1
|
Babocs D, Korrapati K, Lytle C, Gloviczki ML, Oderich GS, Melin MM, Christiansen R. Wound-Healing and Onboard Care During Long-Duration Human Deep Space Exploration from a Surgical Perspective through the lens of a scoping review. J Vasc Surg Venous Lymphat Disord 2025:102249. [PMID: 40246171 DOI: 10.1016/j.jvsv.2025.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVES To develop a bridge between the fields of aerospace medicine and vascular surgery, and to emphasize the need for leading experts in vascular medicine, interventional radiology, and surgery to address the critical human spaceflight research gaps highlighted by NASA. METHODS A scoping review following the PRISMA guidelines was conducted on literature published between 2000 and 2024. A well-defined search strategy was employed for keyword searches across multiple databases, including PubMed, Scopus, Cochrane, Embase, the NASA Life Science Data Archive, NASA technical reports, and Google Scholar. RESULTS Our review identified 125 relevant studies. These included 30 studies on general health conditions in space and wound-healing, 38 addressing risk factors associated with the space environment and 57 studies examining prevention and treatment options. These findings address NASA's identified gaps in wound care capabilities (ExMC 4.07), contribute to defining the potential list of medical conditions that could arise during deep-space missions (ExMC 4.24, Med07, Med12, Medical-101), and serve as a milestone for developing integrated exploration medical system models for missions to the Moon and Mars (Medical-501). CONCLUSION Many of the identified NASA knowledge gaps - some of which have even been marked as closed due to a lack of research in the field - cannot be effectively addressed without bridging aerospace medicine with related disciplines, such as vascular surgery and chronic wound care.
Collapse
Affiliation(s)
- Dora Babocs
- Advanced Aortic Research Program, Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
| | | | - Cooper Lytle
- Chicago Medical School at Rosalind Franklin University
| | - Monika L Gloviczki
- Emeritus, Department of Internal Medicine and Gonda Vascular Center, Mayo Clinic, Rochester, MN
| | - Gustavo S Oderich
- Advanced Aortic Research Program, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - M Mark Melin
- Mayo Clinic, Wound Clinic, Gonda Vascular Center, Rochester, Minnesota, USA
| | | |
Collapse
|
2
|
Klos B, Kaul A, Straube E, Steinhauser V, Gödel C, Schäfer F, Lambert C, Enck P, Mack I. Effects of isolated, confined and extreme environments on parameters of the immune system - a systematic review. Front Immunol 2025; 16:1532103. [PMID: 40201171 PMCID: PMC11975566 DOI: 10.3389/fimmu.2025.1532103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/18/2025] [Indexed: 04/10/2025] Open
Abstract
Background The immune system is a crucial part of the body's defense against infection and disease. However, individuals in antigen-limited environments face unique challenges that can weaken their immune systems. This systematic review aimed to investigate the impact of an exposure to an isolated, confined and extreme (ICE) environment with limited antigen diversity on human immune parameters. Methods A systematic literature search was conducted using PubMed, Web of Science and Cochrane Library to identify relevant studies on immune system parameters in ICE environments. The studies were grouped by ICE type (space missions, microgravity simulations like bed rest studies, space simulation units like MARS500, and Antarctic research stations) to allow for clearer comparison and analysis of immune outcomes. Results Analysis of 140 studies revealed considerable heterogeneity in study designs and outcomes, reflecting the complexity of immune responses across ICE environments. Nevertheless, immune dysregulation was consistently observed across environments. Space missions and Antarctic stations, in particular, showed pronounced immune changes, likely due to low antigen diversity and extreme conditions, with higher rates of infections and allergic responses suggesting increased vulnerability. Space simulation units exhibited immune changes similar to those in actual space missions, while gravity simulation studies, which focus on fluid shifts and bone loss, showed fewer immune alterations. Across environments, most immunological measures returned to baseline after isolation, indicating resilience and the potential for recovery upon re-exposure to diverse antigens. Conclusion Reduced antigen diversity in ICE environments disrupts immune function, with effects often compounded by extreme conditions. Although immune resilience and recovery post-isolation are promising, the heterogeneity in current studies highlights the need for targeted research to identify specific immune vulnerabilities and to develop countermeasures. Such measures could reduce immune-related health risks for individuals in isolated settings, including astronauts, polar researchers, and vulnerable populations on Earth, such as the elderly or immunocompromised, thereby enhancing resilience in confined environments. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023476132.
Collapse
Affiliation(s)
- Bea Klos
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | - Alina Kaul
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | - Emily Straube
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | | | - Celina Gödel
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | - Franziska Schäfer
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | - Claude Lambert
- Cytometry Unit, Immunology Laboratory, Saint-Etienne University Hospital, Saint-Étienne, Lyon, France
- LCOMS/ENOSIS Environmental Toxicology, University of Lorraine, Metz, France
| | - Paul Enck
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | - Isabelle Mack
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Campisi M, Cannella L, Pavanello S. Cosmic chronometers: Is spaceflight a catalyst for biological ageing? Ageing Res Rev 2024; 95:102227. [PMID: 38346506 DOI: 10.1016/j.arr.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Astronauts returning from space missions often exhibit health issues mirroring age-related conditions, suggesting spaceflight as a potential driver of biological ageing and age-related diseases. To unravel the underlying mechanisms of these conditions, this comprehensive review explores the impact of the space "exposome" on the twelve hallmarks of ageing. Through a meticulous analysis encompassing both space environments and terrestrial analogs, we aim to decipher how different conditions influence ageing hallmarks. Utilizing PubMed, we identified 189 studies and 60 meet screening criteria. Research on biological ageing in space has focused on genomic instability, chronic inflammation, and deregulated nutrient sensing. Spaceflight consistently induces genomic instability, linked to prolonged exposure to ionizing radiation, triggers pro-inflammatory and immune alterations, resembling conditions in isolated simulations. Nutrient sensing pathways reveal increased systemic insulin-like growth-factor-1. Microbiome studies indicate imbalances favoring opportunistic species during spaceflight. Telomere dynamics present intriguing patterns, with lengthening during missions and rapid shortening upon return. Despite a pro-ageing trend, some protective mechanisms emerge. Countermeasures, encompassing dietary adjustments, prebiotics, postbiotics, symbiotics, tailored exercises, meditation, and anti-inflammatory supplements, exhibit potential. Spaceflight's impact on ageing is intricate, with diverse findings challenging established beliefs. Multidisciplinary studies provide guidance for future research in this field.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
4
|
Scatà C, Carandina A, Della Torre A, Arosio B, Bellocchi C, Dias Rodrigues G, Furlan L, Tobaldini E, Montano N. Social Isolation: A Narrative Review on the Dangerous Liaison between the Autonomic Nervous System and Inflammation. Life (Basel) 2023; 13:1229. [PMID: 37374012 DOI: 10.3390/life13061229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Social isolation and feelings of loneliness are related to higher mortality and morbidity. Evidence from studies conducted during space missions, in space analogs, and during the COVID-19 pandemic underline the possible role of the autonomic nervous system in mediating this relation. Indeed, the activation of the sympathetic branch of the autonomic nervous system enhances the cardiovascular response and activates the transcription of pro-inflammatory genes, which leads to a stimulation of inflammatory activation. This response is adaptive in the short term, in that it allows one to cope with a situation perceived as a threat, but in the long term it has detrimental effects on mental and physical health, leading to mood deflection and an increased risk of cardiovascular disease, as well as imbalances in immune system activation. The aim of this narrative review is to present the contributions from space studies and insights from the lockdown period on the relationship between social isolation and autonomic nervous system activation, focusing on cardiovascular impairment and immune imbalance. Knowing the pathophysiological mechanisms underlying this relationship is important as it enables us to structure effective countermeasures for the new challenges that lie ahead: the lengthening of space missions and Mars exploration, the specter of future pandemics, and the aging of the population.
Collapse
Affiliation(s)
- Costanza Scatà
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Angelica Carandina
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Alice Della Torre
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Chiara Bellocchi
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Gabriel Dias Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Ludovico Furlan
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
5
|
Le Roy B, Martin-Krumm C, Pinol N, Dutheil F, Trousselard M. Human challenges to adaptation to extreme professional environments: A systematic review. Neurosci Biobehav Rev 2023; 146:105054. [PMID: 36682426 DOI: 10.1016/j.neubiorev.2023.105054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
NASA is planning human exploration of the Moon, while preparations are underway for human missions to Mars, and deeper into the solar system. These missions will expose space travelers to unusual conditions, which they will have to adapt to. Similar conditions are found in several analogous environments on Earth, and studies can provide an initial understanding of the challenges for human adaptation. Such environments can be marked by an extreme climate, danger, limited facilities and supplies, isolation from loved ones, or mandatory interaction with others. They are rarely encountered by most human beings, and mainly concern certain professions in limited missions. This systematic review focuses on professional extreme environments and captures data from papers published since 2005. Our findings provide an insight into their physiological, biological, cognitive, and behavioral impacts for better understand how humans adapt or not to them. This study provides a framework for studying adaptation, which is particularly important in light of upcoming longer space expeditions to more distant destinations.
Collapse
Affiliation(s)
- Barbara Le Roy
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; CNES, Paris, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France.
| | - Charles Martin-Krumm
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France; École de Psychologues Praticiens, Catholic Institute of Paris, EA Religion, Culture et société, Paris, France
| | - Nathalie Pinol
- Université Clermont Auvergne, Health Library, Clermont-Ferrand, France
| | - Frédéric Dutheil
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, F 63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, 34 Avenue Carnot, 63 037 Clermont-Ferrand, France
| | - Marion Trousselard
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France; French Military Health Service Academy, Paris, France
| |
Collapse
|
6
|
Hao Y, Lu L, Liu A, Lin X, Xiao L, Kong X, Li K, Liang F, Xiong J, Qu L, Li Y, Li J. Integrating bioinformatic strategies in spatial life science research. Brief Bioinform 2022; 23:bbac415. [PMID: 36198665 PMCID: PMC9677476 DOI: 10.1093/bib/bbac415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022] Open
Abstract
As space exploration programs progress, manned space missions will become more frequent and farther away from Earth, putting a greater emphasis on astronaut health. Through the collaborative efforts of researchers from various countries, the effect of the space environment factors on living systems is gradually being uncovered. Although a large number of interconnected research findings have been produced, their connection seems to be confused, and many unknown effects are left to be discovered. Simultaneously, several valuable data resources have emerged, accumulating data measuring biological effects in space that can be used to further investigate the unknown biological adaptations. In this review, the previous findings and their correlations are sorted out to facilitate the understanding of biological adaptations to space and the design of countermeasures. The biological effect measurement methods/data types are also organized to provide references for experimental design and data analysis. To aid deeper exploration of the data resources, we summarized common characteristics of the data generated from longitudinal experiments, outlined challenges or caveats in data analysis and provided corresponding solutions by recommending bioinformatics strategies and available models/tools.
Collapse
Affiliation(s)
- Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Liang Lu
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Anna Liu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Li Xiao
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Xiaoyue Kong
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Kai Li
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Fengji Liang
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Jianghui Xiong
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Lina Qu
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Yinghui Li
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Ponomarev SA, Sadova AA, Rykova MP, Orlova KD, Vlasova DD, Shulgina SM, Antropova EN, Kutko OV, Germanov NS, Galina VS, Shmarov VA. The impact of short-term confinement on human innate immunity. Sci Rep 2022; 12:8372. [PMID: 35589846 PMCID: PMC9120181 DOI: 10.1038/s41598-022-12380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
During space missions cosmonauts are exposed to a myriad of distinct stressors such as radiation, overloads, weightlessness, radiation, isolation in artificial environmental conditions, which causes changes in immune system. During space flights it is very difficult to determine the particular factor associated with the observed immunological responses. This makes ground-based experiments examining the effect of each space flight associated factor along of particular value. Determining mechanisms causing alterations in cosmonauts' immunity can lead to potential targets for different countermeasures. In the current article we present the study of the early period of adaptation of human innate immunity of 6 healthy test-subjects, 4 males and 2 females aged 25 through 40, to isolation factors (hypodynamia, psychological stress, artificial environment). We measured multiple parameters characterizing innate immunity status in blood samples at chosen time points before, during and after the mission. In the experiment, highly enhanced cytokine responses were observed upon ex vivo antigen stimulations in comparison to baseline values. For cellular parameters we found multidirectional dynamics with a persistent prevalence of increasing TLRs+ monocytes as well as TLRs expression. Our study provides evidence that even a short-term confinement leads to immune changes in healthy humans that may trigger aberrant immune response.
Collapse
Affiliation(s)
- S A Ponomarev
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation.
| | - A A Sadova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation.,Pirigov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russian Federation
| | - M P Rykova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - K D Orlova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - D D Vlasova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - S M Shulgina
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - E N Antropova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - O V Kutko
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - N S Germanov
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation.,Pirigov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russian Federation
| | - V S Galina
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation.,Pirigov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russian Federation
| | - V A Shmarov
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| |
Collapse
|
8
|
Hou F, Zhou X, Zhou S, Liu H, Huang YE, Yuan M, Zhu J, Cao X, Jiang W. DNA Methylation Dynamics Associated with Long-term Isolation of Simulated Space Travel. iScience 2022; 25:104493. [PMID: 35712082 PMCID: PMC9194130 DOI: 10.1016/j.isci.2022.104493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Long-term isolation is one of the risk factors that astronauts will encounter in spaceflight. At present, few researches have explored DNA methylation dynamics during long-term isolation. In this study, using time series DNA methylation data from “Mars-500” mission, we conducted a multi-step analysis to investigate the characteristics and dynamic patterns of DNA methylation as well as their functional insights during long-term isolation. The results showed that genome-wide methylation changes were minimal. In the six identified DNA methylation dynamic patterns, most of significantly fluctuating CpG sites could be returned to the baseline in post-isolation, and the remaining sites persistently decreased during isolation. Next, functional enrichment analysis of genes with each pattern revealed strong functional specificity. Some patterns were also significantly associated with nervous system diseases, digestive system diseases and cancers. In conclusion, the DNA methylation dynamics during long-term isolation have great functional significance, and might be helpful for protection of astronaut health. Six dynamic patterns of DNA methylation were identified during long-term isolation Most of significantly fluctuating methylation sites recovered in post-isolation Six patterns showed strong functional specificity Genes with decreased methylation levels might be associated with tumor
Collapse
Affiliation(s)
- Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shunheng Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yu-e Huang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jicun Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xinyu Cao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- Corresponding author
| |
Collapse
|
9
|
Feiveson AH, Krieger SS, von Scheven G, Crucian BE, Bürkle A, Stahn AC, Wu H, Moreno-Villanueva M. DNA Damage and Radiosensitivity in Blood Cells from Subjects Undergoing 45 Days of Isolation and Confinement: An Explorative Study. Curr Issues Mol Biol 2022; 44:654-669. [PMID: 35723331 PMCID: PMC8929106 DOI: 10.3390/cimb44020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/02/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of confined and isolated experience on astronauts’ health is an important factor to consider for future space exploration missions. The more confined and isolated humans are, the more likely they are to develop negative behavioral or cognitive conditions such as a mood decline, sleep disorder, depression, fatigue and/or physiological problems associated with chronic stress. Molecular mediators of chronic stress, such as cytokines, stress hormones or reactive oxygen species (ROS) are known to induce cellular damage including damage to the DNA. In view of the growing evidence of chronic stress-induced DNA damage, we conducted an explorative study and measured DNA strand breaks in 20 healthy adults. The participants were grouped into five teams (missions). Each team was composed of four participants, who spent 45 days in isolation and confinement in NASA’s Human Exploration Research Analog (HERA). Endogenous DNA integrity, ex-vivo radiation-induced DNA damage and the rates of DNA repair were assessed every week. Our results show a high inter-individual variability as well as differences between the missions, which cannot be explained by inter-individual variability alone. The ages and sex of the participants did not appear to influence the results.
Collapse
Affiliation(s)
- Alan H. Feiveson
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
| | | | - Gudrun von Scheven
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (G.v.S.); (A.B.)
| | - Brian E. Crucian
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (G.v.S.); (A.B.)
| | - Alexander C. Stahn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 1019 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA;
- Center for Space Medicine and Extreme Environments, Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Honglu Wu
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
| | - María Moreno-Villanueva
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: ; Tel.: +49-753-188-3599
| |
Collapse
|
10
|
Pavez Loriè E, Baatout S, Choukér A, Buchheim JI, Baselet B, Dello Russo C, Wotring V, Monici M, Morbidelli L, Gagliardi D, Stingl JC, Surdo L, Yip VLM. The Future of Personalized Medicine in Space: From Observations to Countermeasures. Front Bioeng Biotechnol 2021; 9:739747. [PMID: 34966726 PMCID: PMC8710508 DOI: 10.3389/fbioe.2021.739747] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of personalized medicine is to detach from a “one-size fits all approach” and improve patient health by individualization to achieve the best outcomes in disease prevention, diagnosis and treatment. Technological advances in sequencing, improved knowledge of omics, integration with bioinformatics and new in vitro testing formats, have enabled personalized medicine to become a reality. Individual variation in response to environmental factors can affect susceptibility to disease and response to treatments. Space travel exposes humans to environmental stressors that lead to physiological adaptations, from altered cell behavior to abnormal tissue responses, including immune system impairment. In the context of human space flight research, human health studies have shown a significant inter-individual variability in response to space analogue conditions. A substantial degree of variability has been noticed in response to medications (from both an efficacy and toxicity perspective) as well as in susceptibility to damage from radiation exposure and in physiological changes such as loss of bone mineral density and muscle mass in response to deconditioning. At present, personalized medicine for astronauts is limited. With the advent of longer duration missions beyond low Earth orbit, it is imperative that space agencies adopt a personalized strategy for each astronaut, starting from pre-emptive personalized pre-clinical approaches through to individualized countermeasures to minimize harmful physiological changes and find targeted treatment for disease. Advances in space medicine can also be translated to terrestrial applications, and vice versa. This review places the astronaut at the center of personalized medicine, will appraise existing evidence and future preclinical tools as well as clinical, ethical and legal considerations for future space travel.
Collapse
Affiliation(s)
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Judith-Irina Buchheim
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,MRC Centre for Drug Safety Science and Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| | | | - Monica Monici
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Dimitri Gagliardi
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, United Kingdom
| | - Julia Caroline Stingl
- Institute of Clinical Pharmacology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Leonardo Surdo
- Space Applications Services NV/SA for the European Space Agency, Noordwijk, Netherlands
| | - Vincent Lai Ming Yip
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Buchheim JI, Billaud JN, Feuerecker M, Strewe C, Dangoisse C, Osterman A, Mehta S, Crucian B, Schelling G, Choukér A. Exploratory RNA-seq analysis in healthy subjects reveals vulnerability to viral infections during a 12- month period of isolation and confinement. Brain Behav Immun Health 2021; 9:100145. [PMID: 34589891 PMCID: PMC8474453 DOI: 10.1016/j.bbih.2020.100145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022] Open
Abstract
Exposure to stressful environments weakens immunity evidenced by a detectable reactivation of dormant viruses. The mechanism behind this observation remains unclear. We performed next generation sequencing from RNA extracted from blood samples of 8 male subjects collected before, during and after a 12-month stay at the Antarctic station Concordia. RNA-seq data analysis was done using QIAGEN Ingenuity Pathway Analysis (IPA) software. Data revealed the inactivation of key immune functions such as chemotaxis and leukocyte recruitment which persisted after return. Next to the activation of the stress response eIF2 pathway, interferon signaling was predicted inactivated due to a downregulation of 14 downstream genes involved in antiviral immunity. Among them, the interferon stimulated genes (ISGs) IFITM2 and 3 as well as IFIT3 exhibited the strongest fold changes and IFIT3 remained downregulated even after return. Impairment of antiviral immunity in winter-over crew can be explained by the downregulation of a battery of ISGs. Whole blood transcriptome analysis during 12-months of isolation in the Antarctic. Data show an inactivation of key immune functions and pathways without recovery. The IFN pathway is most affected showing a downregulation of 14 downstream genes. The results suggest impairment of antiviral immunity and vulnerability to infection.
Collapse
Affiliation(s)
- Judith-Irina Buchheim
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377, Munich, Germany
| | | | - Matthias Feuerecker
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377, Munich, Germany
| | - Claudia Strewe
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377, Munich, Germany
| | - Carole Dangoisse
- Department of Anesthesia and Critical Care, Ysbyty Gwynedd Hospital, Bangor, Wales, UK
| | - Andreas Osterman
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | | | | | - Gustav Schelling
- Department of Anesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377, Munich, Germany
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
12
|
Ponomarev S, Kalinin S, Sadova A, Rykova M, Orlova K, Crucian B. Immunological Aspects of Isolation and Confinement. Front Immunol 2021; 12:697435. [PMID: 34248999 PMCID: PMC8264770 DOI: 10.3389/fimmu.2021.697435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Beyond all doubts, the exploration of outer space is a strategically important and priority sector of the national economy, scientific and technological development of every and particular country, and of all human civilization in general. A number of stress factors, including a prolonged confinement in a limited hermetically sealed space, influence the human body in space on board the spaceship and during the orbital flight. All these factors predominantly negatively affect various functional systems of the organism, in particular, the astronaut's immunity. These ground-based experiments allow to elucidate the effect of confinement in a limited space on both the activation of the immunity and the changes of the immune status in dynamics. Also, due to simulation of one or another emergency situation, such an approach allows the estimation of the influence of an additional psychological stress on the immunity, particularly, in the context of the reserve capacity of the immune system. A sealed chamber seems a convenient site for working out the additional techniques for crew members selection, as well as the countermeasures for negative changes in the astronauts' immune status. In this review we attempted to collect information describing changes in human immunity during isolation experiments with different conditions including short- and long-term experiments in hermetically closed chambers with artificial environment and during Antarctic winter-over.
Collapse
Affiliation(s)
- Sergey Ponomarev
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, Russia
| | - Sergey Kalinin
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, Russia
| | - Anastasiya Sadova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, Russia
| | - Marina Rykova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, Russia
| | - Kseniya Orlova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, Russia
| | - Brian Crucian
- Immunology/Virology Laboratory, NASA Johnson Space Center, Environmental Sciences Branch, Houston, TX, United States
| |
Collapse
|
13
|
Brem C, Lutz J, Vollmar C, Feuerecker M, Strewe C, Nichiporuk I, Vassilieva G, Schelling G, Choukér A. Changes of brain DTI in healthy human subjects after 520 days isolation and confinement on a simulated mission to Mars. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:83-90. [PMID: 31987482 DOI: 10.1016/j.lssr.2019.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Long-term confinement is known to be a stressful experience with multiple psycho-physiological effects. In the MARS500 project, a real-time simulation of a space-flight to Mars conducted in a hermetically isolated habitat, effects of long-term confinement could be investigated in a unique manner. The aim of this study was to evaluate effects of long-term-confinement on brain cytoarchitecture. MATERIAL & METHODS The participants of the MARS500 project underwent 3T-MR imaging including a dedicated DTI-sequence before the isolation, right after ending of confinement and 6 months after the experiment. Voxelwise statistical analysis of the DTI data was carried out using tract-based-spatial statistics, comparing an age-matched control group. RESULTS At all three sessions, significant lower fractional anisotropy (FA) than in controls was found in the anterior parts of the callosal body of the participants. Furthermore, after ending of confinement a wide-spread FA reduction could be seen in the right hemisphere culminating in the temporo-parietal-junction-zone. All these areas with decreased FA predominantly showed an elevated radial diffusivity and mean diffusivity while axial diffusivity was less correlated. DISCUSSION Long-term confinement does have measurable effects on the microstructure of the brain white matter. We assume effects of sensory deprivation to account for the regional FA reductions seen in the right TPJ. The differences in the Corpus callosum were interpreted as due to preliminary conditions, e.g. personality traits or training effects. FA and radial diffusivity were the predominant DTI parameters with significant changes, suggesting underlying processes of myelin plasticity.
Collapse
Affiliation(s)
- Christian Brem
- Department of Neuroradiology, Hospital of the University of Munich (LMU), Marchioninistrasse 15, D-81377, Munich, Germany
| | - Jürgen Lutz
- Radiologisches Zentrum München-Pasing, Pippinger Str. 25, D-81245 Munich, Germany
| | - Christian Vollmar
- Department of Neurology, Hospital of the University of Munich (LMU), Marchioninistrasse 15, D-81377, Munich, Germany
| | - Matthias Feuerecker
- Department of Anaesthesiology & Laboratory of Translational Research "Stress and Immunity" at the Department of Anaesthesiology, Hospital of the University of Munich (LMU), Marchioninstraße 15, 81377 München, Munich, Germany
| | - Claudia Strewe
- Department of Anaesthesiology & Laboratory of Translational Research "Stress and Immunity" at the Department of Anaesthesiology, Hospital of the University of Munich (LMU), Marchioninstraße 15, 81377 München, Munich, Germany
| | - Igor Nichiporuk
- Institute for Biomedical Problems, Moscow, Russian Federation
| | | | - Gustav Schelling
- Department of Anaesthesiology & Laboratory of Translational Research "Stress and Immunity" at the Department of Anaesthesiology, Hospital of the University of Munich (LMU), Marchioninstraße 15, 81377 München, Munich, Germany
| | - Alexander Choukér
- Department of Anaesthesiology & Laboratory of Translational Research "Stress and Immunity" at the Department of Anaesthesiology, Hospital of the University of Munich (LMU), Marchioninstraße 15, 81377 München, Munich, Germany.
| |
Collapse
|
14
|
Liang F, Lv K, Wang Y, Yuan Y, Lu L, Feng Q, Jing X, Wang H, Liu C, Rayner S, Ling S, Chen H, Wan Y, Zhou W, He L, Wu B, Qu L, Chen S, Xiong J, Li Y. Personalized Epigenome Remodeling Under Biochemical and Psychological Changes During Long-Term Isolation Environment. Front Physiol 2019; 10:932. [PMID: 31417412 PMCID: PMC6684777 DOI: 10.3389/fphys.2019.00932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
It has been reported that several aspects of human health could be disturbed during a long-term isolated environment (for instance, the Mars-500 mission), including psychiatric disorders, circadian disruption, temporal dynamics of gut microbiota, immune responses, and physical-activity-related neuromuscular performance. Nevertheless, the mechanisms underlying these disturbances and the interactions among different aspects of human adaptation to extreme environments remain to be elucidated. Epigenetic features, like DNA methylation, might be a linking mechanism that explains the involvement of environmental factors between the human genome and the outcome of health. We conducted an exploration of personalized longitudinal DNA methylation patterns of the peripheral whole blood cells, profiling six subjects across six sampling points in the Mars-500 mission. Specifically, we developed a Personalized Epigenetic-Phenotype Synchronization Analysis (PeSa) algorithm to explore glucose- and mood-state-synchronized DNA methylation sites, focusing on finding the dynamic associations between epigenetic patterns and phenotypes in each individual, and exploring the underling epigenetic connections between glucose and mood-state disturbance. Results showed that DMPs (differentially methylated-probes) were significantly enriched in pathways related to glucose metabolism (Type II diabetes mellitus pathway), mood state (Long-term depression) and circadian rhythm (Circadian entrainment pathway) during the mission. Furthermore, our data revealed individualized glucose-synchronized and mood-state-synchronized DNA methylation sites, and PTPRN2 was found to be associated with both glucose and mood state disturbances across all six subjects. Our findings suggest that personalized phenotype-synchronized epigenetic features could reflect the effects on the human body, including the disturbances of glucose and mood-states. The association analysis of DNA methylation and phenotypes, like the PeSa analysis, could provide new possibilities in understanding the intrinsic relationship between phenotypic changes of the human body adapting to long-term isolation environmental factors.
Collapse
Affiliation(s)
- Fengji Liang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Yue Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yanhong Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Liang Lu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qiang Feng
- Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Xiaolu Jing
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Honghui Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Changning Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yumin Wan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wanlong Zhou
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Li He
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bin Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shanguang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianghui Xiong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| |
Collapse
|
15
|
Yuan M, Custaud MA, Xu Z, Wang J, Yuan M, Tafforin C, Treffel L, Arbeille P, Nicolas M, Gharib C, Gauquelin-Koch G, Arnaud L, Lloret JC, Li Y, Navasiolava N. Multi-System Adaptation to Confinement During the 180-Day Controlled Ecological Life Support System (CELSS) Experiment. Front Physiol 2019; 10:575. [PMID: 31164833 PMCID: PMC6536695 DOI: 10.3389/fphys.2019.00575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 02/01/2023] Open
Abstract
Confinement experiments are essential to prepare long-term space exploration. The 180-day Chinese CELSS (Controlled Ecological Life Support System) study is unique in its design, including a closed-loop system and mid-mission simulation of Mars-like day-night cycle of 24 h 40 min for 36 days (days 72-108). Our aim was to study physiological and psychological consequences of this confinement in four healthy volunteers (one female). CELSS platform consisted of six interconnected modules including four greenhouses. Life support systems were controlled automatically. Body composition, fluid compartments, metabolic state, heart, large vessels, endothelial function, and muscle tone were studied using biological, functional, and/or morphological measurements. Behavioral activities were studied by ethological monitoring; psychological state was assessed by questionnaires. Body weight decreased by ∼2 kg mostly due to lean mass loss. Plasma volume and volume-regulating hormones were mostly stable. Carotid intima-media thickness (IMT) increased by 10-15%. Endothelium-dependent vasodilation decreased. Masseter tone increased by 6-14% suggesting stress, whereas paravertebral muscle tone diminished by 10 ± 6%. Behavioral flow reflecting global activity decreased 1.5- to 2-fold after the first month. Psychological questionnaires revealed decrease in hostility and negative emotions but increase in emotional adaptation suggesting boredom and monotony. One subject was clearly different with lower fitness, higher levels of stress and anxiety, and somatic signs as back pain, peak in masseter tone, increased blood cortisol and C-reactive protein. Comparison of CELSS experiment with Mars500 confinement program suggests the need for countermeasures to prevent increased IMT and endothelial deconditioning. Daily activity in greenhouse could act as countermeasure against psycho-physiological deconditioning.
Collapse
Affiliation(s)
- Ming Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Space Institute of Southern China, Shenzhen, China
| | - Marc-Antoine Custaud
- Centre de Recherche Clinique, Centre Hospitalier Universitaire d’Angers, Angers, France
- MitoVasc UMR INSERM 1083-CNRS 6015, Université d’Angers, Angers, France
| | - Zi Xu
- Space Institute of Southern China, Shenzhen, China
| | - Jingyu Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Min Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Carole Tafforin
- Research and Study Group in Human and Space Ethology, Ethospace, Toulouse, France
| | - Loïc Treffel
- Institut Toulousain d’Ostéopathie, Toulouse, France
- Centre de Recherche International en Biomécanique, Lagarde, France
| | - Philippe Arbeille
- Faculté de Médecine, Unité de Médecine et Physiologie Spatiales, Centre Hospitalier Universitaire Trousseau de Tours, Tours, France
| | - Michel Nicolas
- Laboratory of Psychology Psy-DREPI (EA 7458), Sport Sciences Department, University Bourgogne Franche-Comté, Dijon, France
| | - Claude Gharib
- Institut NeuroMyogène, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Nastassia Navasiolava
- Centre de Recherche Clinique, Centre Hospitalier Universitaire d’Angers, Angers, France
| |
Collapse
|
16
|
Strewe C, Moser D, Buchheim JI, Gunga HC, Stahn A, Crucian BE, Fiedel B, Bauer H, Gössmann-Lang P, Thieme D, Kohlberg E, Choukèr A, Feuerecker M. Sex differences in stress and immune responses during confinement in Antarctica. Biol Sex Differ 2019; 10:20. [PMID: 30992051 PMCID: PMC6469129 DOI: 10.1186/s13293-019-0231-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background Antarctica challenges human explorers by its extreme environment. The effects of these unique conditions on the human physiology need to be understood to best mitigate health problems in Antarctic expedition crews. Moreover, Antarctica is an adequate Earth-bound analogue for long-term space missions. To date, its effects on human physiology have been studied mainly in male cohorts though more female expeditioners and applicants in astronaut training programs are selected. Therefore, the identification of sex differences in stress and immune reactions are becoming an even more essential aim to provide a more individualized risk management. Methods Ten female and 16 male subjects participated in three 1-year expeditions to the German Antarctic Research Station Neumayer III. Blood, saliva, and urine samples were taken 1–2 months prior to departure, subsequently every month during their expedition, and 3–4 months after return from Antarctica. Analyses included cortisol, catecholamine and endocannabinoid measurements; psychological evaluation; differential blood count; and recall antigen- and mitogen-stimulated cytokine profiles. Results Cortisol showed significantly higher concentrations in females than males during winter whereas no enhanced psychological stress was detected in both sexes. Catecholamine excretion was higher in males than females but never showed significant increases compared to baseline. Endocannabinoids and N-acylethanolamides increased significantly in both sexes and stayed consistently elevated during the confinement. Cytokine profiles after in vitro stimulation revealed no sex differences but resulted in significant time-dependent changes. Hemoglobin and hematocrit were significantly higher in males than females, and hemoglobin increased significantly in both sexes compared to baseline. Platelet counts were significantly higher in females than males. Leukocytes and granulocyte concentrations increased during confinement with a dip for both sexes in winter whereas lymphocytes were significantly elevated in both sexes during the confinement. Conclusions The extreme environment of Antarctica seems to trigger some distinct stress and immune responses but—with the exception of cortisol and blood cell counts—without any major relevant sex-specific differences. Stated sex differences were shown to be independent of enhanced psychological stress and seem to be related to the environmental conditions. However, sources and consequences of these sex differences have to be further elucidated.
Collapse
Affiliation(s)
- C Strewe
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| | - D Moser
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| | - J-I Buchheim
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| | - H-C Gunga
- Institut für Physiologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - A Stahn
- Institut für Physiologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - B E Crucian
- NASA - Johnson Space Center, Houston, TX, USA
| | - B Fiedel
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - H Bauer
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - P Gössmann-Lang
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - D Thieme
- Institute of Doping Analysis und Sports Biochemistry, Kreischa, Germany
| | - E Kohlberg
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - A Choukèr
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany.
| | - M Feuerecker
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
17
|
Evaluation of psychological stress in confined environments using salivary, skin, and facial image parameters. Sci Rep 2018; 8:8264. [PMID: 29844534 PMCID: PMC5974367 DOI: 10.1038/s41598-018-26654-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022] Open
Abstract
Detecting the influence of psychological stress is particularly important in prolonged space missions. In this study, we determined potential markers of psychological stress in a confined environment. We examined 23 Japanese subjects staying for 2 weeks in a confined facility at Tsukuba Space Center, measuring salivary, skin, and facial image parameters. Saliva was collected at four points in a single day to detect diurnal variation. Increases in salivary cortisol were detected after waking up on the 4th and 11th days, and at 15:30 on the 1st and in the second half of the stay. Transepidermal water loss (TEWL) and sebum content of the skin were higher compared with outside the facility on the 4th and 1st days respectively. Increased IL-1β in the stripped stratum corneum was observed on the 14th day, and 7 days after leaving. Differences in facial expression symmetry at the time of facial expression changes were observed on 11th and 14th days. Thus, we detected a transition of psychological stress using salivary cortisol profiles and skin physiological parameters. The results also suggested that IL-1β in the stripped stratum corneum and facial expression symmetry are possible novel markers for conveniently detecting psychological stress.
Collapse
|
18
|
Ray EC, Kleyman TR. An Increasingly Complex Relationship Between Salt and Water. Am J Kidney Dis 2017; 70:599-601. [DOI: 10.1053/j.ajkd.2017.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 11/11/2022]
|
19
|
Mehta SK, Laudenslager ML, Stowe RP, Crucian BE, Feiveson AH, Sams CF, Pierson DL. Latent virus reactivation in astronauts on the international space station. NPJ Microgravity 2017; 3:11. [PMID: 28649633 PMCID: PMC5445581 DOI: 10.1038/s41526-017-0015-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/21/2016] [Accepted: 01/07/2017] [Indexed: 12/20/2022] Open
Abstract
Reactivation of latent herpes viruses was measured in 23 astronauts (18 male and 5 female) before, during, and after long-duration (up to 180 days) spaceflight onboard the international space station . Twenty age-matched and sex-matched healthy ground-based subjects were included as a control group. Blood, urine, and saliva samples were collected before, during, and after spaceflight. Saliva was analyzed for Epstein-Barr virus, varicella-zoster virus, and herpes simplex virus type 1. Urine was analyzed for cytomegalovirus. One astronaut did not shed any targeted virus in samples collected during the three mission phases. Shedding of Epstein-Barr virus, varicella-zoster virus, and cytomegalovirus was detected in 8 of the 23 astronauts. These viruses reactivated independently of each other. Reactivation of Epstein-Barr virus, varicella-zoster virus, and cytomegalovirus increased in frequency, duration, and amplitude (viral copy numbers) when compared to short duration (10 to 16 days) space shuttle missions. No evidence of reactivation of herpes simplex virus type 1, herpes simplex virus type 2, or human herpes virus 6 was found. The mean diurnal trajectory of salivary cortisol changed significantly during flight as compared to before flight (P = 0.010). There was no statistically significant difference in levels of plasma cortisol or dehydoepiandosterone concentrations among time points before, during, and after flight for these international space station crew members, although observed cortisol levels were lower at the mid and late-flight time points. The data confirm that astronauts undertaking long-duration spaceflight experience both increased latent viral reactivation and changes in diurnal trajectory of salivary cortisol concentrations.
Collapse
Affiliation(s)
| | - Mark L. Laudenslager
- University of Colorado Denver, Anschutz Medical Campus, 12700 E. 19th Ave, Aurora, CO 80045 USA
| | | | - Brian E. Crucian
- NASA Johnson Space Center, Mail code SK, 2101 NASA Parkway, Houston, TX 77058 USA
| | - Alan H. Feiveson
- NASA Johnson Space Center, Mail code SK, 2101 NASA Parkway, Houston, TX 77058 USA
| | - Clarence F. Sams
- NASA Johnson Space Center, Mail code SK, 2101 NASA Parkway, Houston, TX 77058 USA
| | - Duane L. Pierson
- NASA Johnson Space Center, Mail code SK, 2101 NASA Parkway, Houston, TX 77058 USA
| |
Collapse
|
20
|
Turroni S, Rampelli S, Biagi E, Consolandi C, Severgnini M, Peano C, Quercia S, Soverini M, Carbonero FG, Bianconi G, Rettberg P, Canganella F, Brigidi P, Candela M. Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500. MICROBIOME 2017; 5:39. [PMID: 28340597 PMCID: PMC5366131 DOI: 10.1186/s40168-017-0256-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/15/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND The intestinal microbial communities and their temporal dynamics are gaining increasing interest due to the significant implications for human health. Recent studies have shown the dynamic behavior of the gut microbiota in free-living, healthy persons. To date, it is not known whether these dynamics are applicable during prolonged life sharing in a confined and controlled environment. RESULTS The MARS500 project, the longest ground-based space simulation ever, provided us with a unique opportunity to trace the crew microbiota over 520 days of isolated confinement, such as that faced by astronauts in real long-term interplanetary space flights, and after returning to regular life, for a total of 2 years. According to our data, even under the strictly controlled conditions of an enclosed environment, the human gut microbiota is inherently dynamic, capable of shifting between different steady states, typically with rearrangements of autochthonous members. Notwithstanding a strong individuality in the overall gut microbiota trajectory, some key microbial components showed conserved temporal dynamics, with potential implications for the maintenance of a health-promoting, mutualistic microbiota configuration. CONCLUSIONS Sharing life in a confined habitat does not affect the resilience of the individual gut microbial ecosystem, even in the long term. However, the temporal dynamics of certain microbiota components should be monitored when programming future mission simulations and real space flights, to prevent breakdowns in the metabolic and immunological homeostasis of the crewmembers.
Collapse
Affiliation(s)
- Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126 Italy
| | - Simone Rampelli
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126 Italy
| | - Elena Biagi
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126 Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies – National Research Council (ITB-CNR), Segrate, Milan 20090 Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies – National Research Council (ITB-CNR), Segrate, Milan 20090 Italy
| | - Clelia Peano
- Institute of Biomedical Technologies – National Research Council (ITB-CNR), Segrate, Milan 20090 Italy
| | - Sara Quercia
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126 Italy
| | - Matteo Soverini
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126 Italy
| | - Franck G. Carbonero
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704 USA
| | - Giovanna Bianconi
- Department for Innovation in Biological, Agrofood, and Forest Systems, University of Tuscia, Viterbo, 01100 Italy
| | - Petra Rettberg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, 51147 Germany
| | - Francesco Canganella
- Department for Innovation in Biological, Agrofood, and Forest Systems, University of Tuscia, Viterbo, 01100 Italy
| | - Patrizia Brigidi
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126 Italy
| | - Marco Candela
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126 Italy
| |
Collapse
|
21
|
Pagel JI, Choukèr A. Effects of isolation and confinement on humans-implications for manned space explorations. J Appl Physiol (1985) 2016; 120:1449-57. [DOI: 10.1152/japplphysiol.00928.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/02/2016] [Indexed: 01/09/2023] Open
Abstract
Human psychology and physiology are significantly altered by isolation and confinement. In light of planned exploration class interplanetary missions, the related adverse effects on the human body need to be explored and defined as they have a large impact on a mission's success. Terrestrial space analogs offer an excellent controlled environment to study some of these stressors during a space mission in isolation without the complex environment of the International Space Station. Participants subjected to these space analog conditions can encounter typical symptoms ranging from neurocognitive changes, fatigue, misaligned circadian rhythm, sleep disorders, altered stress hormone levels, and immune modulatory changes. This review focuses on both the psychological and the physiological responses observed in participants of long-duration spaceflight analog studies, such as Mars500 or Antarctic winter-over. They provide important insight into similarities and differences encountered in each simulated setting. The identification of adverse effects from confinement allows not only the crew to better prepare for but also to design feasible countermeasures that will help support space travelers during exploration class missions in the future.
Collapse
Affiliation(s)
- J. I. Pagel
- Stress and Immunology Laboratory, Department of Anesthesiology, Hospital of the University of Munich, Munich, Germany
| | - A. Choukèr
- Stress and Immunology Laboratory, Department of Anesthesiology, Hospital of the University of Munich, Munich, Germany
| |
Collapse
|
22
|
Yi B, Nichiporuk I, Nicolas M, Schneider S, Feuerecker M, Vassilieva G, Thieme D, Schelling G, Choukèr A. Reductions in circulating endocannabinoid 2-arachidonoylglycerol levels in healthy human subjects exposed to chronic stressors. Prog Neuropsychopharmacol Biol Psychiatry 2016; 67:92-7. [PMID: 26780604 DOI: 10.1016/j.pnpbp.2016.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/15/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Abstract
Increasing evidence indicates that chronic stress, such as social isolation, plays an important role in the development of a variety of psychiatric and somatic disorders. Meanwhile, chronic stress imposed by prolonged isolation and confinement in the spacecraft is also one of the major concerns for the health of future interplanetary space travelers. Preclinical studies suggest that the peripheral endocannabinoid (eCB) system is involved in the regulation of the stress response and eCB signaling is implicated in the pathogenesis of stress-related diseases. However, there are only few human studies addressing this topic, of which most focusing on patients who have already developed a certain type of disorder. It remains unknown whether chronic stress may affect eCB signaling in healthy humans. A 520-d isolation and confinement study simulating a flight to Mars provided an extraordinary chance to study the effects of prolonged stress in healthy humans. During the study period, the participants lived in confinement and could not meet their families, friends, or strangers for more than 500 days. We examined the impact of chronic exposure to isolation and confinement through monitoring their psychological state, brain cortical activity, sympathetic adrenal-medullary system response and eCB signaling response. We observed reduced positive emotion ratings, decreased brain cortical activities and high levels of catecholamine release, indicating that prolonged exposure to isolation and confinement stressors may bring about changes both psychologically and physiologically. Importantly, for eCB signaling response, blood concentrations of eCB 2-arachidonoylglycerol (2-AG), but not anandamide (AEA), were significantly reduced (p<0.001), suggesting that dysregulation of 2-AG signaling might be specifically implicated in the response to chronic stressors.
Collapse
Affiliation(s)
- Buqing Yi
- Hospital of the University of Munich (LMU), Marchioninistrasse15, D-81377 Munich, Germany.
| | - Igor Nichiporuk
- Institute of Biomedical Problems, 123007 Moscow, Russian Federation
| | - Michel Nicolas
- University of Burgundy, SPMS (EA 4180), 21000 Dijon, France
| | - Stefan Schneider
- Institute of Movement and Neurosciences, German Sport University Cologne, 50933 Cologne, Germany; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Matthias Feuerecker
- Hospital of the University of Munich (LMU), Marchioninistrasse15, D-81377 Munich, Germany
| | | | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry, D-01731 Dresden, Germany
| | - Gustav Schelling
- Hospital of the University of Munich (LMU), Marchioninistrasse15, D-81377 Munich, Germany.
| | - Alexander Choukèr
- Hospital of the University of Munich (LMU), Marchioninistrasse15, D-81377 Munich, Germany.
| |
Collapse
|
23
|
Shelhamer M. A call for research to assess and promote functional resilience in astronaut crews. J Appl Physiol (1985) 2016; 120:471-2. [PMID: 26472875 DOI: 10.1152/japplphysiol.00717.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mark Shelhamer
- NASA Human Research Program, NASA Johnson Space Center, Houston, Texas
| |
Collapse
|
24
|
Opposing effects of alcohol on the immune system. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:242-51. [PMID: 26375241 PMCID: PMC4911891 DOI: 10.1016/j.pnpbp.2015.09.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/24/2015] [Accepted: 09/02/2015] [Indexed: 02/08/2023]
Abstract
Several studies have described a dose-dependent effect of alcohol on human health with light to moderate drinkers having a lower risk of all-cause mortality than abstainers, while heavy drinkers are at the highest risk. In the case of the immune system, moderate alcohol consumption is associated with reduced inflammation and improved responses to vaccination, while chronic heavy drinking is associated with a decreased frequency of lymphocytes and increased risk of both bacterial and viral infections. However, the mechanisms by which alcohol exerts a dose-dependent effect on the immune system remain poorly understood due to a lack of systematic studies that examine the effect of multiple doses and different time courses. This review will summarize our current understanding of the impact of moderate versus excessive alcohol consumption on the innate and adaptive branches of the immune system derived from both in vitro as well as in vivo studies carried out in humans and animal model studies.
Collapse
|
25
|
Hyperbaric hyperoxia alters innate immune functional properties during NASA Extreme Environment Mission Operation (NEEMO). Brain Behav Immun 2015; 50:52-57. [PMID: 26116982 DOI: 10.1016/j.bbi.2015.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Spaceflight is associated with immune dysregulation which is considered as risk factor for the performance of exploration-class missions. Among the consequences of confinement and other environmental factors of living in hostile environments, the role of different oxygen concentrations is of importance as either low (e.g. as considered for lunar or Martian habitats) or high (e.g. during extravehicular activities) can trigger immune dysfunction. The aim of this study was to investigate the impact of increased oxygen availability--generated through hyperbaricity--on innate immune functions in the course of a 14 days NEEMO mission. METHODS 6 male subjects were included into a 14 days undersea deployment at the Aquarius station (Key Largo, FL, USA). The underwater habitat is located at an operating depth of 47 ft. The 2.5 times higher atmospheric pressure in the habitat leads to hyperoxia. The collection of biological samples occurred 6 days before (L-6), at day 7 (MD7) and 11/13 (MD11/13) during the mission, and 90 days thereafter (R). Blood analyses included differential blood cell count, ex vivo innate immune activation status and inhibitory competences of granulocytes. RESULTS The absolute leukocyte count showed an increase during deployment as well as the granulocyte and monocyte count. Lymphocyte count was decreased on MD7. The assessments of native adhesion molecules on granulocytes (CD11b, CD62L) indicated a highly significant cellular activation (L-6 vs. MD7/MD13) during mission. In contrast, granulocytes were more sensitive towards anti-inflammatory stimuli (adenosine) on MD13. CONCLUSION Living in the NEEMO habitat for 14 days induced significant immune alterations as seen by an activation of adhesion molecules and vice versa higher sensitivity towards inhibition. This investigation under hyperbaric hyperoxia is important especially for Astronauts' immune competence during extravehicular activities when exposed to similar conditions.
Collapse
|
26
|
Influences of large sets of environmental exposures on immune responses in healthy adult men. Sci Rep 2015; 5:13367. [PMID: 26306804 PMCID: PMC4549790 DOI: 10.1038/srep13367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022] Open
Abstract
Environmental factors have long been known to influence immune responses. In particular, clinical studies about the association between migration and increased risk of atopy/asthma have provided important information on the role of migration associated large sets of environmental exposures in the development of allergic diseases. However, investigations about environmental effects on immune responses are mostly limited in candidate environmental exposures, such as air pollution. The influences of large sets of environmental exposures on immune responses are still largely unknown. A simulated 520-d Mars mission provided an opportunity to investigate this topic. Six healthy males lived in a closed habitat simulating a spacecraft for 520 days. When they exited their “spacecraft” after the mission, the scenario was similar to that of migration, involving exposure to a new set of environmental pollutants and allergens. We measured multiple immune parameters with blood samples at chosen time points after the mission. At the early adaptation stage, highly enhanced cytokine responses were observed upon ex vivo antigen stimulations. For cell population frequencies, we found the subjects displayed increased neutrophils. These results may presumably represent the immune changes occurred in healthy humans when migrating, indicating that large sets of environmental exposures may trigger aberrant immune activity.
Collapse
|
27
|
Soto-Méndez MJ, Romero-Abal ME, Aguilera CM, Rico MC, Solomons NW, Schümann K, Gil A. Associations among Inflammatory Biomarkers in the Circulating, Plasmatic, Salivary and Intraluminal Anatomical Compartments in Apparently Healthy Preschool Children from the Western Highlands of Guatemala. PLoS One 2015; 10:e0129158. [PMID: 26075910 PMCID: PMC4468091 DOI: 10.1371/journal.pone.0129158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022] Open
Abstract
Background Undernutrition and inflammation are related in many ways; for instance, non-hygienic environments are associated with both poor growth and immunostimulation in children. Objective To describe any existing interaction among different inflammation biomarkers measured in the distinct anatomical compartments of whole blood, feces, plasma and saliva. Methods In this descriptive, cross-sectional study, samples of whole blood, feces, plasma and saliva were collected on the 8th and last week of observation among 87 attendees (42 girls and 45 boys) of 3 daycare centers offering a common 40-day rotating menu in Guatemala’s Western Highlands. Analyses included white blood cell count (WBC), fecal calprotectin, and plasmatic and salivary cytokines including IL-1B, IL-6, IL-8, IL-10 and TNF-α. Associations were assessed using Spearman rank-order and goodness-of-fit correlations, as indicated, followed by backwards-elimination multiple regression analyses to determine predictor variables for IL-10 in both anatomical compartments. Results Of a total of 66 cross-tabulations in the Spearman hemi-matrix, 22 (33%) were significantly associated. All 10 paired associations among the salivary cytokines had a significant r value, whereas 7 of 10 possible associations among plasma cytokines were significant. Associations across anatomical compartments, however, were rarely significant. IL-10 in both biological fluids were higher than corresponding reference values. When a multiple regression model was run in order to determine independent predictors for IL-10 in each anatomical compartment separately, IL-6, IL-8 and TNF-α emerged as predictors in plasma (r2 = 0.514) and IL-1B, IL-8 and TNF-α remained as independent predictors in saliva (r2 = 0.762). Significant cross-interactions were seen with WBC, but not with fecal calprotectin. Conclusion Interactions ranged from robust within the same anatomical compartment to limited to nil across distinct anatomical compartments. The prominence of the anti-inflammatory cytokine, IL-10, in both plasma and saliva is consistent with its counter-regulatory role facing a broad front of elevated pro-inflammatory cytokines in the same compartment.
Collapse
Affiliation(s)
- María José Soto-Méndez
- Center for the Studies of Sensory Impairment, Aging, and Metabolism–CeSSIAM- Guatemala City, Guatemala
- * E-mail:
| | - María Eugenia Romero-Abal
- Center for the Studies of Sensory Impairment, Aging, and Metabolism–CeSSIAM- Guatemala City, Guatemala
| | - Concepción María Aguilera
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center of Biomedical Research, University of Granada, Granada, Spain
| | - María Cruz Rico
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center of Biomedical Research, University of Granada, Granada, Spain
| | - Noel W. Solomons
- Center for the Studies of Sensory Impairment, Aging, and Metabolism–CeSSIAM- Guatemala City, Guatemala
| | - Klaus Schümann
- Molecular Nutrition Unit, ZIEL, Research Center for Nutrition and Food Science, Technische Universität München, Freising, Germany
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center of Biomedical Research, University of Granada, Granada, Spain
| |
Collapse
|
28
|
|
29
|
Strewe C, Muckenthaler F, Feuerecker M, Yi B, Rykova M, Kaufmann I, Nichiporuk I, Vassilieva G, Hörl M, Matzel S, Schelling G, Thiel M, Morukov B, Choukèr A. Functional changes in neutrophils and psychoneuroendocrine responses during 105 days of confinement. J Appl Physiol (1985) 2015; 118:1122-7. [DOI: 10.1152/japplphysiol.00755.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/08/2015] [Indexed: 12/24/2022] Open
Abstract
The innate immune system as one key element of immunity and a prerequisite for an adequate host defense is of emerging interest in space research to ensure crew health and thus mission success. In ground-based studies, spaceflight-associated specifics such as confinement caused altered immune functions paralleled by changes in stress hormone levels. In this study, six men were confined for 105 days to a space module of ∼500 m3mimicking conditions of a long-term space mission. Psychic stress was surveyed by different questionnaires. Blood, saliva, and urine samples were taken before, during, and after confinement to determine quantitative and qualitative immune responses by analyzing enumerative assays and quantifying microbicide and phagocytic functions. Additionally, expression and shedding of L-selectin (CD62L) on granulocytes and different plasma cytokine levels were measured. Cortisol and catecholamine levels were analyzed in saliva and urine. Psychic stress or an activation of the psychoneuroendocrine system could not be testified. White blood cell counts were not significantly altered, but innate immune functions showed increased cytotoxic and reduced microbicide capabilities. Furthermore, a significantly enhanced shedding of CD62L might be a hint at increased migratory capabilities. However, this was observed in the absence of any acute inflammatory state, and no rise in plasma cytokine levels was detected. In summary, confinement for 105 days caused changes in innate immune functions. Whether these changes result from an alert immune state in preparation for further immune challenges or from a normal adaptive process during confinement remains to be clarified in future research.
Collapse
Affiliation(s)
- C. Strewe
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - F. Muckenthaler
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Feuerecker
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - B. Yi
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Rykova
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - I. Kaufmann
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
- Department of Anesthesiology and Intensive Care Medicine, Neuperlach Hospital, Municipal Hospital Group, Munich, Germany; and
| | - I. Nichiporuk
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - G. Vassilieva
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - M. Hörl
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - S. Matzel
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - G. Schelling
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Thiel
- Clinic of Anesthesiology and Intensive Care, Klinikum Mannheim, University of Mannheim, Mannheim, Germany
| | - B. Morukov
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - A. Choukèr
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| |
Collapse
|
30
|
Audet MC, McQuaid RJ, Merali Z, Anisman H. Cytokine variations and mood disorders: influence of social stressors and social support. Front Neurosci 2014; 8:416. [PMID: 25565946 PMCID: PMC4267188 DOI: 10.3389/fnins.2014.00416] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/25/2014] [Indexed: 01/12/2023] Open
Abstract
Stressful events have been implicated in the evolution of mood disorders. In addition to brain neurotransmitters and growth factors, the view has been offered that these disorders might be provoked by the activation of the inflammatory immune system as well as by de novo changes of inflammatory cytokines within the brain. The present review describes the impact of social stressors in animals and in humans on behavioral changes reminiscent of depressive states as well as on cytokine functioning. Social stressors increase pro-inflammatory cytokines in circulation as well as in brain regions that have been associated with depression, varying with the animal's social status and/or behavioral methods used to contend with social challenges. Likewise, in humans, social stressors that favor the development of depression are accompanied by elevated circulating cytokine levels and conversely, conditions that limit the cytokine elevations correlated with symptom attenuation or reversal. The implications of these findings are discussed in relation to the potentially powerful effects of social support, social identity, and connectedness in maintaining well-being and in diminishing symptoms of depression.
Collapse
Affiliation(s)
- Marie-Claude Audet
- Institute of Mental Health Research Ottawa, ON, Canada ; Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | - Robyn J McQuaid
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | - Zul Merali
- Institute of Mental Health Research Ottawa, ON, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| |
Collapse
|
31
|
Yi B, Matzel S, Feuerecker M, Hörl M, Ladinig C, Abeln V, Choukèr A, Schneider S. The impact of chronic stress burden of 520-d isolation and confinement on the physiological response to subsequent acute stress challenge. Behav Brain Res 2014; 281:111-5. [PMID: 25499619 DOI: 10.1016/j.bbr.2014.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Collective evidence indicates that previous exposure to stressful condition might be able to induce changes in brain structure, HPA axis activity and related neurotransmission, and accordingly affect physiological responses to subsequent challenges. During long-term spaceflight, space travelers have to live under the condition of isolation and confinement in the spacecraft for a long period. It is still largely unknown if this kind of chronic stress burden can induce any long-lasting changes. To address this question, following 520-d isolation and confinement simulating a flight to Mars, the participants and a matched control group were exposed to an acute stress challenge called parabolic flight. Brain cortical activity, HPA axis activity, and sympathetic adrenal-medullary system response were monitored by EEG signal, cortisol secretion, and catecholamine production, respectively. We observed enhanced EEG signals, elevated cortisol levels and increased adrenaline productions. A group effect on cortisol output was revealed showing higher cortisol peak levels in the Mars520 group as compared to the control group, suggesting that HPA axis was to a certain extent more activated in the subjects who had chronic stress experience.
Collapse
Affiliation(s)
- Buqing Yi
- Department of Anaesthesiology (Research Group Stress and Immunology), Hospital of the University of Munich (LMU), Munich, Germany.
| | - Sandra Matzel
- Department of Anaesthesiology (Research Group Stress and Immunology), Hospital of the University of Munich (LMU), Munich, Germany
| | - Matthias Feuerecker
- Department of Anaesthesiology (Research Group Stress and Immunology), Hospital of the University of Munich (LMU), Munich, Germany
| | - Marion Hörl
- Department of Anaesthesiology (Research Group Stress and Immunology), Hospital of the University of Munich (LMU), Munich, Germany
| | - Camilla Ladinig
- Department of Anaesthesiology (Research Group Stress and Immunology), Hospital of the University of Munich (LMU), Munich, Germany
| | - Vera Abeln
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Alexander Choukèr
- Department of Anaesthesiology (Research Group Stress and Immunology), Hospital of the University of Munich (LMU), Munich, Germany.
| | - Stefan Schneider
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia.
| |
Collapse
|