1
|
Manavi MA, Nourhashemi M, Emami S, Fathian Nasab MH, Dehnavi F, Küçükkılınç TT, Foroumadi A, Sharifzadeh M, Khoobi M. Lipoic acid scaffold applications in the design of multitarget-directed ligands against Alzheimer's disease. Bioorg Chem 2025; 157:108241. [PMID: 39922042 DOI: 10.1016/j.bioorg.2025.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Alzheimer's disease (AD) is becoming a fast-growing public health problem which can result in psychological problems as well as loss of speech, language, short-term memory, and motor coordination. Many medications were developed and produced to treat AD, however due to the complexity of the pathology involved in the illness, many of these medications often failed in clinical or preclinical studies. The main issue with the current anti-AD medications is their low efficacy since they use a single target. Multi-target-directed ligands (MTDLs) based on "one molecule; multiple targets" have been introduced to address these two fundamental issues. MTDLs have demonstrated improved efficacy and safety since they regulate many biological targets simultaneously. Alpha-lipoic acid (LA), a natural molecule with distinct properties, is a viable scaffold for developing new MTDLs in treating many neurodegenerative diseases, particularly AD. It is a key mitochondrial enzymes' cofactor and an organic molecule with disulfide functionality. It also has potent antioxidant characteristics that enhance mitochondrial activity. Considering the neuroprotective and anti-inflammatory effects of LA, various hybrids of LA with tacrine, rivastigmine, coumarin and chromone, ibuprofen, melatonin, niacin have been synthesized and biologically evaluated as the MTDLs. In this article, we review the design of LA-based hybrids or conjugates, their biological activities, and structure-activity relationship studies, to develop new MTDLs in the field of AD pharmacotherapy.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Nourhashemi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Hosein Fathian Nasab
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Dehnavi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zaman Fashami M, Bajelan A, Shakur H, Khakpai F, Rouhollah F, Vaseghi S, Ghorbani Yekta B. The Effect of Zeolite Zinc on Memory Performance and Hippocampal Cell Death in a Rat Model of Alzheimer's-like Disease Induced by Aβ 1-42. Biol Trace Elem Res 2024:10.1007/s12011-024-04474-0. [PMID: 39643797 DOI: 10.1007/s12011-024-04474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, characterized by the slow and progressive loss of brain structure and function, primarily affecting older individuals. Evidence has shown that disruption of zinc homeostasis in the brain contributes to synaptic dysfunction, as well as impairments in learning and memory. In this study, we evaluated the effect of zeolite zinc on memory performance and hippocampal cell death in a rat model of Alzheimer's disease (AD) induced by intracerebroventricular administration of Aβ1-42. We employed the Morris water maze, shuttle box, and open field tests to assess spatial memory, passive avoidance memory, and anxiety-like behavior, respectively. P-Tau and the amyloid precursor protein (APP) expression, along with hippocampal cell death, were also evaluated. Both Aβ1-42 and zeolite zinc were injected intracerebroventricularly. The results showed that zeolite zinc partially reversed Aβ1-42-induced impairments in memory performance and mitigated the effects of Aβ1-42 on locomotor activity, although it did not fully restore baseline levels. In addition, Aβ1-42 increased the expression of APP and P-Tau, as well as the number of dead cells, whereas zeolite zinc reduced these effects. In conclusion, our findings suggest that while zeolite zinc plays a role in modulating the pathophysiology of AD, its therapeutic effects only partially reverse the progression or symptoms of AD, indicating the need for further investigation into optimal dosing or combination therapies.
Collapse
Affiliation(s)
- Maryam Zaman Fashami
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aida Bajelan
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran University of Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Shakur
- Faculty of Basic Science, Science and Technology Center of Physics, Imam Hossein University, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran University of Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Batool Ghorbani Yekta
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1949635881, Iran.
| |
Collapse
|
3
|
Shehata MK, Ismail AA, Kamel MA. Combined Donepezil with Astaxanthin via Nanostructured Lipid Carriers Effective Delivery to Brain for Alzheimer's Disease in Rat Model. Int J Nanomedicine 2023; 18:4193-4227. [PMID: 37534058 PMCID: PMC10391537 DOI: 10.2147/ijn.s417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Donepezil (DPL), a specific acetylcholinesterase inhibitor, is used as a first-line treatment to improve cognitive deficits in Alzheimer's disease (AD) and it might have a disease modifying effect. Astaxanthin (AST) is a natural potent antioxidant with neuroprotective, anti-amyloidogenic, anti-apoptotic, and anti-inflammatory effects. This study aimed to prepare nanostructured lipid carriers (NLCs) co-loaded with donepezil and astaxanthin (DPL/AST-NLCs) and evaluate their in vivo efficacy in an AD-like rat model 30 days after daily intranasal administration. Methods DPL/AST-NLCs were prepared using a hot high-shear homogenization technique, in vitro examined for their physicochemical parameters and in vivo evaluated. AD induction in rats was performed by aluminum chloride. The cortex and hippocampus were isolated from the brain of rats for biochemical testing and histopathological examination. Results DPL/AST-NLCs showed z-average diameter 149.9 ± 3.21 nm, polydispersity index 0.224 ± 0.017, zeta potential -33.7 ± 4.71 mV, entrapment efficiency 81.25 ±1.98% (donepezil) and 93.85 ±1.75% (astaxanthin), in vitro sustained release of both donepezil and astaxanthin for 24 h, spherical morphology by transmission electron microscopy, and they were stable at 4-8 ± 2°C for six months. Differential scanning calorimetry revealed that donepezil and astaxanthin were molecularly dispersed in the NLC matrix in an amorphous state. The DPL/AST-NLC-treated rats showed significantly lower levels of nuclear factor-kappa B, malondialdehyde, β-site amyloid precursor protein cleaving enzyme-1, caspase-3, amyloid beta (Aβ1‑42), and acetylcholinesterase, and significantly higher levels of glutathione and acetylcholine in the cortex and hippocampus than the AD-like untreated rats and that treated with donepezil-NLCs. DPL/AST-NLCs showed significantly higher anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, anti-inflammatory, and anti-apoptotic effects, resulting in significant improvement in the cortical and hippocampal histopathology. Conclusion Nose-to-brain delivery of DPL/AST-NLCs is a promising strategy for the management of AD.
Collapse
Affiliation(s)
- Mustafa K Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Assem A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Zott B, Konnerth A. Impairments of glutamatergic synaptic transmission in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:24-34. [PMID: 35337739 DOI: 10.1016/j.semcdb.2022.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is structural cell damage and neuronal death in the brains of affected individuals. As these changes are irreversible, it is important to understand their origins and precursors in order to develop treatment strategies against AD. Here, we review evidence for AD-specific impairments of glutamatergic synaptic transmission by relating evidence from human AD subjects to functional studies in animal models of AD. The emerging picture is that early in the disease, the accumulation of toxic β-amyloid aggregates, particularly dimers and low molecular weight oligomers, disrupts glutamate reuptake, which leads to its extracellular accumulation causing neuronal depolarization. This drives the hyperactivation of neurons and might facilitate neuronal damage and degeneration through glutamate neurotoxicity.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
5
|
El Sayed NS, Abidar S, Nhiri M, Hritcu L, Ibrahim WW. Aqueous extract of Ceratonia siliqua L. leaves elicits antioxidant, anti-inflammatory, and AChE inhibiting effects in amyloid-β42-induced cognitive deficit mice: Role of α7-nAChR in modulating Jak2/PI3K/Akt/GSK-3β/β-catenin cascade. Phytother Res 2023. [PMID: 36760217 DOI: 10.1002/ptr.7766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder attributed to several etiological factors including cholinergic dysregulation, neuroinflammation, oxidative stress, β-amyloidogenesis, and tauopathy. This demands the search for multitarget drugs, especially of natural sources owing to their pleiotropic activities and low adverse effects. The present study was conducted to investigate the cognitive-improving potential of Ceratonia siliqua L. (Cs) extract compared with donepezil, an acetylcholinesterase inhibitor, on AD-like pathological alterations induced by single intracerebroventricular amyloid-β42 (Aβ42) injection in mice. Aβ42-injected mice were treated with Cs (100 mg/kg/day, po) with or without methyllycaconitine (MLA; 1 mg/kg/day, ip), an α7-nAChR antagonist. Aβ42-injected animals demonstrated an elevation of hippocampal Aβ42, p-Tau, and acetylcholinesterase. They also showed a decline in phosphorylated levels of Jak2, PI3K, Akt, and GSK-3β, leading to induction of neuroinflammation and oxidative stress. Noteworthy, Cs improved the histopathological and behavioral variables in addition to mitigating AD hallmarks. It also exerted neuroprotection by reducing NF-κBp65 and TNF-α, while elevating Nrf2 and HO-1, along with stabilizing β-catenin under the impact of Jak2/PI3K/Akt/GSK-3β signaling. These beneficial effects of Cs were abrogated by MLA co-administration signifying the α7-nAChR involvement in Cs-mediated effects. Therefore, Cs can ameliorate Aβ42-induced neurodegeneration by modulating Jak2/PI3K/Akt/GSK-3β/β-catenin axis in an α7-nAChR-dependent manner.
Collapse
Affiliation(s)
- Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sara Abidar
- Laboratory of Biochemistry and Molecular Genetics (LBMG), Faculty of Sciences and Technologies of Tangier (FSTT) Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics (LBMG), Faculty of Sciences and Technologies of Tangier (FSTT) Abdelmalek Essaadi University, Tetouan, Morocco
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Ringland C, Schweig JE, Eisenbaum M, Paris D, Ait-Ghezala G, Mullan M, Crawford F, Abdullah L, Bachmeier C. MMP9 modulation improves specific neurobehavioral deficits in a mouse model of Alzheimer's disease. BMC Neurosci 2021; 22:39. [PMID: 34034683 PMCID: PMC8152085 DOI: 10.1186/s12868-021-00643-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Matrix metallopeptidase 9 (MMP9) has been implicated in a variety of neurological disorders, including Alzheimer's disease (AD), where MMP9 levels are elevated in the brain and cerebrovasculature. Previously our group demonstrated apolipoprotein E4 (apoE4) was less efficient in regulating MMP9 activity in the brain than other apoE isoforms, and that MMP9 inhibition facilitated beta-amyloid (Aβ) elimination across the blood-brain barrier (BBB) METHODS: In the current studies, we evaluated the impact of MMP9 modulation on Aβ disposition and neurobehavior in AD using two approaches, (1) pharmacological inhibition of MMP9 with SB-3CT in apoE4 x AD (E4FAD) mice, and (2) gene deletion of MMP9 in AD mice (MMP9KO/5xFAD) RESULTS: Treatment with the MMP9 inhibitor SB-3CT in E4FAD mice led to reduced anxiety compared to placebo using the elevated plus maze. Deletion of the MMP9 gene in 5xFAD mice also reduced anxiety using the open field test, in addition to improving sociability and social recognition memory, particularly in male mice, as assessed through the three-chamber task, indicating certain behavioral alterations in AD may be mediated by MMP9. However, neither pharmacological inhibition of MMP9 or gene deletion of MMP9 affected spatial learning or memory in the AD animals, as determined through the radial arm water maze. Moreover, the effect of MMP9 modulation on AD neurobehavior was not due to changes in Aβ disposition, as both brain and plasma Aβ levels were unchanged in the SB-3CT-treated E4FAD animals and MMP9KO/AD mice compared to their respective controls. CONCLUSIONS In total, while MMP9 inhibition did improve specific neurobehavioral deficits associated with AD, such as anxiety and social recognition memory, modulation of MMP9 did not alter spatial learning and memory or Aβ tissue levels in AD animals. While targeting MMP9 may represent a therapeutic strategy to mitigate aspects of neurobehavioral decline in AD, further work is necessary to understand the nature of the relationship between MMP9 activity and neurological dysfunction.
Collapse
Affiliation(s)
- Charis Ringland
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | | | - Maxwell Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Daniel Paris
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Ghania Ait-Ghezala
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA.
- The Open University, Milton Keynes, UK.
- Bay Pines VA Healthcare System, Bay Pines, FL, USA.
| |
Collapse
|
7
|
Gothwal A, Kumar H, Nakhate KT, Ajazuddin, Dutta A, Borah A, Gupta U. Lactoferrin Coupled Lower Generation PAMAM Dendrimers for Brain Targeted Delivery of Memantine in Aluminum-Chloride-Induced Alzheimer's Disease in Mice. Bioconjug Chem 2019; 30:2573-2583. [PMID: 31553175 DOI: 10.1021/acs.bioconjchem.9b00505] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lower generation PAMAM dendrimers have an immense potential for drug delivery with lower toxicity, but these dendrimers yet need certain basic ameliorations. In this study, the brain delivery potential of the synthesized PAMAM-Lf (lower generation PAMAM and lactoferrin conjugate) loaded with memantine (MEM) was explored and evaluated in vitro and in vivo in the disease-induced mouse model. The developed nanoscaffolds were characterized for size, zeta potential and in vitro release. Increase in the average size from 11.54 ± 0.91 to 131.72 ± 4.73 nm, respectively, was observed for drug-loaded PAMAM (i.e., PAMAM-MEM) and PAMAM-Lf (i.e., MEM-PAMAM-Lf). Release profile of MEM from MEM-PAMAM-Lf was slow and sustained up to 48 h. In vivo biodistribution in the Sprague-Dawley rat model revealed that the brain uptake of MEM-PAMAM-Lf was significantly higher than that of MEM alone. The behavioral response study in the healthy rats did not result in any significant changes. The in vivo study in an AlCl3-induced Alzheimer's (AD) mice model showed a significant improvement in behavioral responses. Optical density, which reflects the acetylcholinesterase (AChE) activity, was highest in the AL group 0.16 ± 0.01 (higher than the CON group, 0.09 ± 0.02; p < 0.05). No significant suppression of AChE activity was recorded in all the other treated groups. Similarly, the DOPAmine and 3,4 dihydroxyphenylacetic acid (DOPAC) levels were unaffected by the developed formulations. The study reported improved brain bioavailability of MEM in AlCl3-induced Alzheimer's mice leading to improved memory, with the resultant mechanism behind in a descriptive manner. This study is among the preliminary studies reporting the memory improvement aspect of PAMAM-Lf conjugates for MEM in AlCl3-AD induced mice. The formulation developed was beneficial in AD-induced mice and had a significant impact on the memory aspects.
Collapse
Affiliation(s)
- Avinash Gothwal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Bandarsindri, Ajmer , Rajasthan 305817 India
| | - Hitesh Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Bandarsindri, Ajmer , Rajasthan 305817 India
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research , Kohka Road , Kurud, Bhilai , Chhattisgarh 490024 , India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research , Kohka Road , Kurud, Bhilai , Chhattisgarh 490024 , India
| | - Ankumoni Dutta
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics , Assam University , Silchar , Assam 788011 , India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics , Assam University , Silchar , Assam 788011 , India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Bandarsindri, Ajmer , Rajasthan 305817 India
| |
Collapse
|
8
|
Rafieipour F, Hadipour E, Emami SA, Asili J, Tayarani-Najaran Z. Safranal protects against beta-amyloid peptide-induced cell toxicity in PC12 cells via MAPK and PI3 K pathways. Metab Brain Dis 2019; 34:165-172. [PMID: 30402809 DOI: 10.1007/s11011-018-0329-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease is a type of cerebrovascular problem with progressive mental disabilities for the patient. This study aimed to investigate the protective effect of safranal on toxicity and oxidative damage induced by beta-amyloid (Aβ) and hydrogen peroxide (H2O2) in PC12 cells as an appropriate model of Alzheimer's cell damage. PC12 cells pretreated with saffron extract (2.5-40 μg/ml), essential oil (2.5-40 μg/ml), safranal (2.5-5-40 μM) and donepezil (5, 10 and 20 μM) for 120 min. Then exposed to either Aβ (25 μM) for 48 h or H2O2 (150 μM) for 24 h. In the end, the cell survival and intracellular reactive oxygen species (ROS) production analyzed. The anti-apoptotic effects of safranal in PC12 cells were studied using flow cytometry after PI staining. Also, western blot analysis of Cyt c, survivin, p44/42 MAPK (ERK1/2), Phospho-p44/42 MAPK (ERK1/2), PI3 Kinase P85, Phospho-PI3 Kinase P85, phospho SAPK/JNK, SAPK/JNK and caspase 3 performed for detection of apoptosis. Safranal (2.5 and 5 μM) and donepezil (10 and 20 μM) significantly decreased the Aβ toxicity. The ROS significantly attenuated when cells pretreated with essential oil, saffron extract, safranal, and donepezil. Cell apoptosis significantly increased after treatment with Aβ (25-35) (25 μM) compared to control. However, after pretreatment with safranal (2.5 μM) apoptosis was significantly reduced. Western blot analysis of PC12 cells showed that 25 μM Aβ (25-35) could increase proteins involved in apoptosis signaling and pretreatment with safranal (2.5 μM) could decrease the apoptosis. According to the results, safranal showed anti-apoptotic and antioxidant effects and may exert promising potential for the prevention of Alzheimer's disease.
Collapse
Affiliation(s)
- Faezeh Rafieipour
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Hadipour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box: 9188617871, Mashhad, Iran.
| |
Collapse
|
9
|
Simultaneous monitoring of electroencephalographic characteristics in animals subjected to behavioral tests: a preclinical investigation. Behav Pharmacol 2018; 28:661-669. [PMID: 29099402 DOI: 10.1097/fbp.0000000000000364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Drug-induced changes in electroencephalographic (EEG) characteristics in animals may be used to predict central activity of drugs in humans. Previous studies have established that drugs affect EEG characteristics in humans and rodents in a similar manner. However, there has been little work to establish correlations between drug effects on behavioral and EEG characteristics in rats. In the current study, we have simultaneously monitored EEG characteristics during a novel object recognition task (NORT) or open field (OF) test in rats. EEG was monitored using telemetric device from epidural and hippocampal regions during the choice trial in the NORT after treatment with scopolamine (0.1 mg/kg, intraperitoneal) alone or in combination with donepezil (0.3 mg/kg, subcutaneous). Power changes across spectral frequency bands during exploration of novel and familiar object were assessed separately. Amphetamine (2 mg/kg, intraperitoneal) was used to monitor effects on locomotor activity and EEG changes in the OF test. In the NORT, scopolamine impaired object recognition, but no differences were observed in the power densities across spectral bands during exploration of novel and familiar objects. Treatment with donepezil reversed scopolamine-induced cognitive impairment, and the power density in the theta frequency band was increased during exploration of the novel object. In OF, amphetamine increased locomotion and produced an overall decrease in the power densities of all frequency bands. Overall, the results indicate that EEG characteristics are closely related to behavioral changes in the NORT and OF in rodents.
Collapse
|
10
|
Zhou W, Zhong G, Fu S, Xie H, Chi T, Li L, Rao X, Zeng S, Xu D, Wang H, Sheng G, Ji X, Liu X, Ji X, Wu D, Zou L, Tortorella M, Zhang K, Hu W. Microglia-Based Phenotypic Screening Identifies a Novel Inhibitor of Neuroinflammation Effective in Alzheimer's Disease Models. ACS Chem Neurosci 2016; 7:1499-1507. [PMID: 27504670 DOI: 10.1021/acschemneuro.6b00125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Currently, anti-AD drug discovery using target-based approaches is extremely challenging due to unclear etiology of AD and absence of validated therapeutic protein targets. Neuronal death, regardless of causes, plays a key role in AD progression, and it is directly linked to neuroinflammation. Meanwhile, phenotypic screening is making a resurgence in drug discovery process as an alternative to target-focused approaches. Herein, we employed microglia-based phenotypic screenings to search for small molecules that modulate the release of detrimental proinflammatory cytokines. The identified novel pharmacological inhibitor of neuroinflammation (named GIBH-130) was validated to alter phenotypes of neuroinflammation in AD brains. Notably, this molecule exhibited comparable in vivo efficacy of cognitive impairment relief to donepezil and memantine respectively in both β amyloid-induced and APP/PS1 double transgenic Alzheimer's murine models at a substantially lower dose (0.25 mg/kg). Therefore, GIBH-130 constitutes a unique chemical probe for pathogenesis research and drug development of AD, and it also suggests microglia-based phenotypic screenings that target neuroinflammation as an effective and feasible strategy to identify novel anti-AD agents.
Collapse
Affiliation(s)
- Wei Zhou
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
- Institute
of Natural Products and Green Chemistry, School of Light Industry
and Chemical Engineering, Guangdong University of Technology, Guangzhou 510003, People’s Republic of China
| | - Guifa Zhong
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Sihai Fu
- Department
of Pharmacy, South China Center of Innovative Pharmaceuticals, Guangzhou 510663, People’s Republic of China
| | - Hui Xie
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People’s Republic of China
| | - Tianyan Chi
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Luyi Li
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Xiurong Rao
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Shaogao Zeng
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Dengfeng Xu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Hao Wang
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Guoqing Sheng
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Xing Ji
- Department
of Pharmacy, South China Center of Innovative Pharmaceuticals, Guangzhou 510663, People’s Republic of China
| | - Xiaorong Liu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Xuefei Ji
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Donghai Wu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Libo Zou
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Micky Tortorella
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Kejian Zhang
- Department
of Pharmacy, South China Center of Innovative Pharmaceuticals, Guangzhou 510663, People’s Republic of China
| | - Wenhui Hu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| |
Collapse
|
11
|
Izumida H, Takagi H, Fujisawa H, Iwata N, Nakashima K, Takeuchi S, Iwama S, Namba T, Komatu Y, Kaibuchi K, Oiso Y, Arima H, Sugimura Y. NMDA receptor antagonist prevents cell death in the hippocampal dentate gyrus induced by hyponatremia accompanying adrenal insufficiency in rats. Exp Neurol 2016; 287:65-74. [PMID: 27527984 DOI: 10.1016/j.expneurol.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/30/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022]
Abstract
Selective apoptosis of granule cells in the hippocampal dentate gyrus (DG) of rats with bilateral adrenalectomy (ADX) and in patients who died of adrenal insufficiency has been reported. Although adrenal insufficiency is a common disease and is usually associated with hyponatremia, its effect on the central nervous system and in apoptosis in the hippocampus remain to be elucidated. Using rat models to represent clinical hyponatremia accompanying adrenal insufficiency, we show that reduced serum [Na+] was associated with selective apoptosis in the DG. Nine days after ADX, apoptotic cells were observed in the DG of rats whose serum [Na+] was <125mEq/L (moderate hyponatremia), but rarely in those whose serum [Na+] was ≥125mEq/L or in normonatremic rats. Although all hyponatremic ADX rats survived following treatment with corticosterone and saline started 7days after ADX when apoptosis had not yet occurred, selective apoptosis on day 9 was not prevented in moderately hyponatremic rats. Interestingly, treatment with memantine, a noncompetitive NMDAR antagonist, prevented the selective apoptosis in the DG in moderately hyponatremic, ADX rats, and improved electrophysiological dysfunction, including impaired basal synaptic transmission and long-term potentiation at the entorhinal cortex-DG synapses. These results demonstrated that in adrenal insufficient rats, hyponatremia was associated with apoptosis in the DG, and that memantine prevented the apoptosis and improved cell function. Our data imply the importance of assessing the possibility of neurological impairments after treatment with CORT in patients with moderate or severe hyponatremia accompanying adrenal insufficiency and that memantine may represent a beneficial therapeutic strategy to prevent neurological impairments in such patients.
Collapse
Affiliation(s)
- Hisakazu Izumida
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Haruki Fujisawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Naoko Iwata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kohtaro Nakashima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Seiji Takeuchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Namba
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yukio Komatu
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-0814, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
12
|
Huang L, Yang XJ, Huang Y, Sun EY, Sun M. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD. PLoS One 2016; 11:e0159192. [PMID: 27467732 PMCID: PMC4965035 DOI: 10.1371/journal.pone.0159192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/28/2016] [Indexed: 12/02/2022] Open
Abstract
NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer’s disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs’ therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations.
Collapse
Affiliation(s)
- Lanting Huang
- Neurodegeneration Discovery Performance Unit, GSK, R&D Shanghai, Building 1, 917 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Xiu-Juan Yang
- Neurodegeneration Discovery Performance Unit, GSK, R&D Shanghai, Building 1, 917 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, China
| | - Ying Huang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Eve Y. Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Mu Sun
- Neurodegeneration Discovery Performance Unit, GSK, R&D Shanghai, Building 1, 917 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Yhnell E, Dunnett SB, Brooks SP. The utilisation of operant delayed matching and non-matching to position for probing cognitive flexibility and working memory in mouse models of Huntington's disease. J Neurosci Methods 2016; 265:72-80. [PMID: 26321735 PMCID: PMC4863528 DOI: 10.1016/j.jneumeth.2015.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Operant behavioural testing provides a highly sensitive and automated method of exploring the behavioural deficits seen in rodent models of neurodegenerative diseases, including Huntington's disease (HD). The delayed matching to position (DMTP) and delayed non-matching to position (DNMTP) tasks probe spatial learning and working memory and when applied serially they can be used to measure reversal learning, which has been shown to be an early symptom of executive dysfunction in HD. NEW METHOD The DMTP and DNMTP tasks were conducted in two configurations of operant apparatus; the conventional 9-hole operant apparatus, and a Skinner-like operant apparatus, to compare, contrast and optimise the DMTP and DNMTP operant protocols for use in mice. The optimised tasks were then tested in the Hdh(Q111) mouse model of HD. RESULTS Optimisation of the operant apparatus demonstrated that the mice learned the DMTP and DNMTP tasks more rapidly and effectively in the Skinner-like apparatus configuration in comparison to the conventional 9-hole apparatus configuration. When tested in the Hdh(Q111) mouse model of HD, the DMTP and DNMTP tasks revealed significant deficits in reversal learning. COMPARISON WITH EXISTING METHOD We found that mice were capable of performing the DMTP and DNMTP tasks in both apparatus configurations, but in comparison to the 9-hole configuration, the Skinner-like configuration produced more efficient, robust and reliable results. CONCLUSIONS The results presented here suggest that DMTP and DNMTP tasks, incorporating a reversal learning manipulation, are valid and robust methods for probing selected cognitive deficits in mouse models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma Yhnell
- The Brain Repair Group, Cardiff University School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, South Glamorgan, United Kingdom.
| | - Stephen B Dunnett
- The Brain Repair Group, Cardiff University School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, South Glamorgan, United Kingdom
| | - Simon P Brooks
- The Brain Repair Group, Cardiff University School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, South Glamorgan, United Kingdom
| |
Collapse
|
14
|
Esfandiary E, Karimipour M, Mardani M, Ghanadian M, Alaei HA, Mohammadnejad D, Esmaeili A. Neuroprotective effects of Rosa damascena extract on learning and memory in a rat model of amyloid-β-induced Alzheimer's disease. Adv Biomed Res 2015; 4:131. [PMID: 26322279 PMCID: PMC4544115 DOI: 10.4103/2277-9175.161512] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/12/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease, which is characterized clinically by serious impairment in memory and cognition. Current medications only slow down the dementia progression and the present treatment one-drug one-target paradigm for anti-AD treatment appears to be clinically unsuccessful. Therefore, alternative therapeutic strategies are urgently needed. With respect to multifunctional and multitargeted characteristics of Rosa damascena via its effective flavonoids, we investigated the effects of R. damascena extract on behavioral functions in a rat model of amyloid-β (A-β)-induced Alzheimer's disease. MATERIALS AND METHODS After preparation of the methanolic extract of the R. damascena, HPLC analysis and toxicity studies, median lethal dose (LD50) and dose levels were determined. For evaluation of baseline training behavioral performance, Morris water maze and passive avoidance tests were used. A-β was injected bilaterally into CA1 area of the hippocampus. Twenty-one days after injection of A-β, the first probe trial of the behavioral tests were used to confirm learning and memory impairment. To examine the potential effects of the extract on behavioral tasks, the second probe trials were performed after one month administration of R. damasena extract. RESULTS Results showed that the R. damascena extract significantly improved the spatial and long-term memories in the extract- treated groups in a dose-dependent manner, as in the middle and high doses it had significant effect. CONCLUSION According to these results, we concluded that R. damascena can reverse behavioral deficits caused by A-β, and may provide a new potential option for prevention and treatment of the cognitive dysfunction in Alzheimer's disease.
Collapse
Affiliation(s)
- Ebrahim Esfandiary
- Department of Anatomical Sciences and Molecular Biology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences and Molecular Biology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences and Molecular Biology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Physiology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjat Allah Alaei
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Abolghasem Esmaeili
- Department of Biology, Cells, Molecular Biology and Biochemistry Division, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
15
|
Atri A, Stern TA. Psychopharmacologic Agents to Enhance Cognition in Alzheimer’s Disease. Psychiatr Ann 2015. [DOI: 10.3928/00485713-20150626-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Adewusi EA, Steenkamp V. Medicinal plants and their derivatives with amyloid beta inhibitory activity as potential targets for drug discovery. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60810-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Cho N, Lee HK, Jeon BJ, Kim HW, Kim HP, Lee JH, Kim YC, Sung SH. The effects of Betula platyphylla bark on amyloid beta-induced learning and memory impairment in mice. Food Chem Toxicol 2014; 74:156-63. [DOI: 10.1016/j.fct.2014.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/28/2014] [Accepted: 09/29/2014] [Indexed: 01/20/2023]
|
18
|
Kwon KJ, Kim MK, Lee EJ, Kim JN, Choi BR, Kim SY, Cho KS, Han JS, Kim HY, Shin CY, Han SH. Effects of donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular dementia. J Neurol Sci 2014; 347:66-77. [DOI: 10.1016/j.jns.2014.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/01/2014] [Accepted: 09/15/2014] [Indexed: 12/20/2022]
|
19
|
Das D, Phillips C, Hsieh W, Sumanth K, Dang V, Salehi A. Neurotransmitter-based strategies for the treatment of cognitive dysfunction in Down syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:140-8. [PMID: 24842803 DOI: 10.1016/j.pnpbp.2014.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 01/10/2023]
Abstract
Down syndrome (DS) is a multisystem disorder affecting the cardiovascular, respiratory, gastrointestinal, neurological, hematopoietic, and musculoskeletal systems and is characterized by significant cognitive disability and a possible common pathogenic mechanism with Alzheimer's disease. During the last decade, numerous studies have supported the notion that the triplication of specific genes on human chromosome 21 plays a significant role in cognitive dysfunction in DS. Here we reviewed studies in trisomic mouse models and humans, including children and adults with DS. In order to identify groups of genes that contribute to cognitive disability in DS, multiple mouse models of DS with segmental trisomy have been generated. Over-expression of these particular genes in DS can lead to dysfunction of several neurotransmitter systems. Therapeutic strategies for DS have either focused on normalizing the expression of triplicated genes with important roles in DS or restoring the function of these systems. Indeed, our extensive review of studies on the pathogenesis of DS suggests that one plausible strategy for the treatment of cognitive dysfunction is to target the cholinergic, serotonergic, GABA-ergic, glutamatergic, and norepinephrinergic system. However, a fundamental strategy for treatment of cognitive dysfunction in DS would include reducing to normal levels the expression of specific triplicated genes in affected systems before the onset of neurodegeneration.
Collapse
Affiliation(s)
- Devsmita Das
- VA Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Cristy Phillips
- Department of Physical Therapy, P.O. Box 910, Arkansas State University, State University, AR, USA
| | - Wayne Hsieh
- VA Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA, USA
| | - Krithika Sumanth
- VA Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA, USA
| | - Van Dang
- VA Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Ahmad Salehi
- VA Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA.
| |
Collapse
|
20
|
Francis PT, Parsons CG, Jones RW. Rationale for combining glutamatergic and cholinergic approaches in the symptomatic treatment of Alzheimer’s disease. Expert Rev Neurother 2014; 12:1351-65. [DOI: 10.1586/ern.12.124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Al-Rahbi B, Zakaria R, Othman Z, Hassan A, Mohd Ismail ZI, Muthuraju S. Tualang honey supplement improves memory performance and hippocampal morphology in stressed ovariectomized rats. Acta Histochem 2014; 116:79-88. [PMID: 23810156 DOI: 10.1016/j.acthis.2013.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 01/07/2023]
Abstract
Recently, our research team has reported that Tualang honey was able to improve immediate memory in postmenopausal women comparable with that of estrogen progestin therapy. Therefore the aim of the present study was to examine the effects of Tualang honey supplement on hippocampal morphology and memory performance in ovariectomized (OVX) rats exposed to social instability stress. Female Sprague-Dawley rats were divided into six groups: (i) sham-operated controls, (ii) stressed sham-operated controls, (iii) OVX rats, (iv) stressed OVX rats, (v) stressed OVX rats treated with 17β-estradiol (E2), and (vi) stressed OVX rats treated with Tualang honey. These rats were subjected to social instability stress procedure followed by novel object recognition (NOR) test. Right brain hemispheres were subjected to Nissl staining. The number and arrangement of pyramidal neurons in regions of CA1, CA2, CA3 and the dentate gyrus (DG) were recorded. Two-way ANOVA analyses showed significant interactions between stress and OVX in both STM and LTM test as well as number of Nissl-positive cells in all hippocampal regions. Both E2 and Tualang honey treatments improved both short-term and long-term memory and enhanced the neuronal proliferation of hippocampal CA2, CA3 and DG regions compared to that of untreated stressed OVX rats.
Collapse
Affiliation(s)
- Badriya Al-Rahbi
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Malaysia.
| | - Zahiruddin Othman
- Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Malaysia
| | - Asma Hassan
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Malaysia
| | - Zul Izhar Mohd Ismail
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Malaysia
| | - Sangu Muthuraju
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Malaysia
| |
Collapse
|
22
|
Cutuli D, De Bartolo P, Caporali P, Tartaglione AM, Oddi D, D'Amato FR, Nobili A, D'Amelio M, Petrosini L. Neuroprotective effects of donepezil against cholinergic depletion. ALZHEIMERS RESEARCH & THERAPY 2013; 5:50. [PMID: 24401551 PMCID: PMC3978431 DOI: 10.1186/alzrt215] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/16/2013] [Indexed: 11/12/2022]
Abstract
Introduction Intraparenchymal injections of the immunotoxin 192-IgG-saporin into medial septum and nucleus basalis magnocellularis causes a selective depletion of basal forebrain cholinergic neurons. Thus, it represents a valid model to mimic a key component of the cognitive deficits associated with aging and dementia. Here we administered donepezil, a potent acetylcholinesterase inhibitor developed for treating Alzheimer’s disease, 15 days before 192-IgG-saporin injection, and thus we examined donepezil effects on neurodegeneration and cognitive deficits. Methods Caspase-3 activity and cognitive performances of lesioned rats pre-treated with donepezil or saline were analyzed and compared to the outcomes obtained in pre-treated sham-lesioned rats. Results Cholinergic depletion increased hippocampal and neocortical caspase-3 activity and impaired working memory, spatial discrimination, social novelty preference, and ultrasonic vocalizations, without affecting anxiety levels and fear conditioning. In lesioned animals, donepezil pre-treatment reduced hippocampal and neocortical caspase-3 activity and improved working memory and spatial discrimination performances and partially rescued ultrasonic vocalizations, without preventing social novelty alterations. Conclusions Present data indicate that donepezil pre-treatment exerts beneficial effects on behavioral deficits induced by cholinergic depletion, attenuating the concomitant hippocampal and neocortical neurodegeneration.
Collapse
|
23
|
Pandya AA, Yakel JL. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochem Pharmacol 2013; 86:1054-62. [PMID: 23732296 PMCID: PMC3797251 DOI: 10.1016/j.bcp.2013.05.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation-conducting transmembrane channels from the cys-loop receptor superfamily. The neuronal subtypes of these receptors (e.g. the α7 and α4β2 subtypes) are involved in neurobehavioral processes such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and a number of cognitive functions like learning and memory. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders, and behavioral studies in animals are useful models to assess the effects of compounds that act on these receptors. Allosteric modulators are ligands that bind to the receptors at sites other than the orthosteric site where acetylcholine, the endogenous agonist for the nAChRs, binds. While conventional ligands for the neuronal nAChRs have been studied for their behavioral effects in animals, allosteric modulators for these receptors have only recently gained attention, and research on their behavioral effects is growing rapidly. Here we will discuss the behavioral effects of allosteric modulators of the neuronal nAChRs.
Collapse
Affiliation(s)
- Anshul A Pandya
- Chukchi Campus, Department of Bio-science, College of Rural and Community Development, University of Alaska Fairbanks, P.O. Box 297, Kotzebue, AK 99752-0297, USA.
| | | |
Collapse
|
24
|
Alvarado-Martínez R, Salgado-Puga K, Peña-Ortega F. Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS One 2013; 8:e75745. [PMID: 24086624 PMCID: PMC3784413 DOI: 10.1371/journal.pone.0075745] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/20/2013] [Indexed: 11/17/2022] Open
Abstract
Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.
Collapse
Affiliation(s)
- Reynaldo Alvarado-Martínez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| |
Collapse
|
25
|
Danysz W, Parsons CG. Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br J Pharmacol 2013; 167:324-52. [PMID: 22646481 DOI: 10.1111/j.1476-5381.2012.02057.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
β-amyloid (Aβ) is widely accepted to be one of the major pathomechanisms underlying Alzheimer's disease (AD), although there is presently lively debate regarding the relative roles of particular species/forms of this peptide. Most recent evidence indicates that soluble oligomers rather than plaques are the major cause of synaptic dysfunction and ultimately neurodegeneration. Soluble oligomeric Aβ has been shown to interact with several proteins, for example glutamatergic receptors of the NMDA type and proteins responsible for maintaining glutamate homeostasis such as uptake and release. As NMDA receptors are critically involved in neuronal plasticity including learning and memory, we felt that it would be valuable to provide an up to date review of the evidence connecting Aβ to these receptors and related neuronal plasticity. Strong support for the clinical relevance of such interactions is provided by the NMDA receptor antagonist memantine. This substance is the only NMDA receptor antagonist used clinically in the treatment of AD and therefore offers an excellent tool to facilitate translational extrapolations from in vitro studies through in vivo animal experiments to its ultimate clinical utility.
Collapse
Affiliation(s)
- Wojciech Danysz
- Merz Pharmaceuticals GmbH, Eckenheimer Landstraße, Frankfurt am Main, Germany
| | | |
Collapse
|
26
|
Pearson-Leary J, McNay EC. Intrahippocampal administration of amyloid-β(1-42) oligomers acutely impairs spatial working memory, insulin signaling, and hippocampal metabolism. J Alzheimers Dis 2012; 30:413-22. [PMID: 22430529 DOI: 10.3233/jad-2012-112192] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Increasing evidence suggests that abnormal brain accumulation of amyloid-β(1-42) (Aβ(1-42)) oligomers plays a causal role in Alzheimer's disease (AD), and in particular may cause the cognitive deficits that are the hallmark of AD. In vitro, Aβ(1-42) oligomers impair insulin signaling and suppress neural functioning. We previously showed that endogenous insulin signaling is an obligatory component of normal hippocampal function, and that disrupting this signaling led to a rapid impairment of spatial working memory, while delivery of exogenous insulin to the hippocampus enhanced both memory and metabolism; diet-induced insulin resistance both impaired spatial memory and prevented insulin from increasing metabolism or cognitive function. Hence, we tested the hypothesis that Aβ(1-42) oligomers could acutely impair hippocampal metabolic and cognitive processes in vivo in the rat. Our findings support this hypothesis: Aβ(1-42) oligomers impaired spontaneous alternation behavior while preventing the task-associated dip in hippocampal ECF glucose observed in control animals. In addition, Aβ(1-42) oligomers decreased plasma membrane translocation of the insulin-sensitive glucose transporter 4 (GluT4), and impaired insulin signaling as measured by phosphorylation of Akt. These data show in vivo that Aβ(1-42) oligomers can rapidly impair hippocampal cognitive and metabolic processes, and provide support for the hypothesis that elevated Aβ(1-42) leads to cognitive impairment via interference with hippocampal insulin signaling.
Collapse
|
27
|
Guadagna S, Bundgaard C, Hovelsø N, Volbracht C, Francis PT, Egebjerg J, Sotty F. Memantine potentiates hippocampal theta oscillations at a therapeutic dose in anesthetized mice: A mechanistic link to its cognitive-enhancing properties. Neuropharmacology 2012; 62:2208-18. [DOI: 10.1016/j.neuropharm.2012.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/21/2011] [Accepted: 01/18/2012] [Indexed: 01/10/2023]
|
28
|
Matrix metalloproteinases contribute to neuronal dysfunction in animal models of drug dependence, Alzheimer's disease, and epilepsy. Biochem Res Int 2011; 2011:681385. [PMID: 22235372 PMCID: PMC3253438 DOI: 10.1155/2011/681385] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/17/2011] [Indexed: 01/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy.
Collapse
|
29
|
Dominguez E, Chin TY, Chen CP, Wu TY. Management of moderate to severe Alzheimer’s disease: Focus on memantine. Taiwan J Obstet Gynecol 2011; 50:415-23. [DOI: 10.1016/j.tjog.2011.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2011] [Indexed: 12/13/2022] Open
|
30
|
Abdel-Aal RA, Assi AAA, Kostandy BB. Memantine prevents aluminum-induced cognitive deficit in rats. Behav Brain Res 2011; 225:31-8. [DOI: 10.1016/j.bbr.2011.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/21/2011] [Accepted: 06/26/2011] [Indexed: 01/31/2023]
|
31
|
Ihalainen J, Sarajärvi T, Rasmusson D, Kemppainen S, Keski-Rahkonen P, Lehtonen M, Banerjee PK, Semba K, Tanila H. Effects of memantine and donepezil on cortical and hippocampal acetylcholine levels and object recognition memory in rats. Neuropharmacology 2011; 61:891-9. [DOI: 10.1016/j.neuropharm.2011.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 11/17/2022]
|
32
|
Inhibition of JNK phosphorylation reverses memory deficit induced by β-amyloid (1–42) associated with decrease of apoptotic factors. Behav Brain Res 2011; 217:424-31. [DOI: 10.1016/j.bbr.2010.11.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 01/11/2023]
|
33
|
Yuan H, Wang WP, Feng N, Wang L, Wang XL. Donepezil attenuated oxygen-glucose deprivation insult by blocking Kv2.1 potassium channels. Eur J Pharmacol 2011; 657:76-83. [PMID: 21300054 DOI: 10.1016/j.ejphar.2011.01.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 01/06/2011] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
Excessive K(+) efflux via activated voltage-gated K(+) channels (Kv channels) and the consequent intracellular K(+) depletion during and after ischemia/hypoxia induced long-lasting membrane depolarization promotes neuronal apoptosis. Although it has been suggested as an important potassium channel subtype in oxidative stress induced neuron apoptosis, whether Kv2.1 mediates ischemic apoptosis remains undefined. In the present study, the role of Kv2.1 played in hypoxia/anoxia induced cell apoptosis and correlated protective effect of donepezil were evaluated. Kv2.1 transfected HEK293 cell line (Kv2.1/HEK293) was used to study oxygen-glucose deprivation (OGD) induced cell apoptosis. We found Kv2.1 transfection increased the vulnerability of HEK293 cells to OGD insult, blocking Kv2.1 potassium channel by tetraethylammonium (TEA, 10mM) could attenuated OGD induced Kv2.1/HEK293 cell apoptosis significantly. OGD slightly reduced Kv2.1 currents without affecting channel kinetic activity. However, the membrane potential of Kv2.1/HEK293 cells depolarized to around 0mV after OGD treatment, a potential which could activated Kv2.1 persistently. Donepezil blocked Kv2.1 currents in a dose-dependent manner (IC(50)=7.59μM). Under OGD condition, donepezil (30μM) effectively inhibited Kv2.1 currents by accelerating channel inactivation and decreased Kv2.1/HEK293 cell apoptosis rate. In conclusion, our study revealed both the conducting role of Kv2.1 in OGD induced cell apoptosis and the importance of Kv2.1 as a target for neuronal protection. In addition, besides anti-acetylcholinesterase activity, Kv2.1 blockade capability of donepezil may attribute to its neuroprotective effects against ischemic apoptosis.
Collapse
Affiliation(s)
- Hui Yuan
- Department of pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Xiannongtan Street, Xuanwu District,Beijing 100050, China
| | | | | | | | | |
Collapse
|
34
|
Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-κB activation in a rat model of Alzheimer's disease induced by amyloid-β(1-42). Brain Res 2011; 1384:89-96. [PMID: 21300035 DOI: 10.1016/j.brainres.2011.01.103] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/27/2011] [Accepted: 01/29/2011] [Indexed: 02/05/2023]
Abstract
BACKGROUND The neuroinflammation characterized by glial activation and release of proinflammatory mediators is considered to play a critical role in the pathogenesis of Alzheimer's disease (AD). Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the Chinese herb radix Stephania tetrandra, has been demonstrated to decrease the expression of proinflammatory mediators by inhibition of nuclear factor-κB (NF-κB) activation. The purpose of the study was to investigate effects of tetrandrine on experimental model of AD. MATERIALS AND METHODS Tetrandrine was administered in a rat model of AD induced by amyloid-β (Aβ)(1-42). The learning and memory impairment was examined using Morris water maze; the extent of histological injury in hippocampus was determined by Nissl staining; NF-κB DNA binding activity was assessed by electrophoretic mobility shift assay; the expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β was measured by enzyme-linked immunosorbent assay. RESULTS A significant improvement was observed in learning and memory impairment in rats with tetrandrine, and the increase in NF-κB DNA binding activity, the over-expression in IL-1β and TNF-α as well as the increased histological injury in hippocampus in rats induced by Aβ(1-42) were significantly reduced following administration of tetrandrine. CONCLUSION Tetrandrine could significantly ameliorate Aβ(1-42)-induced spatial learning and memory impairment, and the beneficial effect of tetrandrine treatment could be linked, at least in part, to the inhibition of NF-κB activity and the downregulation of expression of IL-1β and TNF-α, suggesting that administration of tetrandrine may provide a therapeutic approach for AD.
Collapse
|
35
|
Bassil N, Thaipisuttikul P, Grossberg GT. Memantine ER, a once-daily formulation for the treatment of Alzheimer's disease. Expert Opin Pharmacother 2010; 11:1765-71. [PMID: 20540654 DOI: 10.1517/14656566.2010.493874] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Alzheimer's disease is a progressive, degenerative brain disease. As the disease progresses, patients and caregivers face increasing problems with medication adherence. Given its relentlessly progressive nature, newer and more effective therapies for Alzheimer's disease are needed. Memantine 10 mg twice daily is the FDA-approved regimen for the treatment of moderate to severe Alzheimer's disease. AREAS COVERED IN THIS REVIEW The goal of this article is to review the once-daily memantine ER 28 mg formulation for the treatment of Alzheimer's disease, which, by simplifying the dosage regimen, decreases the problems of medication adherence. A new extended-release formulation has been developed to improve adherence and possibly efficacy without compromising an excellent tolerability and safety profile. There is also a possibility of dose-dependent improvement/superiority in cognitive, global and behavioral measures as well as in verbal fluency with higher-dose (28 mg/day) memantine. WHAT THE READER WILL GAIN Readers will become knowledgeable about this new dose and preparation of memantine. However, these advantages remain provisional and more research is needed to evaluate patient adherence, outcomes and caregiver burden related to twice-daily versus once-daily administration in patients with moderate to severe Alzheimer's disease. TAKE HOME MESSAGE A new, once-daily, higher-dose preparation of memantine seems to be well tolerated and may provide additional benefits for selected patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Nazem Bassil
- Department of Neurology and Psychiatry, St. Louis University School of Medicine, 1438 South Grand St Louis, MO 63104, USA
| | | | | |
Collapse
|
36
|
Rammes G, Danysz W, Parsons CG. Pharmacodynamics of memantine: an update. Curr Neuropharmacol 2010; 6:55-78. [PMID: 19305788 PMCID: PMC2645549 DOI: 10.2174/157015908783769671] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/10/2007] [Accepted: 11/05/2007] [Indexed: 01/12/2023] Open
Abstract
Memantine received marketing authorization from the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of moderately severe to severe Alzheimer s disease (AD) in Europe on 17(th) May 2002 and shortly thereafter was also approved by the FDA for use in the same indication in the USA. Memantine is a moderate affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist with strong voltage-dependency and fast kinetics. Due to this mechanism of action (MOA), there is a wealth of other possible therapeutic indications for memantine and numerous preclinical data in animal models support this assumption. This review is intended to provide an update on preclinical studies on the pharmacodynamics of memantine, with an additional focus on animal models of diseases aside from the approved indication. For most studies prior to 1999, the reader is referred to a previous review [196].In general, since 1999, considerable additional preclinical evidence has accumulated supporting the use of memantine in AD (both symptomatic and neuroprotective). In addition, there has been further confirmation of the MOA of memantine as an uncompetitive NMDA receptor antagonist and essentially no data contradicting our understanding of the benign side effect profile of memantine.
Collapse
Affiliation(s)
- G Rammes
- Clinical Neuropharmacology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | |
Collapse
|
37
|
Wang HY, Bakshi K, Shen C, Frankfurt M, Trocmé-Thibierge C, Morain P. S 24795 limits beta-amyloid-alpha7 nicotinic receptor interaction and reduces Alzheimer's disease-like pathologies. Biol Psychiatry 2010; 67:522-30. [PMID: 19932469 DOI: 10.1016/j.biopsych.2009.09.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 09/18/2009] [Accepted: 09/30/2009] [Indexed: 11/30/2022]
Abstract
BACKGROUND Beta-amyloid (Abeta) enables Alzheimer's disease (AD) plaque and neurofibrillary pathogenesis. Soluble Abeta promotes intraneuronal Abeta aggregates and tau phosphorylation by interacting with alpha7 nicotinic receptors (alpha7nAChRs). The current study assessed whether the novel alpha7nAChR partial agonist 2-(2-(4-bromophenyl)-2-oxoethyl)-1-methyl pyridinium (S 24795) could reduce AD-like pathologies by interfering with Abeta-alpha7nAChR interaction. METHODS We compared the in vitro effect of S 24795, memantine, galantamine, and Abeta(12-28) on Abeta(42)-alpha7nAChR interaction in rat hippocampal synaptosomes. We further evaluated the effect of S 24795 on Abeta(42)-induced tau phosphorylation with rat hippocampal synaptosomes in vitro. Effects of S 24795 on Abeta(42) immunostaining, Abeta(42)-alpha7nAChR interaction, and/or Abeta(42)-mediated reduction of calcium (Ca(2+)) influx through alpha7nAChR and N-methyl-d-aspartate receptor (NMDAR) were assessed in Abeta(42)-incubated organotypic brain slices and intracerebroventricularly (ICV) Abeta(42)-injected mouse brain. RESULTS Preincubation with S 24795 in vitro reduces Abeta(42)-alpha7nAChR interaction and Abeta(42)-induced tau phosphorylation. In organotypic brain slice cultures and in an ICV Abeta(42) injection in vivo model, S 24795 reduces Abeta(42)-alpha7nAChR association and Abeta(42) immunostaining. S 24795 also normalizes Ca(2+) fluxes through both alpha7nAChR and NMDAR channels in Abeta(42)-infused mouse brains and Abeta(42)-exposed organotypic cortical slices. Unlike S 24795 and Abeta(12-28), galantamine or memantine minimally affect Abeta(42)-alpha7nAChR coupling and Abeta(42)-mediated reduction of alpha7nAChR- and NMDAR-mediated Ca(2+) influx. INTERPRETATION Drugs like S 24795 that disrupt Abeta(42)-alpha7nAChR interaction might alleviate Abeta(42)-mediated synaptic dysfunction and block AD-like pathologies.
Collapse
Affiliation(s)
- Hoau-Yan Wang
- Department of Physiology and Pharmacology, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Mizoguchi H, Takuma K, Fukuzaki E, Ibi D, Someya E, Akazawa KH, Alkam T, Tsunekawa H, Mouri A, Noda Y, Nabeshima T, Yamada K. Matrix metalloprotease-9 inhibition improves amyloid beta-mediated cognitive impairment and neurotoxicity in mice. J Pharmacol Exp Ther 2009; 331:14-22. [PMID: 19587312 DOI: 10.1124/jpet.109.154724] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Alzheimer's disease (AD), the expression of matrix metalloproteases (MMPs), which are capable of degrading extracellular matrix proteins, is increased in the brain. Previous studies with cultured glial cells have demonstrated that amyloid beta (Abeta) protein can induce the expression of MMPs, which could be involved in the degradation of Abeta. In the present study, we investigated the role of MMP-2 and MMP-9 in cognitive impairment induced by the injection of Abeta in mice. The intracerebroventricular injection of Abeta25-35, Abeta1-40, and Abeta1-42, but not Abeta40-1, transiently increased MMP-9, but not MMP-2, activity and protein expression in the hippocampus. Immunohistochemistry revealed the expression of MMP-9 to be increased in both neurons and glial cells in the hippocampus after Abeta treatment. The Abeta-induced cognitive impairment in vivo as well as neurotoxicity in vitro was significantly alleviated in MMP-9 homozygous knockout mice and by treatment with MMP inhibitors. These results suggest the increase in MMP-9 expression in the hippocampus to be involved in the development of cognitive impairment induced by Abeta1-40. Thus, specific inhibitors of MMP-9 may have therapeutic potential for the treatment of AD. Our findings suggest that, as opposed to expectations based on previous findings, MMP-9 plays a causal role in Abeta-induced cognitive impairment and neurotoxicity.
Collapse
|
39
|
Dissociating beta-amyloid from alpha 7 nicotinic acetylcholine receptor by a novel therapeutic agent, S 24795, normalizes alpha 7 nicotinic acetylcholine and NMDA receptor function in Alzheimer's disease brain. J Neurosci 2009; 29:10961-73. [PMID: 19726654 DOI: 10.1523/jneurosci.6088-08.2009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by synaptic dysfunction and cardinal neuropathological features including amyloid plaques and neurofibrillary tangles. Soluble amyloid-beta (Abeta) can suppress synaptic activities by interacting with alpha7 nicotinic acetylcholine receptors (alpha7nAChRs). Here, we show that alpha7nAChR and NMDA glutamatergic receptor (NMDAR) activities are severely compromised in synaptosomes prepared from AD and Abeta(1-42) (Abeta42)-exposed control frontal cortex slices from postmortem tissue. Whereas Abeta(12-28) prevents Abeta42 from binding to alpha7nAChRs, 2-[2-(4-bromophenyl)-2-oxoethyl]-1-methyl pyridinium (S 24795), a novel alpha7nAChR partial agonist, facilitates release of Abeta42 from Abeta42-alpha7nAChR and -Abeta42 complexes. S 24795 interacts with alpha7nAChR and Abeta(15-20) region of the Abeta42 to enable partial recovery of the alpha7nAChR and NMDAR channel function. These findings suggest that the Abeta-alpha7nAChR interaction may be an upstream pathogenic event in AD and demonstrate that some recovery of neuronal channel activities may be achieved in AD brains by removing Abeta from alpha7nAChRs.
Collapse
|
40
|
Bassil N, Grossberg GT. Novel regimens and delivery systems in the pharmacological treatment of Alzheimer's disease. CNS Drugs 2009; 23:293-307. [PMID: 19374459 DOI: 10.2165/00023210-200923040-00003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mainstay of current management of patients with Alzheimer's disease involves drugs that provide symptomatic therapy. Research approaches for future therapy of Alzheimer's disease are focusing on disease modifying and/or preventive approaches. Two classes of medications have been approved by the US FDA for the treatment of Alzheimer's disease: the cholinesterase inhibitors (tacrine, donepezil, rivastigmine, galantamine), mostly for mild to moderate Alzheimer's disease, and the noncompetitive NMDA receptor antagonist memantine for the moderate to severe stages of Alzheimer's disease. Management of comorbid medical problems can be more complex in patients with dementia than in those without dementia. Unfortunately, medication adherence in Alzheimer's disease is low and good adherence is essential for attempting to slow disease progression and improve or stabilize quality of life. Simplifying treatment regimens and providing more caregiver- and patient-friendly modes of administration that fit in better with daily routines can ease caregiver stress which, in turn, may have a favourable impact on the patient's condition. To overcome problems of medication adherence in the elderly, simple, user-friendly dosage regimens should be prescribed for all medications; thus the need for novel regimens and delivery systems in the pharmacological treatment of Alzheimer's disease, such as once-daily donepezil, memantine and galantamine, and transdermal rivastigmine.
Collapse
Affiliation(s)
- Nazem Bassil
- Division of Geriatric Medicine, St Louis University Health Sciences Center, St Louis, Missouri 63104, USA
| | | |
Collapse
|
41
|
Ishida T, Kamei C. Characteristic Effects of Anti-dementia Drugs on Rat Sleep Patterns. J Pharmacol Sci 2009; 109:449-55. [DOI: 10.1254/jphs.08229fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
42
|
Therapeutically relevant plasma concentrations of memantine produce significant L-N-methyl-D-aspartate receptor occupation and do not impair learning in rats. Behav Pharmacol 2008; 19:724-34. [DOI: 10.1097/fbp.0b013e3283123cad] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Cognitive performance of healthy young rats following chronic donepezil administration. Psychopharmacology (Berl) 2008; 197:661-73. [PMID: 18309476 DOI: 10.1007/s00213-008-1084-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 01/18/2008] [Indexed: 12/26/2022]
Abstract
RATIONALE Experimental studies have investigated the effects of chronic donepezil treatment on the behavioral deficits elicited by reduced activity or the loss of cholinergic neurons that occurs in aging or in models of dementia. However, few studies have analyzed the effects of chronic donepezil treatment on the cognitive functions of intact animals. OBJECTIVES The cognitive functions of healthy young rats treated chronically with the acetylcholinesterase inhibitor donepezil were evaluated using a wide behavioral test battery. RESULTS Chronic treatment with donepezil ameliorated memory functions and explorative strategies, speeded up the acquisition of localizing knowledge, augmented responsiveness to the context, and reduced anxiety levels. However, it did not affect spatial span, modify motivational levels, or influence associative learning. CONCLUSIONS The present findings show the specific profile of donepezil action on cognitive functions in the presence of unaltered cholinergic neurotransmission systems.
Collapse
|
44
|
Neuroprotective effects of memantine in a mouse model of retinal degeneration induced by rotenone. Brain Res 2008; 1215:208-17. [PMID: 18486118 DOI: 10.1016/j.brainres.2008.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 11/24/2022]
Abstract
This is the first report of the in vivo effectiveness of memantine as a neuroprotective agent against rotenone-induced retinal toxicity. We tested the hypothesis that uncompetitive NMDAR blockade with memantine prevents mitochondrial dysfunction-related neurodegeneration in vivo, using a mouse model of retinal ganglion cell layer (GCL) degeneration induced by rotenone, a mitochondrial complex I inhibitor. Rotenone induced an increase in cell death and oxidative stress in GCL compared to controls, and these changes were prevented by the co-administration of memantine. The neurotoxic effect of rotenone was also reflected as a decrease in total cell density in GCL and GCL+nerve fiber layer thickness. These changes were also prevented by co-administration of memantine in a dose-dependent manner. In addition, memantine induced an increase in long-term retinal energy metabolic capacity. The results suggest that NMDAR activation contributes to cell death induced by mitochondrial dysfunction and that uncompetitive NMDAR blockade may be used as a neuroprotective strategy against mitochondrial dysfunction in neurodegenerative diseases.
Collapse
|
45
|
Réus GZ, Valvassori SS, Machado RA, Martins MR, Gavioli EC, Quevedo J. Acute treatment with low doses of memantine does not impair aversive, non-associative and recognition memory in rats. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:295-300. [DOI: 10.1007/s00210-007-0235-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 11/23/2007] [Indexed: 02/02/2023]
|
46
|
Takuma K, Hoshina Y, Arai S, Himeno Y, Matsuo A, Funatsu Y, Kitahara Y, Ibi D, Hayase M, Kamei H, Mizoguchi H, Nagai T, Koike K, Inoue M, Yamada K. Ginkgo biloba extract EGb 761 attenuates hippocampal neuronal loss and cognitive dysfunction resulting from chronic restraint stress in ovariectomized rats. Neuroscience 2007; 149:256-62. [PMID: 17869007 DOI: 10.1016/j.neuroscience.2007.07.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/23/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
We have recently found that a combination of ovariectomy (OVX) and chronic restraint stress causes cognitive dysfunction and reduces hippocampal CA3 neurons in female rats and that estrogen replacement suppresses the OVX/stress-induced behavioral and morphological changes. In this study, we examined the effect of Ginkgo biloba extract (EGb 761), a popular herbal supplement, on the cognitive dysfunction and neuromorphological change in OVX/stress-subjected rats. Female Fisher 344 rats were randomly divided into three groups: vehicle-treated OVX, EGb 761 (50 mg/kg) -treated OVX and vehicle-treated sham-operated control groups. Two months after ovariectomy, all animals received restraint stress for 21 days (6 h/day), and were then subjected to a novel object recognition test followed by morphological examination by Nissl staining. EGb 761 was orally administered once daily until the behavioral analysis was done. Treatment with EGb 761 improved memory impairment and neuronal loss of hippocampus in the OVX/stress-subjected group in the same ways as 17beta-estradiol. On the other hand, EGb 761 did not affect the loss of bone mineral density and increase in body weight after OVX, although 17beta-estradiol attenuated them. These results have important implications for neuroprotective and cognition enhancing effects of EGb 761 in postmenopausal women and suggest that the effects are mediated by a different mechanism from estrogen.
Collapse
Affiliation(s)
- K Takuma
- Laboratory of Neuropsychopharmacology, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Parsons CG, Stöffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system--too little activation is bad, too much is even worse. Neuropharmacology 2007; 53:699-723. [PMID: 17904591 DOI: 10.1016/j.neuropharm.2007.07.013] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 06/19/2007] [Accepted: 07/17/2007] [Indexed: 12/13/2022]
Abstract
The neurotransmitter glutamate activates several classes of metabotropic receptor and three major types of ionotropic receptor--alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA). The involvement of glutamate mediated neurotoxicity in the pathogenesis of Alzheimer's disease (AD) is finding increasing scientific acceptance. Central to this hypothesis is the assumption that glutamate receptors, in particular of the NMDA type, are overactivated in a tonic rather than a phasic manner. Such continuous, mild, chronic activation ultimately leads to neuronal damage/death. Additionally, impairment of synaptic plasticity (learning) may result not only from neuronal damage per se but may also be a direct consequence of this continuous, non-contingent NMDA receptor activation. Complete NMDA receptor blockade has also been shown to impair neuronal plasticity, thus, both hypo- and hyperactivity of the glutamatergic system leads to dysfunction. Memantine received marketing authorization from the EMEA (European Medicines Agency) for the treatment of moderate to severe AD in Europe and was subsequently also approved by the FDA (Food and Drug Administration) for use in the same indication in the USA. Memantine is a moderate affinity, uncompetitive NMDA receptor antagonist with strong voltage-dependency and fast kinetics. This review summarizes existing hypotheses on the mechanism of action (MOA) of memantine in an attempt to understand how the accepted interaction with NMDA receptors could allow memantine to provide both neuroprotection and reverse deficits in learning/memory by the same MOA.
Collapse
Affiliation(s)
- Chris G Parsons
- Merz Pharmaceuticals, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | | | | |
Collapse
|
48
|
Wise LE, Lichtman AH. The uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist memantine prolongs spatial memory in a rat delayed radial-arm maze memory task. Eur J Pharmacol 2007; 575:98-102. [PMID: 17850786 PMCID: PMC2128866 DOI: 10.1016/j.ejphar.2007.07.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 11/15/2022]
Abstract
In the present study, we evaluated the effects of memantine in a delayed radial-arm maze rat task, consisting of an acquisition phase followed 18 h later by a win-shift retrieval test. When administered 20 min before acquisition, memantine elicited an inverted U-shape dose-response relationship, with low doses (0.3 and 0.56 mg/kg) reducing the number of errors committed during the retrieval test, while high doses (3 and 10 mg/kg) disrupted maze running. Memantine given immediately after acquisition or 20 min before retrieval failed to affect performance. Co-administration of subthreshold doses of memantine with either the CB(1) receptor antagonist rimonabant or the acetylcholine esterase inhibitor donepezil failed to enhance performance. Thus, low doses of memantine enhance acquisition processes that lead to prolonged spatial memory.
Collapse
Affiliation(s)
- Laura E Wise
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, MCV Campus, Richmond, VA 23298, USA
| | | |
Collapse
|
49
|
Nguyen PTH, Kimura T, Ho SA, Tran AH, Ono T, Nishijo H. Ameliorative effects of a neuroprotective agent, T-817MA, on place learning deficits induced by continuous infusion of amyloid-beta peptide (1-40) in rats. Hippocampus 2007; 17:443-55. [PMID: 17397046 DOI: 10.1002/hipo.20281] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline due to neuronal loss and neural network dysfunction. It has been postulated that progressive neuronal loss in AD is consequence of the neurotoxic properties of the amyloid-beta peptide (Abeta). In the present study, we investigated the effect of T-817MA (1-{3-[2-(1-benzothiophen-5-yl)ethoxy] propyl}-3-azetidinol maleate), a newly synthesized neurotrophic compound, on place learning deficits in rats with hippocampal damages. To induce granule cell loss in the dentate gyrus (DG) of the hippocampus, Abeta (1-40) was continuously infused (300 pmol/day) into the cerebral ventricle using a mini-osmotic pump for 5 weeks. Three weeks after the Abeta infusion, the rats were tested in a place learning task, which required them to alternatively visit two diametrically opposed areas in an open field to obtain intracranial self-stimulation reward. The results indicated that the Abeta-infused rats without treatment of T-817MA displayed learning impairment in the task; their performance level was significantly inferior to that of the vehicle rats. Treatment of T-817MA (8.4 mg/kg/day, p.o.) significantly improved the task performance of the Abeta-infused rats. Furthermore, T-817MA prevented granule cell loss due to Abeta-infusion, which was correlated to task performance of the rats. However, other cognitive enhancer, an acetylcholinesterase inhibitor, had no such effects. The results demonstrated that T-817MA ameliorated learning deficits induced by Abeta infusion, which might be attributed to neuroprotection in the hippocampus.
Collapse
Affiliation(s)
- Phuong Thi Hong Nguyen
- System Emotional Science, Graduate School of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Takuma K, Nagai T, Yamada K. [Behavioral analyses for learning and memory in mice and rats]. Nihon Yakurigaku Zasshi 2007; 130:112-6. [PMID: 17690491 DOI: 10.1254/fpj.130.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|