1
|
Bedwell GJ, Mqadi L, Kamerman P, Hutchinson MR, Parker R, Madden VJ. Inflammatory reactivity is unrelated to childhood adversity or provoked modulation of nociception. Pain 2025:00006396-990000000-00909. [PMID: 40372281 DOI: 10.1097/j.pain.0000000000003658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
ABSTRACT Adversity in childhood elevates the risk of persistent pain in adulthood. Neuroimmune interactions are a candidate mechanistic link between childhood adversity and persistent pain. We aimed to clarify whether immune reactivity is associated with provoked differences in nociceptive processing in adults with a range of childhood adversity. Pain-free adults (n = 96; 61 female; median [range] age: 23 [18-65] years old) with a history of mild to severe childhood adversity underwent psychophysical assessments before and after in vivo neural provocation (high-frequency electrical stimulation) and, separately, before and after in vivo immune provocation (influenza vaccine administration). Psychophysical assessments included the surface area of secondary hyperalgesia after neural provocation and change in conditioned pain modulation (test stimulus: pressure pain threshold; conditioning stimulus: cold water immersion) after immune provocation. Immune reactivity was operationalised as interleukin-6 and tumour necrosis factor-α expression after in vitro lipopolysaccharide provocation of whole blood. We hypothesised associations between immune reactivity and (1) childhood adversity, (2) induced secondary hyperalgesia, and (3) vaccine-associated change in conditioned pain modulation. We found that provoked expression of proinflammatory cytokines was not statistically associated with childhood adversity, induced secondary hyperalgesia, or vaccine-associated change in conditioned pain modulation. The current findings from a heterogenous sample cast doubt on 2 prominent ideas: that childhood adversity primes the inflammatory system for hyper-responsiveness in adulthood and that nociceptive reactivity is linked to inflammatory reactivity. This calls for the broader inclusion of heterogeneous samples in fundamental research to investigate the psychoneuroimmunological mechanisms underlying vulnerability to persistent pain.
Collapse
Affiliation(s)
- Gillian J Bedwell
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Luyanduthando Mqadi
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Peter Kamerman
- Brain Function Research Group, Department of Physiology, School of Biomedical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark R Hutchinson
- School of Biomedicine, University of Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, South Australia, Australia
- Australian Research Council Centra of Excellence for Nanoscale BioPhotonics, Australia
| | - Romy Parker
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Victoria J Madden
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Kim MJ, An T, Cho IS, Joo C, Park JW. Haematologic Data Improves Long-Term Prediction Accuracy of Artificial Intelligence Models for Temporomandibular Disorders. J Oral Rehabil 2025. [PMID: 40369827 DOI: 10.1111/joor.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
OBJECTIVES This study aimed to develop and evaluate an artificial intelligence (AI) model to predict long-term treatment outcomes in temporomandibular disorder (TMD) patients using clinical data and verify the value of adding haematologic data in enhancing predictive accuracy. METHODS The medical records of 132 TMD patients who visited the clinic and underwent 6 months of non-invasive conservative treatment between 2013 and 2019 were included in this study. The clinical data and haematologic features were collected from medical records. A decision tree algorithm was employed for feature selection, followed by a deep neural network (DNN) to build the prediction model. The performance of the models based on the decision tree algorithm and DNN was evaluated. RESULTS The decision tree model achieved an accuracy of 90.6% and an F1-score of 0.800. The subjective pain-related features, along with haematologic markers associated with systemic inflammation, were proven to be important features in the decision tree model. The predictive performance of the DNN model improved as haematologic features were added, with the final model achieving an accuracy of 90.6% and an F1-score of 0.769. CONCLUSIONS This study showed the potential of machine learning models in predicting long-term TMD prognosis using clinical and haematological features. In addition, these findings highlight the importance of including both subjective pain assessments and systemic haematologic markers for the development of aetiology-based diagnostic systems for TMD to enhance clinical decision-making and prognosis prediction accuracy.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Oral Medicine, Gwanak Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Taegun An
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Il-San Cho
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Changhee Joo
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Ji Woon Park
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Norton SA, Blaydon LM, Niehaus M, Miller AP, Hill PL, Oltmanns TF, Bogdan R. Inflammation is associated with pain and fatigue in older adults. Brain Behav Immun Health 2024; 42:100874. [PMID: 39525304 PMCID: PMC11549984 DOI: 10.1016/j.bbih.2024.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Increasing evidence suggests that inflammation may play a pivotal role in the development of chronic pain and fatigue in aging individuals. This study investigated the relationship between three inflammatory markers (IL-6, CRP, and TNFα) and pain and fatigue, both cross-sectionally and longitudinally, in a sample of older adults from the Saint Louis Personality and Aging (SPAN) study. Methods SPAN study participants provided blood samples at two in-person sessions approximately 2 years apart for the analysis of the inflammatory biomarkers IL-6, CRP, and TNFα. Pain and fatigue were assessed using the RAND-36 Health Status Inventory. Correlations (with false discovery rate correction for multiple testing) and follow-up linear regressions including potentially confounding demographic (e.g., annual household income) and health (e.g., BMI, medication use) covariates were used to estimate cross sectional and longitudinal associations. Analytic ns ranged from 533 to 815. Results Cross-sectional analyses revealed that higher IL-6 and CRP were associated with greater reported pain and fatigue, even after accounting for covariates (βs > .098, ps < .05). TNFα was associated with greater fatigue only (β = .100, p = .012). Longitudinally, CRP and IL-6 predicted future pain and fatigue, although only the relationship between CRP and future fatigue survived the inclusion of covariates (β = .104, p = .022). Both pain and fatigue predicted higher levels of IL-6 and CRP approximately 2 years later, although only the associations with IL-6 survived the inclusion of covariates (βs > .12, ps < .01). Discussion Our study adds to a growing body of literature showing that inflammation is associated with greater pain and fatigue in older adults. Our longitudinal data showing temporal bidirectional associations is consistent with evidence from non-human animal models that heightened inflammation causally contributes to fatigue and also suggests that the experience of pain and fatigue may contribute to inflammation. It will be important for future work to identify how lifestyle factors associated with pain and fatigue (e.g., physical activity) may contribute to these associations.
Collapse
Affiliation(s)
- Sara A. Norton
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
| | - Lauren M. Blaydon
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
| | - Megan Niehaus
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
- University of Missouri Saint Louis, USA
| | - Alex P. Miller
- Department of Psychiatry, Washington University in Saint Louis, USA
| | - Patrick L. Hill
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
| | - Thomas F. Oltmanns
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
| |
Collapse
|
4
|
Boyle CC, Cole SW, Eisenberger NI, Olmstead R, Breen EC, Irwin MR. Sex differences in the transcriptional response to acute inflammatory challenge: A randomized controlled trial of endotoxin. Brain Behav Immun Health 2024; 40:100840. [PMID: 39252981 PMCID: PMC11381881 DOI: 10.1016/j.bbih.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/11/2024] Open
Abstract
Background Sex differences in immune-based disorders are well-established, with female sex associated with a markedly heightened risk of autoimmune disease. Female sex is also overrepresented in other conditions associated with elevated inflammation, including depression, chronic pain, and chronic fatigue. The mechanisms underlying these disparities are unclear. This study used an experimental model of inflammatory challenge to interrogate molecular mechanisms that may contribute to female vulnerability to disorders with an inflammatory basis. Method In this analysis of a secondary outcome from a randomized controlled trial, 111 participants (67 female) received either a bolus injection of endotoxin (n = 59) or placebo (n = 52). Participants provided blood samples before and 0.5 h post-injection for assessment of differential activation of key pro-inflammatory (i.e., activator protein (AP)-1; nuclear factor (NF)-κB) and immunoregulatory (i.e., glucocorticoid receptor (GR); cAMP response element binding protein (CREB)) signaling pathways via genome-wide expression profiling and promoter-based bioinformatics analyses. Results Relative to males, females exhibited greater endotoxin-induced increases in bioinformatic measures of CREB transcription factor activity (p's < 0.01). However, contrary to hypotheses, female vs. male sex was not associated with greater increases in activation of NF-κB, AP-1, or GR in response to endotoxin vs. placebo administration. Conclusions This work suggests CREB signaling as a critical upstream biological pathway that should be further interrogated as a mechanism of female vulnerability to immune-related disorders. Future work should clarify whether increased CREB signaling indicates sex differences in activity of the sympathetic nervous system or other physiological pathways that signal through CREB, such as prostaglandin release.
Collapse
Affiliation(s)
- Chloe C Boyle
- Norman Cousins Center for Psychoneuroimmunology, UCLA, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, USA
| | - Steve W Cole
- Norman Cousins Center for Psychoneuroimmunology, UCLA, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, USA
- Division of Hematology-Oncology, Department of Medicine, UCLA School of Medicine, USA
| | | | - Richard Olmstead
- Norman Cousins Center for Psychoneuroimmunology, UCLA, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, USA
| | - Elizabeth C Breen
- Norman Cousins Center for Psychoneuroimmunology, UCLA, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, USA
| | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, UCLA, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, USA
| |
Collapse
|
5
|
Yang B, Wei W, Fang J, Xue Y, Wei J. Diabetic Neuropathic Pain and Circadian Rhythm: A Future Direction Worthy of Study. J Pain Res 2024; 17:3005-3020. [PMID: 39308994 PMCID: PMC11414757 DOI: 10.2147/jpr.s467249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 09/25/2024] Open
Abstract
More than half of people with diabetes experience neuropathic pain. Previous research has shown that diabetes patients' neuropathic pain exhibits a circadian cycle, which is characterized by increased pain sensitivity at night. Additional clinical research has revealed that the standard opioid drugs are ineffective at relieving pain and do not change the circadian rhythm. This article describes diabetic neuropathic pain and circadian rhythms separately, with a comprehensive focus on circadian rhythms. It is hoped that this characteristic of diabetic neuropathic pain can be utilized in the future to obtain more effective treatments for it.
Collapse
Affiliation(s)
- Baozhong Yang
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
| | - Wei Wei
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| | - Jun Fang
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| | - Yating Xue
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| | - Jiacheng Wei
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| |
Collapse
|
6
|
Kenar G, Yarkan-Tuğsal H, Çetin-Özmen P, Solmaz D, Can G, Önen F. A lower frequency of inflammatory back pain in male patients with ankylosing spondylitis compared with female patients. Rheumatol Int 2024; 44:477-482. [PMID: 37712978 DOI: 10.1007/s00296-023-05449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
In routine rheumatology practice, we noticed that a significant number of male ankylosing spondylitis (AS) patients did not experience inflammatory back pain (IBP). Based on this observation, we aimed to investigate the prevalence of IBP in male AS patients and compare it to that in female patients. Patients with AS who fulfilled the modified New York criteria were subjected to a face-to-face interview with a standardized questionnaire that addressed the IBP components based on the Berlin criteria. The study also included 63 patients with chronic mechanical back pain (MBP). Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels were measured, and Bath Ankylosing Spondylitis Disease Activity, Function, and Metrology Indexes (BASDAI, BASFI, and BASMI) were evaluated in patients with AS. There were 181 patients with AS (124 males, mean age 41.2 years; 57 females, mean age 44.6 years) and 63 patients with MBP (28 males, mean age 47.2 years; 35 females, mean age 43.5 years). The prevalence of IBP was found to be 87.7% in female and 66.1% in male patients with AS (p = 0.002). The specificity of the criteria was determined to be high both in females (85.7%) and males (89.2%). Female patients with AS had higher BASDAI levels than males (p = 0.048), but no difference was found in BASFI, BASMI, or serum CRP levels between genders. A considerable proportion of male patients with AS did not experience IBP, although they had similar CRP levels compared with females.
Collapse
Affiliation(s)
- Gökçe Kenar
- Division of Rheumatology, Department of Internal Medicine, Dokuz Eylul University School of Medicine, 15 Temmuz Sağlık ve Sanat Yerleşkesi Romatoloji Polikliniği/Balçova, 35340, Izmir, Turkey.
| | - Handan Yarkan-Tuğsal
- Division of Rheumatology, Department of Internal Medicine, Dokuz Eylul University School of Medicine, 15 Temmuz Sağlık ve Sanat Yerleşkesi Romatoloji Polikliniği/Balçova, 35340, Izmir, Turkey
| | - Pınar Çetin-Özmen
- Division of Rheumatology, Department of Internal Medicine, Dokuz Eylul University School of Medicine, 15 Temmuz Sağlık ve Sanat Yerleşkesi Romatoloji Polikliniği/Balçova, 35340, Izmir, Turkey
| | - Dilek Solmaz
- Division of Rheumatology, Department of Internal Medicine, Katip Celebi University School of Medicine, Izmir, Turkey
| | - Gerçek Can
- Division of Rheumatology, Department of Internal Medicine, Dokuz Eylul University School of Medicine, 15 Temmuz Sağlık ve Sanat Yerleşkesi Romatoloji Polikliniği/Balçova, 35340, Izmir, Turkey
| | - Fatoş Önen
- Division of Rheumatology, Department of Internal Medicine, Dokuz Eylul University School of Medicine, 15 Temmuz Sağlık ve Sanat Yerleşkesi Romatoloji Polikliniği/Balçova, 35340, Izmir, Turkey
| |
Collapse
|
7
|
Jones C, Parkitny L, Strath L, Wagener BM, Barker A, Younger J. Altered response to Toll-like receptor 4 activation in fibromyalgia: A low-dose, human experimental endotoxemia pilot study. Brain Behav Immun Health 2023; 34:100707. [PMID: 38020479 PMCID: PMC10679487 DOI: 10.1016/j.bbih.2023.100707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
In this pilot study, a human intravenous injection of low-dose endotoxin (lipopolysaccharide, LPS) model was used to test if fibromyalgia is associated with altered immune responses to Toll-like receptor 4 (TLR4) activation. Eight women with moderately-severe fibromyalgia and eight healthy women were administered LPS at 0.1 ng/kg in session one and 0.4 ng/kg in session two. Blood draws were collected hourly to characterize the immune response. The primary analytes of interest, leptin and fractalkine, were assayed via commercial radioimmunoassay and enzyme-linked immunosorbent assay kits, respectively. Exploratory analyses were performed on 20 secreted cytokine assays by multiplex cytokine panels, collected hourly. Exploratory analyses were also performed on testosterone, estrogen, and cortisol levels, collected hourly. Additionally, standard clinical complete blood counts with differential (CBC-D) were collected before LPS administration and at the end of the session. The fibromyalgia group demonstrated enhanced leptin and suppressed fractalkine responses to LPS administration. In the exploratory analyses, the fibromyalgia group showed a lower release of IFN-γ, CXCL10, IL-17A, and IL-12 and higher release of IL-15, TARC, MDC, and eotaxin than the healthy group. The results of this study suggest that fibromyalgia may involve an altered immune response to TLR4 activation.
Collapse
Affiliation(s)
- Chloe Jones
- Department of Psychology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Luke Parkitny
- Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Larissa Strath
- Pain Research and Intervention Center of Excellence, The University of Florida, Gainesville, FL, USA
- College of Medicine, Department of Health Outcomes and Biomedical Informatics, The University of Florida, Gainesville, FL, USA
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew Barker
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarred Younger
- Department of Psychology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| |
Collapse
|
8
|
Benson S, Karshikoff B. How Can Experimental Endotoxemia Contribute to Our Understanding of Pain? A Narrative Review. Neuroimmunomodulation 2023; 30:250-267. [PMID: 37797598 PMCID: PMC10619593 DOI: 10.1159/000534467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
The immune system and the central nervous system exchange information continuously. This communication is a prerequisite for adaptive responses to physiological and psychological stressors. While the implicate relationship between inflammation and pain is increasingly recognized in clinical cohorts, the underlying mechanisms and the possibilities for pharmacological and psychological approaches aimed at neuro-immune communication in pain are not fully understood yet. This calls for preclinical models which build a bridge from clinical research to laboratory research. Experimental models of systemic inflammation (experimental endotoxemia) in humans have been increasingly recognized as an approach to study the direct and causal effects of inflammation on pain perception. This narrative review provides an overview of what experimental endotoxemia studies on pain have been able to clarify so far. We report that experimental endotoxemia results in a reproducible increase in pain sensitivity, particularly for pressure and visceral pain (deep pain), which is reflected in responses of brain areas involved in pain processing. Increased levels of blood inflammatory cytokines are required for this effect, but cytokine levels do not always predict pain intensity. We address sex-dependent differences in immunological responses to endotoxin and discuss why these differences do not necessarily translate to differences in behavioral measures. We summarize psychological and cognitive factors that may moderate pain sensitization driven by immune activation. Together, studying the immune-driven changes in pain during endotoxemia offers a deeper mechanistic understanding of the role of inflammation in chronic pain. Experimental endotoxemia models can specifically help to tease out inflammatory mechanisms underlying individual differences, vulnerabilities, and comorbid psychological problems in pain syndromes. The model offers the opportunity to test the efficacy of interventions, increasing their translational applicability for personalized medical approaches.
Collapse
Affiliation(s)
- Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Medical Education, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bianka Karshikoff
- Department of Social Studies, University of Stavanger, Stavanger, Norway
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Gordon AR, Lundström JN, Kimball BA, Karshikoff B, Sorjonen K, Axelsson J, Lekander M, Olsson MJ. Human scent as a first-line defense against disease. Sci Rep 2023; 13:16709. [PMID: 37794120 PMCID: PMC10550911 DOI: 10.1038/s41598-023-43145-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Individuals may have a different body odor, when they are sick compared to healthy. In the non-human animal literature, olfactory cues have been shown to predict avoidance of sick individuals. We tested whether the mere experimental activation of the innate immune system in healthy human individuals can make an individuals' body odor be perceived as more aversive (intense, unpleasant, and disgusting). Following an endotoxin injection (lipopolysaccharide; 0.6 ng/kg) that creates a transient systemic inflammation, individuals smelled more unpleasant compared to a placebo group (saline injection). Behavioral and chemical analyses of the body odor samples suggest that the volatile components of samples from "sick" individuals changed qualitatively rather than quantitatively. Our findings support the hypothesis that odor cues of inflammation in axillary sweat are detectable just a few hours after experimental activation of the innate immune system. As such, they may trigger behavioral avoidance, hence constituting a first line of defense against pathogens of infected conspecifics.
Collapse
Affiliation(s)
- Amy R Gordon
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
| | - Johan N Lundström
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
- Lukt och smakmottagningen, Karolinska University Hospital, 141 86, Stockholm, Sweden
- Stockholm University Brain Imaging Centre, Stockholm University, 106 54, Stockholm, Sweden
| | | | - Bianka Karshikoff
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Department of Social Studies, University of Stavanger, 4021, Stavanger, Norway
| | - Kimmo Sorjonen
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
| | - John Axelsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, 106 54, Stockholm, Sweden
| | - Mats Lekander
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, 106 54, Stockholm, Sweden
| | - Mats J Olsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 171 77, Stockholm, Sweden.
| |
Collapse
|
10
|
Butelman ER, Goldstein RZ, Nwaneshiudu CA, Girdhar K, Roussos P, Russo SJ, Alia-Klein N. Neuroimmune Mechanisms of Opioid Use Disorder and Recovery: Translatability to Human Studies, and Future Research Directions. Neuroscience 2023; 528:102-116. [PMID: 37562536 PMCID: PMC10720374 DOI: 10.1016/j.neuroscience.2023.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Opioid use disorder (OUD) is a major current cause of morbidity and mortality. Long-term exposure to short-acting opioids (MOP-r agonists such as heroin or fentanyl) results in complex pathophysiological changes to neuroimmune and neuroinflammatory functions, affected in part by peripheral mechanisms (e.g., cytokines in blood), and by neuroendocrine systems such as the hypothalamic-pituitary-adrenal (HPA) stress axis. There are important findings from preclinical models, but their role in the trajectory and outcomes of OUD in humans is not well understood. The goal of this narrative review is to examine available data on immune and inflammatory functions in persons with OUD, and to identify major areas for future research. Peripheral blood biomarker studies revealed a pro-inflammatory state in persons with OUD in withdrawal or early abstinence, consistent with available postmortem brain studies (which show glial activation) and diffusion tensor imaging studies (indicating white matter disruptions), with gradual abstinence-associated recovery. The mechanistic roles of these neuroimmune and neuroinflammatory changes in the trajectory of OUD (including recovery and medication management) cannot be examined practically with postmortem data. Collection of longitudinal data in larger-scale human cohorts would allow examination of these mechanisms associated with OUD stage and progression. Given the heterogeneity in presentation of OUD, a precision medicine approach integrating multi-omic peripheral biomarkers and comprehensive phenotyping, including neuroimaging, can be beneficial in risk stratification, and individually optimized selection of interventions for individuals who will benefit, and assessments under refractory therapy.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Depts. of Psychiatry and Neuroscience, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Rita Z Goldstein
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Depts. of Psychiatry and Neuroscience, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chinwe A Nwaneshiudu
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA, Medical Center, Bronx, NY, USA
| | - Scott J Russo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelly Alia-Klein
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Depts. of Psychiatry and Neuroscience, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
DuPont CM, Olmstead R, Reid MJ, Hamilton KR, Campbell CM, Finan PH, Sadeghi N, Castillo D, Irwin MR, Smith MT. A randomized, placebo-controlled, double-blinded mechanistic clinical trial using endotoxin to evaluate the relationship between insomnia, inflammation, and affective disturbance on pain in older adults: A protocol for the sleep and Healthy Aging Research for pain (SHARE-P) study. Brain Behav Immun Health 2023; 30:100642. [PMID: 37256193 PMCID: PMC10225887 DOI: 10.1016/j.bbih.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
UNLABELLED Chronic pain is prevalent in older adults. Treatment, especially with opioids, is often ineffective and poses considerable negative consequences in this population. To improve treatment, it is important to understand why older adults are at a heightened risk for developing chronic pain. Insomnia is a major modifiable risk factor for chronic pain that is ubiquitous among older adults. Insomnia can also lead to heightened systemic inflammation and affective disturbance, both of which may further exacerbate pain conditions in older adults. Endotoxin exposure can be used as an experimental model of systemic inflammation and affective disturbance. The current study aims to understand how insomnia status and endotoxin-induced changes in inflammation and affect (increased negative affect and decreased positive affect) may interact to impact pain facilitatory and inhibitory processes in older adults. Longitudinal data will also assess how pain processing, affective, and inflammatory responses to endotoxin may predict the development of pain and/or depressive symptoms. The current study is a randomized, double-blinded, placebo-controlled, mechanistic clinical trial in men and women, with and without insomnia, aged 50 years and older. Participants were randomized to either 0.8ng/kg endotoxin injection or saline placebo injection. Daily diaries were used to collect variables related to sleep, mood, and pain at two-week intervals during baseline and 3-, 6-, 9-, and 12-months post-injection. Primary outcomes during the experimental phase include conditioned pain modulation, temporal summation, and affective pain modulation ∼5.5 hours after injection. Primary outcomes for longitudinal assessments are self-reported pain intensity and depressive symptoms. The current study uses endotoxin as an experimental model for pain. In doing so, it aims to extend the current literature by: (1) including older adults, (2) investigating insomnia as a potential risk factor for chronic pain, (3) evaluating the role of endotoxin-induced affective disturbances on pain sensitivity, and (4) assessing sex differences in endotoxin-induced hyperalgesia. CLINICALTRIALSGOV NCT03256760. TRIAL SPONSOR NIH R01AG057750-01.
Collapse
Affiliation(s)
- Caitlin M. DuPont
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Richard Olmstead
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Matthew J. Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Katrina R. Hamilton
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Claudia M. Campbell
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Patrick H. Finan
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nina Sadeghi
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Daisy Castillo
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michael R. Irwin
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michael T. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Schrepf A, Kaplan C, Harris RE, Williams DA, Clauw DJ, As-Sanie S, Till S, Clemens JQ, Rodriguez LV, Van Bokhoven A, Landis R, Gallop R, Bradley C, Naliboff B, Pontari M, O’Donnell M, Luo Y, Kreder K, Lutgendorf SK, Harte SE. Stimulated whole-blood cytokine/chemokine responses are associated with interstitial cystitis/bladder pain syndrome phenotypes and features of nociplastic pain: a multidisciplinary approach to the study of chronic pelvic pain research network study. Pain 2023; 164:1148-1157. [PMID: 36279178 PMCID: PMC10106356 DOI: 10.1097/j.pain.0000000000002813] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT Interstitial cystitis/bladder pain syndrome (IC/BPS) is a common and debilitating disease with poor treatment outcomes. Studies from the multidisciplinary approach to the study of chronic pelvic pain research network established that IC/BPS patients with chronic overlapping pain conditions (COPCs) experience poorer quality of life and more severe symptoms, yet the neurobiological correlates of this subtype are largely unknown. We previously showed that ex vivo toll-like receptor 4 (TLR4) cytokine/chemokine release is associated with the presence of COPCs, as well as widespread pain and experimental pain sensitivity women with IC/BPS. Here, we attempt to confirm these findings in the multisite multidisciplinary approach to the study of chronic pelvic pain Symptom Patterns Study using TLR4-stimulated whole blood (female IC/BPS patients with COPC n = 99; without n = 36). Samples were collected in tubes preloaded with TLR4 agonist, incubated for 24 hours, and resulting supernatant assayed for 7 cytokines/chemokines. These were subject to a principal components analysis and the resulting components used as dependent variables in general linear models. Controlling for patient age, body mass index, and site of collection, we found that greater ex vivo TLR4-stimulated cytokine/chemokine release was associated with the presence of COPCs ( P < 0.01), extent of widespread pain ( P < 0.05), but not experimental pain sensitivity ( P > 0.05). However, a second component of anti-inflammatory, regulatory, and chemotactic activity was associated with reduced pain sensitivity ( P < 0.01). These results confirm that the IC/BPS + COPCs subtype show higher levels of ex vivo TLR4 cytokine/chemokine release and support a link between immune priming and nociplastic pain in IC/BPS.
Collapse
Affiliation(s)
- Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Chelsea Kaplan
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Richard E. Harris
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - David A. Williams
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J. Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Sawsan As-Sanie
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Sara Till
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA
| | | | - Larissa V. Rodriguez
- Departments of Urology and Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
| | - Adrie Van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard Landis
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Gallop
- Department of Mathematics, West Chester University, West Chester, PA, USA
| | - Catherine Bradley
- Departments of Urology and Obstetrics & Gynecology, University of Iowa, Iowa City, IA, USA
| | - Bruce Naliboff
- Departments of Medicine and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles CA, USA
| | - Mike Pontari
- Department of Urology, Temple University, Philadelphia, PA, USA
| | | | - Yi Luo
- Department of Urology, University of Iowa, Iowa City, IA, USA
| | - Karl Kreder
- Department of Urology, University of Iowa, Iowa City, IA, USA
| | - Susan K Lutgendorf
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, Urology, University of Iowa, Iowa City, IA, USA
| | - Steven E. Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Schulte KJ, Mayrovitz HN. Myocardial Infarction Signs and Symptoms: Females vs. Males. Cureus 2023; 15:e37522. [PMID: 37193476 PMCID: PMC10182740 DOI: 10.7759/cureus.37522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Cardiovascular disease is the number one killer of females in the United States today, and myocardial infarction (MI) plays a role in many of these deaths. Females also present with more "atypical" symptoms than males and appear to have differences in pathophysiology underlying their MIs. Despite both differences in symptomology and pathophysiology being present in females versus males, a possible link between the two has not been studied extensively. In this systematic review, we analyzed studies examining differences in symptoms and pathophysiology of MI in females and males and evaluated possible links between the two. A search was performed for sex differences in MI in the databases PubMed, CINAHL (Cumulative Index to Nursing and Allied Health Literature) Complete, Biomedical Reference Collection: Comprehensive, Jisc Library Hub Discover, and Web of Science. Seventy-four articles were ultimately included in this systematic review. Typical symptoms for both ST-elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI) such as chest, arm, or jaw pain were more common in both sexes, but females presented on average with more atypical symptoms such as nausea, vomiting, and shortness of breath. Females with MI also presented with more prodromal symptoms such as fatigue in days leading up to MI, had longer delays in presentation to the hospital after symptom onset, and were older with more comorbidities than males. Males on the other hand were more likely to have a silent or unrecognized MI, which concurs with their overall higher rate of MI. As they age, females have a decrease in antioxidative metabolites and worsened cardiac autonomic function than male. In addition, at all ages, females have less atherosclerotic burden than mles, have higher rates of MI not related to plaque rupture or erosion, and have increased microvasculature resistance when they have an MI. It has been proposed that this physiological difference is etiologic for the male-female difference in symptoms, but this has not been studied directly and is a promising area of future research. It is also possible that differences in pain tolerance between males and females may play a role in differing symptom recognition, but this has only been studied one time where females with higher pain thresholds were more likely to have unrecognized MI. Again, this is a promising area for future study for the early detection of MI. Finally, differences in symptoms for patients with different atherosclerotic burden and for patients with MI due to a cause other than plaque rupture or erosion has not been studied and are both promising avenues to improve detection and patient care in the future.
Collapse
Affiliation(s)
- Kyle J Schulte
- Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Harvey N Mayrovitz
- Medical Education, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
14
|
Miclescu AA, Granlund P, Butler S, Gordh T. Association between systemic inflammation and experimental pain sensitivity in subjects with pain and painless neuropathy after traumatic nerve injuries. Scand J Pain 2023; 23:184-199. [PMID: 35531763 DOI: 10.1515/sjpain-2021-0195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/05/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Peripheral neuropathies that occur secondary to nerve injuries may be painful or painless, and including a low-grade inflammation and pro-inflammatory cytokines associated with both regeneration and damage of peripheral nerve cells and fibers. Currently, there are no validated methods that can distinguished between neuropathic pain and painless neuropathy. The aim of this study was to search for proinflammatory and anti-inflammatory proteins associated with pain and experimental pain sensitivity in subjects with surgeon-verified nerve injuries in the upper extremities. METHODS One hundred and thirty-one subjects [69 with neuropathic pain, NP; 62 with painless neuropathy, nP] underwent a conditioned pain modulation (CPM) test that included a cold pressor task (CPT) conducted with the non-injured hand submerged in cold water (4 °C) until pain was intolerable. CPM was assessed by pain ratings to pressure stimuli before and after applying the CPT. Efficient CPM effect was defined as the ability of the individual's CS to inhibit at least 29% of pain (eCPM). The subjects were assigned to one of two subgroups: pain sensitive (PS) and pain tolerant (PT) after the time they could tolerate their hand in cold water (PS<40 s and PT=60 s) . Plasma samples were analyzed for 92 proteins incorporated in the inflammation panel using multiplex Protein Extension Array Technology (PEA). Differentially expressed proteins were investigated using both univariate and multivariate analysis (principal component analysis-PCA and orthogonal partial least-squares discriminant analysis-OPLS-DA). RESULTS Significant differences in all protein levels were found between PS and PT subgroups (CV-ANOVA p<0.001), but not between NP and nP groups (p=0.09) or between inefficient CPM (iCPM) and eCPM (p=0.53) subgroups. Several top proteins associated with NP could be detected using multivariate regression analysis such as stromelysin 2 (MMPs), interleukin-2 receptor subunit beta (IL2RB), chemokine (C-X-C motif) ligand 3 (CXCL3), fibroblast growth factor 5 (FGF5), chemokine (C-C motif) ligand 28 (CCL28), CCL25, CCL11, hepatocyte growth factor (HGF), interleukin 4 (IL4), IL13. After adjusting for multiple testing, none of these proteins correlated significantly with pain. Higher levels of CCL20 (p=0.049) and CUB domain-containing protein (CDCP-1; p=0.047) were found to correlate significantly with cold pain sensitivity. CDCP-1 was highly associated with both PS and iCPM (p=0.042). CONCLUSIONS No significant alterations in systemic proteins were found comparing subjects with neuropathic pain and painless neuropathy. An expression of predominant proinflammatory proteins was associated with experimental cold pain sensitivity in both subjects with pain and painless neuropathy. One these proteins, CDC-1 acted as "molecular fingerprint" overlapping both CPM and CPT. This observation might have implications for the study of pain in general and should be addressed in more detail in future experiments.
Collapse
Affiliation(s)
| | - Pontus Granlund
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| | - Stephen Butler
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
16
|
Dong Y, Jiang P, Jin X, Jiang N, Huang W, Peng Y, Shen Y, He L, Forsman M, Yang L. Association between long-term static postures exposure and musculoskeletal disorders among university employees: A viewpoint of inflammatory pathways. Front Public Health 2022; 10:1055374. [PMID: 36530652 PMCID: PMC9752851 DOI: 10.3389/fpubh.2022.1055374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Background Musculoskeletal disorders (MSDs) are critical occupational and social problems. With the improvement of production mechanization and automation, and the widespread application of computers, more occupations are exposed to static postures and load. This study explored the role of inflammation in the association between static postures exposure and MSDs. Methods This study adopted a prospective nested case-control design in which 66 lower back MSDs cases and 66 healthy controls were selected from a cohort study of university employees. The personal information, postural load, musculoskeletal symptoms, pressure pain thresholds (PPTs), and inflammatory cytokines were collected. Logistic and linear regressions were used to investigate the association among postural load, inflammatory cytokines, and lower back MSDs. Mediation analysis was used to calculate the mediation effect. Results The results of logistic and linear regressions showed that postural load and inflammatory cytokines were positively associated with lower back MSDs (P < 0.05), and postural load was positively associated with inflammatory cytokines (P < 0.05). Further, mediation analysis showed that the mediation effect of postural load on the lower back MSDs through TNF-α was 0.073 (95%CI: 0.025-0.128), and the mediation effect of posture load on the lower back MSDs through IL-6 was 0.098 (95%CI: 0.041-0.179), respectively. Conclusion Static postures were associated with the occurrence of MSDs through inflammatory cytokines, and low-level inflammation may be a critical early event in the generation of MSDs. This study may help bridge the gap of potential mechanisms linking static postures to increased risks of MSDs, and provide new evidence for targeted protection against the global increasing MSDs.
Collapse
Affiliation(s)
- Yidan Dong
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Ping Jiang
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Xu Jin
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Nanyu Jiang
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Wenchu Huang
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Yu Peng
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Yuhong Shen
- Institute of Quartermaster Engineering & Technology, Beijing, China
| | - Lihua He
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China,*Correspondence: Lihua He
| | - Mikael Forsman
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Huddinge, Sweden,Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Liyun Yang
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Huddinge, Sweden,Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Derry-Vick HM, Johnston CD, Brennan-Ing M, Burchett CO, Glesby N, Zhu YS, Siegler EL, Glesby MJ. Pain Is Associated With Depressive Symptoms, Inflammation, and Poorer Physical Function in Older Adults With HIV. Psychosom Med 2022; 84:957-965. [PMID: 35980785 PMCID: PMC9553263 DOI: 10.1097/psy.0000000000001119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/11/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE People living with HIV (PLWH) frequently experience pain, which often co-occurs with psychological symptoms and may impact functional outcomes. We investigated cross-sectional associations between pain, depressive symptoms, and inflammation, and then explored whether pain was related to poorer physical function among older PLWH. METHODS We examined data from PLWH aged 54 to 78 years ( n = 162) recruited from a single outpatient program for a larger study on HIV and aging. Participants reported depressive symptoms (10-item Center for Epidemiological Studies Depression Scale) and then attended a biomedical visit in which they reported past-month pain (Medical Outcomes Study-HIV pain subscale), completed physical function assessments, and provided blood samples (assayed for interleukin 6, interferon-γ, tumor necrosis factor α, and C-reactive protein). Links between pain, depressive symptoms, inflammation, and physical function were tested using linear regression models. RESULTS PLWH with greater depressive symptoms experienced more pain than did those with fewer depressive symptoms ( B = 1.31, SE = 0.28, p < .001), adjusting for age, sex, race, body mass index, smoking, disease burden, time since HIV diagnosis, and medication use. Higher composite cytokine levels were associated with worse pain ( B = 5.70, SE = 2.54, p = .027 in adjusted model). Poorer physical function indicators, including slower gait speed, weaker grip strength, recent falls, and prefrail or frail status, were observed among those with worse pain. Exploratory mediation analyses suggested that pain may partially explain links between depressive symptoms and several physical function outcomes. CONCLUSIONS Pain is a potential pathway linking depressive symptoms and inflammation to age-related health vulnerabilities among older PLWH; longitudinal investigation of this pattern is warranted. PLWH presenting with pain may benefit from multidisciplinary resources, including behavioral health and geriatric medicine approaches.
Collapse
|
18
|
Lipopolysaccharide Exposure Differentially Alters Plasma and Brain Inflammatory Markers in Adult Male and Female Rats. Brain Sci 2022; 12:brainsci12080972. [PMID: 35892413 PMCID: PMC9331770 DOI: 10.3390/brainsci12080972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Humans and rodents have sexually dimorphic immune responses, which could influence the brain’s response to a systemic inflammatory insult. Lipopolysaccharide (LPS) is a stimulator of the innate immune system and is routinely used in animal models to study blood–brain barrier (BBB) dysfunction under inflammatory conditions. Therefore, we examined whether inflammatory response to LPS and the associated BBB disruption differed in male and female adult rats. Rats were treated with saline or two injections of 1 mg/kg LPS and studied 24 h after the second LPS injection. Plasma isolated from trunk blood and brain tissue homogenates of the prefrontal cortex (PFC), dorsal striatum (DS), hippocampus, and cerebellum were analyzed for cytokines and chemokines using a 9-plex panel from Meso Scale Discovery. BBB disruption was analyzed with tight junction proteins claudin-5 and VE-cadherin via Western blotting and VEGF by ELISA. This allowed us to compare sex differences in the levels of individual cytokines as well as associations among cytokines and expression of tight junction proteins between the plasma and specific brain regions. Higher levels of interferon-γ, interleukin-10 (IL-10), IL-13, IL-4, CXCL-1, and VEGF in the plasma were revealed compared to the brain homogenates, and higher levels of TNFα, IL-1β, IL-6, and IL-5 in the PFC were seen compared with plasma and other brain regions in males. Females showed higher levels of plasma CXCL1 and VEGF compared to males, and males showed higher levels of PFC TNFα, IL-6, IL-4, and VEGF compared to females. LPS induced significant increases in plasma cytokines and VEGF in both sexes. LPS did not significantly alter cytokines in brain tissue homogenates, however, it increased chemokines in the PFC, DS, and hippocampus. In the PFC, LPS produced BBB disruption, which is evident as reduced expression of claudin-5 in males and reduced expression of VE-cadherin in both sexes. Taken together, our results reveal significant sex differences in pro-inflammatory cytokine and chemokine levels in plasma and brain that were associated with BBB disruption after LPS, and validate the use of multiplex assay for plasma and brain tissue samples.
Collapse
|
19
|
Pawlik RJ, Petrakova L, Brotte L, Engler H, Benson S, Elsenbruch S. Circulating Pro-inflammatory Cytokines Do Not Explain Interindividual Variability in Visceral Sensitivity in Healthy Individuals. Front Neurosci 2022; 16:876490. [PMID: 35860299 PMCID: PMC9289472 DOI: 10.3389/fnins.2022.876490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
A role of the immune system in the pathophysiology of pain and hyperalgesia has received growing attention, especially in the context of visceral pain and the gut-brain axis. While acute experimental inflammation can induce visceral hyperalgesia as part of sickness behavior in healthy individuals, it remains unclear if normal plasma levels of circulating pro-inflammatory cytokines contribute to interindividual variability in visceral sensitivity. We herein compiled data from a tightly screened and well-characterized sample of healthy volunteers (N = 98) allowing us to assess associations between visceral sensitivity and gastrointestinal symptoms, and plasma concentrations of three selected pro-inflammatory cytokines (i.e., TNF-α, IL-6, and IL-8), along with cortisol and stress-related psychological variables. For analyses, we compared subgroups created to have distinct pro-inflammatory cytokine profiles, modelling healthy individuals at putative risk or resilience, respectively, for symptoms of the gut-brain axis, and compared them with respect to rectal sensory and pain thresholds and subclinical GI symptoms. Secondly, we computed multiple regression analyses to test if circulating pro-inflammatory markers predict visceral sensitivity in the whole sample. Despite pronounced subgroup differences in pro-inflammatory cytokine and cortisol concentrations, we observed no differences in measures of visceroception. In regression analyses, cytokines did not emerge as predictors. The pain threshold was predicted by emotional state and trait variables, especially state anxiety, together explaining 10.9% of the variance. These negative results do not support the hypothesis that systemic cytokine levels contribute to normal interindividual variability in visceroception in healthy individuals. Trajectories to visceral hyperalgesia as key marker in disorders of gut-brain interactions likely involve complex interactions of biological and psychological factors in keeping with a psychosocial model. Normal variations in systemic cytokines do not appear to constitute a vulnerability factor in otherwise healthy individuals, calling for prospective studies in at risk populations.
Collapse
Affiliation(s)
- Robert J. Pawlik
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Liubov Petrakova
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Lisa Brotte
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Medical Education, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Sigrid Elsenbruch,
| |
Collapse
|
20
|
Graham-Engeland J, DeMeo NN, Jones DR, Mathur A, Smyth JM, Sliwinski MJ, McGrady ME, Lipton RB, Katz MJ, Engeland CG. Individuals with both higher recent negative affect and physical pain have higher levels of C-reactive protein. Brain Behav Immun Health 2022; 21:100431. [PMID: 35243409 PMCID: PMC8881375 DOI: 10.1016/j.bbih.2022.100431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/02/2022] Open
Abstract
Conceptualizing physical pain and negative affect as potentially interactive, we hypothesized that higher levels of peripheral inflammatory markers would be observed consistently only among individuals with both higher negative affect and pain symptomatology. Participants were generally healthy midlife adults from the Bronx, NY (N = 212, Mage = 46.77; 60.8% Black, 25.5% Hispanic/Latina/o) recruited as part of a larger study. Key measures were: reported pain intensity and pain interference at baseline, recent negative affect averaged from self-reports 5x/day for 7 days, and peripheral inflammatory markers (C-reactive protein [CRP] and a composite cytokine measure based on seven cytokines). Controlling for age, BMI, gender, and education, recent negative affect significantly interacted with both pain variables to explain variance in CRP, with higher CRP levels observed only in individuals with both higher negative affect and either higher pain intensity or pain interference. These findings contribute to an emerging literature suggesting that negative affect, pain, and inflammation are related in important and complex ways.
Collapse
|
21
|
Åström J, Holmström L, Karshikoff B, Andreasson A, Kemani MK. Evaluating the construct validity and internal consistency of the Sickness Questionnaire in a Swedish sample of adults with longstanding pain. Scand J Pain 2022; 22:88-96. [PMID: 34931508 DOI: 10.1515/sjpain-2021-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Low-grade inflammation is a possible contributing factor in the development and persistence of chronic primary pain syndromes. Related to inflammatory activity is sickness behavior, a set of behavioral responses including increased pain sensitivity, fatigue, malaise, fever, loss of appetite, as well as depressive behavior and anhedonia. To capture these behavioral responses and their relation to longstanding pain, psychometrically sound self-report questionnaires are needed. The Sickness Questionnaire (SicknessQ) was developed to assess self-reported sickness behavior based on studies on acute immune activation while maintaining relevance for persistent conditions. The aim of the current study was to evaluate aspects of the validity and reliability of the SicknessQ in a Swedish sample of persons with longstanding pain. METHODS Aspects of construct validity were evaluated by means of performing a confirmatory factor analysis (CFA) (testing structural validity) and by relevant hypothesis testing i.e., that ratings of sickness behavior in combination with other related factors (e.g., depression and anxiety) would be significantly related to ratings of avoidance. Reliability was evaluated by means of analyzing the internal consistency of items. RESULTS Following the CFA, a non-significant Chi-Square test (χ2 [32, N=190] = 42.95, p=0.094) indicated perfect model fit. Also, the relative fit indices supported adequate model fit (CFI = 0.978; TLI = 0.969; RMSEA = 0.0430). Sickness behavior (p<0.0001), depression (p<0.05) and pain duration (p<0.05) significantly contributed to the regression model, explaining 45% of the total variance in avoidance. Internal consistency was adequate, as indicated by a Cronbach's α value of 0.82 for the entire questionnaire. CONCLUSIONS Results indicate that the SicknessQ has adequate structural validity as well as adequate internal consistency, and is significantly associated with avoidance. The SicknessQ appears to have utility as a self-report questionnaire to assess symptoms of sickness behavior for adults with longstanding pain.
Collapse
Affiliation(s)
- Jenny Åström
- Theme Women's Health and Allied Health Professionals, Medical Unit Medical Psychology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Linda Holmström
- Theme Women's Health and Allied Health Professionals, Medical Unit Medical Psychology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Bianka Karshikoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Social Studies, University of Stavanger, Stavanger, Norway
| | - Anna Andreasson
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Macquarie University, Macquarie Park, NSW, Australia
| | - Mike K Kemani
- Theme Women's Health and Allied Health Professionals, Medical Unit Medical Psychology, Karolinska University Hospital, Stockholm, Sweden
- Stress Research Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Månsson KNT, Lasselin J, Karshikoff B, Axelsson J, Engler H, Schedlowski M, Benson S, Petrovic P, Lekander M. Anterior insula morphology and vulnerability to psychopathology-related symptoms in response to acute inflammation. Brain Behav Immun 2022; 99:9-16. [PMID: 34547400 DOI: 10.1016/j.bbi.2021.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The role of inflammation in common psychiatric diseases is now well acknowledged. However, the factors and mechanisms underlying inter-individual variability in the vulnerability to develop psychopathology-related symptoms in response to inflammation are not well characterized. Herein, we aimed at investigating morphological brain regions central for interoception and emotion regulation, and if these are associated with acute inflammation-induced sickness and anxiety responses. METHODS Systemic inflammation was induced using an intravenous injection of lipopolysaccharide (LPS) at a dose of 0.6 ng/kg body weight in 28 healthy individuals, while 21 individuals received an injection of saline (placebo). Individuals' gray matter volume was investigated by automated voxel-based morphometry technique on T1-weighted anatomical images derived from magnetic resonance imaging (MRI). Plasma concentrations of TNF-α and IL-6, sickness symptoms (SicknessQ), and state anxiety (STAI-S) were measured before and after the injection. RESULTS A stronger sickness response to LPS was significantly associated with a larger anterior insula gray matter volume, independently from increases in cytokine concentrations, age, sex and body mass index (R2 = 65.6%). Similarly, a greater LPS-induced state anxiety response was related to a larger anterior insula gray matter volume, and also by a stronger increase in plasma TNF-α concentrations (R2 = 40.4%). DISCUSSION Anterior insula morphology appears central in the sensitivity to develop symptoms of sickness and anxiety in response to inflammation, and could thus be one risk factor in inflammation-related psychopathologies. Because of the limited sample size, the current results need to be replicated.
Collapse
Affiliation(s)
- Kristoffer N T Månsson
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London, Germany/United Kingdom; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Cognitive and Computational Neuropsychiatry, Karolinska Institutet, Stockholm, Sweden.
| | - Julie Lasselin
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Bianka Karshikoff
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manfred Schedlowski
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Predrag Petrovic
- Center for Cognitive and Computational Neuropsychiatry, Karolinska Institutet, Stockholm, Sweden; Neuro Division, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mats Lekander
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden
| |
Collapse
|
23
|
Wen W, Gong X, Cheung H, Yang Y, Cai M, Zheng J, Tong X, Zhang M. Dexmedetomidine Alleviates Microglia-Induced Spinal Inflammation and Hyperalgesia in Neonatal Rats by Systemic Lipopolysaccharide Exposure. Front Cell Neurosci 2021; 15:725267. [PMID: 34955749 PMCID: PMC8692868 DOI: 10.3389/fncel.2021.725267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Noxious stimulus and painful experience in early life can induce cognitive deficits and abnormal pain sensitivity. As a major component of the outer membrane of gram-negative bacteria, lipopolysaccharide (LPS) injection mimics clinical symptoms of bacterial infections. Spinal microglial activation and the production of pro-inflammatory cytokines have been implicated in the pathogenesis of LPS-induced hyperalgesia in neonatal rats. Dexmedetomidine (DEX) possesses potent anti-neuroinflammatory and neuroprotective properties through the inhibition of microglial activation and microglial polarization toward pro-inflammatory (M1) phenotype and has been widely used in pediatric clinical practice. However, little is known about the effects of DEX on LPS-induced spinal inflammation and hyperalgesia in neonates. Here, we investigated whether systemic LPS exposure has persistent effects on spinal inflammation and hyperalgesia in neonatal rats and explored the protective role of DEX in adverse effects caused by LPS injection. Systemic LPS injections induced acute mechanical hyperalgesia, increased levels of pro-inflammatory cytokines in serum, and short-term increased expressions of pro-inflammatory cytokines and M1 microglial markers in the spinal cord of neonatal rats. Pretreatment with DEX significantly decreased inflammation and alleviated mechanical hyperalgesia induced by LPS. The inhibition of M1 microglial polarization and microglial pro-inflammatory cytokines expression in the spinal cord may implicate its neuroprotective effect, which highlights a new therapeutic target in the treatment of infection-induced hyperalgesia in neonates and preterm infants.
Collapse
Affiliation(s)
- Wen Wen
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingrui Gong
- Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Hoiyin Cheung
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Yang
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meihua Cai
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mazhong Zhang
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Zhou WBS, Meng J, Zhang J. Does Low Grade Systemic Inflammation Have a Role in Chronic Pain? Front Mol Neurosci 2021; 14:785214. [PMID: 34858140 PMCID: PMC8631544 DOI: 10.3389/fnmol.2021.785214] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
One of the major clinical manifestations of peripheral neuropathy, either resulting from trauma or diseases, is chronic pain. While it significantly impacts patients’ quality of life, the underlying mechanisms remain elusive, and treatment is not satisfactory. Systemic chronic inflammation (SCI) that we are referring to in this perspective is a state of low-grade, persistent, non-infective inflammation, being found in many physiological and pathological conditions. Distinct from acute inflammation, which is a protective process fighting against intruders, SCI might have harmful effects. It has been associated with many chronic non-communicable diseases. We hypothesize that SCI could be a predisposing and/or precipitating factor in the development of chronic pain, as well as associated comorbidities. We reviewed evidence from human clinical studies indicating the coexistence of SCI with various types of chronic pain. We also collated existing data about the sources of SCI and who could have it, showing that those individuals or patients having SCI usually have higher prevalence of chronic pain and psychological comorbidities. We thus elaborate on the need for further research in the connection between SCI and chronic pain. Several hypotheses have been proposed to explain these complex interactions.
Collapse
Affiliation(s)
- Wen Bo Sam Zhou
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - JingWen Meng
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Ji Zhang
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, Faculty of Medicine McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
[Systemic inflammation, "sickness behavior" and expectations : What role do expectations play in inflammation-associated symptoms?]. Schmerz 2021; 36:166-171. [PMID: 34714400 PMCID: PMC9156479 DOI: 10.1007/s00482-021-00602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 11/04/2022]
Abstract
Hintergrund Systemische Entzündungsprozesse gehen mit unspezifischen körperlichen und psychischen Krankheitssymptomen einher, darunter Schmerz und affektbezogene Symptome. Diese immunvermittelten Symptome („Sickness Behavior“) beruhen auf der zentralnervösen Wirkung von Immunbotenstoffen wie proinflammatorischen Zytokinen und vermitteln bei akuten Entzündungsreaktionen, etwa nach einer Impfung oder Verletzung, ein adaptives Schonverhalten. Bei chronischen Entzündungsprozessen können die Symptome des Sickness Behavior jedoch zu Einschränkungen der Lebensqualität führen und zur Komorbidität bei chronischen Schmerzerkrankungen beitragen. Trotz der hohen klinischen Relevanz des Sickness Behavior wurden bisher psychologische Ansätze zur Modulation der immunvermittelten Sickness-Symptome kaum untersucht. Einen Ansatz könnte die Nutzung von Erwartungseffekten bieten, da positive und negative Erwartungen (Placebo- bzw. Nocebo-Effekte) nachweislich einen Einfluss auf Schmerz und affektbezogene Symptome haben. Ziel der Arbeit In dieser Übersichtsarbeit werden die immunologischen und psychobiologischen Faktoren, die zu Schmerz im Kontext des Sickness Behavior beitragen, zusammengefasst. Aufbauend wird diskutiert, wie durch positive und negative Erwartungen Sickness-Symptome beeinflusst werden können und welche biologischen und psychologischen Mechanismen dabei involviert sind. Ziel ist es, potenzielle Ansatzpunkte zur Optimierung von Erwartungen im Kontext immunvermittelter Sickness-Symptome zu identifizieren. Perspektivisch lassen sich darauf aufbauend Interventionen entwickeln, um diese Symptome zu reduzieren sowie die Wirkungen und Nebenwirkungen von immunassoziierten Therapien durch gezielte Erwartungsinduktionen im Rahmen der Kommunikation mit Patient:innen positiv zu beeinflussen.
Collapse
|
26
|
Automated home-cage monitoring as a potential measure of sickness behaviors and pain-like behaviors in LPS-treated mice. PLoS One 2021; 16:e0256706. [PMID: 34449819 PMCID: PMC8396795 DOI: 10.1371/journal.pone.0256706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The use of endotoxin, such as lipopolysaccharide (LPS) as a model of sickness behavior, has attracted recent attention. To objectively investigate sickness behavior along with its pain-like behaviors in LPS-treated mice, the behavioral measurement requires accurate methods, which reflects clinical relevance. While reflexive pain response tests have been used for decades for pain assessment, its accuracy and clinical relevance remain problematic. Hence, we used automated home-cage monitoring LABORAS to evaluate spontaneous locomotive behaviors in LPS-induced mice. LPS-treated mice displayed sickness behaviors including pain-like behaviors in automated home-cage monitoring characterized by decreased mobile behaviors (climbing, locomotion, rearing) and increased immobility compared to that of the control group in both short- and long-term locomotive assessments. Here, in short-term measurement, both in the open-field test and automated home-cage monitoring, mice demonstrated impaired locomotive behaviors. We also assessed 24 h long-term locomotor activity in the home-cage system, which profiled the diurnal behaviors of LPS-stimulated mice. The results demonstrated significant behavioral impairment in LPS-stimulated mice compared to the control mice in both light and dark phases. However, the difference is more evident in the dark phase compared to the light phase owing to the nocturnal activity of mice. In addition, the administration of indomethacin as a pharmacological intervention improved sickness behaviors in the open-field test as well as automated home-cage monitoring, confirming that automated home-cage monitoring could be potentially useful in pharmacological screening. Together, our results demonstrate that automated home-cage monitoring could be a feasible alternative to conventional methods, such as the open-field test and combining several behavioral assessments may provide a better understanding of sickness behavior and pain-like behaviors in LPS-treated mice.
Collapse
|
27
|
Millischer V, Heinzl M, Faka A, Resl M, Trepci A, Klammer C, Egger M, Dieplinger B, Clodi M, Schwieler L. Intravenous administration of LPS activates the kynurenine pathway in healthy male human subjects: a prospective placebo-controlled cross-over trial. J Neuroinflammation 2021; 18:158. [PMID: 34273987 PMCID: PMC8286561 DOI: 10.1186/s12974-021-02196-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Administration of lipopolysaccharide (LPS) from Gram-negative bacteria, also known as the human endotoxemia model, is a standardized and safe model of human inflammation. Experimental studies have revealed that peripheral administration of LPS leads to induction of the kynurenine pathway followed by depressive-like behavior and cognitive dysfunction in animals. The aim of the present study is to investigate how acute intravenous LPS administration affects the kynurenine pathway in healthy male human subjects. Methods The present study is a prospective, single-blinded, randomized, placebo-controlled cross-over study to investigate the effects of intravenously administered LPS (Escherichia coli O113, 2 ng/kg) on tryptophan and kynurenine metabolites over 48 h and their association with interleukin-6 (IL-6) and C-reactive protein (CRP). The study included 10 healthy, non-smoking men (18–40 years) free from medication. Statistical differences in tryptophan and kynurenine metabolites as well as associations with IL-6 and CRP in LPS and placebo treated subjects were assessed with linear mixed-effects models. Results Systemic injection of LPS was associated with significantly lower concentrations of plasma tryptophan and kynurenine after 4 h, as well as higher concentrations of quinolinic acid (QUIN) after 48 h compared to the placebo injection. No differences were found in kynurenic acid (KYNA) or picolinic acid plasma concentrations between LPS or placebo treatment. The KYNA/kynurenine ratio peaked at 6 h post LPS injection while QUIN/kynurenine maintained significantly higher from 3 h post LPS injection until 24 h. The kynurenine/tryptophan ratio was higher at 24 h and 48 h post LPS treatment. Finally, we report an association between the kynurenine/tryptophan ratio and CRP. Conclusions Our findings strongly support the concept that an inflammatory challenge with LPS induces the kynurenine pathway in humans, activating both the neurotoxic (QUIN) and neuroprotective (KYNA) branch of the kynurenine pathway. Trial registration This study is based on a study registered at ClinicalTrials.gov, NCT03392701. Registered 21 December 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02196-x.
Collapse
Affiliation(s)
- Vincent Millischer
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden.,Translational Psychiatry, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Heinzl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria.,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria
| | - Anthi Faka
- Department of Physiology & Pharmacology, Sec. Neuropsychoimmunology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Resl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria.,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria
| | - Ada Trepci
- Department of Physiology & Pharmacology, Sec. Neuropsychoimmunology, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Klammer
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria.,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria
| | - Margot Egger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Linz, Austria
| | - Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Linz, Austria
| | - Martin Clodi
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria. .,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria.
| | - Lilly Schwieler
- Department of Physiology & Pharmacology, Sec. Neuropsychoimmunology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Warfield AE, Prather JF, Todd WD. Systems and Circuits Linking Chronic Pain and Circadian Rhythms. Front Neurosci 2021; 15:705173. [PMID: 34276301 PMCID: PMC8284721 DOI: 10.3389/fnins.2021.705173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Research over the last 20 years regarding the link between circadian rhythms and chronic pain pathology has suggested interconnected mechanisms that are not fully understood. Strong evidence for a bidirectional relationship between circadian function and pain has been revealed through inflammatory and immune studies as well as neuropathic ones. However, one limitation of many of these studies is a focus on only a few molecules or cell types, often within only one region of the brain or spinal cord, rather than systems-level interactions. To address this, our review will examine the circadian system as a whole, from the intracellular genetic machinery that controls its timing mechanism to its input and output circuits, and how chronic pain, whether inflammatory or neuropathic, may mediate or be driven by changes in these processes. We will investigate how rhythms of circadian clock gene expression and behavior, immune cells, cytokines, chemokines, intracellular signaling, and glial cells affect and are affected by chronic pain in animal models and human pathologies. We will also discuss key areas in both circadian rhythms and chronic pain that are sexually dimorphic. Understanding the overlapping mechanisms and complex interplay between pain and circadian mediators, the various nuclei they affect, and how they differ between sexes, will be crucial to move forward in developing treatments for chronic pain and for determining how and when they will achieve their maximum efficacy.
Collapse
Affiliation(s)
| | | | - William D. Todd
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
29
|
Rasmusson AJ, Gallwitz M, Soltanabadi B, Ciuculete DM, Mengel-From J, Christensen K, Nygaard M, Soerensen M, Boström AE, Fredriksson R, Freyhult E, Mwinyi J, Czamara D, Binder EB, Schiöth HB, Cunningham JL. Toll-like receptor 4 methylation grade is linked to depressive symptom severity. Transl Psychiatry 2021; 11:371. [PMID: 34226490 PMCID: PMC8257733 DOI: 10.1038/s41398-021-01481-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
This study explores potential associations between the methylation of promoter-associated CpG sites of the toll-like receptor (TLR)-family, plasma levels of pro-inflammatory proteins and depressive symptoms in young female psychiatric patients. Ratings of depressive symptoms and blood samples were obtained from 92 young women seeking psychiatric care. Methylation of 32 promoter-associated CpG sites in TLR1 to TLR10 was analysed using the Illumina Infinium Methylation EPIC BeadChip. Expression levels of 91 inflammatory proteins were determined by proximity extension assay. Statistical correlations between depressive state, TLR1-10 methylation and inflammatory proteins were investigated. Four additional cohorts were studied to evaluate the generalizability of the findings. In the discovery cohort, methylation grade of cg05429895 (TLR4) in blood was inversely correlated with depressive symptoms score in young adults. After correction for multiple testing, plasma levels of macrophage inflammatory protein 1β (MIP-1β/CCL4) were associated with both TLR4 methylation and depressive symptom severity. A similar inverse association between TLR4 methylation in blood and affective symptoms score was also found in a cohort of 148 both males and females (<40 years of age) from the Danish Twin Registry. These findings were not, however, replicated in three other external cohorts; which differed from the first two cohorts by a higher age and mixed ethnicities, thus limiting the generalizability of our findings. However, TLR4 methylation inversely correlated with TLR4 mRNA expression in the Danish Twin Study indicating a functional significance of methylation at this particular CpG. Higher depression scores in young Scandinavian adults was associated with decreased methylation of TLR4 in blood.
Collapse
Affiliation(s)
- Annica J Rasmusson
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Maike Gallwitz
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Bardia Soltanabadi
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Diana M Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Jonas Mengel-From
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kaare Christensen
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Marianne Nygaard
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mette Soerensen
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Adrian E Boström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Eva Freyhult
- Department of Medical Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Darina Czamara
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden.
| |
Collapse
|
30
|
Bjurström MF, Bodelsson M, Irwin MR, Orbjörn C, Hansson O, Mattsson-Carlgren N. Decreased pain sensitivity and alterations of cerebrospinal fluid and plasma inflammatory mediators after total hip arthroplasty in patients with disabling osteoarthritis. Pain Pract 2021; 22:66-82. [PMID: 34143556 DOI: 10.1111/papr.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Proinflammatory mechanisms are implicated in pain states. Recent research indicates that patients with osteoarthritis (OA) with signs of central sensitization exhibit elevated cerebrospinal fluid (CSF) levels of interferon gamma-induced protein 10 (IP-10), Fms-related tyrosine kinase 1 (Flt-1), and monocyte chemoattractant protein 1 (MCP-1). METHODS The current prospective cohort study, including 15 patients with OA, primarily aimed to evaluate associations among alterations in CSF IP-10, Flt-1, MCP-1, and pain sensitization following total hip arthroplasty (THA). Participants provided CSF and blood samples for analysis of 10 proinflammatory mediators, and underwent detailed clinical examination and quantitative sensory testing, immediately preoperative and 18 months after surgery. RESULTS Neurophysiological measures of pain showed markedly reduced pain sensitivity long-term postoperative. Increases in remote site pressure pain detection thresholds (PPDTs) and decreased temporal summation indicated partial resolution of previous central sensitization. Compared to preoperative, CSF concentrations of IP-10 were increased (p = 0.041), whereas neither Flt-1 (p = 0.112) nor MCP-1 levels changed (p = 0.650). Compared to preoperative, plasma concentrations of IP-10 were increased (p = 0.006), whereas interleukin (IL)-8 was decreased (p = 0.023). Subjects who exhibited increases in arm PPDTs above median showed greater increases in CSF IP-10 compared to those with PPDT increases below median (p = 0.028). Analyses of plasma IP-10 and IL-8 indicated higher levels of peripheral inflammation were linked to decreased pressure pain thresholds (unadjusted β = -0.79, p = 0.006, and β = -118.1, p = 0.014, respectively). CONCLUSIONS THA leads to long-term decreases in pain sensitivity, indicative of resolution of sensitization processes. Changes in CSF and plasma levels of IP-10, and plasma IL-8, may be associated with altered pain phenotype.
Collapse
Affiliation(s)
- Martin F Bjurström
- Department of Anesthesiology and Intensive Care, Skåne University Hospital, Lund, Sweden.,Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Mikael Bodelsson
- Department of Anesthesiology and Intensive Care, Skåne University Hospital, Lund, Sweden.,Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Camilla Orbjörn
- Clinical Memory Research Unit, Faculty of Medicine, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Sex Differences, Sleep Disturbance and Risk of Persistent Pain Associated With Groin Hernia Surgery: A Nationwide Register-Based Cohort Study. THE JOURNAL OF PAIN 2021; 22:1360-1370. [PMID: 33964413 DOI: 10.1016/j.jpain.2021.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Persistent pain after groin hernia repair is a major health problem. Sleep disturbance is associated with heightened pain sensitivity. The main objective of this study was to examine the role of sleep disturbance in the development and long-term maintenance of chronic postherniorrhaphy inguinal pain (CPIP), with exploration of sex differences. From 2012 to 2017, a national cohort of patients with prior groin hernia repair (n = 2084;45.8% females) were assessed for the development of CPIP 12 months after surgery. Patients then underwent long-term (median 5.0 years) follow-up to evaluate the contribution of sex and sleep disturbance on the maintenance of CPIP. Associations between pre- and postoperative sleep problems (assessed at long-term follow-up) and CPIP were tested using logistic regression. Females had higher rates of CPIP with negative impact on daily activities 12 months after surgery as compared to males (14.6 vs 9.2%, P < .0005), and were more likely to have moderate-severe CPIP in the long-term (3.1 vs 1.2%, P = .003). Preoperative sleep problems predicted development of CPIP 12 months after surgery (adjusted odds ratio [aOR] 1.76 [95%CI 1.26-2.46], P = .001) and CPIP in the long-term (aOR 2.20 [1.61-3.00] , P < .0001). CPIP was associated with insomnia and depression. Sleep disturbance may increase the risk for CPIP, and contribute to maintenance of postsurgical pain. PERSPECTIVE: Females are at heightened risk for CPIP as compared to males. Increased severity of pain symptoms are linked to poorer sleep and psychiatric morbidity. Given the robust associations between sleep disturbance and CPIP, interventions which consolidate and promote sleep, especially in females, may improve long-term pain control.
Collapse
|
32
|
Palada V, Siddiqah Ahmed A, Hugo A, Radojčić MR, Svensson CI, Kosek E. Expression of mitochondrial TSPO and FAM173B is associated with inflammation and symptoms in patients with painful knee osteoarthritis. Rheumatology (Oxford) 2021; 60:1724-1733. [PMID: 33067627 PMCID: PMC8023995 DOI: 10.1093/rheumatology/keaa565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives To characterize the expression profiles of two nuclear-encoded mitochondrial genes previously associated with chronic pain, the translocator protein (TSPO) and family with sequence similarity 173B (FAM173B), in different knee compartments from patients with painful knee OA. Also, to examine their association with the joint expression of inflammatory cytokines/chemokines and clinical symptoms. Methods The study was performed on 40 knee OA patients and 19 postmortem (PM) controls from which we collected the knee tissues: articular cartilage (AC), synovial membrane (SM) and subchondral bone (SB). Quantitative real-time polymerase chain reaction was used to determine the relative mRNA levels of TSPO, FAM173B, and inflammatory mediators IL6, IL8, IL10, IL12, MCP1, CCL11 and CCL17. OA patients rated their pain intensity (visual analogue scale), severity of knee-related outcomes (KOOS) and pain sensitivity assessed by pressure algometry. Results The gene expression of TSPO in SM was elevated in OA patients compared with control subjects while there were no group differences in AC and SB. Expression of FAM173B was reduced in SM but elevated in SB in OA patients compared with controls. The expression of TSPO and FAM173B in SM and SB was associated with the expression of inflammatory substances, but not in AC. Synovial expression of TSPO correlated with lower pain intensity and FAM173B with increased pressure pain sensitivity in OA. Conclusion Our results suggest that altered expression of TSPO and FAM173B is associated with joint expression of inflammatory mediators and with clinical symptoms indicating the relevance for the pathophysiology of knee OA.
Collapse
Affiliation(s)
- Vinko Palada
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anders Hugo
- Ortho Center Stockholm, Upplands Väsby, Sweden
| | - Maja R Radojčić
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Bonet IJM, Green PG, Levine JD. Sexual dimorphism in the nociceptive effects of hyaluronan. Pain 2021; 162:1116-1125. [PMID: 33065736 PMCID: PMC7969372 DOI: 10.1097/j.pain.0000000000002116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
ABSTRACT Intradermal administration of low-molecular-weight hyaluronan (LMWH) in the hind paw induced dose-dependent (0.1, 1, or 10 µg) mechanical hyperalgesia of similar magnitude in male and female rats. However, the duration of LMWH hyperalgesia was greater in females. This sexual dimorphism was eliminated by bilateral ovariectomy and by intrathecal administration of an oligodeoxynucleotide (ODN) antisense to the G-protein-coupled estrogen receptor (GPR30) mRNA in females, indicating estrogen dependence. To assess the receptors at which LMWH acts to induce hyperalgesia, LMWH was administered to groups of male and female rats that had been pretreated with ODN antisense (or mismatch) to the mRNA for 1 of 3 hyaluronan receptors, cluster of differentiation 44 (CD44), toll-like receptor 4, or receptor for hyaluronan-mediated motility (RHAMM). Although LMWH-induced hyperalgesia was attenuated in both male and female rats pretreated with ODN antisense for CD44 and toll-like receptor 4 mRNA, RHAMM antisense pretreatment only attenuated LMWH-induced hyperalgesia in males. Oligodeoxynucleotide antisense for RHAMM, however, attenuated LMWH-induced hyperalgesia in female rats treated with ODN antisense to GPR30, as well as in ovariectomized females. Low-molecular-weight hyaluronan-induced hyperalgesia was significantly attenuated by pretreatment with high-molecular-weight hyaluronan (HMWH) in male, but not in female rats. After gonadectomy or treatment with ODN antisense to GPR30 expression in females, HMWH produced similar attenuation of LMWH-induced hyperalgesia to that seen in males. These experiments identify nociceptors at which LMWH acts to produce mechanical hyperalgesia, establishes estrogen dependence in the role of RHAMM in female rats, and establishes estrogen dependence in the inhibition of LMWH-induced hyperalgesia by HMWH.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
34
|
Pathan EMI, Inman RD. Pain in Axial Spondyloarthritis: Insights from Immunology and Brain Imaging. Rheum Dis Clin North Am 2021; 47:197-213. [PMID: 33781490 DOI: 10.1016/j.rdc.2020.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inflammatory back pain is characteristic of spondyloarthritis (SpA); however, this pain may not respond to treatment with NSAIDs or biologics. Pain is multifactorial and a combination of mechanical and inflammatory factors. A growing body of literature examines the impact of emotions on pain in SpA; many patients with this condition suffer from depression and fibromyalgia. Advanced imaging techniques can investigate the interplay of various brain networks in pain perception. Animal models have helped understand the interplay between the immune and nervous systems in pain generation and have highlighted differences in pain perception between the sexes.
Collapse
Affiliation(s)
- Ejaz M I Pathan
- Rheumatology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Road, High Heaton, Newcastle upon Tyne NE7 7DN, UK.
| | - Robert D Inman
- Spondylitis Program, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada; Schroeder Arthritis Institute, University Health Network; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
36
|
Karshikoff B, Martucci KT, Mackey S. Relationship Between Blood Cytokine Levels, Psychological Comorbidity, and Widespreadness of Pain in Chronic Pelvic Pain. Front Psychiatry 2021; 12:651083. [PMID: 34248700 PMCID: PMC8267576 DOI: 10.3389/fpsyt.2021.651083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/14/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Low-grade inflammation has been implicated in the etiology of depression, long-term fatigue and chronic pain. TNFα and IL-6 are perhaps the most studied pro-inflammatory cytokines in the field of psychoneuroimmunology. The purpose of our study was to further investigate these relationships in patients with chronic pelvic pain specifically. Using plasma samples from a large, well-described cohort of patients with pelvic pain and healthy controls via the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network, we examined the relationship between TNFα and IL-6 and comorbid psychological symptoms. We also investigated the relationship between IL-8 and GM-CSF, and widespreadness of pain. Methods: We included baseline blood samples in the analyses, 261 patients (148 women) and 110 healthy controls (74 women). Fourteen pro- and anti-inflammatory or regulatory cytokines were analyzed in a Luminex® xMAP® high-sensitivity assay. We used regression models that accounted for known factors associated with the outcome variables to determine the relationship between cytokine levels and clinical measures. Results: There were no statistical differences in cytokine levels between patients and healthy controls when controlling for age. In patients, TNFα was significantly associated with levels of fatigue (p = 0.026), but not with pain intensity or depression. IL-6 was not significantly related to any of the outcome variables. Women with pelvic pain showed a negative relationship between IL-8 and widespreadness of pain, while men did not (p = 0.003). For both sexes, GM-CSF was positively related to widespreadness of pain (p = 0.039). Conclusion: Our results do not suggest low-grade systemic inflammation in chronic pelvic pain. Higher TNFα blood levels were related to higher fatigue ratings, while higher systemic GM-CSF levels predicted more widespread pain. Our study further suggests a potentially protective role of IL-8 with regard to with regard to the widepreadness of pain in the body, at least for women.
Collapse
Affiliation(s)
- Bianka Karshikoff
- Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
| | - Katherine T Martucci
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, United States
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
37
|
Lasselin J, Lekander M, Benson S, Schedlowski M, Engler H. Sick for science: experimental endotoxemia as a translational tool to develop and test new therapies for inflammation-associated depression. Mol Psychiatry 2021; 26:3672-3683. [PMID: 32873895 PMCID: PMC8550942 DOI: 10.1038/s41380-020-00869-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
Depression is one of the global leading causes of disability, but treatments remain limited and classical antidepressants were found to be ineffective in a substantial proportion of patients. Thus, novel effective therapies for the treatment of depression are urgently needed. Given the emerging role of inflammation in the etiology and pathophysiology of affective disorders, we herein illustrate how experimental endotoxemia, a translational model of systemic inflammation, could be used as a tool to develop and test new therapeutic options against depression. Our concept is based on the striking overlap of inflammatory, neural, and affective characteristics in patients with inflammation-associated depression and in endotoxin-challenged healthy subjects. Experimental administration of endotoxin in healthy volunteers is safe, well-tolerated, and without known long-term health risks. It offers a highly standardized translational approach to characterize potential targets of therapies against inflammation-associated depression, as well as to identify characteristics of patients that would benefit from these interventions, and, therefore, could contribute to improve personalization of treatment and to increase the overall rate of responders.
Collapse
Affiliation(s)
- Julie Lasselin
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany. .,Stress Research Institute, Stockholm University, 10691, Stockholm, Sweden. .,Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 17177, Stockholm, Sweden. .,Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden.
| | - Mats Lekander
- grid.10548.380000 0004 1936 9377Stress Research Institute, Stockholm University, 10691 Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 17177 Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Sven Benson
- grid.5718.b0000 0001 2187 5445Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Manfred Schedlowski
- grid.5718.b0000 0001 2187 5445Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 17177 Stockholm, Sweden
| | - Harald Engler
- grid.5718.b0000 0001 2187 5445Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| |
Collapse
|
38
|
Elucidating vulnerability to inflammation-induced hyperalgesia: Predictors of increased musculoskeletal pain sensitivity during experimental endotoxemia. Brain Behav Immun 2020; 88:302-307. [PMID: 32592864 DOI: 10.1016/j.bbi.2020.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Despite broad clinical implications, the mechanisms linking inflammation and pain remain incompletely understood. Using human experimental endotoxemia as a translational model of systemic inflammation, we aimed to elucidate putative vulnerability factors of inflammation-induced musculoskeletal hyperalgesia. We pooled data from three published randomized controlled trials, resulting in a sample of N = 98 healthy volunteers who received either low-dose endotoxin (lipopolysaccharide) or vehicle (saline) intravenously. As measure of musculoskeletal pain sensitivity, pressure pain thresholds (PPTs) were assessed at baseline and 3 h post injection with a handheld algometer for the low back (erector spinae muscle), calf (gastrocnemius muscle), and shoulder region (deltoid muscle). Implementing multiple regression models, we tested the contribution of putative vulnerability factors on musculoskeletal hyperalgesia during systemic inflammation, including acute changes in pro-inflammatory cytokines, state anxiety and mood, as well as pre-existing symptoms of anxiety and depression. Endotoxin application led to significant increases in plasma cytokines, state anxiety, and negative mood, and significantly decreased PPTs for all muscle groups. Regression models revealed that greater M. erector spinae PPT changes were predicted by higher HADS-anxiety scores. Higher TNF-α concentration emerged as predictor for M. gastrocnemius PPT changes, and more pronounced TNF-α increase and higher HADS-anxiety were predictive for M. deltoideus PPTs. HADS scores emerged as predictor for a mean PPT score (computed across all body sites). Together, our results indicate that musculoskeletal hyperalgesia during systemic inflammation is related to pro-inflammatory cytokines, specifically TNF-α. Importantly, subclinical anxiety symptoms (even though in a low and normal range in this cohort of healthy volunteers) may contribute to inflammation-induced hyperalgesia, making individuals more vulnerable to the detrimental effects of systemic inflammation.
Collapse
|
39
|
Lasselin J, Benson S, Hebebrand J, Boy K, Weskamp V, Handke A, Hasenberg T, Remy M, Föcker M, Unteroberdörster M, Brinkhoff A, Engler H, Schedlowski M. Immunological and behavioral responses to in vivo lipopolysaccharide administration in young and healthy obese and normal-weight humans. Brain Behav Immun 2020; 88:283-293. [PMID: 32485294 DOI: 10.1016/j.bbi.2020.05.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is associated with an increase prevalence of neuropsychiatric symptoms and diseases, such as depression. Based on the facts that pro-inflammatory cytokines are able to modulate behavior, and that obesity is characterized by a chronic low-grade inflammatory state, inflammation has been hypothesized to contribute to the neuropsychiatric comorbidity in obese individuals. However, a causal link between inflammation and the development of neuropsychiatric symptoms is hard to establish in humans. Here, we used an inflammatory stimulus, i.e. the intravenous injection of lipopolysaccharide (LPS), in a double-blind placebo-controlled design, to determine the vulnerability of obese individuals to inflammation-induced behavioral changes. The hypothesis was that obese individuals would show heightened behavioral response compared to normal-weight subjects for the same inflammatory stimulus, reflecting an increased sensitivity to the behavioral effects of pro-inflammatory cytokines. LPS (dose 0.8 ng/kg body weight, adjusted for estimated blood volume in obese subjects) and placebo (saline) were intravenously injected in 14 obese healthy subjects and 23 normal-weight healthy subjects in a within-subject, randomized, crossover design. LPS administration induced, in both groups, an acute increase in blood concentrations of cytokines (interleukin-6, tumor necrosis factor-α, and IL-10), as well as in body temperature, cortisol, norepinephrine, sickness symptoms, fatigue, negative mood, and state anxiety. There were little differences in the immune and behavioral responses to LPS between obese and normal-weight subjects, but the cortisol response to LPS was strongly attenuated in obese individuals. Higher percentage of body fat was related to a lower cortisol response to LPS. Taken together, the population of young and healthy obese individuals in this study did not exhibit an increased behavioral sensitivity to cytokines, but an attenuated cortisol response to the immune challenge. Future studies will need to determine whether additional physiological and psychological factors interact with the state of obesity to increase the risk for inflammation-induced neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Julie Lasselin
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany; Stress Research Institute, Stockholm University, 10691 Stockholm, Sweden; Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 17177 Stockholm, Sweden.
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, Germany
| | - Karoline Boy
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Vera Weskamp
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Analena Handke
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Till Hasenberg
- Helios Adipositas Zentrum West, Helios St. Elisabeth Klinik Oberhausen, Witten/Herdecke University, Josefstr. 3, 46045 Oberhausen, Germany
| | - Miriam Remy
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, Germany
| | - Meike Unteroberdörster
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany; Department of Neurosurgery, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Alexandra Brinkhoff
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany; Department of Nephrology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| |
Collapse
|
40
|
Hijma HJ, Moss LM, Gal P, Ziagkos D, de Kam ML, Moerland M, Groeneveld GJ. Challenging the challenge: A randomized controlled trial evaluating the inflammatory response and pain perception of healthy volunteers after single-dose LPS administration, as a potential model for inflammatory pain in early-phase drug development. Brain Behav Immun 2020; 88:515-528. [PMID: 32305572 DOI: 10.1016/j.bbi.2020.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND AND AIMS Following an infection, cytokines not only regulate the acute immune response, but also contribute to symptoms such as inflammatory hyperalgesia. We aimed to characterize the acute inflammatory response induced by a human endotoxemia model, and its effect on pain perception using evoked pain tests in two different dose levels. We also attempted to determine whether combining a human endotoxemia challenge with measurement of pain thresholds in healthy subjects could serve as a model to study drug effects on inflammatory pain. METHODS AND RESULTS This was a placebo-controlled, randomized, cross-over study in 24 healthy males. Twelve subjects were administered a bolus of 1 ng/kg LPS intravenously, and twelve 2 ng/kg LPS. Before days of placebo/LPS administration, subjects completed a full study day without study drug administration, but with identical pain threshold testing. Blood sampling and evoked pain tests (electrical burst and -stair, heat, pressure, and cold pressor test) were performed pre-dose and at frequent intervals up to 10hr post-dose. Data were analysed with a repeated-measures ANCOVA. For both dose levels, LPS induced an evident acute inflammatory response, but did not significantly affect any of the pain modalities. In a post-hoc analysis, lowering of pain thresholds was observed in the first 3 h after dosing, corresponding with the peak of the acute inflammatory response around 1-3 h post-dose. CONCLUSION Mild acute systemic inflammation, as induced by 1 ng/kg and 2 ng/kg LPS intravenous administration, did not significantly change pain thresholds in this study. The endotoxemia model in combination with evoked pain tests is not suitable to study acute inflammatory hyperalgesia in healthy males.
Collapse
Affiliation(s)
- H J Hijma
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| | - L M Moss
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| | - P Gal
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| | - D Ziagkos
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands.
| | - M L de Kam
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands.
| | - M Moerland
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| | - G J Groeneveld
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
41
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
42
|
Lasselin J, Schedlowski M, Karshikoff B, Engler H, Lekander M, Konsman JP. Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: Relevance for symptoms of anxiety and depression. Neurosci Biobehav Rev 2020; 115:15-24. [PMID: 32433924 DOI: 10.1016/j.neubiorev.2020.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022]
Abstract
Increasing evidence from animal and human studies suggests that inflammation may be involved in mood disorders. Sickness behavior and emotional changes induced by experimental inflammatory stimuli have been extensively studied in humans and rodents to better understand the mechanisms underlying inflammation-driven mood alterations. However, research in animals and humans have remained compartmentalized and a comprehensive comparison of inflammation-induced sickness and depressive-like behavior between rodents and humans is lacking. Thus, here, we highlight similarities and differences in the effects of bacterial lipopolysaccharide administration on the physiological (fever and cytokines), behavioral and emotional components of the sickness response in rodents and humans, and discuss the translational challenges involved. We also emphasize the differences between observable sickness behavior and subjective sickness reports, and advocate for the need to obtain both subjective reports and objective measurements of sickness behavior in humans. We aim to provide complementary insights for translational clinical and experimental research on inflammation-induced behavioral and emotional changes, and their relevance for mood disorders such as depression.
Collapse
Affiliation(s)
- Julie Lasselin
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Manfred Schedlowski
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Bianka Karshikoff
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Pieter Konsman
- Institute for Cognitive and Integrative Neuroscience, CNRS UMR 5287, University of Bordeaux, France
| |
Collapse
|
43
|
Mun CJ, Letzen JE, Nance S, Smith MT, Khanuja HS, Sterling RS, Bicket MC, Haythornthwaite JA, Jamison RN, Edwards RR, Campbell CM. Sex Differences in Interleukin-6 Responses Over Time Following Laboratory Pain Testing Among Patients With Knee Osteoarthritis. THE JOURNAL OF PAIN 2020; 21:731-741. [PMID: 31733364 PMCID: PMC7217718 DOI: 10.1016/j.jpain.2019.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/05/2019] [Accepted: 11/10/2019] [Indexed: 01/21/2023]
Abstract
Epidemiological studies suggest that women are not only at a higher risk for developing knee osteoarthritis (KOA), but also report greater symptom severity compared to men. One potential underlying mechanism of these sex differences may be exaggerated inflammatory responses to pain among women compared to men. The present study examined sex differences in interleukin-6 (IL-6) response over time following experimental pain testing. We hypothesized that women, when compared to men, would show greater IL-6 reactivity when exposed to acute pain in a human laboratory setting. Eighty-four participants (36 men and 48 women) with KOA scheduled for total knee arthroplasty underwent a quantitative sensory testing (QST) battery. A total of seven IL-6 measurements were taken, twice at baseline, once immediately after QST, and every 30 minutes up to 2 hours after QST. Consistent with our hypothesis, women, when compared to men, showed accelerated increases in IL-6 levels following laboratory-evoked pain, even after controlling for body mass index, marital status, clinical pain, evoked pain sensitivity, and situational pain catastrophizing. Given that KOA is a chronic condition, and individuals with KOA frequently experience pain, these sex differences in IL-6 reactivity may contribute to the maintenance and/or exacerbation of KOA symptoms. PERSPECTIVES: The present study demonstrates that women, when compared to men, exhibit greater IL-6 reactivity after exposure to laboratory-evoked pain. Such sex differences may explain the mechanisms underlying women's higher chronic pain risk and pain perception, as well as provide further insight in developing personalized pain interventions.
Collapse
Affiliation(s)
- Chung Jung Mun
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Janelle E Letzen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sabrina Nance
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Michael T Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Harpal S Khanuja
- Department of Orthopedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Robert S Sterling
- Department of Orthopedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mark C Bicket
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Robert N Jamison
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Claudia M Campbell
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Nwafor DC, Chakraborty S, Brichacek AL, Jun S, Gambill CA, Wang W, Engler-Chiurazzi EB, Dakhlallah D, Pinkerton AB, Millán JL, Benkovic SA, Brown CM. Loss of tissue-nonspecific alkaline phosphatase (TNAP) enzyme activity in cerebral microvessels is coupled to persistent neuroinflammation and behavioral deficits in late sepsis. Brain Behav Immun 2020; 84:115-131. [PMID: 31778743 PMCID: PMC7010562 DOI: 10.1016/j.bbi.2019.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a host response to systemic inflammation and infection that may lead to multi-organ dysfunction and eventual death. While acute brain dysfunction is common among all sepsis patients, chronic neurological impairment is prevalent among sepsis survivors. The brain microvasculature has emerged as a major determinant of sepsis-associated brain dysfunction, yet the mechanisms that underlie its associated neuroimmune perturbations and behavioral deficits are not well understood. An emerging body of data suggests that inhibition of tissue-nonspecific alkaline phosphatase (TNAP) enzyme activity in cerebral microvessels may be associated with changes in endothelial cell barrier integrity. The objective of this study was to elucidate the connection between alterations in cerebrovascular TNAP enzyme activity and brain microvascular dysfunction in late sepsis. We hypothesized that the disruption of TNAP enzymatic activity in cerebral microvessels would be coupled to the sustained loss of brain microvascular integrity, elevated neuroinflammatory responses, and behavioral deficits. Male mice were subjected to cecal ligation and puncture (CLP), a model of experimental sepsis, and assessed up to seven days post-sepsis. All mice were observed daily for sickness behavior and underwent behavioral testing. Our results showed a significant decrease in brain microvascular TNAP enzyme activity in the somatosensory cortex and spinal cord of septic mice but not in the CA1 and CA3 hippocampal regions. Furthermore, we showed that loss of cerebrovascular TNAP enzyme activity was coupled to a loss of claudin-5 and increased perivascular IgG infiltration in the somatosensory cortex. Analyses of whole brain myeloid and T-lymphoid cell populations also revealed a persistent elevation of infiltrating leukocytes, which included both neutrophil and monocyte myeloid derived suppressor cells (MDSCs). Regional analyses of the somatosensory cortex, hippocampus, and spinal cord revealed significant astrogliosis and microgliosis in the cortex and spinal cord of septic mice that was accompanied by significant microgliosis in the CA1 and CA3 hippocampal regions. Assessment of behavioral deficits revealed no changes in learning and memory or evoked locomotion. However, the hot plate test uncovered a novel anti-nociceptive phenotype in our septic mice, and we speculate that this phenotype may be a consequence of sustained GFAP astrogliosis and loss of TNAP activity in the somatosensory cortex and spinal cord of septic mice. Taken together, these results demonstrate that the loss of TNAP enzyme activity in cerebral microvessels during late sepsis is coupled to sustained neuroimmune dysfunction which may underlie, in part, the chronic neurological impairments observed in sepsis survivors.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Sreeparna Chakraborty
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Sujung Jun
- Wilmer Eye Institute, John Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Catheryne A. Gambill
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Wei Wang
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA.
| | | | - Duaa Dakhlallah
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA; Cancer Institute, West Virginia University Health Science Center, Morgantown, WV 26506, USA.
| | | | - José Luis Millán
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Stanley A. Benkovic
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Candice M. Brown
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA,Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA,Corresponding Author: Candice M. Brown, Ph.D., Assistant Professor, Neuroscience, 108 Biomedical Road, Box 9303, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University Health Sciences, Morgantown, WV 26506, Phone: 304-293-0589,
| |
Collapse
|
45
|
Jonsjö MA, Åström J, Jones MP, Karshikoff B, Lodin K, Holmström L, Agréus L, Wicksell RK, Axelsson J, Lekander M, Olsson GL, Kemani M, Andreasson A. Patients with ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome) and chronic pain report similar level of sickness behavior as individuals injected with bacterial endotoxin at peak inflammation. Brain Behav Immun Health 2020; 2:100028. [PMID: 38377418 PMCID: PMC8474484 DOI: 10.1016/j.bbih.2019.100028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022] Open
Abstract
Background Chronic sickness behavior is implicated in ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome) and chronic pain but the level of subjective sickness behavior in these conditions has not been investigated or compared to other clinical and non-clinical samples, or to the level in experimental inflammation. Furthermore, the relationship between sickness behavior and self-rated health and functioning is not known in patients with ME/CFS and chronic pain. The aim of the present study was to investigate how sickness behavior in patients with chronic conditions differs from that in individuals with experimental acute sickness, primary care patients, the general population and healthy subjects. In addition, we wanted to explore how sickness behavior is related to self-rated health and health-related functioning. Methods Sickness behavior was quantified using the sickness questionnaire (SicknessQ). Self-ratings were collected at one time-point in 6 different samples. Levels of sickness behavior in patients with ME/CFS (n = 38) and patients with chronic pain (n = 190) were compared to healthy subjects with lipopolysaccharide(LPS)-induced inflammation (n = 29), primary care patients (n = 163), individuals from the general population (n = 155) and healthy subjects (n = 48), using linear regression. Correlations and moderated regression analyses were used to investigate associations between sickness behavior and self-rated health and health-related functioning in ME/CFS, chronic pain and the general population. Results LPS-injected individuals (M = 16.3), patients with ME/CFS (M = 16.1), chronic pain (M = 16.1) and primary care patients (M = 10.7) reported significantly higher SicknessQ scores than individuals from the general population (M = 5.4) and healthy subjects (M = 3.6) all p's < 0.001). In turn, LPS-injected individuals, patients with ME/CFS and chronic pain reported significantly higher SicknessQ scores than primary care patients (p's < 0.01). Higher levels of sickness behavior were associated with poorer self-rated health and health-related functioning (p's < 0.01), but less so in patients with ME/CFS and chronic pain than in individuals from the general population. Conclusions Patients with ME/CFS and chronic pain report similar high levels of sickness behavior; higher than primary care patients, and comparable to levels in experimental inflammation. Further study of sickness behavior in ME/CFS and chronic pain populations is warranted as immune-to-brain interactions and sickness behavior may be of importance for functioning as well as in core pathophysiological processes in subsets of patients.
Collapse
Affiliation(s)
- Martin A. Jonsjö
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Behavior Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jenny Åström
- Behavior Medicine, Karolinska University Hospital, Stockholm, Sweden
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Bianka Karshikoff
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karin Lodin
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Dept. of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Linda Holmström
- Behavior Medicine, Karolinska University Hospital, Stockholm, Sweden
- Dept. of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars Agréus
- Dept. of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Rikard K. Wicksell
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar L. Olsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mike Kemani
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Behavior Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Andreasson
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Dept. of Psychology, Macquarie University, NSW, Australia
- Dept. of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Lasselin J, Karshikoff B, Axelsson J, Åkerstedt T, Benson S, Engler H, Schedlowski M, Jones M, Lekander M, Andreasson A. Fatigue and sleepiness responses to experimental inflammation and exploratory analysis of the effect of baseline inflammation in healthy humans. Brain Behav Immun 2020; 83:309-314. [PMID: 31682972 DOI: 10.1016/j.bbi.2019.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
Inflammation is believed to be a central mechanism in the pathophysiology of fatigue. While it is likely that dynamic of the fatigue response after an immune challenge relates to the corresponding cytokine release, this lacks evidence. Although both fatigue and sleepiness are strong signals to rest, they constitute distinct symptoms which are not necessarily associated, and sleepiness in relation to inflammation has been rarely investigated. Here, we have assessed the effect of an experimental immune challenge (administration of lipopolysaccharide, LPS) on the development of both fatigue and sleepiness, and the associations between increases in cytokine concentrations, fatigue and sleepiness, in healthy volunteers. In addition, because chronic-low grade inflammation may represent a risk factor for fatigue, we tested whether higher baseline levels of inflammation result in a more pronounced development of cytokine-induced fatigue and sleepiness. Data from four experimental studies was combined, giving a total of 120 subjects (LPS N = 79, 18 (23%) women; Placebo N = 69, 12 (17%) women). Administration of LPS resulted in a stronger increase in fatigue and sleepiness compared to the placebo condition, and the development of both fatigue and sleepiness closely paralleled the cytokine responses. Individuals with stronger increases in cytokine concentrations after LPS administration also suffered more from fatigue and sleepiness (N = 75), independent of gender. However, there was no support for the hypothesis that higher baseline inflammatory markers moderated the responses in fatigue or sleepiness after an inflammatory challenge. The results demonstrate a tight connection between the acute inflammatory response and development of both fatigue and sleepiness, and motivates further investigation of the involvement of inflammation in the pathophysiology of central fatigue.
Collapse
Affiliation(s)
- Julie Lasselin
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45 122 Essen, Germany; Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden; Stress Research Institute, Stockholm University, Frescati Hagväg 16A, 106 91 Stockholm, Sweden.
| | - Bianka Karshikoff
- Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden
| | - John Axelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden; Stress Research Institute, Stockholm University, Frescati Hagväg 16A, 106 91 Stockholm, Sweden
| | - Torbjörn Åkerstedt
- Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden; Stress Research Institute, Stockholm University, Frescati Hagväg 16A, 106 91 Stockholm, Sweden
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45 122 Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45 122 Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45 122 Essen, Germany
| | - Mike Jones
- Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden; Stress Research Institute, Stockholm University, Frescati Hagväg 16A, 106 91 Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden
| | - Anna Andreasson
- Stress Research Institute, Stockholm University, Frescati Hagväg 16A, 106 91 Stockholm, Sweden; Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
47
|
Transient receptor potential ankyrin 1 promoter methylation and peripheral pain sensitivity in Crohn's disease. Clin Epigenetics 2019; 12:1. [PMID: 31892361 PMCID: PMC6938615 DOI: 10.1186/s13148-019-0796-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Crohn’s disease is a chronic inflammatory disorder of the gastrointestinal tract associated with abdominal pain and diarrhea. Pain caused by Crohn’s disease likely involves neurogenic inflammation which seems to involve the ion channel transient receptor potential ankyrin 1 (TRPA1). Since the promoter methylation of TRPA1 was shown to influence pain sensitivity, we asked if the expression of TRPA1 is dysregulated in patients suffering from Crohn’s disease. The methylation rates of CpG dinucleotides in the TRPA1 promoter region were determined from DNA derived from whole blood samples of Crohn patients and healthy participants. Quantitative sensory testing was used to examine pain sensitivities. Results Pressure pain thresholds were lower in Crohn patients as compared to healthy participants, and they were also lower in females than in males. They correlated inversely with the methylation rate at the CpG − 628 site of the TRPA1 promoter. This effect was more pronounced in female compared to male Crohn patients. Similar results were found for mechanical pain thresholds. Furthermore, age-dependent effects were detected. Whereas the CpG − 628 methylation rate declined with age in healthy participants, the methylation rate in Crohn patients increased. Pressure pain thresholds increased with age in both cohorts. Conclusions The TRPA1 promoter methylation appears to be dysregulated in patients suffering from Crohn’s disease, and this effect is most obvious when taking gender and age into account. As TRPA1 is regarded to be involved in pain caused by neurogenic inflammation, its aberrant expression may contribute to typical symptoms of Crohn’s disease.
Collapse
|
48
|
Forsberg A, Lampa J, Estelius J, Cervenka S, Farde L, Halldin C, Lekander M, Olgart Höglund C, Kosek E. Disease activity in rheumatoid arthritis is inversely related to cerebral TSPO binding assessed by [ 11C]PBR28 positron emission tomography. J Neuroimmunol 2019; 334:577000. [PMID: 31260948 DOI: 10.1016/j.jneuroim.2019.577000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
Reumatoid Arthritis (RA) is an autoimmune disorder characterized by peripheral joint inflammation. Recently, an engagement of the brain immune system has been proposed. The aim with the current investigation was to study the glial cell activation marker translocator protein (TSPO) in a well characterized cohort of RA patients and to relate it to disease activity, peripheral markers of inflammation and autonomic activity. Fifteen RA patients and fifteen healthy controls matched for age, sex and TSPO genotype (rs6971) were included in the study. TSPO was measured using Positron emission tomography (PET) and the radioligand [11C]PBR28. The outcome measure was total distribution volume (VT) estimated using Logan graphical analysis, with grey matter (GM) as the primary region of interest. Additional regions of interest analyses as well as voxel-wise analyses were also performed. Clinical evaluation of disease activity, symptom assessments, serum analyses of cytokines and heart rate variability (HRV) analysis of 24 h ambulatory ECG were performed in all subjects. There were no statistically significant group differences in TSPO binding, either when using the primary outcome VT or when normalizing VT to the lateral occipital cortex (p > 0.05). RA patients had numerically lower VT values than healthy controls (Cohen's D for GM = -0.21). In the RA group, there was a strong negative correlation between [11C]PBR28 VT in GM and disease activity (DAS28)(r = -0.745, p = 0.002, corrected for rs6971 genotype). Higher serum levels of IFNγ and TNF-α were found in RA patients compared to controls (p < 0.05) and several measures of autonomic activity showed significant differences between RA and controls (p < 0.05). However, no associations between markers of systemic inflammation or autonomic activity and cerebral TSPO binding were found. In conclusion, no statistically significant group differences in TSPO binding as measured with [11C]PBR28 PET were detected. Within the RA group, lower cerebral TSPO binding was associated with higher disease activity, suggesting that cerebral TSPO expression may be related to disease modifying mechanisms in RA. In light of the earlier confirmed neuro-immune features of RA, these results warrant further investigations regarding neuro-immune joint-to-CNS signalling to open up for potentially new treatment strategies.
Collapse
Affiliation(s)
- A Forsberg
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - J Lampa
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine (CMM), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J Estelius
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine (CMM), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - S Cervenka
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - L Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden; PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Sweden
| | - C Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - M Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - C Olgart Höglund
- Department of Medicine and Center for Molecular Medicine (CMM), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - E Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B-induced local skin hypersensitization in healthy subjects: a machine-learned analysis. Pain 2019; 159:11-24. [PMID: 28700537 PMCID: PMC5737455 DOI: 10.1097/j.pain.0000000000001008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models.
Collapse
|
50
|
Karshikoff B, Tadros MA, Mackey S, Zouikr I. Neuroimmune modulation of pain across the developmental spectrum. Curr Opin Behav Sci 2019; 28:85-92. [PMID: 32190717 DOI: 10.1016/j.cobeha.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Today's treatment for chronic pain is inadequate, and novel targets need to be identified. This requires a better understanding of the mechanisms involved in pain sensitization and chronification. In this review, we discuss how peripheral inflammation, as occurs during an infection, modulates the central pain system. In rodents, neonatal inflammation leads to increased pain sensitivity in adulthood by priming immune components both peripherally and centrally. The excitability of neurons in the spinal cord is also altered by neonatal inflammation and may add to pain sensitization later in life. In adult humans, inflammation modulates pain sensitivity as well, partly by affecting the activity in brain areas that process and regulate pain signals. Low-grade inflammation is common in clinical populations both peripherally and centrally, and priming of the immune system has also been suggested in some pain populations. The nociceptive and immune systems are primed by infections and inflammation. The early life programming of nociceptive responses following exposure to infections or inflammation will define individual differences in adult pain perception. Immune-to-brain mechanisms and neuroimmune pathway need further investigation as they may serve both as predictors and therapeutic targets in chronic pain.
Collapse
Affiliation(s)
- Bianka Karshikoff
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, USA.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Anne Tadros
- Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Sean Mackey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, USA
| | - Ihssane Zouikr
- School of Psychology, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|