal fluid of MS patients during relapse compared with specimens acquired during remission. Collectively, these data identify a mechanism by which peripheral infection may exacerbate MS as well as other neurological diseases.
Collapse
Affiliation(s)
- Stephen Blackmore
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Jessica Hernandez
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Michal Juda
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Emily Ryder
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Gregory G Freund
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Department of Pathology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801;
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
11
|
Tsuji M, Koriyama C, Yamamoto M, Anan A, Shibata E, Kawamoto T. The association between maternal psychological stress and inflammatory cytokines in allergic young children. PeerJ 2016; 4:e1585. [PMID: 26819847 PMCID: PMC4727978 DOI: 10.7717/peerj.1585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/18/2015] [Indexed: 11/30/2022] Open
Abstract
Background. Previous studies have shown that psychological stress is linked to asthma prevalence. Parental psychological stress may potentially influence inflammatory responses in their allergic children. The purpose of this study is to clarify the association between maternal psychological status and inflammatory response of allergic young children. Methods. The study subjects were 152 young allergic children (median age: 13 months) who had not shown any allergic symptoms in the past one month. mRNA expression levels of the inflammatory response genes IL-6, IL-8, IL-10 and IL-22 were quantified by qRT-PCR. Maternal psychological status was assessed by standardized questionnaires: the Centre for Epidemiological Studies Depression Scale (CES-D) for depression and the Japanese Perceived Stress Scale (JPSS) for perceived stress. Results. A significant positive association was observed between maternal CES-D scores and IL-6 mRNA expression in the children with asthma. The JPSS scores were also positively associated with IL-8 mRNA expression in asthmatic children and IL-6 mRNA expression in children with allergic rhinitis. Similar trends were observed among children positive for house dust mite-specific IgE, but these associations were not significant. Conclusion. This study supports the hypothesis that maternal psychological stress affects the inflammatory response in their allergic children.
Collapse
Affiliation(s)
- Mayumi Tsuji
- Department of Environmental Health, University of Occupational and Environmental Health, Kitakyusyu, Japan; Department of Environmental Toxicology, University of California, Davis, United States
| | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Kagoshima University , Kagoshima , Japan
| | - Megumi Yamamoto
- Integrated Physiology Section, Department of Basic Medical Science, National Institute for Minamata Disease , Minamata , Japan
| | - Ayumi Anan
- Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health , Kitakyusyu , Japan
| | - Eiji Shibata
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health , Kitakyusyu , Japan
| | - Toshihiro Kawamoto
- Department of Environmental Health, University of Occupational and Environmental Health , Kitakyusyu , Japan
| |
Collapse
|
12
|
Johnson RR, Maldonado Bouchard S, Prentice TW, Bridegam P, Rassu F, Young CR, Steelman AJ, Welsh TH, Welsh CJ, Meagher MW. Neonatal experience interacts with adult social stress to alter acute and chronic Theiler's virus infection. Brain Behav Immun 2014; 40:110-20. [PMID: 24632225 DOI: 10.1016/j.bbi.2014.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 12/30/2022] Open
Abstract
Previous research has shown that neonatal handling has prolonged protective effects associated with stress resilience and aging, yet little is known about its effect on stress-induced modulation of infectious disease. We have previously demonstrated that social disruption stress exacerbates the acute and chronic phases of the disease when applied prior to Theiler's virus infection (PRE-SDR) whereas it attenuates disease severity when applied concurrently with infection (CON-SDR). Here, we asked whether neonatal handling would protect adult mice from the detrimental effects of PRE-SDR and attenuate the protective effects of CON-SDR on Theiler's virus infection. As expected, handling alone decreased IL-6 and corticosterone levels, protected the non-stressed adult mice from motor impairment throughout infection and reduced antibodies to myelin components (PLP, MBP) during the autoimmune phase of disease. In contrast, neonatal handling X PRE/CON-SDR elevated IL-6 and reduced corticosterone as well as increased motor impairment during the acute phase of the infection. Neonatal handling X PRE/CON-SDR continued to exacerbate motor impairment during the chronic phase, whereas only neonatal handling X PRE-SDR increased in antibodies to PLP, MOG, MBP and TMEV. Together, these results imply that while handling reduced the severity of later Theiler's virus infection in non-stressed mice, brief handling may not be protective when paired with later social stress.
Collapse
Affiliation(s)
- R R Johnson
- Advanced brain Monitoring, Inc, Carlsbad, CA 92008, United States
| | - S Maldonado Bouchard
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| | - T W Prentice
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - P Bridegam
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - F Rassu
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - C R Young
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - A J Steelman
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - T H Welsh
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, United States
| | - C J Welsh
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - M W Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States.
| |
Collapse
|
13
|
Jin J, Wang X, Wang Q, Guo X, Cao J, Zhang X, Zhu T, Zhang D, Wang W, Wang J, Shen B, Gao X, Shi Y, Zhang J. Chronic psychological stress induces the accumulation of myeloid-derived suppressor cells in mice. PLoS One 2013; 8:e74497. [PMID: 24058577 PMCID: PMC3776856 DOI: 10.1371/journal.pone.0074497] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/23/2013] [Indexed: 12/18/2022] Open
Abstract
Chronic psychological stress has been shown to adversely impact immune system functions and compromise host defenses against various infections. However, the underlying mechanisms remain elusive. Recent studies have demonstrated that myeloid-derived suppressor cells (MDSCs) play an important role in regulating immunity. It is of interest to explore whether or not chronic psychological stress plays immunosuppressive functions partially by inducing MDSCs accumulation. In this work, we report that chronic psychological stress led to the accumulation of CD11b+Gr1+ cells in the bone marrow of BALB/c mice. Repeated β-agonist infusion showed no such effect. However, β-adrenergic blockade, but not glucocorticoids blockade, partially reversed the accumulation of CD11b+Gr1+ cells under the condition of chronic psychological stress, suggesting catecholamines collaborate with other factors to induce the accumulation. Further exploration indicates that cyclooxygenase 2 (COX-2)-prostaglandin E2 (PGE2) loop might act downstream to induce the accumulation. A majority of the accumulated CD11b+Gr1+ cells were Ly6G+Ly6C(low) immature neutrophils, which inhibited cytokine release of macrophages as well as T cell responsiveness. Moreover, the accumulated CD11b+Gr1+ cells under the condition of chronic psychological stress expressed multiple inhibitory molecules. Taken together, our data demonstrate for the first time that chronic psychological stress induces MDSCs accumulation in mice, which can contribute to immunosuppression.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, P. R. China
| | - Xiaoqian Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
- Research Center of Molecular Biology, Inner Mongolia Medical College, Hohhot, P. R. China
| | - Qingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Xiangrui Guo
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Junxia Cao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Xueying Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Ting Zhu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Dalin Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Wendie Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Jing Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Beifen Shen
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, P. R. China
| | - Yanchun Shi
- Research Center of Molecular Biology, Inner Mongolia Medical College, Hohhot, P. R. China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P. R. China
| |
Collapse
|
14
|
Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 2013; 12:947-53. [DOI: 10.1016/j.autrev.2013.02.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 12/18/2022]
|
15
|
Steelman AJ, Smith R, Welsh CJ, Li J. Galectin-9 protein is up-regulated in astrocytes by tumor necrosis factor and promotes encephalitogenic T-cell apoptosis. J Biol Chem 2013; 288:23776-87. [PMID: 23836896 DOI: 10.1074/jbc.m113.451658] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Demyelination and axonal damage in multiple sclerosis (MS) are thought to be a consequence of inflammatory processes that are perpetuated by activated glia and infiltrating leukocytes. Galectin-9 is a β-galactoside binding lectin capable of modulating immune responses and appears to be up-regulated in MS. However, its role in the pathogenesis of MS has yet to be determined. Here, we report that proinflammatory cytokines induce galectin-9 (Gal-9) expression in primary astrocytes and the mechanism by which TNF up-regulates Gal-9. Astrocytes did not express Gal-9 under basal conditions nor did IL-6, IL-10, or IL-13 trigger Gal-9 expression. In contrast, IL-1β, IFN-γ, and particularly TNF up-regulated Gal-9 in astrocytes. TNF-induced Gal-9 expression was dependent on TNF receptor 1 (TNFR1) as TNF failed to induce Gal-9 in TNFR1(-/-) astrocytes. Blockade of the JNK MAP kinase pathway with the JNK inhibitor SP600125 abrogated TNF-induced Gal-9, whereas p38 and MEK inhibitors had minimal effects. Furthermore, specific knockdown of c-Jun via siRNA in astrocytes before TNF treatment greatly suppressed Gal-9 transcription, suggesting that TNF induces astroglial Gal-9 through the TNF/TNFR1/JNK/cJun signaling pathway. Finally, utilizing astrocytes from Lgals9 mutant (Gal-9(-/-)) mice as well as a myelin basic protein-specific Tim-3(+) encephalitogenic T-cell clone (LCN-8), we found that conditioned medium from TNF-stimulated Gal-9(+/+) but not Gal-9(-/-) astrocytes increased the percentage of apoptotic encephalitogenic T-cells. Together, our results suggest that Gal-9 is induced in astrocytes by TNF via the JNK/c-Jun pathway and that astrocyte-derived Gal-9 may function as an immunoregulatory protein in response to ongoing neuroinflammation.
Collapse
Affiliation(s)
- Andrew J Steelman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
16
|
Chronic social stress impairs virus specific adaptive immunity during acute Theiler's virus infection. J Neuroimmunol 2012; 254:19-27. [PMID: 23021485 DOI: 10.1016/j.jneuroim.2012.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 01/12/2023]
Abstract
Prior exposure to social disruption (SDR) stress exacerbates Theiler's murine encephalomyelitis virus (TMEV) infection, a model of multiple sclerosis. Here we examined the impact of SDR on T cell responses to TMEV infection in SJL mice. SDR impaired viral clearance and exacerbated acute disease. Moreover, TMEV infection alone increased CD4 and CD8 mRNA expression in brain and spleen while SDR impaired this response. SDR decreased both CD4(+) and CD8(+) virus-specific T cells in CNS, but not spleen. These findings suggest that SDR-induced suppression of virus-specific T cell responses contributes to impairments in viral clearance and exacerbation of acute disease.
Collapse
|
17
|
Vichaya EG, Young EE, Frazier MA, Cook JL, Welsh CJ, Meagher MW. Social disruption induced priming of CNS inflammatory response to Theiler's virus is dependent upon stress induced IL-6 release. J Neuroimmunol 2011; 239:44-52. [PMID: 22000153 DOI: 10.1016/j.jneuroim.2011.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/17/2011] [Accepted: 08/10/2011] [Indexed: 01/09/2023]
Abstract
Chronic social disruption stress (SDR) exacerbates acute and chronic phase Theiler's murine encephalomyelitis virus (TMEV) infection, a mouse model of multiple sclerosis. However, the precise mechanism by which this occurs remains unknown. The present study suggests that SDR exacerbates TMEV disease course by priming virus-induced neuroinflammation. It was demonstrated that IL-1β mRNA expression increases following acute SDR; however, IL-6 mRNA expression, but not IL-1β, is upregulated in response to chronic SDR. Furthermore, this study demonstrated SDR prior to infection increases infection related central IL-6 and IL-1β mRNA expression, and administration of IL-6 neutralizing antibody during SDR reverses this increase in neuroinflammation.
Collapse
Affiliation(s)
- E G Vichaya
- Dept. of Psychology, College of Liberal Arts, Texas A&M University, United States
| | | | | | | | | | | |
Collapse
|
18
|
Steelman AJ, Li J. Poly(I:C) promotes TNFα/TNFR1-dependent oligodendrocyte death in mixed glial cultures. J Neuroinflammation 2011; 8:89. [PMID: 21812954 PMCID: PMC3162898 DOI: 10.1186/1742-2094-8-89] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 08/03/2011] [Indexed: 11/10/2022] Open
Abstract
Background Activation of glial cells via toll-like receptors (TLRs) and other intracellular pathogen recognition receptors promotes the release of potentially toxic acute phase reactants such as TNFα and nitric oxide into the extracellular space. As such, prolonged glial activation, as is thought to occur during a persistent viral infection of the CNS, may contribute to both neurodegeneration and demyelination. However, the effects of virus-induced glial activation on oligodendrocytes are not fully understood. Method To determine the effects of glial activation on oligodendrocyte viability we treated primary glial cultures isolated from neonatal rats or mice with the RNA viral mimic poly(I:C) and in some cases other TLR ligands. TLR3 expression was determined by western blot. Cytokine levels were measured by RT-PCR, ELISA, and intracellular cytokine staining. Oligodendrocyte precursor (preOL) viability was determined by Alamar blue assays and immunocytochemistry. Result Stimulation of mixed glial cultures with poly(I:C) resulted in microglia activation, TNFα production and preOL toxicity. This toxic effect of poly(I:C) was indirect as it failed to affect preOL viability in pure cultures despite the fact that preOLs express TLR3. Poly(I:C)-induced loss of preOLs was abolished in TNFα or TNFR1 deficient mixed glial cultures, suggesting that TNFα/TNFR1 signaling is required for poly(I:C) toxicity. Furthermore, although both microglia and astrocytes express functional TLR3, only microglia produced TNFα in culture. Consistent with these findings, other TLR agonists similarly triggered TNFα production and preOL toxicity in mixed glial cultures. Conclusion Activation of microglia by poly(I:C) promotes TNFα/TNFR1-dependent oligodendroglial cell death. These data indicate that during an ongoing viral infection of the CNS, microglial TNFα may be detrimental to oligodendrocytes.
Collapse
Affiliation(s)
- Andrew J Steelman
- Department of Veterinary Integrative BioSciences, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
19
|
Hunzeker JT, Elftman MD, Mellinger JC, Princiotta MF, Bonneau RH, Truckenmiller ME, Norbury CC. A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 186:183-94. [PMID: 21098225 DOI: 10.4049/jimmunol.1001737] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protracted psychological stress elevates circulating glucocorticoids, which can suppress CD8(+) T cell-mediated immunity, but the mechanisms are incompletely understood. Dendritic cells (DCs), required for initiating CTL responses, are vulnerable to stress/corticosterone, which can contribute to diminished CTL responses. Cross-priming of CD8(+) T cells by DCs is required for initiating CTL responses against many intracellular pathogens that do not infect DCs. We examined the effects of stress/corticosterone on MHC class I (MHC I) cross-presentation and priming and show that stress/corticosterone-exposed DCs have a reduced ability to cross-present OVA and activate MHC I-OVA(257-264)-specific T cells. Using a murine model of psychological stress and OVA-loaded β(2)-microglobulin knockout "donor" cells that cannot present Ag, DCs from stressed mice induced markedly less Ag-specific CTL proliferation in a glucocorticoid receptor-dependent manner, and endogenous in vivo T cell cytolytic activity generated by cross-presented Ag was greatly diminished. These deficits in cross-presentation/priming were not due to altered Ag donation, Ag uptake (phagocytosis, receptor-mediated endocytosis, or fluid-phase uptake), or costimulatory molecule expression by DCs. However, proteasome activity in corticosterone-treated DCs or splenic DCs from stressed mice was partially suppressed, which limits formation of antigenic peptide-MHC I complexes. In addition, the lymphoid tissue-resident CD11b(-)CD24(+)CD8α(+) DC subset, which carries out cross-presentation/priming, was preferentially depleted in stressed mice. At the same time, CD11b(-)CD24(+)CD8α(-) DC precursors were increased, suggesting a block in development of CD8α(+) DCs. Therefore, glucocorticoid-induced changes in both the cellular composition of the immune system and intracellular protein degradation contribute to impaired CTL priming in stressed mice.
Collapse
Affiliation(s)
- John T Hunzeker
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Pérez-Nievas BG, García-Bueno B, Madrigal JLM, Leza JC. Chronic immobilisation stress ameliorates clinical score and neuroinflammation in a MOG-induced EAE in Dark Agouti rats: mechanisms implicated. J Neuroinflammation 2010; 7:60. [PMID: 20929574 PMCID: PMC2958904 DOI: 10.1186/1742-2094-7-60] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/07/2010] [Indexed: 02/07/2023] Open
Abstract
Background Multiple sclerosis (MS) is the endpoint of a complex and still poorly understood process which results in inflammation, demyelination and axonal and neuronal degeneration. Since the first description of MS, psychological stress has been suggested to be one of the trigger factors in the onset and/or relapse of symptoms. However, data from animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) are inconsistent and the effect of stress on EAE onset and severity depends on duration and time of application of the stress protocol and the underlying mechanisms. Methods Dark Agouti rats were inoculated with MOG/CFA to induce EAE, and an immobilisation stress protocol with two different durations (12 and 21 days, starting at the moment of MOG-inoculation) was applied in order to analyse the effect of stress on disease onset and neuroinflammation. Results Twelve days of stress exposure increased EAE clinical score in Dark Agouti rats. In addition, these animals presented higher levels of MMP-9 and proinflammatory PGE2 in spinal cord. In contrast, animals chronically exposed to stress (21 days) showed a significantly lower incidence of EAE clinical signs and reduced myelin loss, leukocyte infiltration and accumulation of inflammatory/oxidative mediators in spinal cord. Interestingly, chronically stressed animals showed a parallel increase in levels of the anti-inflammatory prostaglandin 15d-PGJ2, the main endogenous agonist of PPARγ. Conclusions Our results demonstrate that, depending on duration, stress exposure elicits opposite effects on PGE2/15d-PGJ2 ratios in spinal cord of EAE-induced Dark Agouti rats. Further studies are needed to elucidate if these changes in prostaglandin balance are sufficient to mediate the differences in clinical score and inflammation here reported, and to establish the potential utility of pharmacological intervention in MS directed toward anti-inflammatory pathways.
Collapse
Affiliation(s)
- Beatriz G Pérez-Nievas
- Department of Pharmacology, Faculty Medicine, University Complutense, Centro de Investigación Biomédica en red de Salud Mental (CIBERSA), Granada, Spain.
| | | | | | | |
Collapse
|
21
|
Young EE, Sieve AN, Vichaya EG, Carcoba LM, Young CR, Ambrus A, Storts R, Welsh CJR, Meagher MW. Chronic restraint stress during early Theiler's virus infection exacerbates the subsequent demyelinating disease in SJL mice: II. CNS disease severity. J Neuroimmunol 2010; 220:79-89. [PMID: 20167380 PMCID: PMC2856483 DOI: 10.1016/j.jneuroim.2010.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 12/20/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection is a well-characterized model of multiple sclerosis (MS). Previous research has shown that chronic restraint stress (RS) during early TMEV infection exacerbates behavioral signs of the disease. The present data suggest that RS-induced increases in CNS inflammation, demyelination, and axonal degeneration may underlie this exacerbation. In addition, we report that males exhibit greater CNS inflammation and higher numbers of demyelinating lesions while females show greater susceptibility to RS-induced exacerbation. These findings indicate that RS during early TMEV infection increases CNS lesion formation during the late phase and suggest that the effects of RS are sex-dependent.
Collapse
MESH Headings
- Animals
- Axons/immunology
- Axons/pathology
- Axons/virology
- Cardiovirus Infections/immunology
- Cardiovirus Infections/physiopathology
- Central Nervous System/immunology
- Central Nervous System/pathology
- Central Nervous System/virology
- Chronic Disease
- Demyelinating Autoimmune Diseases, CNS/immunology
- Demyelinating Autoimmune Diseases, CNS/physiopathology
- Demyelinating Autoimmune Diseases, CNS/virology
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis/immunology
- Encephalomyelitis/physiopathology
- Encephalomyelitis/virology
- Female
- Male
- Mice
- Nerve Fibers, Myelinated/immunology
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Myelinated/virology
- Restraint, Physical/adverse effects
- Restraint, Physical/psychology
- Severity of Illness Index
- Sex Characteristics
- Stress, Psychological/immunology
- Stress, Psychological/physiopathology
- Theilovirus/immunology
- Wallerian Degeneration/immunology
- Wallerian Degeneration/pathology
- Wallerian Degeneration/virology
Collapse
Affiliation(s)
- Erin E Young
- Department of Psychology, College of Liberal Arts, Texas A&M University College Station, TX 77843, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Meagher MW, Sieve AN, Johnson RR, Satterlee D, Belyavskyi M, Mi W, Prentice TW, Welsh TH, Welsh CJR. Neonatal maternal separation alters immune, endocrine, and behavioral responses to acute Theiler's virus infection in adult mice. Behav Genet 2010; 40:233-49. [PMID: 20135342 DOI: 10.1007/s10519-010-9333-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 01/09/2010] [Indexed: 12/01/2022]
Abstract
Previous studies have established a link between adverse early life events and subsequent disease vulnerability. The present study assessed the long-term effects of neonatal maternal separation on the response to Theiler's murine encephalomyelitis virus infection, a model of multiple sclerosis. Balb/cJ mouse pups were separated from their dam for 180-min/day (180-min MS), 15-min/day (15-min MS), or left undisturbed from postnatal days 2-14. During adolescence, mice were infected with Theiler's virus and sacrificed at days 14, 21, or 35 post-infection. Prolonged 180-min MS increased viral load and delayed viral clearance in the spinal cords of males and females, whereas brief 15-min MS increased the rate of viral clearance in females. The 15-min and 180-min MS mice exhibited blunted corticosterone responses during infection, suggesting that reduced HPA sensitivity may have altered the immune response to infection. These findings demonstrate that early life events alter vulnerability to CNS infection later in life. Therefore, this model could be used to study gene-environment interactions that contribute to individual differences in susceptibility to infectious and autoimmune diseases of the CNS.
Collapse
Affiliation(s)
- M W Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, College Station, TX, 77843-4235, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Elftman MD, Hunzeker JT, Mellinger JC, Bonneau RH, Norbury CC, Truckenmiller ME. Stress-induced glucocorticoids at the earliest stages of herpes simplex virus-1 infection suppress subsequent antiviral immunity, implicating impaired dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2010; 184:1867-75. [PMID: 20089700 DOI: 10.4049/jimmunol.0902469] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The systemic elevation of psychological stress-induced glucocorticoids strongly suppresses CD8(+) T cell immune responses resulting in diminished antiviral immunity. However, the specific cellular targets of stress/glucocorticoids, the timing of exposure, the chronology of immunological events, and the underlying mechanisms of this impairment are incompletely understood. In this study, we address each of these questions in the context of a murine cutaneous HSV infection. We show that exposure to stress or corticosterone in only the earliest stages of an HSV-1 infection is sufficient to suppress, in a glucocorticoid receptor-dependent manner, the subsequent antiviral immune response after stress/corticosterone has been terminated. This suppression resulted in early onset and delayed resolution of herpetic lesions, reduced viral clearance at the site of infection and draining popliteal lymph nodes (PLNs), and impaired functions of HSV-specific CD8(+) T cells in PLNs, including granzyme B and IFN-gamma production and the ability to degranulate. In knockout mice lacking glucocorticoid receptors only in T cells, we show that these impaired CD8(+) T cell functions are not due to direct effects of stress/corticosterone on the T cells, but the ability of PLN-derived dendritic cells to prime HSV-1-specific CD8(+) T cells is functionally impaired. These findings highlight the susceptibility of critical early events in the generation of an antiviral immune response to neuroendocrine modulation and implicate dendritic cells as targets of stress/glucocorticoids in vivo. These findings also provide insight into the mechanisms by which the clinical use of glucocorticoids contributes to altered immune responses in patients with viral infections or tumors.
Collapse
Affiliation(s)
- Michael D Elftman
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
24
|
Steelman AJ, Alford E, Young CR, Welsh TH, Meagher MW, Welsh CJR. Restraint stress fails to render C57BL/6 mice susceptible to Theiler's virus-induced demyelination. Neuroimmunomodulation 2010; 17:109-19. [PMID: 19923856 PMCID: PMC3214847 DOI: 10.1159/000258694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 07/16/2009] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Multiple sclerosis is a degenerative disease of the CNS with a pathology consistent with immunological mediation. Although its cause is unknown, multiple factors are thought to influence both the onset and exacerbation of the disease, including both genetic background as well as environmental factors. METHODS We are interested in the effect of psychological stress on the onset and exacerbation of Theiler's virus-induced demyelinating disease (TVID), a murine model of MS in which viral persistence facilitates demyelination. In the current study, we determined whether chronic restraint stress (RS)-induced immunosuppression could result in the establishment of a persistent CNS infection in the normally TVID-resistant C57BL/6 mouse strain, resulting in demyelination. RESULTS Our data indicated that RS repeated over the course of 7 days was not sufficient to cause decreases in virus-specific adaptive immunity, and did not significantly alter CNS viral levels. Furthermore, chronic repeated RS lasting until 4 weeks after infection altered neither the development of virus-specific IgG nor motor function determined by Rotarod analysis. In addition, histological analysis of the CNS of stressed mice indicated no inflammation or demyelination on day 193 after infection. CONCLUSION These results suggest that stress alone is not sufficient to overcome genetic resistance to TVID in the C57BL/6 mouse strain.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Animals
- Cardiovirus Infections/immunology
- Cardiovirus Infections/psychology
- Central Nervous System/immunology
- Central Nervous System/pathology
- Central Nervous System/virology
- Demyelinating Autoimmune Diseases, CNS/immunology
- Demyelinating Autoimmune Diseases, CNS/physiopathology
- Demyelinating Autoimmune Diseases, CNS/psychology
- Disease Models, Animal
- Disease Susceptibility/immunology
- Disease Susceptibility/psychology
- Female
- Genetic Predisposition to Disease/genetics
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Mice
- Mice, Inbred C57BL
- Movement Disorders/immunology
- Movement Disorders/physiopathology
- Nerve Fibers, Myelinated/immunology
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Myelinated/virology
- Neurons/immunology
- Neurons/pathology
- Neurons/virology
- Restraint, Physical/adverse effects
- Restraint, Physical/psychology
- Stress, Psychological/immunology
- Theilovirus/immunology
- Viral Load/immunology
Collapse
Affiliation(s)
- Andrew J. Steelman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Tex., USA
| | - Eric Alford
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Tex., USA
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Tex., USA
| | - Thomas H. Welsh
- Department of Animal Science, College of Agriculture, Texas A&M University, College Station, Tex., USA
| | - Mary W. Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, College Station, Tex., USA
| | - C. Jane R. Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Tex., USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Tex., USA
- *Dr. C. Jane Welsh, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 (USA), Tel. +1 979 862 4974, Fax +1 979 847 8981, E-Mail
| |
Collapse
|
25
|
Welsh CJ, Steelman AJ, Mi W, Young CR, Dean DD, Storts R, Welsh, Jr. TH, Meagher MW. Effects of stress on the immune response to Theiler's virus--implications for virus-induced autoimmunity. Neuroimmunomodulation 2010; 17:169-72. [PMID: 20134194 PMCID: PMC2857642 DOI: 10.1159/000258715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Psychological stress is an important factor in susceptibility to many diseases. Our laboratory has been investigating the impact of stress on the susceptibility to Theiler's virus-induced demyelination (TVID), a mouse model of multiple sclerosis. Using immunodominant viral peptides specific for identification of either CD4(+) or CD8(+) T cells, stress reduced IFN-gamma-producing virus-specific CD4(+) and CD8(+) T cells in the spleen and CD8(+) T cells in the CNS. Expression of mRNA for the Th1 transcription factor T-bet and the Th2 transcription factor GATA-3 were decreased in spleen cells isolated from stressed mice. Cytokine production by cells isolated from the CNS or spleens following stimulation with virus indicated that stress decreased both type 1 and type 2 responses. The adverse effects of stress were partially reversed by concurrent RU486 administration but mimicked by dexamethasone, indicating a major role for glucocorticoids. Global stress-induced immunosuppression resulted in higher levels of virus replication and dissemination. The higher viral load subsequently led to an earlier disease onset and more severe clinical and histological signs of demyelinating disease. Our results have important implications for understanding the pathogenesis of MS, and suggest that stressful events during early infection with an agent capable of inducing demyelination may result in immunosuppression and failure to eliminate the pathogen, which in turn may lead to the development of MS.
Collapse
Affiliation(s)
- C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
- *Dr. C. Jane Welsh, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 (USA), Tel. +1 979 862 4974, Fax +1 979 847 8981, E-Mail
| | - Andrew J. Steelman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Wentao Mi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Dana D. Dean
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Ralph Storts
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Thomas H. Welsh, Jr.
- Department of Animal Science, College of Agriculture and Life Sciences, Tex., USA
| | - Mary W. Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, College Station, Tex., USA
| |
Collapse
|