1
|
Zaky DA, Mehny KA, Abdelrahman SS, El-Yamany MF, Kamel AS. Flibanserin conquers murine depressive pseudodementia by amending HPA axis, maladaptive inflammation and AKT/GSK/STAT/BDNF trajectory: Center-staging of the serotonergic/adrenergic circuitry. Eur J Pharmacol 2024; 980:176869. [PMID: 39117265 DOI: 10.1016/j.ejphar.2024.176869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Depressive pseudodementia (DPD) is a debilitating cognitive dysfunction that accompanies major and/or frequent depressive attacks. DPD has gained significant research attention owing to its negative effects on the patients' quality of life and productivity. This study tested the procognitive potential of Flibanserin (FBN), the serotonin (5HT) receptor modulator, against propranolol (PRP), as β/5HT1A receptors blocker. Serving this purpose, female Wistar Albino rats were subjected to chronic unpredictable stress (CUS) and subsequently treated with FBN only (3 mg/kg/day, p.o), PRP only (10 mg/kg/day, p.o), or PRP followed by FBN, using the same doses. FBN ameliorated the behavioral/cognitive alterations and calmed the hypothalamic-pituitary-adrenal (HPA) axis storm by reducing the levels of stress-related hormones, viz, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), corticosterone (CORT) parallel to epinephrine (EPI) hyperstimulation. The maladaptive inflammatory response, comprising of interleukin (IL)-1β/6, and tumor necrosis factor (TNF)-α, was consequently blunted. This was contemporaneous to the partial restoration of the protein kinase-B (AKT)/glycogen synthase kinase (GSK)3β/signal transducer and activator of transcription (STAT)-3 survival trajectory and the reinstatement of the levels of brain derived neurotrophic factor (BDNF). Microscopically, FBN repaired the hippocampal architecture and lessened CD68/GFAP immunoreactivity. Pre-administration of PRP partially abolished FBN effect along the estimated parameters, except for 5HT2A receptor expression and epinephrine level, to prove 5HT1A receptor as a fulcrum initiator of the investigated pathway, while its sole administration worsened the underlying condition. Ultimately, these findings highlight the immense procognitive potential of FBN, offering a new paradigm for halting DPD advancement via synchronizing adrenergic/serotonergic circuitry.
Collapse
Affiliation(s)
- Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | | | - Sahar S Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| |
Collapse
|
2
|
Joaquim LS, Steiner B, Farias B, Machado RS, Danielski LG, Mathias K, Stork S, Lanzzarin E, Novaes L, Bonfante S, Generoso JDS, Alano CG, Lemos I, Dominguini D, Giustina AD, Catalão CHR, Streck EL, Giridharan VV, Dal-Pizzol F, Barichello T, de Bitencourt RM, Petronilho F. Sepsis compromises post-ischemic stroke neurological recovery and is associated with sex differences. Life Sci 2024; 349:122721. [PMID: 38754813 DOI: 10.1016/j.lfs.2024.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
AIMS Infection is a complication after stroke and outcomes vary by sex. Thus, we investigated if sepsis affects brain from ischemic stroke and sex involvement. MAIN METHODS Male and female Wistar rats, were submitted to middle cerebral artery occlusion (MCAO) and after 7 days sepsis to cecal ligation and perforation (CLP). Infarct size, neuroinflammation, oxidative stress, and mitochondrial activity were quantified 24 h after CLP in the prefrontal cortex and hippocampus. Survival and neurological score were assessed up to 15 days after MCAO or 8 days after CLP (starting at 2 h after MCAO) and memory at the end. KEY FINDINGS CLP decreased survival, increased neurological impairments in MCAO females. Early, in male sepsis following MCAO led to increased glial activation in the brain structures, and increased TNF-α and IL-1β in the hippocampus. All groups had higher IL-6 in both tissues, but the hippocampus had lower IL-10. CLP potentiated myeloperoxidase (MPO) in the prefrontal cortex of MCAO male and female. In MCAO+CLP, only male increased MPO and nitrite/nitrate in hippocampus. Males in all groups had protein oxidation in the prefrontal cortex, but only MCAO+CLP in the hippocampus. Catalase decreased in the prefrontal cortex and hippocampus of all males and females, and MCAO+CLP only increased this activity in males. Female MCAO+CLP had higher prefrontal cortex complex activity than males. In MCAO+CLP-induced long-term memory impairment only in females. SIGNIFICANCE The parameters evaluated for early sepsis after ischemic stroke show a worse outcome for males, while females are affected during long-term follow-up.
Collapse
Affiliation(s)
- Larissa Silva Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Beatriz Steiner
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Brenno Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lucineia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil; Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Solange Stork
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Everton Lanzzarin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Linerio Novaes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Jaqueline da Silva Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Carolina Giassi Alano
- Laboratory of Experimental Biomedicine, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Isabela Lemos
- Laboratory of Experimental Biomedicine, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Amanda Della Giustina
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, ON, Canada
| | - Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Emilio Luiz Streck
- Laboratory of Experimental Biomedicine, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil; Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Rafael Mariano de Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
3
|
Li D, Zhang X, Lu Y, Jing L, Hu H, Song Y, Wu S, Zhu W. Post-sepsis psychiatric disorder: Pathophysiology, prevention, and treatment. Neurol Sci 2024; 45:3093-3105. [PMID: 38381393 PMCID: PMC11176234 DOI: 10.1007/s10072-024-07409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Post-sepsis psychiatric disorder, encompassing anxiety, depression, post-traumatic stress disorder and delirium, is a highly prevalent complication secondary to sepsis, resulting in a marked increase in long-term mortality among affected patients. Regrettably, psychiatric impairment associated with sepsis is frequently disregarded by clinicians. This review aims to summarize recent advancements in the understanding of the pathophysiology, prevention, and treatment of post-sepsis mental disorder, including coronavirus disease 2019-related psychiatric impairment. The pathophysiology of post-sepsis psychiatric disorder is complex and is known to involve blood-brain barrier disruption, overactivation of the hypothalamic-pituitary-adrenal axis, neuroinflammation, oxidative stress, neurotransmitter dysfunction, programmed cell death, and impaired neuroplasticity. No unified diagnostic criteria for this disorder are currently available; however, screening scales are often applied in its assessment. Modifiable risk factors for psychiatric impairment post-sepsis include the number of experienced traumatic memories, the length of ICU stay, level of albumin, the use of vasopressors or inotropes, daily activity function after sepsis, and the cumulative dose of dobutamine. To contribute to the prevention of post-sepsis psychiatric disorder, it may be beneficial to implement targeted interventions for these modifiable risk factors. Specific therapies for this condition remain scarce. Nevertheless, non-pharmacological approaches, such as comprehensive nursing care, may provide a promising avenue for treating psychiatric disorder following sepsis. In addition, although several therapeutic drugs have shown preliminary efficacy in animal models, further confirmation of their potential is required through follow-up clinical studies.
Collapse
Affiliation(s)
- Dayong Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xujie Zhang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yuru Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Liang Jing
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Hongjie Hu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Shuhui Wu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
| |
Collapse
|
4
|
Metzker KLL, Mathias K, Machado RS, Bonfante S, Joaquim L, da Silva MG, Daros GC, Lins EMF, Belle F, Alano CG, Matiola RT, da Silva Lemos I, Danielski LG, Gava FF, de Bitencourt RM, Bobinski F, Streck EL, Reus GZ, Petronilho F. Amelioration of Neurochemical Alteration and Memory and Depressive Behavior in Sepsis by Allopurinol, a Tryptophan 2,3-Dioxygenase Inhibitor. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1499-1515. [PMID: 38712373 DOI: 10.2174/0118715273282363240415045927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND In response to inflammation and other stressors, tryptophan is catalyzed by Tryptophan 2,3-Dioxygenase (TDO), which leads to activation of the kynurenine pathway. Sepsis is a serious condition in which the body responds improperly to an infection, and the brain is the inflammation target in this condition. OBJECTIVE This study aimed to determine if the induction of TDO contributes to the permeability of the Blood-Brain Barrier (BBB), mortality, neuroinflammation, oxidative stress, and mitochondrial dysfunction, besides long-term behavioral alterations in a preclinical model of sepsis. METHODS Male Wistar rats with two months of age were submitted to the sepsis model using Cecal Ligation and Perforation (CLP). The rats received allopurinol (Allo, 20 mg/kg, gavage), a TDO inhibitor, or a vehicle once a day for seven days. RESULTS Sepsis induction increased BBB permeability, IL-6 level, neutrophil infiltrate, nitric oxide formation, and oxidative stress, resulting in energy impairment in 24h after CLP and Allo administration restored these parameters. Regarding memory, Allo restored short-term memory impairment and decreased depressive behavior. However, no change in survival rate was verified. CONCLUSION In summary, TDO inhibition effectively prevented depressive behavior and memory impairment 10 days after CLP by reducing acute BBB permeability, neuroinflammation, oxidative stress, and mitochondrial alteration.
Collapse
Affiliation(s)
- Kiuanne Lino Lobo Metzker
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Marina Goulart da Silva
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Guilherme Cabreira Daros
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Elisa Mitkus Flores Lins
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoca, Brazil
| | - Fernanda Belle
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoca, Brazil
| | - Carolina Giassi Alano
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafaela Tezza Matiola
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Isabela da Silva Lemos
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafael Mariano de Bitencourt
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoca, Brazil
| | - Emilio Luiz Streck
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Gislaine Zilli Reus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| |
Collapse
|
5
|
Chen Y, Joo J, Chu JMT, Chang RCC, Wong GTC. Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice. J Neuroinflammation 2023; 20:237. [PMID: 37858199 PMCID: PMC10588063 DOI: 10.1186/s12974-023-02905-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Glucose transporter 1 (GLUT1) is essential for glucose transport into the brain and is predominantly expressed in the cerebral microvasculature. Downregulation of GLUT1 precedes the development of cognitive impairment in neurodegenerative conditions. Surgical trauma induces blood-brain barrier (BBB) disruption, neuroinflammation, neuronal mitochondria dysfunction, and acute cognitive impairment. We hypothesized that surgery reduces the expression of GLUT1 in the BBB that in turn disrupts its integrity and contributes to metabolic dysregulation in the brain that culminates in postoperative cognitive impairment. METHODOLOGY Using an abdominal surgery model in aged WT mice, we assessed the perioperative changes in cognitive performance, tight junction proteins expression, GLUT1 expression, and the associated metabolic effects in the hippocampus. Thereafter, we evaluated the effects of these parameters in aged mice with conditional overexpression of GLUT1, and then again in aged mice with conditional overexpression of GLUT1 with or without prior exposure to the GLUT1 inhibitor ST-31. RESULTS We showed a significant decline in cognitive performance, along with GLUT1 reduction and diminished glucose metabolism, especially in the ATP level in the postoperative mice compared with controls. Overexpression of GLUT1 expression alleviated postoperative cognitive decline and improved metabolic profiles, especially in adenosine, but did not directly restore ATP generation to control levels. GLUT1 inhibition ameliorated the postoperative beneficial effects of GLUT1 overexpression. CONCLUSIONS Surgery-induced GLUT1 reduction significantly contributes to postoperative cognitive deficits in aged mice by affecting glucose metabolism in the brain. It indicates the potential of targeting GLUT1 to ameliorate perioperative neurocognitive disorders.
Collapse
Affiliation(s)
- Ying Chen
- Department of Anaesthesiology, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room K424, 4Th Floor, K Block, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, L4-49, Laboratory Block, Faculty of Medicine Building, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jin Joo
- Department of Anaesthesiology, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room K424, 4Th Floor, K Block, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China
- Department of Anaesthesia and Pain Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodaero, Seocho-Gu, Seoul, 06591, Korea
| | - John Man-Tak Chu
- Department of Anaesthesiology, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room K424, 4Th Floor, K Block, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, L4-49, Laboratory Block, Faculty of Medicine Building, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room K424, 4Th Floor, K Block, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
6
|
Ghiasi F, Mesgari-Abbasi M, Khordadmehr M, Imani S, Hosseinzadeh F. Chronic Kombucha Beverage Consumption Attenuates Inflammatory Markers and Histopathology of Brain Tissue in Transnet Global Brain Ischemia in Rats. Neurochem Res 2023; 48:3202-3211. [PMID: 37402035 DOI: 10.1007/s11064-023-03980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
There is evidence that kombucha beverage (KB), a traditional fermented beverage, has a preventive effect on experimental brain ischemia. According to our previous studies, pre-treatment of KB attenuates brain edema and improves motor skills and oxidative stress in a rat model of global brain ischemia. This study was designed to evaluate the effects of the pre-treatment of KB, as a novel agent, on pro-inflammatory parameters and brain histopathology changes following global brain ischemia. Adult male Wistar rats were randomly divided into the sham, the control, and the groups treated with kombucha (KB1 and KB2 groups). KB at doses 1 and 2 mL/kg was prescribed two-week consecutive days before induction of global brain ischemia. Global brain ischemia was induced by blocking common carotid arteries for 60 min and the following reperfusion by 24 h. The serum and brain levels of tumor necrosis factor-α(TNF-α), IL-1β, histopathological change, and infarct volume are determined using the ELISA, hematoxylin and eosin (H&E), and 2,3,5-triphenyl tetrazolium chloride (TTC) staining, respectively. This study indicated that pre-treatment of KB significantly reduced infarct volume, the serum, and brain levels of TNF-α and IL-1β. The histopathological finding of the brain tissue confirmed a protective role for pre-treatment KB in the ischemic rats. Thus, the present study showed that the beneficial effects of KB pre-treatment on brain ischemic may be mediated by decreasing pro-inflammatory parameters.
Collapse
Affiliation(s)
- Fariba Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Imani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fezzeh Hosseinzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Physiology, Sarab Faculty of Medicine Sciences, Sarab, Iran.
| |
Collapse
|
7
|
Ji MH, Gao YZ, Shi CN, Wu XM, Yang JJ. Acute and long-term cognitive impairment following sepsis: mechanism and prevention. Expert Rev Neurother 2023; 23:931-943. [PMID: 37615511 DOI: 10.1080/14737175.2023.2250917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Sepsis is a severe host response to infection, which induces both acute and long-term cognitive impairment. Despite its high incidence following sepsis, the underlying mechanisms remain elusive and effective treatments are not available clinically. AREA COVERED This review focuses on elucidating the pathological mechanisms underlying cognitive impairment following sepsis. Specifically, the authors discuss the role of systemic inflammation response, blood-brain barrier disruption, neuroinflammation, mitochondrial dysfunction, neuronal dysfunction, and Aβ accumulation and tau phosphorylation in cognitive impairment after sepsis. Additionally, they review current strategies to ameliorate cognitive impairment. EXPERT OPINION Potential interventions to reduce cognitive impairment after sepsis include earlier diagnosis and effective infection control, hemodynamic homeostasis, and adequate brain perfusion. Furthermore, interventions to reduce inflammatory response, reactive oxygen species, blood-brain barrier disruption, mitochondrial dysfunction, neuronal injury or death could be beneficial. Implementing strategies to minimize delirium, sleep disturbance, stress factors, and immobility are also recommended. Furthermore, avoiding neurotoxins and implementing early rehabilitation may also be important for preventing cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Na Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Miao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Zuccarini M, Pruccoli L, Balducci M, Giuliani P, Caciagli F, Ciccarelli R, Di Iorio P. Influence of Guanine-Based Purines on the Oxidoreductive Reactions Involved in Normal or Altered Brain Functions. J Clin Med 2023; 12:jcm12031172. [PMID: 36769818 PMCID: PMC9917437 DOI: 10.3390/jcm12031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Martina Balducci
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
9
|
Alves VS, da Silva JP, Rodrigues FC, Araújo SMB, Gouvêa AL, Leite-Aguiar R, Santos SACS, da Silva MSP, Ferreira FS, Marques EP, dos Passos BABR, Maron-Gutierrez T, Kurtenbach E, da Costa R, Figueiredo CP, Wyse ATS, Coutinho-Silva R, Savio LEB. P2X7 receptor contributes to long-term neuroinflammation and cognitive impairment in sepsis-surviving mice. Front Pharmacol 2023; 14:1179723. [PMID: 37153798 PMCID: PMC10160626 DOI: 10.3389/fphar.2023.1179723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: Sepsis is defined as a multifactorial debilitating condition with high risks of death. The intense inflammatory response causes deleterious effects on the brain, a condition called sepsis-associated encephalopathy. Neuroinflammation or pathogen recognition are able to stress cells, resulting in ATP (Adenosine Triphosphate) release and P2X7 receptor activation, which is abundantly expressed in the brain. The P2X7 receptor contributes to chronic neurodegenerative and neuroinflammatory diseases; however, its function in long-term neurological impairment caused by sepsis remains unclear. Therefore, we sought to evaluate the effects of P2X7 receptor activation in neuroinflammatory and behavioral changes in sepsis-surviving mice. Methods: Sepsis was induced in wild-type (WT), P2X7-/-, and BBG (Brilliant Blue G)-treated mice by cecal ligation and perforation (CLP). On the thirteenth day after the surgery, the cognitive function of mice was assessed using the novel recognition object and Water T-maze tests. Acetylcholinesterase (AChE) activity, microglial and astrocytic activation markers, and cytokine production were also evaluated. Results: Initially, we observed that both WT and P2X7-/- sepsis-surviving mice showed memory impairment 13 days after surgery, once they did not differentiate between novel and familiar objects. Both groups of animals presented increased AChE activity in the hippocampus and cerebral cortex. However, the absence of P2X7 prevented partly this increase in the cerebral cortex. Likewise, P2X7 absence decreased ionized calcium-binding protein 1 (Iba-1) and glial fibrillary acidic protein (GFAP) upregulation in the cerebral cortex of sepsis-surviving animals. There was an increase in GFAP protein levels in the cerebral cortex but not in the hippocampus of both WT and P2X7-/- sepsis-surviving animals. Pharmacological inhibition or genetic deletion of P2X7 receptor attenuated the production of Interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), and Interleukin-10 (IL-10). Conclusion: The modulation of the P2X7 receptor in sepsis-surviving animals may reduce neuroinflammation and prevent cognitive impairment due to sepsis-associated encephalopathy, being considered an important therapeutic target.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Pereira da Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Cristina Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - André Luiz Gouvêa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Fernanda Silva Ferreira
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Peil Marques
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson da Costa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Angela T. S. Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luiz Eduardo Baggio Savio,
| |
Collapse
|
10
|
Birder LA, Jackson EK. Purine nucleoside phosphorylase as a target to treat age-associated lower urinary tract dysfunction. Nat Rev Urol 2022; 19:681-687. [PMID: 36071153 PMCID: PMC9842101 DOI: 10.1038/s41585-022-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
The lower urinary tract (LUT), including the bladder, urethra and external striated muscle, becomes dysfunctional with age; consequently, many older individuals suffer from lower urinary tract disorders (LUTDs). By compromising urine storage and voiding, LUTDs degrade quality of life for millions of individuals worldwide. Treatments for LUTDs have been disappointing, frustrating both patients and their physicians; however, emerging evidence suggests that partial inhibition of the enzyme purine nucleoside phosphorylase (PNPase) with 8-aminoguanine (an endogenous PNPase inhibitor that moderately reduces PNPase activity) reverses age-associated defects in the LUT and restores the LUT to that of a younger state. Thus, 8-aminoguanine improves LUT biochemistry, structure and function by rebalancing the LUT purine metabolome, making 8-aminoguanine a novel potential treatment for LUTDs.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Guanosine as a promising target for fast-acting antidepressant responses. Pharmacol Biochem Behav 2022; 218:173422. [PMID: 35732211 DOI: 10.1016/j.pbb.2022.173422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
Although the rapid-onset and sustained antidepressant responses elicited by ketamine have gained considerable attention in recent years, it has some knock-on effects that limit its widespread clinical use. Therefore, ketamine is considered the prototype for the new generation of glutamate-based rapid-acting antidepressants. Within this context, it has been demonstrated that guanosine, an endogenous guanine-based purine, has overlapping mechanisms of action with ketamine and is effective in eliciting fast antidepressant-like responses and even potentiating ketamine's actions in preclinical studies. Here, we review the recent findings regarding the ability of guanosine to produce rapid-acting antidepressant-like effects and we provide an overview of the molecular mechanisms underlying its antidepressant-like actions. Moreover, the neurobiological mechanisms underpinning the ability of guanosine in boosting the antidepressant-like and pro-synaptogenic effects elicited by ketamine are also reported. Taken together, this review opens perspectives for the use of guanosine alone or in combination with ketamine for the management of treatment-resistant depression.
Collapse
|
12
|
Li Y, Ji M, Yang J. Current Understanding of Long-Term Cognitive Impairment After Sepsis. Front Immunol 2022; 13:855006. [PMID: 35603184 PMCID: PMC9120941 DOI: 10.3389/fimmu.2022.855006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is recognized as a life-threatening multi-organ dysfunction resulting from a dysregulated host response to infection. Although the incidence and mortality of sepsis decrease significantly due to timely implementation of anti-infective and support therapies, accumulating evidence suggests that a great proportion of survivors suffer from long-term cognitive impairment after hospital discharge, leading to decreased life quality and substantial caregiving burdens for family members. Several mechanisms have been proposed for long-term cognitive impairment after sepsis, which are not mutually exclusive, including blood-brain barrier disruption, neuroinflammation, neurotransmitter dysfunction, and neuronal loss. Targeting these critical processes might be effective in preventing and treating long-term cognitive impairment. However, future in-depth studies are required to facilitate preventive and/or treatment strategies for long-term cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Ying Li
- Department of Anesthesiology, Jiangyin Hospital, Affiliated to Southeast University Medical School, Jiangyin, China
| | - Muhuo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Zaky DA, Eldehna WM, El Kerdawy AM, Abdallah DM, El Abhar HS, Wadie W. Recombinant human growth hormone improves the immune status of rats with septic encephalopathy: The role of VEGFR2 in the prevalence of endoplasmic reticulum stress repair module. Int Immunopharmacol 2021; 101:108370. [PMID: 34794887 DOI: 10.1016/j.intimp.2021.108370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022]
Abstract
Septic encephalopathy results from the intense reaction of the immune system to infection. The role of growth hormone (GH) signaling in maintaining brain function is well established; however, the involvement of the vascular endothelial growth factor receptor-2 (VEGFR2) in the potential modulatory effect of GH on septic encephalopathy-associated endoplasmic reticulum stress (ERS) and blood-brain barrier (BBB) permeability is not well-understood. Therefore, after the induction of mid-grade sepsis by cecal ligation/perforation, rats were subcutaneously injected with recombinant human GH (rhGH)/somatropin alone or preceded by the VEGFR2 antagonist WAG-4S for 7 days. rhGH/somatropin reduced bodyweight loss and plasma endotoxin, maintained the hyperthermic state, and improved motor/memory functions. Additionally, rhGH/somatropin increased the junctional E-cadherin and β-catenin pool in the cerebral cortex to enhance the BBB competency, effects that were abolished by VEGFR2 blockade. Also, it activated cortical VEGFR2/mammalian target of the Rapamycin (mTOR) axis to mitigate ERS. The latter was reflected by the deactivation of the inositol-requiring enzyme-1α (IRE1α)/spliced X-box binding protein-1 (XBP1s) trajectory and the reduction in the protein levels of the death markers, C/EBP homologous protein (CHOP)/growth arrest and DNA damage-153 (GADD153), c-jun-N-terminal kinase (JNK), and caspase-3 with the simultaneous augmentation of expression of the unfolded protein response transducer proteinkinaseR-like ERkinase (PERK). Furthermore, rhGH/somatropin suppressed the phosphorylation of eukaryotic initiation factor-2α (eIF2α), upregulated the gene expression of activating transcription factor-4 (ATF4), GADD34, and glucose-regulated protein-78/binding immunoglobulin (GRP78/Bip). Moreover, it increased the glutathione level and reduced lipid peroxidation in the cerebral cortex. The VEGFR2 antagonist reversed the effect of rhGH/somatropin on PERK and IRE1α and boosted the apoptotic markers but neither affected p-eIF2α nor GADD34. Hence, we conclude that VEGFR2 activation by rhGH/somatropin plays a crucial role in assembling the BBB adherens junctions via its antioxidant capacity, ERS relief, and reducing endotoxemia in septic encephalopathy.
Collapse
Affiliation(s)
- Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| | - Hanan S El Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Future University in Egypt, Cairo, P.O. Box 11835, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| |
Collapse
|
14
|
Novochadlo M, Goldim MP, Bonfante S, Joaquim L, Mathias K, Metzker K, Machado RS, Lanzzarin E, Bernades G, Bagio E, Garbossa L, de Oliveira Junior AN, da Rosa N, Generoso J, Fortunato JJ, Barichello T, Petronilho F. Folic acid alleviates the blood brain barrier permeability and oxidative stress and prevents cognitive decline in sepsis-surviving rats. Microvasc Res 2021; 137:104193. [PMID: 34062190 DOI: 10.1016/j.mvr.2021.104193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 02/09/2023]
Abstract
Sepsis is a complication of an infection which imbalance the normal regulation of several organ systems, including the central nervous system (CNS). Evidence points towards inflammation and oxidative stress as major steps associated with brain dysfunction in sepsis. Thus, we investigated the folic acid (FA) effect as an important antioxidant compound on acute brain dysfunction in rats and long term cognitive impairment and survival. Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) or sham (control) and treated orally with FA (10 mg/kg after CLP) or vehicle (veh). Animals were divided into sham + veh, sham + FA, CLP + veh and CLP + FA groups. Twenty-four hours after surgery, the hippocampus and prefrontal cortex were obtained and assayed for levels of blood brain barrier (BBB) permeability, nitrite/nitrate concentration, myeloperoxidase (MPO) activity, thiobarbituric acid reactive species (TBARS) formation and protein carbonyls. Survival was performed during 10 days after surgery and memory was evaluated. FA reduced BBB permeability, MPO activity in hippocampus and pre frontal cortex in 24 h and lipid peroxidation in hippocampus and improves the survival rate after sepsis. Long term cognitive improvement was verified with FA in septic rats compared with CLP + veh. Our data demonstrates that FA reduces the memory impairment in 10 days after sepsis and mortality in part by decreasing BBB permeability and oxidative stress parameters in the brain.
Collapse
Affiliation(s)
- Michele Novochadlo
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pereira Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Kiuanne Metzker
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Everton Lanzzarin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Gabriela Bernades
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Erick Bagio
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leandro Garbossa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Jucelia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
15
|
De Sousa VL, Araújo SB, Antonio LM, Silva-Queiroz M, Colodeti LC, Soares C, Barros-Aragão F, Mota-Araujo HP, Alves VS, Coutinho-Silva R, Savio LEB, Ferreira ST, Da Costa R, Clarke JR, Figueiredo CP. Innate immune memory mediates increased susceptibility to Alzheimer's disease-like pathology in sepsis surviving mice. Brain Behav Immun 2021; 95:287-298. [PMID: 33838250 DOI: 10.1016/j.bbi.2021.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Sepsis survivors show long-term impairments, including alterations in memory and executive function. Evidence suggests that systemic inflammation contributes to the progression of Alzheimeŕs disease (AD), but the mechanisms involved in this process are still unclear. Boosted (trained) and diminished (tolerant) innate immune memory has been described in peripheral immune cells after sepsis. However, the occurrence of long-term innate immune memory in the post-septic brain is fully unexplored. Here, we demonstrate that sepsis causes long-lasting trained innate immune memory in the mouse brain, leading to an increased susceptibility to Aβ oligomers (AβO), central neurotoxins found in AD. Hippocampal microglia from sepsis-surviving mice shift to an amoeboid/phagocytic morphological profile when exposed to low amounts of AβO, and this event was accompanied by the upregulation of several pro-inflammatory proteins (IL-1β, IL-6, INF-γ and P2X7 receptor) in the mouse hippocampus, suggesting that a trained innate immune memory occurs in the brain after sepsis. Brain exposure to low amounts of AβO increased microglial phagocytic ability against hippocampal synapses. Pharmacological blockage of brain phagocytic cells or microglial depletion, using minocycline and colony stimulating factor 1 receptor inhibitor (PLX3397), respectively, prevents cognitive dysfunction induced by AβO in sepsis-surviving mice. Altogether, our findings suggest that sepsis induces a long-lasting trained innate immune memory in the mouse brain, leading to an increased susceptibility to AβO-induced neurotoxicity and cognitive impairment.
Collapse
Affiliation(s)
- Virginia L De Sousa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Suzana B Araújo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Leticia M Antonio
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Mariana Silva-Queiroz
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Lilian C Colodeti
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Carolina Soares
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Fernanda Barros-Aragão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Hannah P Mota-Araujo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Vinícius S Alves
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Luiz Eduardo B Savio
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Sergio T Ferreira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Robson Da Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | - Claudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| |
Collapse
|
16
|
Chojnowski K, Opielka M, Nazar W, Kowianski P, Smolenski RT. Neuroprotective Effects of Guanosine in Ischemic Stroke-Small Steps towards Effective Therapy. Int J Mol Sci 2021; 22:6898. [PMID: 34199004 PMCID: PMC8268871 DOI: 10.3390/ijms22136898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Guanosine (Guo) is a nucleotide metabolite that acts as a potent neuromodulator with neurotrophic and regenerative properties in neurological disorders. Under brain ischemia or trauma, Guo is released to the extracellular milieu and its concentration substantially raises. In vitro studies on brain tissue slices or cell lines subjected to ischemic conditions demonstrated that Guo counteracts destructive events that occur during ischemic conditions, e.g., glutaminergic excitotoxicity, reactive oxygen and nitrogen species production. Moreover, Guo mitigates neuroinflammation and regulates post-translational processing. Guo asserts its neuroprotective effects via interplay with adenosine receptors, potassium channels, and excitatory amino acid transporters. Subsequently, guanosine activates several prosurvival molecular pathways including PI3K/Akt (PI3K) and MEK/ERK. Due to systemic degradation, the half-life of exogenous Guo is relatively low, thus creating difficulty regarding adequate exogenous Guo distribution. Nevertheless, in vivo studies performed on ischemic stroke rodent models provide promising results presenting a sustained decrease in infarct volume, improved neurological outcome, decrease in proinflammatory events, and stimulation of neuroregeneration through the release of neurotrophic factors. In this comprehensive review, we discuss molecular signaling related to Guo protection against brain ischemia. We present recent advances, limitations, and prospects in exogenous guanosine therapy in the context of ischemic stroke.
Collapse
Affiliation(s)
- Karol Chojnowski
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Mikolaj Opielka
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdańsk, 3A Sklodowskiej-Curie Street, 80-210 Gdansk, Poland
| | - Wojciech Nazar
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Przemyslaw Kowianski
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211 Gdańsk, Poland;
- Institute of Health Sciences, Pomeranian University of Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
17
|
Kundu D, Dubey VK. Purines and Pyrimidines: Metabolism, Function and Potential as Therapeutic Options in Neurodegenerative Diseases. Curr Protein Pept Sci 2021; 22:170-189. [PMID: 33292151 DOI: 10.2174/1389203721999201208200605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/01/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
Various neurodegenerative disorders have various molecular origins but some common molecular mechanisms. In the current scenario, there are very few treatment regimens present for advanced neurodegenerative diseases. In this context, there is an urgent need for alternate options in the form of natural compounds with an ameliorating effect on patients. There have been individual scattered experiments trying to identify potential values of various intracellular metabolites. Purines and Pyrimidines, which are vital molecules governing various aspects of cellular biochemical reactions, have been long sought as crucial candidates for the same, but there are still many questions that go unanswered. Some critical functions of these molecules associated with neuromodulation activities have been identified. They are also known to play a role in foetal neurodevelopment, but there is a lacuna in understanding their mechanisms. In this review, we have tried to assemble and identify the importance of purines and pyrimidines, connecting them with the prevalence of neurodegenerative diseases. The leading cause of this class of diseases is protein misfolding and the formation of amyloids. A direct correlation between loss of balance in cellular homeostasis and amyloidosis is yet an unexplored area. This review aims at bringing the current literature available under one umbrella serving as a foundation for further extensive research in this field of drug development in neurodegenerative diseases.
Collapse
Affiliation(s)
- Debanjan Kundu
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP - 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP - 221005, India
| |
Collapse
|
18
|
Dal-Pizzol F, de Medeiros GF, Michels M, Mazeraud A, Bozza FA, Ritter C, Sharshar T. What Animal Models Can Tell Us About Long-Term Psychiatric Symptoms in Sepsis Survivors: a Systematic Review. Neurotherapeutics 2021; 18:1393-1413. [PMID: 33410107 PMCID: PMC8423874 DOI: 10.1007/s13311-020-00981-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lower sepsis mortality rates imply that more patients are discharged from the hospital, but sepsis survivors often experience sequelae, such as functional disability, cognitive impairment, and psychiatric morbidity. Nevertheless, the mechanisms underlying these long-term disabilities are not fully understood. Considering the extensive use of animal models in the study of the pathogenesis of neuropsychiatric disorders, it seems adopting this approach to improve our knowledge of postseptic psychiatric symptoms is a logical approach. With the purpose of gathering and summarizing the main findings of studies using animal models of sepsis-induced psychiatric symptoms, we performed a systematic review of the literature on this topic. Thus, 140 references were reviewed, and most of the published studies suggested a time-dependent recovery from behavior alterations, despite the fact that some molecular alterations persist in the brain. This review reveals that animal models can be used to understand the mechanisms that underlie anxiety and depression in animals recovering from sepsis.
Collapse
Affiliation(s)
- Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | | | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | - Aurélien Mazeraud
- Laboratory of Experimental Neuropathology, Institut Pasteur, 75015 Paris, France
| | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), 21040-360 Rio de Janeiro, Brazil
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, 75015 Paris, France
- Laboratory of Experimental Neuropathology, Institut Pasteur, 75015 Paris, France
- Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, 75015 Paris, France
| |
Collapse
|
19
|
Jianjun Z, Baochun Z, Limei M, Lijun L. Exploring the beneficial role of ROCK inhibitors in sepsis-induced cerebral and cognitive injury in rats. Fundam Clin Pharmacol 2021; 35:882-891. [PMID: 33440039 DOI: 10.1111/fcp.12645] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
Sepsis-induced cerebral injury is a systemic inflammatory response associated with high mortality rate and cognitive impairment. Rho/ROCK pathway activation is involved in initiating the inflammatory response and promoting cerebral dysfunction. The present study explored the beneficial effects of ROCK inhibitors in sepsis-induced cerebral injury and cognitive impairment in rats. The model of sepsis was established by employing cecal ligation and puncture (CLP). CLP significantly augmented cerebral injury assessed in terms of intensified activity of caspases-3 and decrease in BCL-2 in the brain along with the release of S100β and NSE, and assessed on day 7. Significant increase in inflammatory biomarkers IL-1β and TNF-α as well as increase in the protein levels of ROCK1 and ROCK2 was observed in the brain. A significant decrease in learning and memory ability was observed because of increased escape latency time on day 4 and significant decrease in time spent in the target quadrant on day 7 in CLP-subjected rats. Administration of nonselective ROCK inhibitor, fasudil (10 and 30 mg/kg), and selective ROCK1 inhibitor, Y27632 (10 and 30 mg/kg), attenuated the sepsis-induced increase in the S100β and NSE, IL-1β, TNF-α, BCL-2, caspase-3, ROCK1 and ROCK2 in septic rats and significantly memory and learning.The beneficial effects of Y27632 and fasudil were comparable suggesting the key role of ROCK1 in sepsis-induced deleterious effects. It may be concluded that sepsis may increase cerebral and cognitive injury through Rho-kinase/ROCK pathway in septic rats, and ROCK inhibitors may be potentially employed to overcome sepsis-induced deleterious effects in the brain.
Collapse
Affiliation(s)
- Zhu Jianjun
- Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhou Baochun
- Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ma Limei
- Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Lijun
- Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Ji M, Lee H, Kim Y, Seo C, Oh S, Jung ID, Park J, Paik M. Metabolomic Study of Normal and Modified Nucleosides in the Urine of Mice with Lipopolysaccharide‐Induced Sepsis by
LC–MS
/
MS. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Moongi Ji
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| | - Hyeon‐Seong Lee
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| | - Youngbae Kim
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| | - Chan Seo
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| | - Songjin Oh
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| | | | - Jae‐Hyun Park
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
- DanDi Bioscience Seoul Republic of Korea
| | - Man‐Jeong Paik
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| |
Collapse
|
21
|
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T, Dal-Pizzol F, Ritter C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci Biobehav Rev 2020; 124:386-404. [PMID: 33309906 DOI: 10.1016/j.neubiorev.2020.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023]
Abstract
Survivors of sepsis often develop long-term cognitive impairments. This review aimed at exploring the results of the behavioral tools and tests which have been used to evaluate cognitive dysfunction in different animal models of sepsis. Two independent investigators searched for sepsis- and cognition-related keywords. 6323 publications were found, of which 355 were selected based on their title, and 226 of these were chosen based on manuscript review. LPS was used to induce sepsis in 171 studies, while CLP was used in 55 studies. Inhibitory avoidance was the most widely used method for assessing aversive memory, followed by fear conditioning and continuous multi-trial inhibitory avoidance. With regard to non-aversive memory, most studies used the water maze, open-field, object recognition, Y-maze, plus maze, and radial maze tests. Both CLP and LPS models of sepsis were effective in inducing short- and long-term behavioral impairment. Our findings help elucidate the mechanisms involved in the pathophysiology of sepsis-induced cognitive changes, as well as the available methods and tests used to study this in animal models.
Collapse
Affiliation(s)
- Felipe Figueredo Savi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Alexandre de Oliveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | | | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil.
| |
Collapse
|
22
|
Danielski LG, Giustina AD, Bonfante S, de Souza Goldim MP, Joaquim L, Metzker KL, Biehl EB, Vieira T, de Medeiros FD, da Rosa N, Generoso J, Simoes L, Farias HR, da Silva Lemos I, Giridharan V, Rezin GT, Fortunato JJ, Bitencourt RM, Streck EL, Dal-Pizzol F, Barichello T, Petronilho F. NLRP3 Activation Contributes to Acute Brain Damage Leading to Memory Impairment in Sepsis-Surviving Rats. Mol Neurobiol 2020; 57:5247-5262. [PMID: 32870491 DOI: 10.1007/s12035-020-02089-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Sepsis survivors present acute and long-term cognitive impairment and the pathophysiology of neurological dysfunction in sepsis involves microglial activation. Recently, the involvement of cytosolic receptors capable of forming protein complexes called inflammasomes have been demonstrated to perpetuate neuroinflammation. Thus, we investigated the involvement of the NLRP3 inflammasome activation on early and late brain changes in experimental sepsis. Two-month-old male Wistar rats were submitted to the sepsis model by cecal ligation and perforation (CLP group) or laparotomy only (sham group). Immediately after surgery, the animals received saline or NLRP3 inflammasome formation inhibitor (MCC950, 140 ng/kg) intracerebroventricularly. Prefrontal cortex and hippocampus were isolated for cytokine analysis, microglial and astrocyte activation, oxidative stress measurements, nitric oxide formation, and mitochondrial respiratory chain activity at 24 h after CLP. A subset of animals was followed for 10 days for survival assessment, and then behavioral tests were performed. The administration of MCC950 restored the elevation of IL-1β, TNF-α, IL-6, and IL-10 cytokine levels in the hippocampus. NLRP3 receptor levels increased in the prefrontal cortex and hippocampus at 24 h after sepsis, associated with microglial, but not astrocyte, activation. MCC950 reduced oxidative damage to lipids and proteins as well as preserved the activity of the enzyme SOD in the hippocampus. Mitochondrial respiratory chain activity presented variations in both structures studied. MCC950 reduced microglial activation, decreased acute neurochemical and behavioral alteration, and increased survival after experimental sepsis.
Collapse
Affiliation(s)
- Lucineia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Kiuanne Lobo Metzker
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Erica Bernardo Biehl
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Thaynan Vieira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fabiana Durante de Medeiros
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lutiana Simoes
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Hémelin Resende Farias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Isabela da Silva Lemos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Vijayasree Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucelia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Rafael Mariano Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Emilio Luiz Streck
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
23
|
Nonose Y, Pieper LZ, da Silva JS, Longoni A, Apel RV, Meira-Martins LA, Grings M, Leipnitz G, Souza DO, de Assis AM. Guanosine enhances glutamate uptake and oxidation, preventing oxidative stress in mouse hippocampal slices submitted to high glutamate levels. Brain Res 2020; 1748:147080. [PMID: 32866546 DOI: 10.1016/j.brainres.2020.147080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023]
Abstract
Glutamate (Glu) is the main mammalian brain neurotransmitter. Concerning the glutamatergic neurotransmission, excessive levels of glutamate in the synaptic cleft are extremally harmful. This phenomenon, named as excitotoxicity is involved in various acute and chronic brain diseases. Guanosine (GUO), an endogenous guanine nucleoside, possesses neuroprotective effects in several experimental models of glutamatergic excitotoxicity, an effect accompanied by an increase in astrocytic glutamate uptake. Therefore, the objective of this study was to investigate the involvement of an additional putative parameter, glutamate oxidation to CO2, involved in ex-vivo GUO neuroprotective effects in mouse hippocampal slices submitted to glutamatergic excitotoxicity. Mice were sacrificed by decapitation, the hippocampi were removed and sliced. The slices were incubated for various times and concentrations of Glu and GUO. First, the concentration of Glu that produced an increase in L-[14C(U)]-Glu oxidation to CO2 without cell injury was determined at different time points (between 0 and 90 min); 1000 μM Glu increased Glu oxidation between 30 and 60 min of incubation without cell injury. Under these conditions (Glu concentration and incubation time), 100 μM GUO increased Glu oxidation (35%). Additionally, 100 μM GUO increased L-[3,4-3H]-glutamate uptake (45%) in slices incubated with 1000 μM Glu (0-30 min). Furthermore, 1000 μM Glu increased reactive species levels, SOD activity, and decreased GPx activity, and GSH content after 30 and 60 min; 100 μM GUO prevented these effects. This is the first study demonstrating that GUO simultaneously promoted an increase in the uptake and utilization of Glu in excitotoxicity-like conditions preventing redox imbalance.
Collapse
Affiliation(s)
- Y Nonose
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - L Z Pieper
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, RS 96015-560, Brazil
| | - J S da Silva
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - A Longoni
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, RS 96015-560, Brazil
| | - R V Apel
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - L A Meira-Martins
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - M Grings
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - G Leipnitz
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - D O Souza
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil.
| | - A M de Assis
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, RS 96015-560, Brazil
| |
Collapse
|
24
|
Zaky DA, Wadie W, Eldehna WM, El Kerdawy AM, Abdallah DM, El Abhar HS. Modulation of endoplasmic reticulum stress response in gut-origin encephalopathy: Impact of vascular endothelial growth factor receptor-2 manipulation. Life Sci 2020; 252:117654. [PMID: 32277979 DOI: 10.1016/j.lfs.2020.117654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/09/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Septic encephalopathy, the most frequent complication of sepsis, is orchestrated by a complex interplay of signals that leads to high mortality rates among intensive care unit patients. However, the role of the vascular endothelial growth factor receptor-2 (VEGFR2) in endoplasmic reticulum stress response (ERSR), during septic encephalopathy, is still elusive. AIM This study was aimed to examine the effect of an in-house designed/synthesized VEGFR2 antagonist, named WAG4S, on septic encephalopathy using cecal ligation and perforation (CLP). MAIN METHODS Rats were intraperitoneally injected with WAG-4S (1 mg/kg/d) for 7 days post-CLP. KEY FINDINGS In septic animals, VEGFR2 antagonism declined the expression of cortical p-VEGFR2 and p-mammalian target of rapamycin complex-1 (p-mTORC1). It also worsened the behavioral and histopathological alterations beyond CLP. However, and contrary to CLP, WAG-4S decreased the p-protein kinase R-like ER kinase (p-PERK) and eukaryotic initiation factor-2α (p-eIF2α) expression. Moreover, VEGFR2 blockade upregulated the mRNA expression of activating transcription factor-4 (ATF4), binding immunoglobulin protein/glucose-regulated protein-78 (Bip/GRP78), growth arrest and DNA damage-34 (GADD34) and spliced X-box binding protein-1 (XBP1s) above CLP. Similarly, it boosted inositol requiring enzyme-1α (IRE1α) activation and redox imbalance. In the same context, WAG-4S augmented the protein levels of CLP-induced ERSR apoptotic markers, namely C/EBP homologous protein (CHOP/GADD153), c-jun N-terminal kinase (JNK) and caspase-3. SIGNIFICANCE In conclusion, the PERK/eIF2α axis inhibition, during septic encephalopathy, is VEGFR2-independent, whereas the activated IRE1α/XBP1s/CHOP/JNK/caspase-3 cue promotes the ERSR execution module through VEGFR2 inhibition. This has turned VEGFR2 into a potential therapeutic target for ameliorating such an ailment.
Collapse
Affiliation(s)
- Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt.
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| | - Hanan S El Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, P.O. Box 11835, Egypt
| |
Collapse
|
25
|
Wang X, Xu X, Guo Y, Huang P, Ha Y, Zhang R, Bai Y, Cui X, He S, Liu Q. Qiang Xin 1 Formula Suppresses Excessive Pro-Inflammatory Cytokine Responses and Microglia Activation to Prevent Cognitive Impairment and Emotional Dysfunctions in Experimental Sepsis. Front Pharmacol 2020; 11:579. [PMID: 32457609 PMCID: PMC7225281 DOI: 10.3389/fphar.2020.00579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Sepsis commonly leads to acute and long-term cognitive and affective impairments which are associated with increased mortality in patients. Neuroinflammation characterized by excessive cytokine release and immune cell activation underlies the behavioral changes associated with sepsis. We previously reported that the administration of a traditional Chinese herbal Qiang Xin 1 (QX1) formula improves survival in septic mice. This study was performed to better understand the effects and the mechanisms of QX1 formula treatment on behavioral changes in a preclinical septic model induced by cecal ligation and puncture. Oral administration of QX1 formula significantly improved survival, alleviated overall cognitive impairment and emotional dysfunction as assessed by the Morris water maze, novel object recognition testing, elevated plus maze and open field testing in septic mice. QX1 formula administration dramatically inhibited short and long-term excessive pro-inflammatory cytokine production both peripherally and centrally, and was accompanied by diminished microglial activation in septic mice. Biological processes including synaptic transmission, microglia cell activation, cytokine production, microglia cell polarization, as well as inflammatory responses related to signaling pathways including the MAPK signaling pathway and the NF-κB signaling pathway were altered prominently by QX1 formula treatment in the hippocampus of septic mice. In addition, QX1 formula administration decreased the expression of the M1 phenotype microglia gene markers such as Cd32, Socs3, and Cd68, while up-regulated M2 phenotype marker genes including Myc, Arg-1, and Cd206 as revealed by microarray analysis and Real-time PCR. In conclusion, QX1 formula administration attenuates cognitive deficits, emotional dysfunction, and reduces neuroinflammatory responses to improve survival in septic mice. Diminished microglial activation and altered microglial polarization are involved in the neuroprotective mechanism of QX1 formula.
Collapse
Affiliation(s)
- Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Po Huang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Yanxiang Ha
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Rui Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Yunjing Bai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Xuran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| |
Collapse
|
26
|
Florentino D, Della Giustina A, de Souza Goldim MP, Danielski LG, de Oliveira Junior AN, Joaquim L, Bonfante S, Biehl E, da Rosa N, Fernandes D, Gava FF, Michels M, Fortunato JJ, Réus GZ, S Valvassori S, Quevedo J, Dal-Pizzol F, Barichello T, Petronilho F. Early life neuroimmune challenge protects the brain after sepsis in adult rats. Neurochem Int 2020; 135:104712. [DOI: 10.1016/j.neuint.2020.104712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
|
27
|
The Role of Secretase Pathway in Long-term Brain Inflammation and Cognitive Impairment in an Animal Model of Severe Sepsis. Mol Neurobiol 2019; 57:1159-1169. [DOI: 10.1007/s12035-019-01808-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/30/2019] [Indexed: 01/17/2023]
|
28
|
Petronilho F, Tenfen L, Della Giustina A, Joaquim L, Novochadlo M, de Oliveira Junior AN, Bagio E, Goldim MPDS, de Carli RJ, Bonfante SRSDA, Metzker KLL, Muttini S, Dos Santos TM, de Oliveira MP, Engel NA, Rezin GT, Kanis LA, Barichello T. Gold nanoparticles potentiates N-acetylcysteine effects on neurochemicals alterations in rats after polymicrobial sepsis. J Drug Target 2019; 28:428-436. [PMID: 31594390 DOI: 10.1080/1061186x.2019.1678168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Herein, we report the effect of gold nanoparticles (AuNP) and n-acetylcysteine (NAC) isolated or in association as important anti-inflammatory and antioxidant compounds on brain dysfunction in septic rats. Male Wistar rats after sham operation or caecal ligation and perforation (CLP) were treated with subcutaneously injection of AuNP (50 mg/kg) and/or NAC (20 mg/kg) or saline immediately and 12 h after surgery. Twenty-four hours after CLP, hippocampus and prefrontal cortex were obtained and assayed for myeloperoxidase (MPO) activity, cytokines, lipid peroxidation, protein carbonyls formation, mitochondrial respiratory chain, and CK activity. AuNP + NAC association decreased MPO activity and pro-inflammatory cytokines production, being more effective than NAC or AuNP isolated treatment. AuNP + NAC association and NAC isolated treatment decreased oxidative stress to lipids in both brain structures, while protein oxidation decreased only in the hippocampus of AuNP + NAC association-treated animals. Complex I activity was increased with AuNP + NAC association and NAC isolated in the hippocampus. Regarding CK activity, AuNP and AuNP + NAC association increased this marker in both brain structures after CLP. Our data provide the first experimental demonstration that AuNP and NAC association was able to reduce sepsis-induced brain dysfunction in rats by decreasing neuroinflammation, oxidative stress parameters, mitochondrial dysfunction and CK activity.
Collapse
Affiliation(s)
- Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Leonardo Tenfen
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Michele Novochadlo
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Erick Bagio
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Raquel Jaconi de Carli
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Sandra Regina Santana de Aguiar Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Kiuanne Lino Lobo Metzker
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Samara Muttini
- Group of Research in Pharmaceutical Technology TECFARMA, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, Brazil
| | - Thayná Marinho Dos Santos
- Group of Research in Pharmaceutical Technology TECFARMA, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Luiz Alberto Kanis
- Group of Research in Pharmaceutical Technology TECFARMA, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
29
|
Activated peripheral blood mononuclear cell mediators trigger astrocyte reactivity. Brain Behav Immun 2019; 80:879-888. [PMID: 31176000 DOI: 10.1016/j.bbi.2019.05.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022] Open
Abstract
Sepsis is characterized by a severe and disseminated inflammation. In the central nervous system, sepsis promotes synaptic dysfunction and permanent cognitive impairment. Besides sepsis-induced neuronal dysfunction, glial cell response has been gaining considerable attention with microglial activation as a key player. By contrast, astrocytes' role during acute sepsis is still underexplored. Astrocytes are specialized immunocompetent cells involved in brain surveillance. In this context, the potential communication between the peripheral immune system and astrocytes during acute sepsis still remains unclear. We hypothesized that peripheral blood mononuclear cell (PBMC) mediators are able to affect the brain during an episode of acute sepsis. With this in mind, we first performed a data-driven transcriptome analysis of blood from septic patients to identify common features among independent clinical studies. Our findings evidenced pronounced impairment in energy-related signaling pathways in the blood of septic patients. Since astrocytes are key for brain energy homeostasis, we decided to investigate the communication between PBMC mediators and astrocytes in a rat model of acute sepsis, induced by cecal ligation and perforation (CLP). In the CLP animals, we identified widespread in vivo brain glucose hypometabolism. Ex vivo analyses demonstrated astrocyte reactivity along with reduced glutamate uptake capacity during sepsis. Also, by exposing cultured astrocytes to mediators released by PBMCs from CLP animals, we reproduced the energetic failure observed in vivo. Finally, by pharmacologically inhibiting phosphoinositide 3-kinase (PI3K), a central metabolic pathway downregulated in the blood of septic patients and reduced in the CLP rat brain, we mimicked the PBMC mediators effect on glutamate uptake but not on glucose metabolism. These results suggest that PBMC mediators are capable of directly mediating astrocyte reactivity and contribute to the brain energetic failure observed in acute sepsis. Moreover, the evidence of PI3K participation in this process indicates a potential target for therapeutic modulation.
Collapse
|
30
|
Camargo A, Pazini FL, Rosa JM, Wolin IAV, Moretti M, Rosa PB, Neis VB, Rodrigues ALS. Augmentation effect of ketamine by guanosine in the novelty-suppressed feeding test is dependent on mTOR signaling pathway. J Psychiatr Res 2019; 115:103-112. [PMID: 31128500 DOI: 10.1016/j.jpsychires.2019.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
The ketamine's potential for the treatment of refractory depression and anxiety has been considered one the most important discoveries in the last years, however, repeated use of ketamine is limited due to its side/adverse effects. Therefore, the search for effective augmentation strategies that may reduce ketamine doses is welcome. Therefore, this study sought to augment the effect of ketamine by guanosine in the novelty-suppressed feeding (NSF) test, a behavioral paradigm able to detect depression/anxiety-related behavior. Acute administration of guanosine (0.05 mg/kg, p.o.), similar to ketamine (1 mg/kg, i.p.), produced a rapid behavioral response in mice submitted to NSF test. Moreover, the coadministration of sub-effective doses of guanosine (0.01 mg/kg, p.o.) and ketamine (0.1 mg/kg, i.p.) was effective in mice submitted to NSF test. Subsequently, the intracellular mechanism underpinning the augmentation effect of ketamine by guanosine was investigated. Our results suggest that augmentation response of ketamine by guanosine in the NSF test probably involves the activation of mTOR signaling, since the treatment with rapamycin (0.2 nmol/site, i.c.v., a selective mTOR inhibitor) completely abolished this effect. This augmentation strategy also increased mTOR phosphorylation (Ser2448) in the hippocampus, reinforcing the role of mTOR in this augmentation response. However, no changes in the p70S6K, PSD-95, GluA1, and synapsin immunocontents were found in the hippocampus of ketamine plus guanosine-treated mice. Overall, results provide evidence that guanosine is able to augment the effect of ketamine in the NSF test via mTOR activation, a finding that might have therapeutic implications for the management of depression/anxiety.
Collapse
Affiliation(s)
- Anderson Camargo
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ingrid A V Wolin
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Priscila B Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
31
|
Barichello T, Sayana P, Giridharan VV, Arumanayagam AS, Narendran B, Della Giustina A, Petronilho F, Quevedo J, Dal-Pizzol F. Long-Term Cognitive Outcomes After Sepsis: a Translational Systematic Review. Mol Neurobiol 2019; 56:186-251. [PMID: 29687346 DOI: 10.1007/s12035-018-1048-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/27/2018] [Indexed: 01/04/2023]
Abstract
Sepsis is systemic inflammatory response syndrome with a life-threatening organ dysfunction that is caused by an unbalanced host immune response in an attempt to eliminate invasive microorganisms. We posed questions, "Does sepsis survivor patients have increased risk of neuropsychiatric manifestations?" and "What is the mechanism by which sepsis induces long-term neurological sequelae, particularly substantial cognitive function decline in survivor patients and in pre-clinical sepsis models?" The studies were identified by searching PubMed/MEDLINE (National Library of Medicine), PsycINFO, EMBASE (Ovid), LILACS (Latin American and Caribbean Health Sciences Literature), IBECS (Bibliographical Index in Spanish in Health Sciences), and Web of Science databases for peer-reviewed journals that were published until January 2018. A total of 3555 papers were included in the primary screening. After that, 130 articles were selected for the study. A number of pre-clinical studies have shown an auto amplification of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 in the first few hours after sepsis induction, also increased blood-brain barrier permeability, elevated levels of matrix metalloproteinases, increased levels of damage-associated molecular patterns were demonstrated. In addition, the rodents presented long-term cognitive impairment in different behavioral tasks that were prevented by blocking the mechanism of action of these inflammatory mediators. Clinical studies have showed that sepsis survivors presented increased bodily symptoms such as fatigue, pain, visual disturbances, gastrointestinal problems, and neuropsychiatric problems compared to before sepsis. Sepsis leaves the survivors with an aftermath of physiological, neuropsychiatric, and functional impairment. Systematic review registration: CRD42017071755.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA.
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Pavani Sayana
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | | | - Boomadevi Narendran
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Amanda Della Giustina
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
32
|
Camargo A, Rodrigues ALS. Novel Targets for Fast Antidepressant Responses: Possible Role of Endogenous Neuromodulators. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2019; 3:2470547019858083. [PMID: 32440595 PMCID: PMC7219953 DOI: 10.1177/2470547019858083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
The available medications for the treatment of major depressive disorder have limitations, particularly their limited efficacy, delayed therapeutic effects, and the side effects associated with treatment. These issues highlight the need for better therapeutic agents that provide more efficacious and faster effects for the management of this disorder. Ketamine, an N-methyl-D-aspartate receptor antagonist, is the prototype for novel glutamate-based antidepressants that has been shown to cause a rapid and sustained antidepressant effect even in severe refractory depressive patients. Considering the importance of these findings, several studies have been conducted to elucidate the molecular targets for ketamine's effect. In addition, efforts are under way to characterize ketamine-like drugs. This review focuses particularly on evidence that endogenous glutamatergic neuromodulators may be able to modulate mood and to elicit fast antidepressant responses. Among these molecules, agmatine and creatine stand out as those with more published evidence of similarities with ketamine, but guanosine and ascorbic acid have also provided promising results. The possibility that these neuromodulators and ketamine have common neurobiological mechanisms, mainly the ability to activate mechanistic target of rapamycin and brain-derived neurotrophic factor signaling, and synthesis of synaptic proteins in the prefrontal cortex and/or hippocampus is presented and discussed.
Collapse
Affiliation(s)
- Anderson Camargo
- Neuroscience Postgraduate Program,
Center of Biological Sciences, Universidade Federal de Santa Catarina,
Florianópolis, Brazil
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of
Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis,
Brazil
| |
Collapse
|
33
|
Tasca CI, Lanznaster D, Oliveira KA, Fernández-Dueñas V, Ciruela F. Neuromodulatory Effects of Guanine-Based Purines in Health and Disease. Front Cell Neurosci 2018; 12:376. [PMID: 30459558 PMCID: PMC6232889 DOI: 10.3389/fncel.2018.00376] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
The function of guanine-based purines (GBPs) is mostly attributed to the intracellular modulation of heteromeric and monomeric G proteins. However, extracellular effects of guanine derivatives have also been recognized. Thus, in the central nervous system (CNS), a guanine-based purinergic system that exerts neuromodulator effects, has been postulated. The thesis that GBPs are neuromodulators emerged from in vivo and in vitro studies, in which neurotrophic and neuroprotective effects of these kinds of molecules (i.e., guanosine) were demonstrated. GBPs induce several important biological effects in rodent models and have been shown to reduce seizures and pain, stabilize mood disorder behavior and protect against gliomas and diseases related with aging, such as ischemia or Parkinson and Alzheimer diseases. In vitro studies to evaluate the protective and trophic effects of guanosine, and of the nitrogenous base guanine, have been fundamental for understanding the mechanisms of action of GBPs, as well as the signaling pathways involved in their biological roles. Conversely, although selective binding sites for guanosine have been identified in the rat brain, GBP receptors have not been still described. In addition, GBP neuromodulation may depend on the capacity of GBPs to interact with well-known membrane proteins in glutamatergic and adenosinergic systems. Overall, in this review article, we present up-to-date GBP biology, focusing mainly on the mechanisms of action that may lead to the neuromodulator role of GBPs observed in neurological disorders.
Collapse
Affiliation(s)
- Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Débora Lanznaster
- Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,UMR 1253, Team 2, INSERM/University of Tours, Tours, France
| | - Karen A Oliveira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Victor Fernández-Dueñas
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Kong W, Kang K, Gao Y, Liu H, Meng X, Cao Y, Yang S, Liu W, Zhang J, Yu K, Zhao M. GTS-21 Protected Against LPS-Induced Sepsis Myocardial Injury in Mice Through α7nAChR. Inflammation 2018; 41:1073-1083. [PMID: 29680908 DOI: 10.1007/s10753-018-0759-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis-induced myocardial injury is a well-known cause of mortality. The cholinergic anti-inflammatory pathway (CHAIP) is a physiological mechanism by which the central nervous system regulates immune response through the vagus nerve and acetylcholine; the α7-nicotinic acetylcholine receptor (α7nAChR) is the main component of CHAIP; GTS-21, a synthetic α7nAChR selective agonist, has repeatedly shown its powerful anti-inflammatory effect. However, little is known about its effect on LPS-induced myocardial injury. We investigated the protective effects of GTS-21 on lipopolysaccharide (LPS)-induced cardiomyopathy via the cholinergic anti-inflammatory pathway in a mouse sepsis model. We constructed the model of myocardial injury in sepsis mice by C57BL/6 using LPS and determined the time of LPS treatment by hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). C57BL/6 mice were randomized into five groups: blank control group, model group, α-bungarotoxin + LPS group, GTS-21 + LPS group, and α-bungarotoxin + GTS-21 + LPS group. The pathological results of myocardial tissue were detected by the HE method; the apoptosis rate was detected by the TUNEL method; the relative expressions of NF-κB p65, Caspase-3, Caspase-8, Bcl-2, Bax, p53, and a7nAChR were detected by real-time quantitative PCR (RT-PCR); and the protein expressions of IL-6, IL-1 β, TNF-α, and pSTAT3 were detected by western blot. The results showed that LPS-induced myocardial pathological and apoptosis changes were significant compared with the blank group, which was reversed by GTS-21; however, pretreatment with α-bungarotoxin obviously blocked the protective effect of GTS-21. NF-κB p65, Caspase-3, Caspase-8, Bax, p53, IL-6, IL-1β, TNF-α, and pSTAT3 were significantly increased in the model group, while a7nAChR and Bcl-2 were significantly decreased; GTS-21 treatment reversed that result, while pretreatment with α-bungarotoxin strengthened the result in the model. And pretreatment with α-bungarotoxin blocked the protective effect of GTS-21. GTS-21 can alleviate the LPS-induced damage in the heart via a7nAChR, and pretreatment with α-bungarotoxin obviously blocked the protective effect of GTS-21 on sepsis in mice.
Collapse
Affiliation(s)
- Weilan Kong
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Kai Kang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Yang Gao
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Haitao Liu
- Department of Critical Care Medicine, the Cancer Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, China
| | - Xianglin Meng
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Yanhui Cao
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Songliu Yang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Wen Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Jiannan Zhang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, the Cancer Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, China. .,Institute of Critical Care Medicine in Sino Russian Medical Research Center of Harbin Medical University, 150 Haping Road, Harbin, 150081, China.
| | - Mingyan Zhao
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China.
| |
Collapse
|
35
|
Dobrachinski F, Gerbatin RR, Sartori G, Golombieski RM, Antoniazzi A, Nogueira CW, Royes LF, Fighera MR, Porciúncula LO, Cunha RA, Soares FAA. Guanosine Attenuates Behavioral Deficits After Traumatic Brain Injury by Modulation of Adenosinergic Receptors. Mol Neurobiol 2018; 56:3145-3158. [PMID: 30105669 DOI: 10.1007/s12035-018-1296-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide, triggering chronic neurodegeneration underlying cognitive and mood disorder still without therapeutic prospects. Based on our previous observations that guanosine (GUO) attenuates short-term neurochemical alterations caused by TBI, this study investigated the effects of chronical GUO treatment in behavioral, molecular, and morphological disturbances 21 days after trauma. Rats subject to TBI displayed mood (anxiety-like) and memory dysfunction. This was accompanied by a decreased expression of both synaptic (synaptophysin) and plasticity proteins (BDNF and CREB), a loss of cresyl violet-stained neurons, and increased astrogliosis and microgliosis in the hippocampus. Notably, chronic GUO treatment (7.5 mg/kg i.p. daily starting 1 h after TBI) prevented all these TBI-induced long-term behavioral, neurochemical, and morphological modifications. This neuroprotective effect of GUO was abrogated in the presence of the adenosine A1 receptor antagonist DPCPX (1 mg/kg) but unaltered by the adenosine A2A receptor antagonist SCH58261 (0.05 mg/kg). These findings show that a chronic GUO treatment prevents the long-term mood and memory dysfunction triggered by TBI, which involves adenosinergic receptors.
Collapse
Affiliation(s)
- Fernando Dobrachinski
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rogério R Gerbatin
- Laboratory of Exercise Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gláubia Sartori
- Laboratory of Synthesis, Reactivity and Pharmacological Evaluating and Toxicology of Organochalcogens, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ronaldo M Golombieski
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Alfredo Antoniazzi
- Laboratory of Biotechnology and Animal Reproduction - BioRep Veterinary Hospital, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis, Reactivity and Pharmacological Evaluating and Toxicology of Organochalcogens, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Luiz F Royes
- Laboratory of Exercise Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Michele R Fighera
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
- Department of Neuropsychiatry, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lisiane O Porciúncula
- Laboratory of Studies on the Purinergic System, Department of Biochemistry / ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo A Cunha
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Félix A A Soares
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
36
|
Teixeira LV, Almeida RF, Rohden F, Martins LAM, Spritzer PM, de Souza DOG. Neuroprotective Effects of Guanosine Administration on In Vivo Cortical Focal Ischemia in Female and Male Wistar Rats. Neurochem Res 2018; 43:1476-1489. [PMID: 29855847 DOI: 10.1007/s11064-018-2562-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 02/07/2023]
Abstract
Guanosine (GUO) has neuroprotective effects in experimental models of brain diseases involving glutamatergic excitotoxicity in male animals; however, its effects in female animals are poorly understood. Thus, we investigated the influence of gender and GUO treatment in adult male and female Wistar rats submitted to focal permanent cerebral ischemia in the motor cortex brain. Female rats were subdivided into non-estrogenic and estrogenic phase groups by estrous cycle verification. Immediately after surgeries, the ischemic animals were treated with GUO or a saline solution. Open field and elevated plus maze tasks were conducted with ischemic and naïve animals. Cylinder task, immunohistochemistry and infarct volume analyses were conducted only with ischemic animals. Female GUO groups achieved a full recovery of the forelimb symmetry at 28-35 days after the insult, while male GUO groups only partially recovered at 42 days, in the final evaluation. The ischemic insult affected long-term memory habituation to novelty only in female groups. Anxiety-like behavior, astrocyte morphology and infarct volume were not affected. Regardless the estrous cycle, the ischemic injury affected differently female and male animals. Thus, this study points that GUO is a potential neuroprotective compound in experimental stroke and that more studies, considering the estrous cycle, with both genders are recommended in future investigation concerning brain diseases.
Collapse
Affiliation(s)
- Luciele Varaschini Teixeira
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Roberto Farina Almeida
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Francieli Rohden
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leo Anderson Meira Martins
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Poli Mara Spritzer
- Department of Physiology, Laboratory of Molecular Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Onofre Gomes de Souza
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
37
|
Zarbato GF, de Souza Goldim MP, Giustina AD, Danielski LG, Mathias K, Florentino D, de Oliveira Junior AN, da Rosa N, Laurentino AO, Trombetta T, Gomes ML, Steckert AV, Moreira AP, Schuck PF, Fortunato JJ, Barichello T, Petronilho F. Dimethyl Fumarate Limits Neuroinflammation and Oxidative Stress and Improves Cognitive Impairment After Polymicrobial Sepsis. Neurotox Res 2018; 34:418-430. [PMID: 29713994 DOI: 10.1007/s12640-018-9900-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
Abstract
Sepsis is caused by a dysregulated host response to infection, often associated with acute central nervous system (CNS) dysfunction, which results in long-term cognitive impairment. Dimethyl fumarate (DMF) is an important agent against inflammatory response and reactive species in CNS disorders. Evaluate the effect of DMF on acute and long-term brain dysfunction after experimental sepsis in rats. Male Wistar rats were submitted to the cecal ligation and puncture (CLP) model. The groups were divided into sham (control) + vehicle, sham + NAC, sham + DMF, CLP + vehicle, CLP + NAC, and CLP + DMF. The animals were treated with DMF (15 mg/kg at 0 and 12 h after CLP, per gavage) and the administration of n-acetylcysteine (NAC) (20 mg/kg; 3, 6, and 12 h after CLP, subcutaneously) was used as positive control. Twenty-four hours after CLP, cytokines, myeloperoxidase (MPO), nitrite/nitrate (N/N), oxidative damage to lipids and proteins, and antioxidant enzymes were evaluated in the hippocampus, total cortex, and prefrontal cortex. At 10 days after sepsis induction, behavioral tests were performed to assess cognitive damage. We observed an increase in cytokine levels, MPO activity, N/N concentration, and oxidative damage, a reduction in SOD and GPx activity in the brain structures, and cognitive damage in CLP rats. DMF treatment was effective in reversing these parameters. DMF reduces sepsis-induced neuroinflammation, oxidative stress, and cognitive impairment in rats subjected to the CLP model.
Collapse
Affiliation(s)
- Graciela Freitas Zarbato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Ana Olivia Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taina Trombetta
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Maria Luiza Gomes
- Laboratory Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Amanda Valnier Steckert
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ana Paula Moreira
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Patricia Fernanda Schuck
- Laboratory Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Jucelia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil.,Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.
| |
Collapse
|
38
|
Wang Y, Liu Y, Cao Q, Shi X, Lu H, Gao S, Yang R. Metabolomic analysis for the protective effects of mangiferin on sepsis-induced lung injury in mice. Biomed Chromatogr 2018; 32:e4208. [PMID: 29431198 DOI: 10.1002/bmc.4208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the efficacy of mangiferin, including its known antioxidant and anti-inflammatory effects on sepsis-induced lung injury induced by a classical cecal ligation and puncture (CLP) models in mouse using a metabolomics approach. A total of 24 mice were randomly divided into four groups: the sham group was given saline before sham operation. The CLP group received the CLP operation only. HMF and LMF groups were given mangiferin treatment of high dose and low dose of mangiferin, respectively, before the CLP operation. One week after treatment, the mice were sacrificed and their lungs were collected for metabolomics analysis. We developed ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry to perform lung metabolic profiling analysis. With the methods of principal component analysis and partial least squares discriminant analysis, 58 potential metabolites associated with amino acid metabolism, purine metabolism, lipid metabolism and energy regulation were observed to be increased or reduced in HMF and LMF groups compared with the CLP group. Conclusively, our results suggest that mangiferin plays a protective role in the moderation of sepsis-induced lung injury through reducing oxidative stress, regulating lipid metabolism and energy biosynthesis.
Collapse
Affiliation(s)
- Yilin Wang
- Student Unit, Navy Medical University, Shanghai, China
| | - Yang Liu
- Student Unit, Navy Medical University, Shanghai, China
| | - Qiqi Cao
- Student Unit, Navy Medical University, Shanghai, China
| | - Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongtao Lu
- Department of Navy Aeromedicine, Navy Medical University, Shanghai, China
| | - Songyan Gao
- School of Pharmacy, Navy Medical University, Shanghai, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
39
|
Alpha-lipoic acid attenuates acute neuroinflammation and long-term cognitive impairment after polymicrobial sepsis. Neurochem Int 2017; 108:436-447. [DOI: 10.1016/j.neuint.2017.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 12/17/2022]
|
40
|
Bellaver B, Dos Santos JP, Leffa DT, Bobermin LD, Roppa PHA, da Silva Torres IL, Gonçalves CA, Souza DO, Quincozes-Santos A. Systemic Inflammation as a Driver of Brain Injury: the Astrocyte as an Emerging Player. Mol Neurobiol 2017; 55:2685-2695. [PMID: 28421541 DOI: 10.1007/s12035-017-0526-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
Abstract
Severe systemic inflammation has strong effects on brain functions, promoting permanent neurocognitive dysfunction and high mortality rates. Additionally, hippocampal damage seems to be directly involved in this process and astrocytes play an important role in neuroinflammation and in the neuroimmune response. However, the contribution of the astrocytes to the pathology of acute brain dysfunction is not well understood. Recently, our group established a protocol for obtaining astrocyte cultures from mature brain to allow the characterization of these cells and their functions under pathologic conditions. The present study was designed to characterize astrocyte function after acute systemic inflammation induced by cecal ligation and perforation (CLP). Hippocampal astrocyte cultures from CLP animals presented increased levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-18, and cyclooxygenase-2 and decreased levels of IL-10. This proinflammatory profile was accompanied by an increase in Toll-like receptor (TLR)2 mRNA expression levels and no change either in TLR4 or in vascular endothelial growth factor (VEGF) gene expression. These alterations were associated with increased expressions of p21, nuclear factor kappa B (NFκB), and inducible nitric oxide synthase (iNOS) in astrocytes from CLP animals. The same parameters were also evaluated in whole hippocampal tissue, but differences in this profile were found compared to hippocampal astrocyte cultures from CLP, reflecting an interaction between other central nervous system cell types, which may mask specific astrocytic changes. These results improve our understanding of the mechanisms by which astrocytes react against systemic inflammation, and suggest these cells to be potential targets for therapeutic modulation.
Collapse
Affiliation(s)
- Bruna Bellaver
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| | - João Paulo Dos Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Douglas Teixeira Leffa
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Unidade de Experimentação Animal, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Paola Haack Amaral Roppa
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Iraci Lucena da Silva Torres
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Unidade de Experimentação Animal, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
41
|
Brain Barrier Breakdown as a Cause and Consequence of Neuroinflammation in Sepsis. Mol Neurobiol 2017; 55:1045-1053. [DOI: 10.1007/s12035-016-0356-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
|
42
|
Lanznaster D, Dal-Cim T, Piermartiri TCB, Tasca CI. Guanosine: a Neuromodulator with Therapeutic Potential in Brain Disorders. Aging Dis 2016; 7:657-679. [PMID: 27699087 PMCID: PMC5036959 DOI: 10.14336/ad.2016.0208] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
Guanosine is a purine nucleoside with important functions in cell metabolism and a protective role in response to degenerative diseases or injury. The past decade has seen major advances in identifying the modulatory role of extracellular action of guanosine in the central nervous system (CNS). Evidence from rodent and cell models show a number of neurotrophic and neuroprotective effects of guanosine preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson’s and Alzheimer’s diseases. The present review describes the findings of in vivo and in vitro studies and offers an update of guanosine effects in the CNS. We address the protein targets for guanosine action and its interaction with glutamatergic and adenosinergic systems and with calcium-activated potassium channels. We also discuss the intracellular mechanisms modulated by guanosine preventing oxidative damage, mitochondrial dysfunction, inflammatory burden and modulation of glutamate transport. New and exciting avenues for future investigation into the protective effects of guanosine include characterization of a selective guanosine receptor. A better understanding of the neuromodulatory action of guanosine will allow the development of therapeutic approach to brain diseases.
Collapse
Affiliation(s)
- Débora Lanznaster
- 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; 3CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Tharine Dal-Cim
- 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; 3CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Tetsadê C B Piermartiri
- 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; 3CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Carla I Tasca
- 1Departamento de Bioquímica,; 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
43
|
Bettio LEB, Gil-Mohapel J, Rodrigues ALS. Guanosine and its role in neuropathologies. Purinergic Signal 2016; 12:411-26. [PMID: 27002712 PMCID: PMC5023624 DOI: 10.1007/s11302-016-9509-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/08/2016] [Indexed: 02/08/2023] Open
Abstract
Guanosine is a purine nucleoside thought to have neuroprotective properties. It is released in the brain under physiological conditions and even more during pathological events, reducing neuroinflammation, oxidative stress, and excitotoxicity, as well as exerting trophic effects in neuronal and glial cells. In agreement, guanosine was shown to be protective in several in vitro and/or in vivo experimental models of central nervous system (CNS) diseases including ischemic stroke, Alzheimer's disease, Parkinson's disease, spinal cord injury, nociception, and depression. The mechanisms underlying the neurobiological properties of guanosine seem to involve the activation of several intracellular signaling pathways and a close interaction with the adenosinergic system, with a consequent stimulation of neuroprotective and regenerative processes in the CNS. Within this context, the present review will provide an overview of the current literature on the effects of guanosine in the CNS. The elucidation of the complex signaling events underlying the biochemical and cellular effects of this nucleoside may further establish guanosine as a potential therapeutic target for the treatment of several neuropathologies.
Collapse
Affiliation(s)
- Luis E B Bettio
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
44
|
Di Liberto V, Mudò G, Garozzo R, Frinchi M, Fernandez-Dueñas V, Di Iorio P, Ciccarelli R, Caciagli F, Condorelli DF, Ciruela F, Belluardo N. The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation. Front Pharmacol 2016; 7:158. [PMID: 27378923 PMCID: PMC4911385 DOI: 10.3389/fphar.2016.00158] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/30/2016] [Indexed: 11/17/2022] Open
Abstract
Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial functional interplay between GBPs effects and adenosine receptors activity has been recently described, thus triggering the hypothesis that GBPs mechanism of action might somehow involve adenosine receptors. Here, we review recent data describing the GBPs role in the brain. We focus on the involvement of GBPs regulating neuronal plasticity, and on the new hypothesis based on putative GBPs receptors. Overall, we expect to shed some light on the GBPs world since although these molecules might represent excellent candidates for certain neurological diseases management, the lack of putative GBPs receptors precludes any high throughput screening intent for the search of effective GBPs-based drugs.
Collapse
Affiliation(s)
- Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| | - Roberta Garozzo
- Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania Catania, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| | - Víctor Fernandez-Dueñas
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Bellvitge Biomedical Research Institute, Institute of Neurosciences, University of Barcelona Barcelona, Spain
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotecnological Sciences, University of Chieti-Pescara Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotecnological Sciences, University of Chieti-Pescara Chieti, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotecnological Sciences, University of Chieti-Pescara Chieti, Italy
| | - Daniele F Condorelli
- Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania Catania, Italy
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Bellvitge Biomedical Research Institute, Institute of Neurosciences, University of Barcelona Barcelona, Spain
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| |
Collapse
|
45
|
Cittolin-Santos GF, de Assis AM, Guazzelli PA, Paniz LG, da Silva JS, Calcagnotto ME, Hansel G, Zenki KC, Kalinine E, Duarte MM, Souza DO. Guanosine Exerts Neuroprotective Effect in an Experimental Model of Acute Ammonia Intoxication. Mol Neurobiol 2016; 54:3137-3148. [PMID: 27052954 DOI: 10.1007/s12035-016-9892-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022]
Abstract
The nucleoside guanosine (GUO) increases glutamate uptake by astrocytes and acts as antioxidant, thereby providing neuroprotection against glutamatergic excitotoxicity, as we have recently demonstrated in an animal model of chronic hepatic encephalopathy. Here, we investigated the neuroprotective effect of GUO in an acute ammonia intoxication model. Adult male Wistar rats received an intraperitoneal (i.p.) injection of vehicle or GUO 60 mg/kg, followed 20 min later by an i.p. injection of vehicle or 550 mg/kg of ammonium acetate. Afterwards, animals were observed for 45 min, being evaluated as normal, coma (i.e., absence of corneal reflex), or death status. In a second cohort of rats, video-electroencephalogram (EEG) recordings were performed. In a third cohort of rats, the following were measured: (i) plasma levels of glucose, transaminases, and urea; (ii) cerebrospinal fluid (CSF) levels of ammonia, glutamine, glutamate, and alanine; (iii) glutamate uptake in brain slices; and (iv) brain redox status and glutamine synthetase activity in cerebral cortex. GUO drastically reduced the lethality rate and the duration of coma. Animals treated with GUO had improved EEG traces, decreased CSF levels of glutamate and alanine, lowered oxidative stress in the cerebral cortex, and increased glutamate uptake by astrocytes in brain slices compared with animals that received vehicle prior to ammonium acetate administration. This study provides new evidence on mechanisms of guanine-derived purines in their potential modulation of glutamatergic system, contributing to GUO neuroprotective effects in a rodent model of by acute ammonia intoxication.
Collapse
Affiliation(s)
- G F Cittolin-Santos
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - A M de Assis
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - P A Guazzelli
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - L G Paniz
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - J S da Silva
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - M E Calcagnotto
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - G Hansel
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - K C Zenki
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Physiology, Federal University of Sergipe, São Cristovão, SE, 49100-000, Brazil
| | - E Kalinine
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Physiology, Federal University of Sergipe, São Cristovão, SE, 49100-000, Brazil
| | - M M Duarte
- Health Sciences Center, Lutheran University of Brazil (ULBRA), Campus Santa Maria, Santa Maria, RS, 97020-001, Brazil
| | - D O Souza
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil. .,Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
46
|
Ozcan PE, Senturk E, Orhun G, Gumru S, Arican N, Orhan N, Yılmaz CU, Kaya M, Aricioglu F, Esen F. Effects of intravenous immunoglobulin therapy on behavior deficits and functions in sepsis model. Ann Intensive Care 2015; 5:62. [PMID: 26228515 PMCID: PMC4520823 DOI: 10.1186/s13613-015-0062-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
Background We aim to demonstrate behavioral alterations in a sepsis model using intravenous (IV) immunoglobulin G (IgG) and immunoglobulins enriched with IgA and IgM (IgGAM). Methods We divided 48 Wistar albino rats into five groups: control group, sham-operated group (only antibiotic treatment), cecal ligation and puncture (CLP) group (CLP plus antibiotic treatment), IgG group (250 mg/kg IV IgG) and IgGAM group (250 mg/kg IV IgGAM). Intravenous immunoglobulins were given 5 min after the CLP procedure. Experimental animals put into three behavioral tasks 10, 30 and 60 days after the surgery; to evaluate the locomotor activity, an open field test was performed, elevated plus maze test was used to measure anxiety levels, and depressive state was assessed by forced swimming test. The effects of therapy which were acquired from the results of these tests were used to estimate the behavioral changes after CLP. Results The mortality rate of 50% in the septic rats decreased to 30 and 20% with the administration of IgG and IgGAM, respectively. Significant changes on locomotor activity and depressive-like behavior were reported in the sepsis group; on the other hand, the treatment with immunoglobulins reduced the symptoms. Treatment with immunoglobulins attenuated the sepsis-related anxiogenic-like responses. Behavioral alterations returned to normal on day 60 in all groups. Conclusions Sepsis caused deterioration on behavioral parameters. Immunoglobulin treatments alleviated the symptoms of functional disturbances and caused early reversal of behavioral deficits in septic animals.
Collapse
Affiliation(s)
- Perihan Ergin Ozcan
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, Capa-Fatih, 34039, Istanbul, Turkey,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Borba Filho GL, Zenki KC, Kalinine E, Baggio S, Pettenuzzo L, Zimmer ER, Weis SN, Calcagnotto ME, Onofre de Souza D. A new device for step-down inhibitory avoidance task--effects of low and high frequency in a novel device for passive inhibitory avoidance task that avoids bioimpedance variations. PLoS One 2015; 10:e0116000. [PMID: 25706879 PMCID: PMC4338061 DOI: 10.1371/journal.pone.0116000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022] Open
Abstract
Background Step-down inhibitory avoidance task has been widely used to evaluate aversive memory, but crucial parameters inherent to traditional devices that may influence the behavior analysis (as stimulus frequency, animal’s bioimpedance) are frequently neglected. New Method We developed a new device for step-down inhibitory avoidance task by modifying the shape and distribution of the stainless steel bars in the box floor where the stimuli are applied. The bars are 2mm wide, with rectangular shape, arranged in pairs at intervals of 1cm from the next pairs. Each pair makes an electrical dipole where the polarity inverts after each pulse. This device also presents a component that acquires and records the exact current received by the animal foot and precisely controls the frequency of stimulus applied during the entire experiment. Result Different from conventional devices, this new apparatus increases the contact surface with bars and animal´s paws, allowing the electric current pass through the animal´s paws only, drastically reducing the influence of animal’s bioimpedance. The analysis of recorded data showed that the current received by the animal was practically the same as applied, independent of the animal´s body composition. Importantly, the aversive memory was observed at specific stimuli intensity and frequency (0.35 or 0.5 mA at 62 and 125Hz but not at 0.20 mA or 20 Hz). Moreover, with this device it was possible to observe the well-known step-down inhibitory avoidance task memory impairment induced by guanosine. Conclusion This new device offers a substantial improvement for behavioral analysis in step-down inhibitory avoidance task and allows us to precisely compare data from different animals with distinct body composition.
Collapse
Affiliation(s)
- Gilvan Luiz Borba Filho
- Programa de Pós-Graduação em Educação em Ciências, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- * E-mail:
| | - Kamila Cagliari Zenki
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Eduardo Kalinine
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Programa de Pós-Graduação em Ciências Fisiológicas—Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
| | - Suelen Baggio
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Letícia Pettenuzzo
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Eduardo Rigon Zimmer
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Simone Nardin Weis
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Departamento de Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Diogo Onofre de Souza
- Programa de Pós-Graduação em Educação em Ciências, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Departamento de Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
48
|
Michels M, Vieira AS, Vuolo F, Zapelini HG, Mendonça B, Mina F, Dominguini D, Steckert A, Schuck PF, Quevedo J, Petronilho F, Dal-Pizzol F. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav Immun 2015; 43:54-9. [PMID: 25019583 DOI: 10.1016/j.bbi.2014.07.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress and inflammation is likely to be a major step in the development of sepsis-associated encephalopathy (SAE) and long-term cognitive impairment. To date, it is not known whether brain inflammation and oxidative damage are a direct consequence of systemic inflammation or whether these events are driven by brain resident cells, such as microglia. Therefore, the aim of this study is to evaluate the effect of minocycline on behavioral and neuroinflammatory parameters in rats submitted to sepsis. Male Wistar rats were subjected to sepsis by cecal ligation and puncture (CLP). The animals were divided into sham-operated (Sham+control), sham-operated plus minocycline (sham+MIN), CLP (CLP+control) and CLP plus minocycline (CLP+MIN) (100 μg/kg, administered as a single intracerebroventricular (ICV) injection). Some animals were killed 24h after surgery to assess the breakdown of the blood brain barrier, cytokine levels, oxidative damage to lipids (TBARS) and proteins in the hippocampus. Some animals were allowed to recover for 10 days when step-down inhibitory avoidance and open-field tasks were performed. Treatment with minocycline prevented an increase in markers of oxidative damage and inflammation in the hippocampus after sepsis. This was associated with an improvement in long-term cognitive performance. In conclusion, we demonstrated that the inhibition of the microglia by an ICV injection of minocycline was able to decrease acute brain oxidative damage and inflammation as well as long-term cognitive impairment in sepsis survivors.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Andriele S Vieira
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, University of South of Santa Catarina, Tubarão, SC, Brazil
| | - Francieli Vuolo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Hugo Galvane Zapelini
- Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Bruna Mendonça
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Francielle Mina
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Amanda Steckert
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Patrícia Fernanda Schuck
- Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fabrícia Petronilho
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, University of South of Santa Catarina, Tubarão, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
49
|
Guanosine Protects Against Cortical Focal Ischemia. Involvement of Inflammatory Response. Mol Neurobiol 2014; 52:1791-1803. [DOI: 10.1007/s12035-014-8978-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/30/2014] [Indexed: 01/05/2023]
|
50
|
Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress. Pharmacol Biochem Behav 2014; 127:7-14. [PMID: 25316306 DOI: 10.1016/j.pbb.2014.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/19/2014] [Accepted: 10/05/2014] [Indexed: 11/23/2022]
Abstract
Guanosine is a guanine-based purine that modulates glutamate uptake and exerts neurotrophic and neuroprotective effects. In a previous study, our group demonstrated that this endogenous nucleoside displays antidepressant-like properties in a predictive animal model. Based on the role of oxidative stress in modulating depressive disorders as well as on the association between the neuroprotective and antioxidant properties of guanosine, here we investigated if its antidepressant-like effect is accompanied by a modulation of hippocampal oxidant/antioxidant parameters. Adult Swiss mice were submitted to an acute restraint stress protocol, which is known to cause behavioral changes that are associated with neuronal oxidative damage. Animals submitted to ARS exhibited an increased immobility time in the forced swimming test (FST) and the administration of guanosine (5mg/kg, p.o.) or fluoxetine (10mg/kg, p.o., positive control) before the exposure to stressor prevented this alteration. Moreover, the significantly increased levels of hippocampal malondialdehyde (MDA; an indicator of lipid peroxidation), induced by ARS were not observed in stressed mice treated with guanosine. Although no changes were found in the hippocampal levels of reduced glutathione (GSH), the group submitted to ARS procedure presented enhanced glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) activities and reduced catalase (CAT) activity in the hippocampus. Guanosine was able to prevent the alterations in GPx, GR, CAT activities, and in SOD/CAT activity ratio, but potentiated the increase in SOD activity elicited by ARS. Altogether, the present findings indicate that the observed antidepressant-like effects of guanosine might be related, at least in part, to its capability of modulating antioxidant defenses and mitigating hippocampal oxidative damage induced by ARS.
Collapse
|