1
|
Liu S, Ma Z. The role of cannabinoid-mediated signaling pathways and mechanisms in brain disorders. Cell Signal 2025; 128:111653. [PMID: 39952540 DOI: 10.1016/j.cellsig.2025.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Cannabinoids play significant roles in the central nervous system (CNS), but cannabinoid-mediated physiopathological functions are not elaborated. Cannabinoid receptors (CBRs) mediate functions that include the regulation of neuroinflammation, oxidative stress, apoptosis, autophagy, and neurogenesis. Microglia are the primary immune cells responsible for mediating neuroinflammation in the CNS. Therefore, this article primarily focuses on microglia to summarize the inflammatory pathways mediated by cannabinoids in the CNS, including nuclear factor-κB (NF-κB), NOD-like receptor protein 3 (NLRP3) inflammasome, mitogen-activated protein kinase (MAPK), protein kinase B (Akt), and cAMP-dependent protein kinase (PKA) signaling pathways. Additionally, we provide a table summarizing the role of cannabinoids in various brain diseases. Medical use of cannabinoids has protective effects in preventing and treating brain diseases; however, excessive and repeated use can be detrimental to the CNS. We propose that cannabinoids hold significant potential for preventing and treating brain diseases, including ferroptosis, lactate metabolism, and mitophagy, providing new insights for further research on cannabinoids.
Collapse
Affiliation(s)
- Shunfeng Liu
- School of Basic Medicine, Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disorders, Qingdao University, Qingdao 266071, China
| | - Zegang Ma
- School of Basic Medicine, Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disorders, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Wang J, Zhang B, Li L, Tang X, Zeng J, Song Y, Xu C, Zhao K, Liu G, Lu Y, Li X, Shu K. Repetitive traumatic brain injury-induced complement C1-related inflammation impairs long-term hippocampal neurogenesis. Neural Regen Res 2025; 20:821-835. [PMID: 38886955 PMCID: PMC11433904 DOI: 10.4103/nrr.nrr-d-23-01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00027/figure1/v/2024-06-17T092413Z/r/image-tiff Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus, leading to long-term cognitive impairment. However, the mechanism underlying this neurogenesis impairment remains unknown. In this study, we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury. Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development, delayed neuronal maturation, and reduced the complexity of neuronal dendrites and spines. Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval. Moreover, following repetitive traumatic brain injury, neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased, C1q binding protein levels were decreased, and canonical Wnt/β-catenin signaling was downregulated. An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function. These findings suggest that repetitive traumatic brain injury-induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Bing Zhang
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lanfang Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaomei Tang
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jinyu Zeng
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yige Song
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chao Xu
- Department of Graduate Student, Chongqing Medical University, Chongqing, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoqiang Liu
- Department of Basic Medicine, School of Medical Science, Hubei University for Nationalities, Enshi, Hubei Province, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xinyan Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Apweiler M, Saliba SW, Sun L, Streyczek J, Normann C, Hellwig S, Bräse S, Fiebich BL. Modulation of neuroinflammation and oxidative stress by targeting GPR55 - new approaches in the treatment of psychiatric disorders. Mol Psychiatry 2024; 29:3779-3788. [PMID: 38796643 PMCID: PMC11609097 DOI: 10.1038/s41380-024-02614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Pharmacological treatment of psychiatric disorders remains challenging in clinical, pharmacological, and scientific practice. Even if many different substances are established for treating different psychiatric conditions, subgroups of patients show only small or no response to the treatment. The neuroinflammatory hypothesis of the genesis of psychiatric disorders might explain underlying mechanisms in these non-responders. For that reason, recent research focus on neuroinflammatory processes and oxidative stress as possible causes of psychiatric disorders. G-protein coupled receptors (GPCRs) form the biggest superfamily of membrane-bound receptors and are already well known as pharmacological targets in various diseases. The G-protein coupled receptor 55 (GPR55), a receptor considered part of the endocannabinoid system, reveals promising modulation of neuroinflammatory and oxidative processes. Different agonists and antagonists reduce pro-inflammatory cytokine release, enhance the synthesis of anti-inflammatory mediators, and protect cells from oxidative damage. For this reason, GPR55 ligands might be promising compounds in treating subgroups of patients suffering from psychiatric disorders related to neuroinflammation or oxidative stress. New approaches in drug design might lead to new compounds targeting different pathomechanisms of those disorders in just one molecule.
Collapse
Affiliation(s)
- Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
- Department of Cardiology and Angiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Jana Streyczek
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Sabine Hellwig
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131, Karlsruhe, Germany
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
| |
Collapse
|
4
|
Kim J, Choi C. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches. Curr Issues Mol Biol 2024; 46:11646-11664. [PMID: 39451571 PMCID: PMC11505999 DOI: 10.3390/cimb46100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Neurodegenerative disorders, particularly Alzheimer's and Parkinson's diseases, continue to challenge modern medicine despite therapeutic advances. Orphan G-protein-coupled receptors (GPCRs) have emerged as promising targets in the central nervous system, offering new avenues for drug development. This review focuses on the structural biology of orphan GPCRs implicated in these disorders, providing a comprehensive analysis of their molecular architecture and functional mechanisms. We examine recent breakthroughs in structural determination techniques, such as cryo-electron microscopy and X-ray crystallography, which have elucidated the intricate conformations of these receptors. The review highlights how structural insights inform our understanding of orphan GPCR activation, ligand binding and signaling pathways. By integrating structural data with molecular pharmacology, we explore the potential of structure-guided approaches in developing targeted therapeutics toward orphan GPCRs. This structural-biology-centered perspective aims to deepen our comprehension of orphan GPCRs and guide future drug discovery efforts in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | | |
Collapse
|
5
|
Dallabrida KG, de Oliveira Bender JM, Chade ES, Rodrigues N, Sampaio TB. Endocannabinoid System Changes throughout Life: Implications and Therapeutic Potential for Autism, ADHD, and Alzheimer's Disease. Brain Sci 2024; 14:592. [PMID: 38928592 PMCID: PMC11202267 DOI: 10.3390/brainsci14060592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The endocannabinoid system has been linked to various physiological and pathological processes, because it plays a neuromodulator role in the central nervous system. In this sense, cannabinoids have been used off-label for neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHA), as well as in Alzheimer's disease (AD), a more prevalent neurodegenerative disease. Thus, this study aims, through a comprehensive literature review, to arrive at a better understanding of the impact of cannabinoids in the therapeutic treatment of patients with ASD, ADHD, and Alzheimer's disease (AD). Overall, cannabis products rich in CBD displayed a higher therapeutic potential for ASD children, while cannabis products rich in THC have been tested more for AD therapy. For ADHD, the clinical studies are incipient and inconclusive, but promising. In general, the main limitations of the clinical studies are the lack of standardization of the cannabis-based products consumed by the participants, a lack of scientific rigor, and the small number of participants.
Collapse
Affiliation(s)
| | | | - Ellen Schavarski Chade
- Department of Pharmacy, State University of Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Nathalia Rodrigues
- Department of Medicine, State University of Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | | |
Collapse
|
6
|
Sharon N, Yarmolinsky L, Khalfin B, Fleisher-Berkovich S, Ben-Shabat S. Cannabinoids' Role in Modulating Central and Peripheral Immunity in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:6402. [PMID: 38928109 PMCID: PMC11204381 DOI: 10.3390/ijms25126402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids (the endocannabinoids, the synthetic cannabinoids, and the phytocannabinoids) are well known for their various pharmacological properties, including neuroprotective and anti-inflammatory features, which are fundamentally important for the treatment of neurodegenerative diseases. The aging of the global population is causing an increase in these diseases that require the development of effective drugs to be even more urgent. Taking into account the unavailability of effective drugs for neurodegenerative diseases, it seems appropriate to consider the role of cannabinoids in the treatment of these diseases. To our knowledge, few reviews are devoted to cannabinoids' impact on modulating central and peripheral immunity in neurodegenerative diseases. The objective of this review is to provide the best possible information about the cannabinoid receptors and immuno-modulation features, peripheral immune modulation by cannabinoids, cannabinoid-based therapies for the treatment of neurological disorders, and the future development prospects of making cannabinoids versatile tools in the pursuit of effective drugs.
Collapse
Affiliation(s)
| | | | | | | | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.S.); (L.Y.); (B.K.); (S.F.-B.)
| |
Collapse
|
7
|
Öz-Arslan D, Yavuz M, Kan B. Exploring orphan GPCRs in neurodegenerative diseases. Front Pharmacol 2024; 15:1394516. [PMID: 38895631 PMCID: PMC11183337 DOI: 10.3389/fphar.2024.1394516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative disorders represent a significant and growing health burden worldwide. Unfortunately, limited therapeutic options are currently available despite ongoing efforts. Over the past decades, research efforts have increasingly focused on understanding the molecular mechanisms underlying these devastating conditions. Orphan receptors, a class of receptors with no known endogenous ligands, emerge as promising druggable targets for diverse diseases. This review aims to direct attention to a subgroup of orphan GPCRs, in particular class A orphans that have roles in neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Multiple sclerosis. We highlight the diverse roles orphan receptors play in regulating critical cellular processes such as synaptic transmission, neuronal survival and neuro-inflammation. Moreover, we discuss the therapeutic potential of targeting orphan receptors for the treatment of neurodegenerative disorders, emphasizing recent advances in drug discovery and preclinical studies. Finally, we outline future directions and challenges in orphan receptor research.
Collapse
Affiliation(s)
- Devrim Öz-Arslan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Türkiye
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
| | - Melis Yavuz
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
- Department of Pharmacology, Acibadem MAA University, School of Pharmacy, Istanbul, Türkiye
| | - Beki Kan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Türkiye
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
| |
Collapse
|
8
|
Sun L, Apweiler M, Normann C, Grathwol CW, Hurrle T, Gräßle S, Jung N, Bräse S, Fiebich BL. Anti-Inflammatory Effects of GPR55 Agonists and Antagonists in LPS-Treated BV2 Microglial Cells. Pharmaceuticals (Basel) 2024; 17:674. [PMID: 38931342 PMCID: PMC11206594 DOI: 10.3390/ph17060674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic inflammation is driven by proinflammatory cytokines such as interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and chemokines, such as c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10. Inflammatory processes of the central nervous system (CNS) play an important role in the pathogenesis of various neurological and psychiatric disorders like Alzheimer's disease, Parkinson's disease, and depression. Therefore, identifying novel anti-inflammatory drugs may be beneficial for treating disorders with a neuroinflammatory background. The G-protein-coupled receptor 55 (GPR55) gained interest due to its role in inflammatory processes and possible involvement in different disorders. This study aims to identify the anti-inflammatory effects of the coumarin-based compound KIT C, acting as an antagonist with inverse agonistic activity at GPR55, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells in comparison to the commercial GPR55 agonist O-1602 and antagonist ML-193. All compounds significantly suppressed IL-6, TNF-α, CCL2, CCL3, CXCL2, and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compounds are partially explained by modulation of the phosphorylation of p38 mitogen-activated protein kinase (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC) pathways, and the transcription factor nuclear factor (NF)-κB, respectively. Due to its potent anti-inflammatory properties, KIT C is a promising compound for further research and potential use in inflammatory-related disorders.
Collapse
Affiliation(s)
- Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (L.S.); (M.A.)
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (L.S.); (M.A.)
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany;
| | - Christoph W. Grathwol
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
| | - Thomas Hurrle
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Simone Gräßle
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
| | - Nicole Jung
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (L.S.); (M.A.)
| |
Collapse
|
9
|
Zhang J, Yan J, Li S, Chen Q, Lin J, Peng Y, Liu Y, Wang B, Wei X, Sun C, Niu S. GPR55 activation improves anxiety- and depression-like behaviors of mice during methamphetamine withdrawal. Heliyon 2024; 10:e30462. [PMID: 38720745 PMCID: PMC11077030 DOI: 10.1016/j.heliyon.2024.e30462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Methamphetamine is a potent and highly addictive neurotoxic psychostimulant that triggers a spectrum of adverse emotional responses during withdrawal. G-protein coupled receptor 55 (GPR55), a novel endocannabinoid receptor, is closely associated with mood regulation. Herein, we developed a murine model of methamphetamine-induced anxiety- and depressive-like behavior during abstinence which showed a decreased GPR55 expression in the hippocampus. Activation of GPR55 mitigated these behavioral symptoms, concomitantly ameliorating impairments in hippocampal neurogenesis and reducing neuroinflammation. These findings underscore the pivotal role of GPR55 in mediating the neuropsychological consequences of methamphetamine withdrawal, potentially via mechanisms involving the modulation of hippocampal neurogenesis and inflammation.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Shuyue Li
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Xinrong Wei
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
| | - Chen Sun
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, China
| |
Collapse
|
10
|
Dong X, Wang H, Zhan L, Li Q, Li Y, Wu G, Wei H, Li Y. miR-153-3p suppresses the differentiation and proliferation of neural stem cells via targeting GPR55. Aging (Albany NY) 2023; 15:8518-8527. [PMID: 37642951 PMCID: PMC10497013 DOI: 10.18632/aging.204002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/29/2021] [Indexed: 08/31/2023]
Abstract
Alzheimer's disease is the most frequent neurodegenerative disease and is characterized by progressive cognitive impairment and decline. NSCs (neural stem cells) serve as beneficial and promising adjuncts to treat Alzheimer's disease. This study aimed to determine the role of miR-153-3p expression in NSC differentiation and proliferation. We illustrated that miR-153-3p was decreased and GPR55 was upregulated during NSC differentiation. IL-1β can induce miR-153-3p expression. Luciferase reporter analysis noted that elevated expression of miR-153-3p significantly inhibited the luciferase value of the WT reporter plasmid but did not change the luciferase value of the mut reporter plasmid. Ectopic miR-153-3p expression suppressed GPR55 expression in NSCs and identified GPR55 as a direct target gene of miR-153-3p. Ectopic expression of miR-153-3p inhibited NSC growth and differentiation into astrocytes and neurons. Elevated expression of miR-153-3p induced the release of proinflammatory cytokines, such as TNF-α, IL-1β and IL-6, in NSCs. Furthermore, miR-153-3p inhibited NSC differentiation and proliferation by targeting GPR55 expression. These data suggested that miR-153-3p may act as a clinical target for the therapeutics of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Hui Wang
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Liping Zhan
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Qingyun Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yang Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Gang Wu
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Huan Wei
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yanping Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| |
Collapse
|
11
|
Medina-Vera D, Zhao H, Bereczki E, Rosell-Valle C, Shimozawa M, Chen G, de Fonseca FR, Nilsson P, Tambaro S. The Expression of the Endocannabinoid Receptors CB2 and GPR55 Is Highly Increased during the Progression of Alzheimer's Disease in AppNL-G-F Knock-In Mice. BIOLOGY 2023; 12:805. [PMID: 37372090 DOI: 10.3390/biology12060805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The endocannabinoid system (ECS) and associated lipid transmitter-based signaling systems play an important role in modulating brain neuroinflammation. ECS is affected in neurodegenerative disorders, such as Alzheimer's disease (AD). Here we have evaluated the non-psychotropic endocannabinoid receptor type 2 (CB2) and lysophosphatidylinositol G-protein-coupled receptor 55 (GPR55) localization and expression during Aβ-pathology progression. METHODS Hippocampal gene expression of CB2 and GPR55 was explored by qPCR analysis, and brain distribution was evaluated by immunofluorescence in the wild type (WT) and APP knock-in AppNL-G-F AD mouse model. Furthermore, the effects of Aβ42 on CB2 and GPR55 expression were assessed in primary cell cultures. RESULTS CB2 and GPR55 mRNA levels were significantly upregulated in AppNL-G-F mice at 6 and 12 months of age, compared to WT. CB2 was highly expressed in the microglia and astrocytes surrounding the Aβ plaques. Differently, GPR55 staining was mainly detected in neurons and microglia but not in astrocytes. In vitro, Aβ42 treatment enhanced CB2 receptor expression mainly in astrocytes and microglia cells, whereas GPR55 expression was enhanced primarily in neurons. CONCLUSIONS These data show that Aβ pathology progression, particularly Aβ42, plays a crucial role in increasing the expression of CB2 and GPR55 receptors, supporting CB2 and GPR55 implications in AD.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| |
Collapse
|
12
|
Kytikova OY, Denisenko YK, Novgorodtseva TP, Kovalenko IS. Cannabinoids And Cannabinoid-Like Compounds: Biochemical Characterization And Pharmacological Perspectives. RUSSIAN OPEN MEDICAL JOURNAL 2023. [DOI: 10.15275/rusomj.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Publication interest in cannabinoids, including phytocannabinoids, endogenous cannabinoids, synthetic cannabinoids and cannabinomimetic compounds, is due to the therapeutic potential of these compounds in inflammatory pathology. Since recent years, scientific interest was focused on compounds with cannabinomimetic activity. The therapeutic use of phytocannabinoids and endocannabinoids is somewhat limited due to unresolved issues of dosing, toxicity and safety in humans, while cannabinoid-like compounds combine similar therapeutic effects with a high confirmed safety. Targets for endocannabinoids and phytocannabinoids are endocannabinoid receptors 1 and 2, G protein-coupled receptors (GPCRs), peroxisome proliferator-activated receptors (PPARs), and transient receptor potential ion channels (TRPs). Non-endocannabinoid N-acylethanolamines do not interact with cannabinoid receptors and exhibit agonist activity towards non-cannabinoid receptors, such as PPARs, GPCRs and TRPs. This literature review includes contemporary information on the biological activity, metabolism and pharmacological properties of cannabinoids and cannabinoid-like compounds, as well as their receptors. We established that only a few studies were devoted to the relationship of non-endocannabinoid N-acylethanolamines with non-cannabinoid receptors, such as PPARs, GPCRs, and also with TRPs. We have focused on issues that were insufficiently covered in the published sources in order to identify gaps in existing knowledge and determine the prospects for scientific research.
Collapse
|
13
|
Anderson LL, Bahceci DA, Hawkins NA, Everett-Morgan D, Banister SD, Kearney JA, Arnold JC. Heterozygous deletion of Gpr55 does not affect a hyperthermia-induced seizure, spontaneous seizures or survival in the Scn1a+/- mouse model of Dravet syndrome. PLoS One 2023; 18:e0280842. [PMID: 36701411 PMCID: PMC9879440 DOI: 10.1371/journal.pone.0280842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
A purified preparation of cannabidiol (CBD), a cannabis constituent, has been approved for the treatment of intractable childhood epilepsies such as Dravet syndrome. Extensive pharmacological characterization of CBD shows activity at numerous molecular targets but its anticonvulsant mechanism(s) of action is yet to be delineated. Many suggest that the anticonvulsant action of CBD is the result of G protein-coupled receptor 55 (GPR55) inhibition. Here we assessed whether Gpr55 contributes to the strain-dependent seizure phenotypes of the Scn1a+/- mouse model of Dravet syndrome. The Scn1a+/- mice on a 129S6/SvEvTac (129) genetic background have no overt phenotype, while those on a [129 x C57BL/6J] F1 background exhibit a severe phenotype that includes hyperthermia-induced seizures, spontaneous seizures and reduced survival. We observed greater Gpr55 transcript expression in the cortex and hippocampus of mice on the seizure-susceptible F1 background compared to those on the seizure-resistant 129 genetic background, suggesting that Gpr55 might be a genetic modifier of Scn1a+/- mice. We examined the effect of heterozygous genetic deletion of Gpr55 and pharmacological inhibition of GPR55 on the seizure phenotypes of F1.Scn1a+/- mice. Heterozygous Gpr55 deletion and inhibition of GPR55 with CID2921524 did not affect the temperature threshold of a thermally-induced seizure in F1.Scn1a+/- mice. Neither was there an effect of heterozygous Gpr55 deletion observed on spontaneous seizure frequency or survival of F1.Scn1a+/- mice. Our results suggest that GPR55 antagonism may not be a suitable anticonvulsant target for Dravet syndrome drug development programs, although future research is needed to provide more definitive conclusions.
Collapse
Affiliation(s)
- Lyndsey L. Anderson
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Discipline of Pharmacology, Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
| | - Dilara A. Bahceci
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Discipline of Pharmacology, Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
| | - Nicole A. Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Declan Everett-Morgan
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
| | - Samuel D. Banister
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Jennifer A. Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Jonathon C. Arnold
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Discipline of Pharmacology, Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Sánchez-Zavaleta R, Segovia J, Ruiz-Contreras AE, Herrera-Solís A, Méndez-Díaz M, de la Mora MP, Prospéro-García OE. GPR55 activation prevents amphetamine-induced conditioned place preference and decrease the amphetamine-stimulated inflammatory response in the ventral hippocampus in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110636. [PMID: 36099968 DOI: 10.1016/j.pnpbp.2022.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Inflammatory response in the Central Nervous System (CNS) induced by psychostimulants seems to be a crucial factor in the development and maintenance of drug addiction. The ventral hippocampus (vHp) is part of the reward system involved in substance addiction and expresses abundant G protein-coupled receptor 55 (GPR55). This receptor modulates the inflammatory response in vitro and in vivo, but there is no information regarding its anti-inflammatory effects and its impact on psychostimulant consumption. The aim of the present study was to investigate whether vHp GPR55 activation prevents both the inflammatory response induced by amphetamine (AMPH) in the vHp and the AMPH-induced conditioned place preference (A-CPP). Wistar adult male rats with a bilateral cannula into the vHp or intact males were subjected to A-CPP (5 mg/kg). Upon the completion of A-CPP, the vHp was dissected to evaluate IL-1β and IL-6 expression through RT-PCR, Western blot and immunofluorescence. Our results reveal that AMPH induces both A-CPP and an increase of IL-1β and IL-6 in the vHp. The GPR55 agonist lysophosphatidylinositol (LPI, 10 μM) infused into the vHp prevented A-CPP and the AMPH-induced IL-1β increase. CID 16020046 (CID, 10 μM), a selective GPR55 antagonist, abolished LPI effects. To evaluate the effect of the inflammatory response, lipopolysaccharide (LPS, 5 μg/μl) was infused bilaterally into the vHp during A-CPP acquisition. LPS strengthened A-CPP and increased IL-1β/IL-6 mRNA and protein levels in the vHp. LPS also increased CD68, Iba1, GFAP and vimentin expression. All LPS-induced effects were blocked by LPI. Our results suggest that GPR55 activation in the vHp prevents A-CPP while decreasing the local neuro-inflammatory response. These findings indicate that vHp GPR55 is a crucial factor in preventing the rewarding effects of AMPH due to its capacity to interfere with proinflammatory responses in the vHp.
Collapse
Affiliation(s)
- Rodolfo Sánchez-Zavaleta
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | - Alejandra E Ruiz-Contreras
- Laboratorio de Neurogenómica Cognitiva, Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, México
| | - Andrea Herrera-Solís
- Laboratorio de Efectos Terapéuticos de los Cannabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, México
| | - Mónica Méndez-Díaz
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | | | - Oscar E Prospéro-García
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
15
|
Payal N, Sharma L, Sharma A, Hobanii YH, Hakami MA, Ali N, Rashid S, Sachdeva M, Gulati M, Yadav S, Chigurupati S, Singh A, Khan H, Behl T. Understanding the Therapeutic Approaches for Neuroprotection. Curr Pharm Des 2023; 29:3368-3384. [PMID: 38151849 DOI: 10.2174/0113816128275761231103102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/07/2023] [Indexed: 12/29/2023]
Abstract
The term "neurodegenerative disorders" refers to a group of illnesses in which deterioration of nerve structure and function is a prominent feature. Cognitive capacities such as memory and decision-making deteriorate as a result of neuronal damage. The primary difficulty that remains is safeguarding neurons since they do not proliferate or regenerate spontaneously and are therefore not substituted by the body after they have been damaged. Millions of individuals throughout the world suffer from neurodegenerative diseases. Various pathways lead to neurodegeneration, including endoplasmic reticulum stress, calcium ion overload, mitochondrial dysfunction, reactive oxygen species generation, and apoptosis. Although different treatments and therapies are available for neuroprotection after a brain injury or damage, the obstacles are inextricably connected. Several studies have revealed the pathogenic effects of hypothermia, different breathed gases, stem cell treatments, mitochondrial transplantation, multi-pharmacological therapy, and other therapies that have improved neurological recovery and survival outcomes after brain damage. The present review highlights the use of therapeutic approaches that can be targeted to develop and understand significant therapies for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Nazrana Payal
- Department of Pharmacy, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Yahya Hosan Hobanii
- Department of Pharmacy, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Monika Sachdeva
- Department of Pharmacy, Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India
- ARCCIM, Faculty of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Kingdom of Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Abhiav Singh
- Department of Pharmacy, Indian Council of Medical Research, New Delhi, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tapan Behl
- Department of Pharmacy, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India
| |
Collapse
|
16
|
Ceni C, Benko MJ, Mohamed KA, Poli G, Di Stefano M, Tuccinardi T, Digiacomo M, Valoti M, Laprairie RB, Macchia M, Bertini S. Novel Potent and Selective Agonists of the GPR55 Receptor Based on the 3-Benzylquinolin-2(1H)-One Scaffold. Pharmaceuticals (Basel) 2022; 15:ph15070768. [PMID: 35890067 PMCID: PMC9320067 DOI: 10.3390/ph15070768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
A growing body of evidence underlines the crucial role of GPR55 in physiological and pathological conditions. In fact, GPR55 has recently emerged as a therapeutic target for several diseases, including cancer and neurodegenerative and metabolic disorders. Several lines of evidence highlight GPR55′s involvement in the regulation of microglia-mediated neuroinflammation, although the exact molecular mechanism has not been yet elucidated. Nevertheless, there are only a limited number of selective GPR55 ligands reported in the literature. In this work, we designed and synthesized a series of novel GPR55 ligands based on the 3-benzylquinolin-2(1H)-one scaffold, some of which showed excellent binding properties (with Ki values in the low nanomolar range) and almost complete selectivity over cannabinoid receptors. The full agonist profile of all the new derivatives was assessed using the p-ERK activation assay and a computational study was conducted to predict the key interactions with the binding site of the receptor. Our data outline a preliminary structure–activity relationship (SAR) for this class of molecules at GPR55. Some of our compounds are among the most potent GPR55 agonists developed to date and could be useful as tools to validate this receptor as a therapeutic target.
Collapse
Affiliation(s)
- Costanza Ceni
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Doctoral School in Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Michael J Benko
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Kawthar A Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Miriana Di Stefano
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Doctoral School in Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| |
Collapse
|
17
|
Calvillo-Robledo A, Cervantes-Villagrana RD, Morales P, Marichal-Cancino BA. The oncogenic lysophosphatidylinositol (LPI)/GPR55 signaling. Life Sci 2022; 301:120596. [PMID: 35500681 DOI: 10.1016/j.lfs.2022.120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
GPR55 is a class A orphan G protein-coupled receptor that has drawn important therapeutic attention in the last decade because of its role in pathophysiological processes including vascular functions, metabolic dysfunction, neurodegenerative disorders, or bone turnover among others. Several cannabinoids of phytogenic, endogenous, and synthetic nature have shown to modulate this receptor leading to propose it as a member of the endocannabinoid system. The putative endogenous GPR55 ligand is L-α-lysophosphatidylinositol (LPI) and it has been associated with several processes that control cell survival and tumor progression. The relevance of GPR55 in cancer is currently being extensively studied in vitro and in vivo using diverse cancer models. The LPI/GPR55 axis has been reported to participate in pro-oncogenic processes including cellular proliferation, differentiation, migration, invasion, and metastasis being altered in several cancer cells via G12/13 and Gq signaling. Moreover, GRP55 and its bioactive lipid have been proposed as potential biomarkers for cancer diagnosis. Indeed, GPR55 overexpression or high expression has been shown to correlate with cancer aggressiveness in specific tumors including acute myeloid leukemia, uveal melanoma, low grade glioma and renal cancer. This review aims to analyze and summarize current evidence on the cancerogenic role of the LPI/GPR55 axis providing a critical view of the therapeutic prospects of this promising target.
Collapse
Affiliation(s)
- Argelia Calvillo-Robledo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
| | | | - Paula Morales
- Instituto de Química Médica, CSIC, 28006 Madrid, Spain
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico.
| |
Collapse
|
18
|
Shen SY, Yu R, Li W, Liang LF, Han QQ, Huang HJ, Li B, Xu SF, Wu GC, Zhang YQ, Yu J. The neuroprotective effects of GPR55 against hippocampal neuroinflammation and impaired adult neurogenesis in CSDS mice. Neurobiol Dis 2022; 169:105743. [DOI: 10.1016/j.nbd.2022.105743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022] Open
|
19
|
Experimental Arthritis Inhibits Adult Hippocampal Neurogenesis in Mice. Cells 2022; 11:cells11050791. [PMID: 35269413 PMCID: PMC8909078 DOI: 10.3390/cells11050791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Adult-born neurons of the hippocampal dentate gyrus play a role in specific forms of learning, and disturbed neurogenesis seems to contribute to the development of neuropsychiatric disorders, such as major depression. Neuroinflammation inhibits adult neurogenesis, but the effect of peripheral inflammation on this form of neuroplasticity is ambiguous. Objective: Our aim was to investigate the influence of acute and chronic experimental arthritis on adult hippocampal neurogenesis and to elucidate putative regulatory mechanisms. Methods: Arthritis was triggered by subcutaneous injection of complete Freund’s adjuvant (CFA) into the hind paws of adult male mice. The animals were killed either seven days (acute inflammation) or 21 days (chronic inflammation) after the CFA injection. Behavioral tests were used to demonstrate arthritis-related hypersensitivity to painful stimuli. We used in vivo bioluminescence imaging to verify local inflammation. The systemic inflammatory response was assessed by complete blood cell counts and by measurement of the cytokine/chemokine concentrations of TNF-α, IL-1α, IL-4, IL-6, IL-10, KC and MIP-2 in the inflamed hind limbs, peripheral blood and hippocampus to characterize the inflammatory responses in the periphery and in the brain. In the hippocampal dentate gyrus, the total number of newborn neurons was determined with quantitative immunohistochemistry visualizing BrdU- and doublecortin-positive cells. Microglial activation in the dentate gyrus was determined by quantifying the density of Iba1- and CD68-positive cells. Results: Both acute and chronic arthritis resulted in paw edema, mechanical and thermal hyperalgesia. We found phagocytic infiltration and increased levels of TNF-α, IL-4, IL-6, KC and MIP-2 in the inflamed hind paws. Circulating neutrophil granulocytes and IL-6 levels increased in the blood solely during the acute phase. In the dentate gyrus, chronic arthritis reduced the number of doublecortin-positive cells, and we found increased density of CD68-positive macrophages/microglia in both the acute and chronic phases. Cytokine levels, however, were not altered in the hippocampus. Conclusions: Our data suggest that acute peripheral inflammation initiates a cascade of molecular and cellular changes that eventually leads to reduced adult hippocampal neurogenesis, which was detectable only in the chronic inflammatory phase.
Collapse
|
20
|
Functional Selectivity of Coumarin Derivates Acting via GPR55 in Neuroinflammation. Int J Mol Sci 2022; 23:ijms23020959. [PMID: 35055142 PMCID: PMC8779649 DOI: 10.3390/ijms23020959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/22/2022] Open
Abstract
Anti-neuroinflammatory treatment has gained importance in the search for pharmacological treatments of different neurological and psychiatric diseases, such as depression, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Clinical studies demonstrate a reduction of the mentioned diseases’ symptoms after the administration of anti-inflammatory drugs. Novel coumarin derivates have been shown to elicit anti-neuroinflammatory effects via G-protein coupled receptor GPR55, with possibly reduced side-effects compared to the known anti-inflammatory drugs. In this study, we, therefore, evaluated the anti-inflammatory capacities of the two novel coumarin-based compounds, KIT C and KIT H, in human neuroblastoma cells and primary murine microglia. Both compounds reduced PGE2-concentrations likely via the inhibition of COX-2 synthesis in SK-N-SH cells but only KIT C decreased PGE2-levels in primary microglia. The examination of other pro- and anti-inflammatory parameters showed varying effects of both compounds. Therefore, the differences in the effects of KIT C and KIT H might be explained by functional selectivity as well as tissue- or cell-dependent expression and signal pathways coupled to GPR55. Understanding the role of chemical residues in functional selectivity and specific cell- and tissue-targeting might open new therapeutic options in pharmacological drug development and might improve the treatment of the mentioned diseases by intervening in an early step of their pathogenesis.
Collapse
|
21
|
Activation of GPR55 attenuates cognitive impairment, oxidative stress, neuroinflammation, and synaptic dysfunction in a streptozotocin-induced Alzheimer's mouse model. Pharmacol Biochem Behav 2022; 214:173340. [DOI: 10.1016/j.pbb.2022.173340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
|
22
|
Burgaz S, García C, Gonzalo-Consuegra C, Gómez-Almería M, Ruiz-Pino F, Unciti JD, Gómez-Cañas M, Alcalde J, Morales P, Jagerovic N, Rodríguez-Cueto C, de Lago E, Muñoz E, Fernández-Ruiz J. Preclinical Investigation in Neuroprotective Effects of the GPR55 Ligand VCE-006.1 in Experimental Models of Parkinson's Disease and Amyotrophic Lateral Sclerosis. Molecules 2021; 26:molecules26247643. [PMID: 34946726 PMCID: PMC8708356 DOI: 10.3390/molecules26247643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Cannabinoids act as pleiotropic compounds exerting, among others, a broad-spectrum of neuroprotective effects. These effects have been investigated in the last years in different preclinical models of neurodegeneration, with the cannabinoid type-1 (CB1) and type-2 (CB2) receptors concentrating an important part of this research. However, the issue has also been extended to additional targets that are also active for cannabinoids, such as the orphan G-protein receptor 55 (GPR55). In the present study, we investigated the neuroprotective potential of VCE-006.1, a chromenopyrazole derivative with biased orthosteric and positive allosteric modulator activity at GPR55, in murine models of two neurodegenerative diseases. First, we proved that VCE-006.1 alone could induce ERK1/2 activation and calcium mobilization, as well as increase cAMP response but only in the presence of lysophosphatidyl inositol. Next, we investigated this compound administered chronically in two neurotoxin-based models of Parkinson's disease (PD), as well as in some cell-based models. VCE-006.1 was active in reversing the motor defects caused by 6-hydroxydopamine (6-OHDA) in the pole and the cylinder rearing tests, as well as the losses in tyrosine hydroxylase-containing neurons and the elevated glial reactivity detected in the substantia nigra. Similar cytoprotective effects were found in vitro in SH-SY5Y cells exposed to 6-OHDA. We also investigated VCE-006.1 in LPS-lesioned mice with similar beneficial effects, except against glial reactivity and associated inflammatory events, which remained unaltered, a fact confirmed in BV2 cells treated with LPS and VCE-006.1. We also analyzed GPR55 in these in vivo models with no changes in its gene expression, although GPR55 was down-regulated in BV2 cells treated with LPS, which may explain the lack of efficacy of VCE-006.1 in such an assay. Furthermore, we investigated VCE-006.1 in two genetic models of amyotrophic lateral sclerosis (ALS), mutant SOD1, or TDP-43 transgenic mice. Neither the neurological decline nor the deteriorated rotarod performance were prevented with this compound, and the same happened with the elevated microglial and astroglial reactivities, albeit modest spinal motor neuron preservation was achieved in both models. We also analyzed GPR55 in these in vivo models and found no changes in both TDP-43 transgenic and mSOD1 mice. Therefore, our findings support the view that targeting the GPR55 may afford neuroprotection in experimental PD, but not in ALS, thus stressing the specificities for the development of cannabinoid-based therapies in the different neurodegenerative disorders.
Collapse
Affiliation(s)
- Sonia Burgaz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Concepción García
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Marta Gómez-Almería
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Francisco Ruiz-Pino
- Emerald Health Biotechnology España, 14014 Córdoba, Spain; (F.R.-P.); (J.D.U.); (E.M.)
| | - Juan Diego Unciti
- Emerald Health Biotechnology España, 14014 Córdoba, Spain; (F.R.-P.); (J.D.U.); (E.M.)
| | - María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Juan Alcalde
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
| | - Paula Morales
- Instituto de Química Médica, CSIC, 28006 Madrid, Spain; (P.M.); (N.J.)
| | - Nadine Jagerovic
- Instituto de Química Médica, CSIC, 28006 Madrid, Spain; (P.M.); (N.J.)
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Eva de Lago
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Eduardo Muñoz
- Emerald Health Biotechnology España, 14014 Córdoba, Spain; (F.R.-P.); (J.D.U.); (E.M.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cellular Biology, Physiology and Immunology, University of Córdoba, 14071 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.B.); (C.G.); (C.G.-C.); (M.G.-A.); (M.G.-C.); (J.A.); (C.R.-C.); (E.d.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34–913941450
| |
Collapse
|
23
|
Yu Q, Liao M, Sun C, Zhang Q, Deng W, Cao X, Wang Q, Omari-Siaw E, Bi S, Zhang Z, Yu J, Xu X. LBO-EMSC Hydrogel Serves a Dual Function in Spinal Cord Injury Restoration via the PI3K-Akt-mTOR Pathway. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48365-48377. [PMID: 34633177 DOI: 10.1021/acsami.1c12013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is critical to obtain an anti-inflammatory microenvironment when curing spinal cord injury (SCI). On the basis of this, we prepared Lycium barbarum oligosaccharide (LBO)-nasal mucosa-derived mesenchymal stem cells (EMSCs) fibronectin hydrogel for SCI restoration via inflammatory license effect and M2 polarization of microglias. LBO exhibited remarkable M2 polarization potential for microglia. However, EMSCs primed by LBO generated enhanced paracrine effects through the inflammatory license-like process. The observed dual function is likely based on the TNFR2 pathway. In addition, LBO-EMSC hydrogel possesses a synergistic effect on M2 polarization of microglia through the PI3K-Akt-mTOR signaling pathway. The obtained findings provide a simple approach for MSC-based therapies for SCI and shed more light on the role of TNFR2 on bidirectional regulation in tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Xia Cao
- Jiangsu University, 212013 Zhenjiang, China
| | | | | | - Shiqi Bi
- Affiliated Hospital of Jiangsu University, 212001 Zhenjiang, China
| | | | | | - Ximing Xu
- Jiangsu University, 212013 Zhenjiang, China
| |
Collapse
|
24
|
Valeri A, Mazzon E. Cannabinoids and Neurogenesis: The Promised Solution for Neurodegeneration? Molecules 2021; 26:molecules26206313. [PMID: 34684894 PMCID: PMC8541184 DOI: 10.3390/molecules26206313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2023] Open
Abstract
The concept of neurons as irreplaceable cells does not hold true today. Experiments and evidence of neurogenesis, also, in the adult brain give hope that some compounds or drugs can enhance this process, helping to reverse the outcomes of diseases or traumas that once were thought to be everlasting. Cannabinoids, both from natural and artificial origins, already proved to have several beneficial effects (e.g., anti-inflammatory, anti-oxidants and analgesic action), but also capacity to increase neuronal population, by replacing the cells that were lost and/or regenerate a damaged nerve cell. Neurogenesis is a process which is not highly represented in literature as neuroprotection, though it is as important as prevention of nervous system damage, because it can represent a possible solution when neuronal death is already present, such as in neurodegenerative diseases. The aim of this review is to resume the experimental evidence of phyto- and synthetic cannabinoids effects on neurogenesis, both in vitro and in vivo, in order to elucidate if they possess also neurogenetic and neurorepairing properties.
Collapse
|
25
|
Berlet R, Anthony S, Brooks B, Wang ZJ, Sadanandan N, Shear A, Cozene B, Gonzales-Portillo B, Parsons B, Salazar FE, Lezama Toledo AR, Monroy GR, Gonzales-Portillo JV, Borlongan CV. Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke. Biomolecules 2021; 11:1316. [PMID: 34572529 PMCID: PMC8468342 DOI: 10.3390/biom11091316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell transplantation with rehabilitation therapy presents an effective stroke treatment. Here, we discuss current breakthroughs in stem cell research along with rehabilitation strategies that may have a synergistic outcome when combined together after stroke. Indeed, stem cell transplantation offers a promising new approach and may add to current rehabilitation therapies. By reviewing the pathophysiology of stroke and the mechanisms by which stem cells and rehabilitation attenuate this inflammatory process, we hypothesize that a combined therapy will provide better functional outcomes for patients. Using current preclinical data, we explore the prominent types of stem cells, the existing theories for stem cell repair, rehabilitation treatments inside the brain, rehabilitation modalities outside the brain, and evidence pertaining to the benefits of combined therapy. In this review article, we assess the advantages and disadvantages of using stem cell transplantation with rehabilitation to mitigate the devastating effects of stroke.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA;
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA;
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | | | - Alex Shear
- University of Florida, 205 Fletcher Drive, Gainesville, FL 32611, USA;
| | - Blaise Cozene
- Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA;
| | | | - Blake Parsons
- Washington and Lee University, 204 W Washington St, Lexington, VA 24450, USA;
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
26
|
Malberg JE, Hen R, Madsen TM. Adult Neurogenesis and Antidepressant Treatment: The Surprise Finding by Ron Duman and the Field 20 Years Later. Biol Psychiatry 2021; 90:96-101. [PMID: 33771348 DOI: 10.1016/j.biopsych.2021.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Of Duman's many influential findings, the finding that long-term treatment with antidepressant drugs produces an increase in neurogenesis in the subgranular zone of the adult hippocampus may be one of the most enduring and far-reaching. This novel discovery and his decades of continued research in the field led to a new hypothesis about the mechanism of action of antidepressants, providing a critical step in our understanding of the neurotrophic hypothesis of depression and synaptic plasticity. It is now accepted that antidepressant treatments can oppose and even reverse the effects of stress on the brain and on newly born hippocampal cells, possibly via neurotrophic factors, which Duman had continued to explore. Furthermore, ablation studies have shown preclinically that hippocampal neurogenesis may be necessary for some of the clinical effects of antidepressant drugs. Duman's laboratory continued to interrogate neurotrophins and synaptic plasticity, demonstrating that newer clinically approved antidepressant compounds also affect neurogenesis and synaptic plasticity. In this review, we summarize Duman's original findings and discuss the current state of the field of neurogenesis with respect to animal models and human studies and the implications of those findings on the field of drug discovery.
Collapse
Affiliation(s)
| | - René Hen
- Department of Neuroscience, Columbia University, New York, New York; Department of Psychiatry, Columbia University, New York, New York; Department of Pharmacology, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York
| | | |
Collapse
|
27
|
Minamihata T, Takano K, Moriyama M, Nakamura Y. Lysophosphatidylinositol, an Endogenous Ligand for G Protein-Coupled Receptor 55, Has Anti-inflammatory Effects in Cultured Microglia. Inflammation 2021; 43:1971-1987. [PMID: 32519268 DOI: 10.1007/s10753-020-01271-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lysophosphatidylinositol (LysoPI), an endogenous ligand for G protein-coupled receptor (GPR) 55, has been known to show various functions in several tissues and cells; however, its roles in the central nervous system (CNS) are not well known. In particular, the detailed effects of LysoPI on microglial inflammatory responses remain unknown. Microglia is the immune cell that has important functions in maintaining immune homeostasis of the CNS. In this study, we explored the effects of LysoPI on inflammatory responses using the mouse microglial cell line BV-2, which was stimulated with lipopolysaccharide (LPS), and some results were confirmed also in rat primary microglia. LysoPI was found to reduce LPS-induced nitric oxide (NO) production and inducible NO synthase protein expression without affecting cell viability in BV-2 cells. LysoPI also suppressed intracellular generation of reactive oxygen species both in BV-2 cells and primary microglia and cytokine release in BV-2 cells. In addition, LysoPI treatment decreased phagocytic activity of LPS-stimulated BV-2 cells and primary microglia. The GPR55 antagonist CID16020046 completely inhibited LysoPI-induced downregulation of phagocytosis in BV-2 microglia, but did not affect the LysoPI-induced decrease in NO production. Our results suggest that LysoPI suppresses microglial phagocytosis via a GPR55-dependent pathway and NO production via a GPR55-independent pathway. LysoPI may contribute to neuroprotection in pathological conditions such as brain injury or neurodegenerative diseases, through its suppressive role in the microglial inflammatory response.
Collapse
Affiliation(s)
- Tomoki Minamihata
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Katsura Takano
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
28
|
Cheng J, Chen M, Wan HQ, Chen XQ, Li CF, Zhu JX, Liu Q, Xu GH, Yi LT. Paeoniflorin exerts antidepressant-like effects through enhancing neuronal FGF-2 by microglial inactivation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114046. [PMID: 33753146 DOI: 10.1016/j.jep.2021.114046] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Ethnopharmacological relevance Paeonia lactiflora is a famous Traditional Chinese medicine widely used for immunological regulation. Paeoniflorin, the main component of Paeonia lactiflora, exerts neuroprotective and antidepressant-like effects in rodents. AIM OF THE STUDY Fibroblast growth factor 2 (FGF-2) is essentially required in the central nervous system as it acts as both a neurotrophic factor and an anti-inflammatory factor participating in the regulation of proliferation, differentiation and apoptosis of neurons in the brain. However, it is unclear whether paeoniflorin could exert antidepressant effects via regulating FGF-2. MATERIALS AND METHODS In the present study, the effects of paeoniflorin were evaluated in depressive mice induced by the endotoxin lipopolysaccharide (LPS) injection. RESULTS The results showed that paeoniflorin markedly increased sucrose preference and reduced immobility time in LPS mice, indicating antidepressant effects. Consistent with the results from molecular docking showing paeoniflorin antagonizes TLR4, NF-κB and NLRP3, the biochemical analysis also indicated paeoniflorin inhibited TLR4/NF-κB/NLRP3 signaling, decreased proinflammatory cytokine levels and microglial activation in the hippocampus of LPS induced mice. In addition, the levels of neuronal FGF-2 and the density of dendritic spine were improved by paeoniflorin. More importantly, the FGFR1 inhibitor SU5402 prevented the antidepressant effects of paeoniflorin and blocked the neuroinflammatory and neurogenic regulatory effects of paeoniflorin, indicating that FGF-2/FGFR1 activation was required for the effects of paeoniflorin. CONCLUSION Taken together, the results demonstrate that paeoniflorin exhibits neuroprotective and antidepressant effects in mice, which may be mediated by activating neuronal FGF-2/FGFR1 signaling via the inhibition of microglial activation in the hippocampus.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| | - Min Chen
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| | - Hui-Qi Wan
- Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China.
| | - Xue-Qin Chen
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, Fujian province, PR China.
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, Fujian province, PR China.
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi province, PR China.
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China.
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| |
Collapse
|
29
|
Confound, Cause, or Cure: The Effect of Cannabinoids on HIV-Associated Neurological Sequelae. Viruses 2021; 13:v13071242. [PMID: 34206839 PMCID: PMC8310358 DOI: 10.3390/v13071242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
The persistence of human immunodeficiency virus-1 (HIV)-associated neurocognitive disorders (HAND) in the era of effective antiretroviral therapy suggests that modern HIV neuropathogenesis is driven, at least in part, by mechanisms distinct from the viral life cycle. Identifying more subtle mechanisms is complicated by frequent comorbidities in HIV+ populations. One of the common confounds is substance abuse, with cannabis being the most frequently used psychoactive substance among people living with HIV. The psychoactive effects of cannabis use can themselves mimic, and perhaps magnify, the cognitive deficits observed in HAND; however, the neuromodulatory and anti-inflammatory properties of cannabinoids may counter HIV-induced excitotoxicity and neuroinflammation. Here, we review our understanding of the cross talk between HIV and cannabinoids in the central nervous system by exploring both clinical observations and evidence from preclinical in vivo and in vitro models. Additionally, we comment on recent advances in human, multi-cell in vitro systems that allow for more translatable, mechanistic studies of the relationship between cannabinoid pharmacology and this uniquely human virus.
Collapse
|
30
|
Potential and Limits of Cannabinoids in Alzheimer's Disease Therapy. BIOLOGY 2021; 10:biology10060542. [PMID: 34204237 PMCID: PMC8234911 DOI: 10.3390/biology10060542] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This review was aimed at exploring the potentiality of drugging the endocannabinoid system as a therapeutic option for Alzheimer’s disease (AD). Recent discoveries have demonstrated how the modulation of cannabinoid receptor 1 (CB1) and receptor 2 (CB2) can exert neuroprotective effects without the recreational and pharmacological properties of Cannabis sativa. Thus, this review explores the potential of cannabinoids in AD, also highlighting their limitations in perspective to point out the need for further research on cannabinoids in AD therapy. Abstract Alzheimer’s disease (AD) is a detrimental brain disorder characterized by a gradual cognitive decline and neuronal deterioration. To date, the treatments available are effective only in the early stage of the disease. The AD etiology has not been completely revealed, and investigating new pathological mechanisms is essential for developing effective and safe drugs. The recreational and pharmacological properties of marijuana are known for centuries, but only recently the scientific community started to investigate the potential use of cannabinoids in AD therapy—sometimes with contradictory outcomes. Since the endocannabinoid system (ECS) is highly expressed in the hippocampus and cortex, cannabis use/abuse has often been associated with memory and learning dysfunction in vulnerable individuals. However, the latest findings in AD rodent models have shown promising effects of cannabinoids in reducing amyloid plaque deposition and stimulating hippocampal neurogenesis. Beneficial effects on several dementia-related symptoms have also been reported in clinical trials after cannabinoid treatments. Accordingly, future studies should address identifying the correct therapeutic dosage and timing of treatment from the perspective of using cannabinoids in AD therapy. The present paper aims to summarize the potential and limitations of cannabinoids as therapeutics for AD, focusing on recent pre-clinical and clinical evidence.
Collapse
|
31
|
Effects of a Novel GPR55 Antagonist on the Arachidonic Acid Cascade in LPS-Activated Primary Microglial Cells. Int J Mol Sci 2021; 22:ijms22052503. [PMID: 33801492 PMCID: PMC7958845 DOI: 10.3390/ijms22052503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation is a crucial process to maintain homeostasis in the central nervous system (CNS). However, chronic neuroinflammation is detrimental, and it is described in the pathogenesis of CNS disorders, including Alzheimer’s disease (AD) and depression. This process is characterized by the activation of immune cells, mainly microglia. The role of the orphan G-protein-coupled receptor 55 (GPR55) in inflammation has been reported in different models. However, its role in neuroinflammation in respect to the arachidonic acid (AA) cascade in activated microglia is still lacking of comprehension. Therefore, we synthesized a novel GPR55 antagonist (KIT 10, 0.1–25 µM) and tested its effects on the AA cascade in lipopolysaccharide (LPS, 10 ng / mL)-treated primary rat microglia using Western blot and EIAs. We show here that KIT 10 potently prevented the release of prostaglandin E2 (PGE2), reduced microsomal PGE2 synthase (mPGES-1) and cyclooxygenase-2 (COX-2) synthesis, and inhibited the phosphorylation of Ikappa B-alpha (IκB-α), a crucial upstream step of the inflammation-related nuclear factor-kappaB (NF-κB) signaling pathway. However, no effects were observed on COX-1 and -2 activities and mitogen-activated kinases (MAPK). In summary, the novel GPR55 receptor antagonist KIT 10 reduces neuroinflammatory parameters in microglia by inhibiting the COX-2/PGE2 pathway. Further experiments are necessary to better elucidate its effects and mechanisms. Nevertheless, the modulation of inflammation by GPR55 might be a new therapeutic option to treat CNS disorders with a neuroinflammatory background such as AD or depression.
Collapse
|
32
|
Milleville KA, Awan N, Disanto D, Kumar RG, Wagner AK. Early chronic systemic inflammation and associations with cognitive performance after moderate to severe TBI. Brain Behav Immun Health 2021; 11:100185. [PMID: 34589725 PMCID: PMC8474517 DOI: 10.1016/j.bbih.2020.100185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cognitive dysfunction adversely effects multiple functional outcomes and social roles after TBI. We hypothesize that chronic systemic inflammation exacerbates cognitive deficits post-injury and diminishes functional cognition and quality of life (QOL). Yet few studies have examined relationships between inflammation and cognition after TBI. Associations between early chronic serum inflammatory biomarker levels, cognitive outcomes, and QOL 6-months and 12-months after moderate-to-severe TBI were identified using unweighted (uILS) and weighted (wILS) inflammatory load score (ILS) formation. METHODS Adults with moderate-to-severe TBI (n = 157) completed neuropsychological testing, the Functional Impairment Measure Cognitive Subscale (FIM-Cog) and self-reported Percent Back to Normal scale 6 months (n = 139) and 12 months (n = 136) post-injury. Serial serum samples were collected 1-3 months post-TBI. Cognitive composite scores were created as equally weighted means of T-scores derived from a multidimensional neuropsychological test battery. Median inflammatory marker levels associated with 6-month and 12-month cognitive composite T-scores (p < 0.10) were selected for ILS formation. Markers were quartiled, and quartile ranks were summed to generate an uILS. Marker-specific β-weights were derived using penalized ridge regression, multiplied by standardized marker levels, and summed to generate a wILS. ILS associations with cognitive composite scores were assessed using multivariable linear regression. Structural equation models assessed ILS influences on functional cognition and QOL using 12-month FIM-Cog and Percent Back to Normal scales. RESULTS ILS component markers included: IL-1β, TNF-α, sIL-4R, sIL-6R, RANTES, and MIP-1β. Increased sIL-4R levels were positively associated with overall cognitive composite T-scores in bivariate analyses, while remaining ILS markers were negatively associated with cognition. Multivariable receiver operator curves (ROC) showed uILS added 14.98% and 31.93% relative improvement in variance captured compared to the covariates only base model (age, sex, education, Glasgow Coma Scale score) when predicting cognitive composite scores at 6 and 12 months, respectively; wILS added 33.99% and 36.87% relative improvement in variance captured. Cognitive composite mediated wILS associations with FIM-Cog scores at 12 months, and both cognitive composite and FIM-Cog scores mediated wILS associations with QOL. CONCLUSIONS Early chronic inflammatory burden is associated with cognitive performance post-TBI. wILS explains greater variance in cognitive composite T-scores than uILS. Linking inflammatory burden associated with cognitive deficits to functional outcome post-TBI demonstrates the potential impact of immunotherapy interventions aimed at improving cognitive recovery post-TBI.
Collapse
Affiliation(s)
- Kristen A. Milleville
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, USA
| | - Nabil Awan
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, USA
| | - Dominic Disanto
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, USA
| | - Raj G. Kumar
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, USA
| | - Amy K. Wagner
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, USA
- Department of Neuroscience, University of Pittsburgh, USA
- Clinical and Translational Science Institute, University of Pittsburgh, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, USA
- Center for Neuroscience, University of Pittsburgh, USA
| |
Collapse
|
33
|
Kwan Cheung KA, Mitchell MD, Heussler HS. Cannabidiol and Neurodevelopmental Disorders in Children. Front Psychiatry 2021; 12:643442. [PMID: 34093265 PMCID: PMC8175856 DOI: 10.3389/fpsyt.2021.643442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental and neuropsychiatric disorders (such as autism spectrum disorder) have broad health implications for children, with no definitive cure for the vast majority of them. However, recently medicinal cannabis has been successfully trialled as a treatment to manage many of the patients' symptoms and improve quality of life. The cannabinoid cannabidiol, in particular, has been reported to be safe and well-tolerated with a plethora of anticonvulsant, anxiolytic and anti-inflammatory properties. Lately, the current consensus is that the endocannabinoid system is a crucial factor in neural development and health; research has found evidence that there are a multitude of signalling pathways involving neurotransmitters and the endocannabinoid system by which cannabinoids could potentially exert their therapeutic effects. A better understanding of the cannabinoids' mechanisms of action should lead to improved treatments for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keith A Kwan Cheung
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Helen S Heussler
- Centre for Clinical Trials in Rare Neurodevelopmental Disorders, Child Development Program, Children's Health Queensland, Brisbane, QLD, Australia.,Centre for Children's Health Research, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Kiani AK, Miggiano GAD, Aquilanti B, Velluti V, Matera G, Gagliardi L, Bertelli M. Food supplements based on palmitoylethanolamide plus hydroxytyrosol from olive tree or Bacopa monnieri extracts for neurological diseases. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020007. [PMID: 33170159 PMCID: PMC8023129 DOI: 10.23750/abm.v91i13-s.10582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Neurological disorders like Parkinson disease and Alzheimer disease, spinal cord injury and stroke have some recurrent characteristics such as abnormal protein aggregation, oxidative stress induction, apoptosis, excitotoxicity, perturbation of intracellular Ca2+ homeostasis and inflammation. To date, there are few effective treatments available and the drugs currently used to manage the symptoms have important side effects. Therefore, research studies are focusing on natural phytochemicals present in diet as bioactive molecules potentially useful against neurodegenerative diseases. In this review, we will discuss the neuroprotective role of palmitoylethanolamide, hydroxytyrosol, and Bacopa monnieri extracts against neuroinflammation and neurodegeneration, thereby revealing their remarkable potential as novel therapeutic options for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Barbara Aquilanti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Valeria Velluti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Giuseppina Matera
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Lucilla Gagliardi
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Matteo Bertelli
- MAGI EUREGIO, Bolzano, Italy; MAGI'S LAB, Rovereto (TN), Italy; EBTNA-LAB, Rovereto (TN), Italy.
| |
Collapse
|
35
|
Yang J, Han W, Liu J, Yang C, Zhao WJ, Sun H, Pan YN, Chen HS, Cheng L, Jiang L. [Effect of advanced maternal age on development of hippocampal neural stem cells in offspring rats]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:1017-1026. [PMID: 32933637 PMCID: PMC7499440 DOI: 10.7499/j.issn.1008-8830.2003213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the effect of advanced maternal age (AMA) on the development of hippocampal neural stem cells in offspring rats. METHODS Ten 3-month-old and ten 12-month-old female Sprague-Dawley rats were housed individually with 3-month-old male rats (1:1, n=20), whose offspring rats were assigned to a control group and an AMA group. A total of 40 rats were randomly selected from each group. Immunofluorescence assay and Western blot were used to localize and determine the levels of protein expression of Nestin and doublecortin (DCX) on day 7 as well as neuronal nuclear antigen (NeuN) and glial fibrillary acidic protein (GFAP) on day 28 (n=8 for each marker). Immunofluorescence assay was also used to localize the hippocampal expression of polysialylated isoforms of neural cell adhesion molecule (PSA-NCAM) on day 14 (n=8 for each marker). RESULTS According to the Western blot results, the AMA group had significantly lower protein expression of DCX than the control group (P<0.05), while there were no significant differences in the protein expression of Nestin, NeuN, and GFAP between the two groups (P>0.05). According to the results of immunofluorescence assay, the AMA group had significantly lower protein expression of Nestin, DCX, and PSA-NCAM in the hippocampal dentate gyrus (DG) region than the control group (P<0.05), while there were no significant differences in the above indices in the hippocampal CA1 and CA3 regions between the two groups (P>0.05). The AMA group had significantly higher expression of NeuN in the hippocampal CA1 region than the control group (P<0.01), while there were no significant differences in the expression of NeuN in the hippocampal DG and CA3 regions between the two groups (P>0.05). The AMA group had significantly lower expression of GFAP in the hippocampal CA1, CA3, and DG regions than the control group (P<0.05). CONCLUSIONS AMA may cause inhibition of proliferation, survival, and migration of hippocampal neural stem cells. AMA may also affect their differentiation into neurons and astrocytes, which will eventually lead to developmental disorders of hippocampal neural stem cells in offspring rats.
Collapse
Affiliation(s)
- Jing Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/National Clinical Research Center for Child Health and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wróbel A, Serefko A, Szopa A, Ulrich D, Poleszak E, Rechberger T. O-1602, an Agonist of Atypical Cannabinoid Receptors GPR55, Reverses the Symptoms of Depression and Detrusor Overactivity in Rats Subjected to Corticosterone Treatment. Front Pharmacol 2020; 11:1002. [PMID: 32733244 PMCID: PMC7360849 DOI: 10.3389/fphar.2020.01002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
In view of the fact that GPR55 receptors are localized in brain areas implicated in the pathophysiology of depression, GPR55 gene expression is reduced in the dorsolateral prefrontal cortex of suicide victims, and GPR55 receptor agonism exerts an anxiolytic-like effect, GPR55 receptors have drawn our attention as a potential target in the treatment of mood disorders. Therefore, in the present study, we wanted to check whether a 7-day intravenous administration of O-1602 (0.25 mg/kg/day) – a phytocannabinoid-like analogue of cannabidiol that belongs to the agonists of GPR55 receptors, was able to reverse the corticosterone-induced depressive-like behavior accompanied by detrusor overactivity in female Wistar rats. Additionally, we tried to determine the influence of GPR55 stimulation on the bladder, hippocampal and urine levels of several biomarkers that play a role in the functioning of the urinary bladder and/or the pathophysiology of depression. Our experiments showed that O-1602 therapy improved signs of depression (measured by the forced swim test) and detrusor contractility (measured by conscious cystometry) in animals exposed to the corticosterone treatment. Moreover, the treatment reduced the oxidative damage in the urinary bladder and neuroinflammation (observed as the reduction of elevated levels of 3-NIT, MAL, and IL-1β, TNF-α, CRF, respectively). The O-1602 treatment also reversed the abnormal changes in the bladder, hippocampal or urine values of CGRP, OCT3, VAChT, BDNF, and NGF. The above-mentioned findings allow to suggest that in the future the modulation of atypical cannabinoid receptors GPR55 could have a potential role in the treatment of depression and overactive bladder.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Daniela Ulrich
- Department of Obstetrics and Gynaecology, Medical University Graz, Graz, Germany
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Tomasz Rechberger
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
37
|
Luján MÁ, Valverde O. The Pro-neurogenic Effects of Cannabidiol and Its Potential Therapeutic Implications in Psychiatric Disorders. Front Behav Neurosci 2020; 14:109. [PMID: 32676014 PMCID: PMC7333542 DOI: 10.3389/fnbeh.2020.00109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
During the last decades, researchers have investigated the functional relevance of adult hippocampal neurogenesis in normal brain function as well as in the pathogenesis of diverse psychiatric conditions. Although the underlying mechanisms of newborn neuron differentiation and circuit integration have yet to be fully elucidated, considerable evidence suggests that the endocannabinoid system plays a pivotal role throughout the processes of adult neurogenesis. Thus, synthetic, and natural cannabinoid compounds targeting the endocannabinoid system have been utilized to modulate the proliferation and survival of neural progenitor cells and immature neurons. Cannabidiol (CBD), a constituent of the Cannabis Sativa plant, interacts with the endocannabinoid system by inhibiting fatty acid amide hydrolase (FAAH) activity (the rate-limiting enzyme for anandamide hydrolysis), allosterically modulating CB1 and CB2 receptors, and activating components of the "extended endocannabinoid system." Congruently, CBD has shown prominent pro-neurogenic effects, and, unlike Δ9-tetrahydrocannabinol, it has the advantage of being devoid of psychotomimetic effects. Here, we first review pre-clinical studies supporting the facilitating effects of CBD on adult hippocampal neurogenesis and available data disclosing cannabinoid mechanisms by which CBD can induce neural proliferation and differentiation. We then review the respective implications for its neuroprotective, anxiolytic, anti-depressant, and anti-reward actions. In conclusion, accumulating evidence reveals that, in rodents, adult neurogenesis is key to understand the behavioral manifestation of symptomatology related to different mental disorders. Hence, understanding how CBD promotes adult neurogenesis in rodents could shed light upon translational therapeutic strategies aimed to ameliorate psychiatric symptomatology dependent on hippocampal function in humans.
Collapse
Affiliation(s)
- Miguel Á. Luján
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
38
|
Aso E, Andrés-Benito P, Grau-Escolano J, Caltana L, Brusco A, Sanz P, Ferrer I. Cannabidiol-Enriched Extract Reduced the Cognitive Impairment but Not the Epileptic Seizures in a Lafora Disease Animal Model. Cannabis Cannabinoid Res 2020; 5:150-163. [PMID: 32656347 DOI: 10.1089/can.2019.0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction: Lafora disease (LD) is a rare form of progressive infantile epilepsy in which rapid neurological deterioration occurs as the disease advances, leading the patients to a vegetative state and then death, usually within the first decade of disease onset. Based on the capacity of the endogenous cannabinoid system (ECS) to modulate several cellular processes commonly altered in many neurodegenerative processes, as well as the antiepileptic properties of certain natural cannabinoids, the aim of this study was to evaluate the role of the ECS in LD progression. Materials and Methods: We tested whether a natural cannabis extract highly enriched in cannabidiol (CBD) might be effective in curbing the pathological phenotype of malin knockout (KO) mice as an animal model of LD. Results: Our results reveal for the first time that alterations in the ECS occur during the evolution of LD, mainly at the level of CB1, CB2, and G protein-coupled receptor 55 (GPR55) receptor expression, and that a CBD-enriched extract (CBDext) is able to reduce the cognitive impairment exhibited by malin KO mice. However, in contrast to what has previously been reported for other kinds of refractory epilepsy in childhood, the CBD-enriched extract does not reduce the severity of the epileptic seizures induced in this animal model of LD. Conclusions: In summary, this study reveals that the ECS might play a role in LD and that a CBD-enriched extract partially reduces the dementia-like phenotype, but not the increased vulnerability to epileptic seizures, exhibited by an animal model of such a life-threatening disease.
Collapse
Affiliation(s)
- Ester Aso
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Pol Andrés-Benito
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de En.fermedades Neurodegenerativas, Instituto Carlos III, Madrid, Spain.,Unitat de Anatomia Patològica, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Jordi Grau-Escolano
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Laura Caltana
- Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Group U742, Valencia, Spain
| | - Isidre Ferrer
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de En.fermedades Neurodegenerativas, Instituto Carlos III, Madrid, Spain.,Unitat de Anatomia Patològica, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
39
|
Thompson KJ, Tobin AB. Crosstalk between the M 1 muscarinic acetylcholine receptor and the endocannabinoid system: A relevance for Alzheimer's disease? Cell Signal 2020; 70:109545. [PMID: 31978506 PMCID: PMC7184673 DOI: 10.1016/j.cellsig.2020.109545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which accounts for 60-70% of the 50 million worldwide cases of dementia and is characterised by cognitive impairments, many of which have long been associated with dysfunction of the cholinergic system. Although the M1 muscarinic acetylcholine receptor (mAChR) is considered a promising drug target for AD, ligands targeting this receptor have so far been unsuccessful in clinical trials. As modulatory receptors to cholinergic transmission, the endocannabinoid system may be a promising drug target to allow fine tuning of the cholinergic system. Furthermore, disease-related changes have been found in the endocannabinoid system during AD progression and indeed targeting the endocannabinoid system at specific disease stages alleviates cognitive symptoms in numerous mouse models of AD. Here we review the role of the endocannabinoid system in AD, and its crosstalk with mAChRs as a potential drug target for cholinergic dysfunction.
Collapse
Affiliation(s)
- Karen J Thompson
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
40
|
Pigment epithelium-derived factor alleviates depressive-like behaviors in mice by modulating adult hippocampal synaptic growth and Wnt pathway. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109792. [PMID: 31676463 DOI: 10.1016/j.pnpbp.2019.109792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
Pigment epithelium-derived factor (PEDF, also known as SERPINF1) is a secreted glycoprotein with neuroprotective effects. However, the potential role of PEDF in major depressive disorder (MDD) remains largely unknown. Here, applying two-dimensional gel electrophoresis (2-DE) proteomics, we found that PEDF levels were significantly decreased in the plasma of 12 first-episode treatment-naïve MDD patients (FETND) compared to the levels in 12 healthy controls (HCs). PEDF levels were especially lower in MDD patients than in HCs and patients with bipolar disorder (BD) and schizophrenia (SCZ), and elevated PEDF were consistent with decreased HAM-D scores in patients given antidepressant therapy (ADT). Animal research indicated that PEDF was decreased in the periphery and hippocampus of two well-known depression rodent models (the chronic unpredictable mild stress (CUMS) rat model and chronic social defeat stress (CSDS) mouse model). Decreased PEDF levels in the hippocampus led to depressive-like behaviors, synaptic impairments and aberrant Wnt signaling in C57BL mice, while increased PEDF resulted in the opposite results. Mechanistic studies indicated that PEDF contributes to dendritic growth and Wnt signaling activation in the hippocampus of adult mice. Taken together, the results of our study demonstrate the involvement of PEDF and its related mechanism in depression, thus providing translational evidence suggesting that PEDF may be a novel therapeutic target for depression.
Collapse
|
41
|
Hill JD, Zuluaga-Ramirez V, Gajghate S, Winfield M, Persidsky Y. Chronic Intrahippocampal Infusion of HIV-1 Neurotoxic Proteins: A Novel Mouse Model of HIV-1 Associated Inflammation and Neural Stem Cell Dysfunction. J Neuroimmune Pharmacol 2019; 14:375-382. [PMID: 30905008 PMCID: PMC6816253 DOI: 10.1007/s11481-019-09846-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/11/2019] [Indexed: 02/08/2023]
Abstract
HIV-1 infection causes chronic neuroinflammation resulting in cognitive decline associated with diminution of survival of neural stem cells (NSC). In part, this is attributable to production of toxic viral proteins (gp120 and tat) by infected cells in the brain that can activate microglia. Here, we evaluated a novel model for HIV-1 neuropathogenesis by direct administration of viral proteins into the hippocampus. Chronic administration of either HIV-1 gp120 or tat over 14 days significantly decreased NSC proliferation, survival and neuroblast formation (by 32-37%) within the hippocampal subgranular zone as detected by doublecortin/BrdU or Ki67-positive cells. Intrahippocampal administration of gp120 or tat induced microglial activation within the hippocampus as determined by increases in microglial number and increases in the volume of the microglia (2.5-3-fold, evaluated by double IBA-1/CD68 staining). We further assessed inflammatory responses within the hippocampus by RNAseq and Ingenuity Pathway Analysis. There was a significant mRNA upregulation of numerous inflammatory mediators including Il1b, Icam1, Il12a, Ccl2, and Ccl4. These data suggest that chronic administration induces a prolonged inflammatory state within the hippocampus that negatively affects NSC survival potentially leading to cognitive dysfunction. Graphical Abstract.
Collapse
Affiliation(s)
- Jeremy D Hill
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
42
|
Beggiato S, Tomasini MC, Ferraro L. Palmitoylethanolamide (PEA) as a Potential Therapeutic Agent in Alzheimer's Disease. Front Pharmacol 2019; 10:821. [PMID: 31396087 PMCID: PMC6667638 DOI: 10.3389/fphar.2019.00821] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
N-Palmitoylethanolamide (PEA) is a non-endocannabinoid lipid mediator belonging to the class of the N-acylethanolamine phospolipids and was firstly isolated from soy lecithin, egg yolk, and peanut meal. Either preclinical or clinical studies indicate that PEA is potentially useful in a wide range of therapeutic areas, including eczema, pain, and neurodegeneration. PEA-containing products are already licensed for use in humans as a nutraceutical, a food supplement, or a food for medical purposes, depending on the country. PEA is especially used in humans for its analgesic and anti-inflammatory properties and has demonstrated high safety and tolerability. Several preclinical in vitro and in vivo studies have proven that PEA can induce its biological effects by acting on several molecular targets in both central and peripheral nervous systems. These multiple mechanisms of action clearly differentiate PEA from classic anti-inflammatory drugs and are attributed to the compound that has quite unique anti(neuro)inflammatory properties. According to this view, preclinical studies indicate that PEA, especially in micronized or ultramicronized forms (i.e., formulations that maximize PEA bioavailability and efficacy), could be a potential therapeutic agent for the effective treatment of different pathologies characterized by neurodegeneration, (neuro)inflammation, and pain. In particular, the potential neuroprotective effects of PEA have been demonstrated in several experimental models of Alzheimer's disease. Interestingly, a single-photon emission computed tomography (SPECT) case study reported that a mild cognitive impairment (MCI) patient, treated for 9 months with ultramicronized-PEA/luteolin, presented an improvement of cognitive performances. In the present review, we summarized the current preclinical and clinical evidence of PEA as a possible therapeutic agent in Alzheimer's disease. The possible PEA neuroprotective mechanism(s) of action is also described.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Ferrara, Italy.,IRET Foundation, Bologna, Italy
| | - Maria Cristina Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Ferrara, Italy.,IRET Foundation, Bologna, Italy
| |
Collapse
|
43
|
Rodrigues RS, Lourenço DM, Paulo SL, Mateus JM, Ferreira MF, Mouro FM, Moreira JB, Ribeiro FF, Sebastião AM, Xapelli S. Cannabinoid Actions on Neural Stem Cells: Implications for Pathophysiology. Molecules 2019; 24:E1350. [PMID: 30959794 PMCID: PMC6480122 DOI: 10.3390/molecules24071350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
With the increase of life expectancy, neurodegenerative disorders are becoming not only a health but also a social burden worldwide. However, due to the multitude of pathophysiological disease states, current treatments fail to meet the desired outcomes. Therefore, there is a need for new therapeutic strategies focusing on more integrated, personalized and effective approaches. The prospect of using neural stem cells (NSC) as regenerative therapies is very promising, however several issues still need to be addressed. In particular, the potential actions of pharmacological agents used to modulate NSC activity are highly relevant. With the ongoing discussion of cannabinoid usage for medical purposes and reports drawing attention to the effects of cannabinoids on NSC regulation, there is an enormous, and yet, uncovered potential for cannabinoids as treatment options for several neurological disorders, specifically when combined with stem cell therapy. In this manuscript, we review in detail how cannabinoids act as potent regulators of NSC biology and their potential to modulate several neurogenic features in the context of pathophysiology.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Diogo M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Miguel F Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|