1
|
Segi-Nishida E, Suzuki K. Regulation of adult-born and mature neurons in stress response and antidepressant action in the dentate gyrus of the hippocampus. Neurosci Res 2025; 211:10-15. [PMID: 36030966 DOI: 10.1016/j.neures.2022.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
The dentate gyrus (DG) of the hippocampus has been implicated in the regulation of stress responses, and in the pathophysiology and treatment of depression. This review discusses the cellular changes caused by chronic stress and the cellular role of the DG in stress-induced behavioral changes and its antidepressant-like effects. Regarding adult-born neurogenic processes in the DG, chronic stress, such as repeated social defeat, suppresses cell proliferation during and immediately after stress; however, this effect is transient. The subsequent differentiation and survival processes are differentially regulated depending on the timing and sensitivity of stress. The activation of young adult-born neurons during stress contributes to stress resilience, while the transient increase in the survival of adult-born neurons after the cessation of stress seems to promote stress susceptibility. In mature granule neurons, the predominant cells in the DG, synaptic plasticity is suppressed by chronic stress. However, a group of mature granule neurons is activated by chronic stress. Chronic antidepressant treatment can transform mature granule neurons to a phenotype resembling that of immature neurons, characterized as "dematuration". Adult-born neurons suppress the activation of mature granule neurons during stress, indicating that local neural interactions within the DG are important for the stress response. Elucidating the stress-associated context- and timing-dependent cellular changes and functions in the DG will provide insights into stress-related psychiatric diseases.
Collapse
Affiliation(s)
- Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, Japan.
| | - Kanzo Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, Japan
| |
Collapse
|
2
|
Chang Z, Liu Q, Fan P, Xu W, Xie Y, Gong K, Zhang C, Zhao Z, Sun K, Shao G. Hypoxia preconditioning increases Notch1 activity by regulating DNA methylation in vitro and in vivo. Mol Biol Rep 2024; 51:507. [PMID: 38622406 DOI: 10.1007/s11033-024-09308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Our previous research has demonstrated that hypoxic preconditioning (HPC) can improve spatial learning and memory abilities in adult mice. Adult hippocampal neurogenesis has been associated with learning and memory. The Neurogenic locus notch homolog protein (Notch) was involved in adult hippocampal neurogenesis, as well as in learning and memory. It is currently unclear whether the Notch pathway regulates hippocampal neuroregeneration by modifying the DNA methylation status of the Notch gene following HPC. METHOD The HPC animal model and cell model were established through repeated hypoxia exposure using mice and the mouse hippocampal neuronal cell line HT22. Step-down test was conducted on HPC mice. Real-time PCR and Western blot analysis were used to assess the mRNA and protein expression levels of Notch1 and hairy and enhancer of split1 (HES1). The presence of BrdU-positive cells and Notch1 expression in the hippocampal dental gyrus (DG) were examined with confocal microscopy. The methylation status of the Notch1 was analyzed using methylation-specific PCR (MS-PCR). HT22 cells were employed to elucidate the impact of HPC on Notch1 in vitro. RESULTS HPC significantly improved the step-down test performance of mice with elevated levels of mRNA and protein expression of Notch1 and HES1 (P < 0.05). The intensities of the Notch1 signal in the control group, the H group and the HPC group were 2.62 ± 0.57 × 107, 2.87 ± 0.84 × 107, and 3.32 ± 0.14 × 107, respectively, and the number of BrdU (+) cells in the hippocampal DG were 1.83 ± 0.54, 3.71 ± 0.64, and 7.29 ± 0.68 respectively. Compared with that in C and H group, the intensity of the Notch1 signal and the number of BrdU (+) cells increased significantly in HPC group (P < 0.05). The methylation levels of the Notch1 promoter 0.82 ± 0.03, 0.65 ± 0.03, and 0.60 ± 0.02 in the C, H, and HPC groups, respectively. The methylation levels of Notch1 decreased significantly (P < 0.05). The effect of HPC on HT22 cells exhibited similarities to that observed in the hippocampus. CONCLUSION HPC may confer neuroprotection by activating the Notch1 signaling pathway and regulating its methylation level, resulting in the regeneration of hippocampal neurons.
Collapse
Affiliation(s)
- Zhehan Chang
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Liu
- Department of Radiology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Peijia Fan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenqiang Xu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yabin Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, USA
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Zhijun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, China.
| | - Kai Sun
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, China.
| | - Guo Shao
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, China.
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, China.
- Joint Laboratory of South China Hospital Affiliated to Shenzhen University and Third People's Hospital of Longgang District, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Kim EJ, Kim JJ. Neurocognitive effects of stress: a metaparadigm perspective. Mol Psychiatry 2023; 28:2750-2763. [PMID: 36759545 PMCID: PMC9909677 DOI: 10.1038/s41380-023-01986-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Stressful experiences, both physical and psychological, that are overwhelming (i.e., inescapable and unpredictable), can measurably affect subsequent neuronal properties and cognitive functioning of the hippocampus. At the cellular level, stress has been shown to alter hippocampal synaptic plasticity, spike and local field potential activity, dendritic morphology, neurogenesis, and neurodegeneration. At the behavioral level, stress has been found to impair learning and memory for declarative (or explicit) tasks that are based on cognition, such as verbal recall memory in humans and spatial memory in rodents, while facilitating those that are based on emotion, such as differential fear conditioning in humans and contextual fear conditioning in rodents. These vertically related alterations in the hippocampus, procedurally observed after subjects have undergone stress, are generally believed to be mediated by recurrently elevated circulating hypothalamic-pituitary-adrenal (HPA) axis effector hormones, glucocorticoids, directly acting on hippocampal neurons densely populated with corticosteroid receptors. The main purposes of this review are to (i) provide a synopsis of the neurocognitive effects of stress in a historical context that led to the contemporary HPA axis dogma of basic and translational stress research, (ii) critically reappraise the necessity and sufficiency of the glucocorticoid hypothesis of stress, and (iii) suggest an alternative metaparadigm approach to monitor and manipulate the progression of stress effects at the neural coding level. Real-time analyses can reveal neural activity markers of stress in the hippocampus that can be used to extrapolate neurocognitive effects across a range of stress paradigms (i.e., resolve scaling and dichotomous memory effects issues) and understand individual differences, thereby providing a novel neurophysiological scaffold for advancing future stress research.
Collapse
Affiliation(s)
- Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Effects of 5-Aza on neurogenesis contribute to learning and memory in the mouse hippocampus. Biomed Pharmacother 2022; 154:113623. [PMID: 36081289 DOI: 10.1016/j.biopha.2022.113623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND 5-Aza-2'-deoxycytidine (5-Aza-CdR) is a demethylating agent that has various biological effects related to DNA methylation. DNA methylation plays important roles in learning and memory. We have reported that 5-Aza-CdR improved the performance of mice in the water maze and step-down tests. Some behaviours have been well recognized to be mediated by neurogenesis in the hippocampus. The Notch signalling pathway plays a key role in adult hippocampal neurogenesis. In this study, we examined whether 5-Aza-CdR (DNA methyltransferase inhibitor) affects neurogenesis and Notch1 expression. METHODS The learning and memory behaviour of mice was evaluated by a conditioned avoidance learning 24 h after 5-Aza-CdR treatment. The mRNA and protein expression levels of Notch1 and HES1 were measured by real-time PCR and Western blotting. The 5-bromo-2'-deoxyuridine (BrdU)-positive cells and the expression of Notch1 in the hippocampal DG were observed through laser confocal microscopy. To further clarify whether 5-Aza-CdR affects behaviour through neurogenesis, the expression level of Notch1, cell viability and cell cycle were analysed using the HT22 cell line. RESULTS The behaviour in conditioned avoidance learning was improved, while neurogenesis and the Notch1 pathway were increased in the hippocampus of mice that were injected with 5-Aza-CdR. In vitro experiments showed that 5-Aza-CdR increased the expression of the Notch1 pathway and upregulated S-phase in the cell cycle and cell viability. CONCLUSIONS Our results suggest that the effect of 5-Aza-CdR on behaviour may be related to an increase in neurogenesis with upregulation of the Notch1 pathway in the hippocampus.
Collapse
|
6
|
Hodges TE, Puri TA, Blankers SA, Qiu W, Galea LAM. Steroid hormones and hippocampal neurogenesis in the adult mammalian brain. VITAMINS AND HORMONES 2021; 118:129-170. [PMID: 35180925 DOI: 10.1016/bs.vh.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hippocampal neurogenesis persists across the lifespan in many species, including rodents and humans, and is associated with cognitive performance and the pathogenesis of neurodegenerative disease and psychiatric disorders. Neurogenesis is modulated by steroid hormones that change across development and differ between the sexes in rodents and humans. Here, we discuss the effects of stress and glucocorticoid exposure from gestation to adulthood as well as the effects of androgens and estrogens in adulthood on neurogenesis in the hippocampus. Throughout the review we highlight sex differences in the effects of steroid hormones on neurogenesis and how they may relate to hippocampal function and disease. These data highlight the importance of examining age and sex when evaluating the effects of steroid hormones on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Travis E Hodges
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tanvi A Puri
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Jorgensen C, Wang Z. Hormonal Regulation of Mammalian Adult Neurogenesis: A Multifaceted Mechanism. Biomolecules 2020; 10:biom10081151. [PMID: 32781670 PMCID: PMC7465680 DOI: 10.3390/biom10081151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis—resulting in adult-generated functioning, integrated neurons—is still one of the most captivating research areas of neuroplasticity. The addition of new neurons in adulthood follows a seemingly consistent multi-step process. These neurogenic stages include proliferation, differentiation, migration, maturation/survival, and integration of new neurons into the existing neuronal network. Most studies assessing the impact of exogenous (e.g., restraint stress) or endogenous (e.g., neurotrophins) factors on adult neurogenesis have focused on proliferation, survival, and neuronal differentiation. This review will discuss the multifaceted impact of hormones on these various stages of adult neurogenesis. Specifically, we will review the evidence for hormonal facilitation (via gonadal hormones), inhibition (via glucocorticoids), and neuroprotection (via recruitment of other neurochemicals such as neurotrophin and neuromodulators) on newly adult-generated neurons in the mammalian brain.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, UT 84058, USA
- Correspondence:
| | - Zuoxin Wang
- Psychology Department and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| |
Collapse
|
8
|
Faria MP, Laverde CF, Nunes-de-Souza RL. Anxiogenesis induced by social defeat in male mice: Role of nitric oxide, NMDA, and CRF 1 receptors in the medial prefrontal cortex and BNST. Neuropharmacology 2020; 166:107973. [PMID: 32006904 DOI: 10.1016/j.neuropharm.2020.107973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/14/2019] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) release in the right medial prefrontal cortex (RmPFC) produces anxiogenesis. In the bed nucleus of the stria terminalis (BNST), a region that receives neuronal projections from the mPFC, NO provokes anxiety, an effect that is blocked by local injections of corticotrophin-releasing factor type 1 receptor (CRF1) or n-methyl-d-aspartate receptor (NMDAr) antagonist. Anxiety is also enhanced by social defeat stress, and chronic stress impairs and facilitates, respectively, PFC and BNST roles in modulating behavioral responses to aversive situations. This study investigated whether the (i) chronic social defeat stress (CSDS) increases NO signaling in the mPFC; and/or (ii) anxiogenic effects provoked by the intra-RmPFC injection of NOC-9 (an NO donor) or by CSDS are prevented by intra-BNST injections of AP-7 (0.05 nmol) or CP 376395 (3.0 nmol), respectively, NMDAr and CRF1 antagonists, in male Swiss-Webster mice exposed to the elevated plus-maze (EPM). Results showed that (a) CSDS increased anxiety (i.e., reduced open-arm exploration) and repeatedly activated nNOS-containing neurons, as measured by ΔFosB (a stable nonspecific marker of neural activity) + nNOS double-labeling, in the right (but not left) mPFC, (b) NOC-9 in the RmPFC also increased anxiety, and (c) both CSDS and NOC-9 effects were reversed by injections of AP-7 or CP 376395 into the BNST. These results suggest that NMDA and CRF1 receptors located in BNST play an important role in the modulation of anxiety provoked by NO in the RmPFC, as well as by chronic social defeat in mice.
Collapse
Affiliation(s)
- M P Faria
- Joint Graduate Program of Physiological Sciences (PIPGCF) UFSCar-UNESP, 14800-903, Araraquara, SP, Brazil; São Paulo State University (Unesp), School of Pharmaceutical Sciences, Lab. Pharmacology, Araraquara, SP, Brazil
| | - C F Laverde
- Joint Graduate Program of Physiological Sciences (PIPGCF) UFSCar-UNESP, 14800-903, Araraquara, SP, Brazil; São Paulo State University (Unesp), School of Pharmaceutical Sciences, Lab. Pharmacology, Araraquara, SP, Brazil
| | - R L Nunes-de-Souza
- Joint Graduate Program of Physiological Sciences (PIPGCF) UFSCar-UNESP, 14800-903, Araraquara, SP, Brazil; São Paulo State University (Unesp), School of Pharmaceutical Sciences, Lab. Pharmacology, Araraquara, SP, Brazil.
| |
Collapse
|
9
|
Alam N, Chaudhary K. Repeated restraint stress potentiates methylphenidate and modafinil-induced behavioral sensitization in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:785-795. [PMID: 31853616 DOI: 10.1007/s00210-019-01790-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Stress increases the susceptibility of drug abuse and drugs of abuse impair behavioral tolerance. It has been shown that stress exposure enhances the sensitivity to the reinforcing properties of drugs, augments locomotor sensitization effects of drugs of abuse and impairs behavioral tolerance. Previously, it has been shown that long-term administration of psychostimulants (Methylphenidate and Modafinil) induced locomotor sensitization effect that was more pronounced after 13 days of drug administration and was greater at high dose. The present study is designed to investigate the relationship between restraint stress and psychostimulants (Methylphenidate and Modafinil) that induced sensitization. Methylphenidate (10 mg/kg/day twice a day), modafinil (75 mg/kg/day once daily), and saline (0.9% NaCl; 1 ml/kg/day) were administered orally to treated and control animals. Rats were exposed to immobilization stress for 30 days (until locomotor sensitization produced) to monitor any change in drug-induced behavioral sensitization. The motor activity was compared daily by using familiar environment of home cage and weekly by novel environment of open field. The results show that the methylphenidate and modafinil-induced locomotor sensitization is enhanced and impaired behavioral tolerance in repeated restrained rats. It shows that the psychostimulants like methylphenidate and modafinil produce greater locomotor sensitization in stressful environment, suggesting addictive effects of stress and psychostimulants (methylphenidate/modafinil) on dopaminergic neurotransmission. These finding may be helpful to develop potential pharmacotherapies for the patients with co-occurring depression and substance abuse/dependence disorder.
Collapse
Affiliation(s)
- Nausheen Alam
- Department of Pharmacology Faculty of Pharmacy, Federal Urdu University, Karachi, Pakistan.
| | - Kulsoom Chaudhary
- Department of Pharmacology Faculty of Pharmacy, Federal Urdu University, Karachi, Pakistan
| |
Collapse
|
10
|
Hillerer KM, Slattery DA, Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front Neuroendocrinol 2019; 55:100796. [PMID: 31580837 PMCID: PMC7115954 DOI: 10.1016/j.yfrne.2019.100796] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Men and women differ in their vulnerability to a variety of stress-related illnesses, but the underlying neurobiological mechanisms are not well understood. This is likely due to a comparative dearth of neurobiological studies that assess male and female rodents at the same time, while human neuroimaging studies often don't model sex as a variable of interest. These sex differences are often attributed to the actions of sex hormones, i.e. estrogens, progestogens and androgens. In this review, we summarize the results on sex hormone actions in the hippocampus and seek to bridge the gap between animal models and findings in humans. However, while effects of sex hormones on the hippocampus are largely consistent in animals and humans, methodological differences challenge the comparability of animal and human studies on stress effects. We summarise our current understanding of the neurobiological mechanisms that underlie sex-related differences in behavior and discuss implications for stress-related illnesses.
Collapse
Affiliation(s)
- Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University (PMU), Clinical Research Center Salzburg (CRCS), Salzburg, Austria.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
11
|
Khandelwal N, Dey SK, Chakravarty S, Kumar A. miR-30 Family miRNAs Mediate the Effect of Chronic Social Defeat Stress on Hippocampal Neurogenesis in Mouse Depression Model. Front Mol Neurosci 2019; 12:188. [PMID: 31440139 PMCID: PMC6694739 DOI: 10.3389/fnmol.2019.00188] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022] Open
Abstract
Depression is a debilitating psychiatric disorder with a high rate of relapse and a low rate of response to antidepressant treatment. There is a dearth of new antidepressants due to an incomplete understanding of the molecular mechanisms involved in its etiopathology. Chronic stress appears to be one of the foremost underlying causes of depression. Studies in animal models in the past decade have implicated epigenetic mechanisms in mediating the negative effects of chronic stressful events on the progression/manifestation of depression and other co-morbid neuropsychiatric disorders. However, non-coding RNAs, another layer of epigenetic regulation is relatively less studied in depression. Here, using the chronic social defeat stress (CSDS)-induced depression model, we hypothesized dysregulation in miRNA-mRNA networks in the neurogenic dentate gyrus (DG) region of male C57BL/6 mice. Among several dysregulated miRNAs identified via miRNA arrays, the most striking finding was the downregulation of miRNAs of the miR-30 family in stressed/defeated mice. To investigate miRNAs in the DG-resident neural stem/progenitor cells (NSCs/NPCs), we used the in vitro neurosphere culture, where proliferating NSCs/NPCs were subjected to differentiation. Among several differentially expressed miRNAs, we observed an upregulation of miR-30 family miRNAs upon differentiation. To search for the gene targets of these miRNAs, we performed gene arrays followed by bioinformatics analysis, miRNA manipulations and luciferase assays. Our results suggest that miR-30 family miRNAs mediate chronic stress-induced depression-like phenotype by altering hippocampal neurogenesis and neuroplasticity via controlling the epigenetic and transcription regulators such as Mll3 and Runx1; and cell signaling regulators like Socs3, Ppp3r1, Gpr125, and Nrp1.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sandeep Kumar Dey
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sumana Chakravarty
- Department of Cell Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Division of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India.,Division of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Brown SSG, Rutland JW, Verma G, Feldman RE, Alper J, Schneider M, Delman BN, Murrough JM, Balchandani P. Structural MRI at 7T reveals amygdala nuclei and hippocampal subfield volumetric association with Major Depressive Disorder symptom severity. Sci Rep 2019; 9:10166. [PMID: 31308432 PMCID: PMC6629636 DOI: 10.1038/s41598-019-46687-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Subcortical volumetric changes in major depressive disorder (MDD) have been purported to underlie depressive symptomology, however, the evidence to date remains inconsistent. Here, we investigated limbic volumes in MDD, utilizing high-resolution structural images to allow segmentation of the hippocampus and amygdala into their constituent substructures. Twenty-four MDD patients and twenty matched controls underwent structural MRI at 7T field strength. All participants completed the Montgomery-Asberg Depression Rating Scale (MADRS) to quantify depressive symptomology. For the MDD group, volumes of the amygdala right lateral nucleus (p = 0.05, r2 = 0.24), left cortical nucleus (p = 0.032, r2 = 0.35), left accessory basal nucleus (p = 0.04, r2 = 0.28) and bilateral corticoamygdaloid transition area (right hemisphere p = 0.032, r2 = 0.38, left hemisphere p = 0.032, r2 = 0.35) each displayed significant negative associations with MDD severity. The bilateral centrocortical (right hemisphere p = 0.032, r2 = 0.31, left hemisphere p = 0.032, r2 = 0.32) and right basolateral complexes (p = 0.05, r2 = 0.24) also displayed significant negative relationships with depressive symptoms. Using high-field strength MRI, we report the novel finding that MDD severity is consistently negatively associated with amygdala nuclei, linking volumetric reductions with worsening depressive symptoms.
Collapse
Affiliation(s)
- S S G Brown
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States.
| | - J W Rutland
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - G Verma
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - R E Feldman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J Alper
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - M Schneider
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - B N Delman
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J M Murrough
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - P Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
13
|
The Impact of Ethologically Relevant Stressors on Adult Mammalian Neurogenesis. Brain Sci 2019; 9:brainsci9070158. [PMID: 31277460 PMCID: PMC6680763 DOI: 10.3390/brainsci9070158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Adult neurogenesis—the formation and functional integration of adult-generated neurons—remains a hot neuroscience topic. Decades of research have identified numerous endogenous (such as neurotransmitters and hormones) and exogenous (such as environmental enrichment and exercise) factors that regulate the various neurogenic stages. Stress, an exogenous factor, has received a lot of attention. Despite the large number of reviews discussing the impact of stress on adult neurogenesis, no systematic review on ethologically relevant stressors exists to date. The current review details the effects of conspecifically-induced psychosocial stress (specifically looking at the lack or disruption of social interactions and confrontation) as well as non-conspecifically-induced stress on mammalian adult neurogenesis. The underlying mechanisms, as well as the possible functional role of the altered neurogenesis level, are also discussed. The reviewed data suggest that ethologically relevant stressors reduce adult neurogenesis.
Collapse
|
14
|
Puri D, Subramanyam D. Stress - (self) eating: Epigenetic regulation of autophagy in response to psychological stress. FEBS J 2019; 286:2447-2460. [PMID: 30927484 DOI: 10.1111/febs.14826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Autophagy is a constitutive and cytoprotective catabolic process. Aberrations in autophagy lead to a multitude of degenerative disorders, with neurodegeneration being one of the most widely studied autophagy-related disorders. While the field has largely been focusing on the cytosolic constituents and processes of autophagy, recent studies are increasingly appreciating the role of chromatin modifications and epigenetic regulation in autophagy maintenance. Autophagy has been implicated in the regulation of neurogenesis, and disruption of neurogenesis in response to psychological stress is a proximal risk factor for development of neuropsychiatric disorders such as major depressive disorder (MDD). In this review, we will discuss the regulation of autophagy in normal neurogenesis as well as during chronic psychological stress, focusing on the epigenetic control of autophagy in these contexts, and also highlight the lacunae in our understanding of this process. The systematic study of these regulatory mechanisms will provide a novel therapeutic strategy, based on the use epigenetic regulators of autophagy to enhance neurogenesis and potentially alleviate stress-related behavioral disorders.
Collapse
Affiliation(s)
- Deepika Puri
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Deepa Subramanyam
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
15
|
Abstract
Adult neurogenesis continues to captivate the curiosity of the scientific community; and researchers seem to have a particular interest in identifying the functional implications of such plasticity. While the majority of research focuses on the association between adult neurogenesis and learning and memory (including spatial learning associated with hippocampal neurogenesis and olfactory discrimination associated with neurogenesis in the olfactory system), the following review will explore the link to motivated behaviors. In particular, goal-directed behaviors such as sociosexual, parental, aggressive, as well as depression- and anxiety-like behaviors and their reciprocal association to adult neurogenesis will be evaluated. The review will detail research in humans and other mammalian species. Furthermore, the potential mechanisms underlying these neurogenic alterations will be highlighted. Lastly, the review will conclude with a discussion on the functional significance of these newly generated cells in mediating goal-directed behaviors.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, Utah, USA
| |
Collapse
|
16
|
Mouri A, Ukai M, Uchida M, Hasegawa S, Taniguchi M, Ito T, Hida H, Yoshimi A, Yamada K, Kunimoto S, Ozaki N, Nabeshima T, Noda Y. Juvenile social defeat stress exposure persistently impairs social behaviors and neurogenesis. Neuropharmacology 2018; 133:23-37. [DOI: 10.1016/j.neuropharm.2018.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/23/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
|
17
|
Lui E, Salim M, Chahal M, Puri N, Marandi E, Quadrilatero J, Satvat E. Chronic corticosterone-induced impaired cognitive flexibility is not due to suppressed adult hippocampal neurogenesis. Behav Brain Res 2017; 332:90-98. [DOI: 10.1016/j.bbr.2017.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
|
18
|
Lieberwirth C, Pan Y, Liu Y, Zhang Z, Wang Z. Hippocampal adult neurogenesis: Its regulation and potential role in spatial learning and memory. Brain Res 2016; 1644:127-40. [PMID: 27174001 PMCID: PMC5064285 DOI: 10.1016/j.brainres.2016.05.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 12/24/2022]
Abstract
Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk).
Collapse
Affiliation(s)
| | - Yongliang Pan
- Program in Molecular and Translational Medicine, School of Medicine, Huzhou University, Huzhou 313000, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China.
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| |
Collapse
|
19
|
Peragine DE, Yousuf Y, Fu Y, Swift-Gallant A, Ginzberg K, Holmes MM. Contrasting effects of opposite- versus same-sex housing on hormones, behavior and neurogenesis in a eusocial mammal. Horm Behav 2016; 81:28-37. [PMID: 27018426 DOI: 10.1016/j.yhbeh.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/29/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
Abstract
Competitive interactions can have striking and enduring effects on behavior, but the mechanisms underlying this experience-induced plasticity are unclear, particularly in females. Naked mole-rat (NMR) colonies are characterized by the strictest social and reproductive hierarchy among mammals, and represent an ideal system for studies of social competition. In large matriarchal colonies, breeding is monopolized by one female and 1-3 males, with other colony members being socially subordinate and reproductively suppressed. To date, competition for breeding status has been examined in-colony, with female, but not male, aggression observed following the death/removal of established queens. To determine whether this sex difference extends to colony-founding contexts, and clarify neural and endocrine mechanisms underlying behavioral change in females competing for status, we examined neurogenesis and steroid hormone concentrations in colony-housed subordinates, and NMRs given the opportunity to transition status via pair-housing. To this end, Ki-67 and doublecortin immunoreactivity were compared in the hippocampal dentate gyrus (DG) and basolateral amygdala (BLA) of colony-housed subordinates, and subordinates housed with a same-sex (SS) or opposite-sex (OS) conspecific. Results suggest that OS pairing in eusocial mammals promotes cooperation and enhances hippocampal plasticity, while SS pairing is stressful, resulting in enhanced HPA activation and muted hippocampal neurogenesis relative to OS pairs. Data further indicate that competition for status is confined to females, with female-female housing exerting contrasting effects on hippocampal and amygdalar neurogenesis. These findings advance understanding of social stress effects on neuroplasticity and behavior, and highlight the importance of including female-dominated species in research on aggression and intrasexual competition.
Collapse
Affiliation(s)
- Deane E Peragine
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Yusef Yousuf
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Yi Fu
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Ashlyn Swift-Gallant
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Keren Ginzberg
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
20
|
The effects of hormones and physical exercise on hippocampal structural plasticity. Front Neuroendocrinol 2016; 41:23-43. [PMID: 26989000 DOI: 10.1016/j.yfrne.2016.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 01/22/2023]
Abstract
The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration.
Collapse
|
21
|
Holmes MM. Social regulation of adult neurogenesis: A comparative approach. Front Neuroendocrinol 2016; 41:59-70. [PMID: 26877107 DOI: 10.1016/j.yfrne.2016.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/25/2023]
Abstract
The social environment sculpts the mammalian brain throughout life. Adult neurogenesis, the birth of new neurons in the mature brain, can be up- or down-regulated by various social manipulations. These include social isolation, social conflict, social status, socio-sexual interactions, and parent/offspring interactions. However, socially-mediated changes in neuron production are often species-, sex-, and/or region-specific. In order to reconcile the variability of social effects on neurogenesis, we need to consider species-specific social adaptations and other contextual variables (e.g. age, social status, reproductive status, etc.) that shift the valence of social stimuli. Using a comparative approach to understand how adult-generated neurons in turn influence social behaviors will shed light on how adult neurogenesis contributes to survival and reproduction in diverse species.
Collapse
Affiliation(s)
- Melissa M Holmes
- Department of Psychology, University of Toronto, Canada; Department of Cell & Systems Biology, University of Toronto, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Canada.
| |
Collapse
|
22
|
García-Pardo MP, Blanco-Gandía MC, Valiente-Lluch M, Rodríguez-Arias M, Miñarro J, Aguilar MA. Long-term effects of repeated social stress on the conditioned place preference induced by MDMA in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:98-109. [PMID: 26093344 DOI: 10.1016/j.pnpbp.2015.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated that social defeat stress increases the rewarding effects of psychostimulant drugs such as cocaine and amphetamine. In the present study we evaluated the long-term effects of repeated social defeat (RSD) on the rewarding effects of ±3,4-methylenedioxymethamphetamine (MDMA) hydrochloride in the conditioned place preference (CPP) paradigm. Adolescent and young adult mice were exposed to four episodes of social defeat (on PND 29-40 and PND 47-56, respectively) and were conditioned three weeks later with 1.25 or 10mg/kg i.p. of MDMA (experiment 1). The long-term effects of RSD on anxiety, social behavior and cognitive processes were also evaluated in adult mice (experiment 2). RSD during adolescence enhanced vulnerability to priming-induced reinstatement in animals conditioned with 1.25mg/kg of MDMA and increased the duration of the CPP induced by the 10mg/kg of MDMA. The latter effect was also observed after RSD in young adult mice, as well as an increase in anxiety-like behavior, an alteration in social interaction (reduction in attack and increase in avoidance/flee and defensive/submissive behaviors) and an impairment of maze learning. These results support the idea that RSD stress increases the rewarding effects of MDMA and induces long-term alterations in anxiety, learning and social behavior in adult mice. Thus, exposure to stress may increase the vulnerability of individuals to developing MDMA dependence, which is a factor to be taken into account in relation to the prevention and treatment of this disorder.
Collapse
Affiliation(s)
- M P García-Pardo
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M C Blanco-Gandía
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M Valiente-Lluch
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - J Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M A Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain.
| |
Collapse
|
23
|
Smagin DA, Park JH, Michurina TV, Peunova N, Glass Z, Sayed K, Bondar NP, Kovalenko IN, Kudryavtseva NN, Enikolopov G. Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression. Front Neurosci 2015; 9:443. [PMID: 26648838 PMCID: PMC4664700 DOI: 10.3389/fnins.2015.00443] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022] Open
Abstract
Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.
Collapse
Affiliation(s)
- Dmitry A. Smagin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
- Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and TechnologyMoscow, Russia
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - June-Hee Park
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - Tatyana V. Michurina
- Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and TechnologyMoscow, Russia
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
- Department of Anesthesiology, Stony Brook School of MedicineStony Brook, NY, USA
- Center for Developmental Genetics, Stony Brook UniversityStony Brook, NY, USA
| | - Natalia Peunova
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
- Department of Anesthesiology, Stony Brook School of MedicineStony Brook, NY, USA
- Center for Developmental Genetics, Stony Brook UniversityStony Brook, NY, USA
| | - Zachary Glass
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - Kasim Sayed
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - Natalya P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Irina N. Kovalenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Natalia N. Kudryavtseva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Grigori Enikolopov
- Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and TechnologyMoscow, Russia
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
- Department of Anesthesiology, Stony Brook School of MedicineStony Brook, NY, USA
- Center for Developmental Genetics, Stony Brook UniversityStony Brook, NY, USA
| |
Collapse
|
24
|
Koutmani Y, Karalis KP. Neural stem cells respond to stress hormones: distinguishing beneficial from detrimental stress. Front Physiol 2015; 6:77. [PMID: 25814957 PMCID: PMC4356227 DOI: 10.3389/fphys.2015.00077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells (NSCs), the progenitors of the nervous system, control distinct, position-specific functions and are critically involved in the maintenance of homeostasis in the brain. The responses of these cells to various stressful stimuli are shaped by genetic, epigenetic, and environmental factors via mechanisms that are age and developmental stage-dependent and still remain, to a great extent, elusive. Increasing evidence advocates for the beneficial impact of the stress response in various settings, complementing the extensive number of studies on the detrimental effects of stress, particularly in the developing brain. In this review, we discuss suggested mechanisms mediating both the beneficial and detrimental effects of stressors on NSC activity across the lifespan. We focus on the specific effects of secreted factors and we propose NSCs as a “sensor,” capable of distinguishing among the different stressors and adapting its functions accordingly. All the above suggest the intriguing hypothesis that NSCs are an important part of the adaptive response to stressors via direct and indirect, specific mechanisms.
Collapse
Affiliation(s)
- Yassemi Koutmani
- Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Katia P Karalis
- Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece ; Endocrine Division, Children's Hospital, Harvard Medical School Boston, MA, USA
| |
Collapse
|
25
|
Costa V, Lugert S, Jagasia R. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers. Handb Exp Pharmacol 2015; 228:99-155. [PMID: 25977081 DOI: 10.1007/978-3-319-16522-6_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.
Collapse
Affiliation(s)
- Veronica Costa
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases (NORD), Roche Innovation Center Basel, 124 Grenzacherstrasse, 4070, Basel, Switzerland
| | | | | |
Collapse
|
26
|
Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:932757. [PMID: 24999483 PMCID: PMC4066721 DOI: 10.1155/2014/932757] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/18/2014] [Indexed: 12/13/2022]
Abstract
Rodent models are an indispensable tool for studying etiology and progress of depression. Since interrelated systems of neurotrophic factors and cytokines comprise major regulatory mechanisms controlling normal brain plasticity, impairments of these systems form the basis for development of cerebral pathologies, including mental diseases. The present review focuses on the numerous experimental rodent models of depression induced by different stress factors (exteroceptive and interoceptive) during early life (including prenatal period) or adulthood, giving emphasis to the data on the changes of neurotrophic factors and neuroinflammatory indices in the brain. These parameters are closely related to behavioral depression-like symptoms and impairments of neuronal plasticity and are both gender- and genotype-dependent. Stress-related changes in expression of neurotrophins and cytokines in rodent brain are region-specific. Some contradictory data reported by different groups may be a consequence of differences of stress paradigms or their realization in different laboratories. Like all experimental models, stress-induced depression-like conditions are experimental simplification of clinical depression states; however, they are suitable for understanding the involvement of neurotrophic factors and cytokines in the pathogenesis of the disease—a goal unachievable in the clinical reality. These major regulatory systems may be important targets for therapeutic measures as well as for development of drugs for treatment of depression states.
Collapse
|
27
|
Hendriksen H, Olivier B, Oosting RS. From non-pharmacological treatments for post-traumatic stress disorder to novel therapeutic targets. Eur J Pharmacol 2014; 732:139-58. [DOI: 10.1016/j.ejphar.2014.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
28
|
Peragine D, Simpson J, Mooney S, Lovern M, Holmes M. Social regulation of adult neurogenesis in a eusocial mammal. Neuroscience 2014; 268:10-20. [DOI: 10.1016/j.neuroscience.2014.02.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 12/17/2022]
|
29
|
Pan Y, Li M, Lieberwirth C, Wang Z, Zhang Z. Social defeat and subsequent isolation housing affect behavior as well as cell proliferation and cell survival in the brains of male greater long-tailed hamsters. Neuroscience 2014; 265:226-37. [DOI: 10.1016/j.neuroscience.2014.01.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 02/08/2023]
|
30
|
Saaltink DJ, Vreugdenhil E. Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition? Cell Mol Life Sci 2014; 71:2499-515. [PMID: 24522255 PMCID: PMC4055840 DOI: 10.1007/s00018-014-1568-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/26/2013] [Accepted: 01/16/2014] [Indexed: 02/06/2023]
Abstract
Adult neurogenesis, the birth of new neurons in the mature brain, has attracted considerable attention in the last decade. One of the earliest identified and most profound factors that affect adult neurogenesis both positively and negatively is stress. Here, we review the complex interplay between stress and adult neurogenesis. In particular, we review the role of the glucocorticoid receptor, the main mediator of the stress response in the proliferation, differentiation, migration, and functional integration of newborn neurons in the hippocampus. We review a multitude of mechanisms regulating glucocorticoid receptor activity in relationship to adult neurogenesis. We postulate a novel concept in which the level of glucocorticoid receptor expression directly regulates the excitation-inhibition balance, which is key for proper neurogenesis. We furthermore argue that an excitation-inhibition dis-balance may underlie aberrant functional integration of newborn neurons that is associated with psychiatric and paroxysmal brain disorders.
Collapse
Affiliation(s)
- Dirk-Jan Saaltink
- Department of Medical Pharmacology, Leiden University Medical Center/Leiden Amsterdam Center for Drug Research, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
31
|
Mooney SJ, Peragine DE, Hathaway GA, Holmes MM. A game of thrones: Neural plasticity in mammalian social hierarchies. Soc Neurosci 2014; 9:108-17. [DOI: 10.1080/17470919.2014.882862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Kim JI, Lee JW, Lee YA, Lee DH, Han NS, Choi YK, Hwang BR, Kim HJ, Han JS. Sexual activity counteracts the suppressive effects of chronic stress on adult hippocampal neurogenesis and recognition memory. Brain Res 2013; 1538:26-40. [PMID: 24041775 DOI: 10.1016/j.brainres.2013.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/18/2013] [Accepted: 09/09/2013] [Indexed: 01/19/2023]
Abstract
Adult neurogenesis can be influenced by a variety of factors. Stress is one of the most potent inhibitors of hippocampal neurogenesis. Stress effects on adult hippocampal neurogenesis are affected differently by environmental factors, including social interaction. Sexual behavior between males and females in a social context has been suggested to influence neurogenesis and enhance hippocampal cell proliferation. However, the mechanisms of action of sexual interaction, the possible changes relative to stress state, and its effects on learning and memory remain uncertain. The current study examined the influence of sexual interaction on neurological responses in adult male mice and the function of sexual interaction relative to recognition memory in stress states. Changes in the expression of neurotrophic and transcription factors were assessed in reference to stress and/or sexual behaviors. The survival of newly generated cells and their rate of differentiation into neurons were determined in the hippocampus of chronically stressed and/or sexually experienced mice. Finally, to evaluate whether sexual experience alters adult hippocampal function, we tested learning and memory in a recognition memory task. The results demonstrated that sexual activity increased the expression of brain-derived neurotrophic factor, tyrosine kinase B, and cAMP response element-binding factor. Furthermore, the results supported the view that sexual interaction could be helpful for buffering adult hippocampal neurogenesis and recognition memory function against the suppressive actions of chronic stress.
Collapse
Affiliation(s)
- Jong-In Kim
- Department of Laboratory Animal Medicine & Institute for the 3Rs, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Maruska KP, Carpenter RE, Fernald RD. Characterization of cell proliferation throughout the brain of the African cichlid fish Astatotilapia burtoni and its regulation by social status. J Comp Neurol 2013; 520:3471-91. [PMID: 22431175 DOI: 10.1002/cne.23100] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
New cells are added in the brains of all adult vertebrates, but fishes have some of the greatest potential for neurogenesis and gliogenesis among all taxa, partly due to their indeterminate growth. Little is known, however, about how social interactions influence cell proliferation in the brain of these fishes that comprise the largest group of vertebrates. We used 5-bromo-2'-deoxyuridine (BrdU) to identify and localize proliferation zones in the telencephalon, diencephalon, mesencephalon, and rhombencephalon that were primarily associated with ventricular surfaces in the brain of the African cichlid fish Astatotilapia burtoni. Cell migration was evident in some regions by 1 day post injection, and many newborn cells coexpressed the neuronal marker HuC/D at 30 days, suggesting they had differentiated into neurons. To test the hypothesis that social status and perception of an opportunity to rise in rank influenced cell proliferation, we compared numbers of BrdU-labeled cells in multiple brain nuclei among fish of different social status. Socially suppressed subordinate males had the lowest numbers of proliferating cells in all brain regions examined, but males that were given an opportunity to rise in status had higher cell proliferation rates within 1 day, suggesting rapid upregulation of brain mitotic activity associated with this social transition. Furthermore, socially isolated dominant males had similar numbers of BrdU-labeled cells compared with dominant males that were housed in a socially rich environment, suggesting that isolation has little effect on proliferation and that reduced proliferation in subordinates is a result of the social subordination. These results suggest that A. burtoni will be a useful model to analyze the mechanisms of socially induced neurogenesis in vertebrates.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biology, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
34
|
Crawford LK, Rahman SF, Beck SG. Social stress alters inhibitory synaptic input to distinct subpopulations of raphe serotonin neurons. ACS Chem Neurosci 2013; 4:200-9. [PMID: 23336059 DOI: 10.1021/cn300238j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 01/07/2013] [Indexed: 12/25/2022] Open
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, yet much is unknown about the underlying mechanisms. The dorsal raphe (DR) is at the crux of the anxiety-inducing effects of uncontrollable stress, a key component of models of anxiety. Though DR serotonin (5-HT) neurons play a prominent role, anxiety-associated changes in the physiology of 5-HT neurons remain poorly understood. A 5-day social defeat model of anxiety produced a multifaceted, anxious phenotype in intruder mice that included increased avoidance behavior in the open field test, increased stress-evoked grooming, and increased bladder and heart weights when compared to control mice. Intruders were further compared to controls using electrophysiology recordings conducted in midbrain slices wherein recordings targeted 5-HT neurons of the ventromedial (vmDR) and lateral wing (lwDR) subfields of the DR. Though defining membrane characteristics of 5-HT neurons were unchanged, γ-aminobutyric-acid-mediated (GABAergic) synaptic regulation of 5-HT neurons was altered in a topographically specific way. In the vmDR of intruders, there was a decrease in the frequency and amplitude of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). However, in the lwDR, there was an increase in the strength of inhibitory signals due to slower sIPSC kinetics. Synaptic changes were selective for GABAergic input, as glutamatergic synaptic input was unchanged in intruders. The distinct inhibitory regulation of DR subfields provides a mechanism for increased 5-HT output in vmDR target regions and decreased 5-HT output in lwDR target regions, divergent responses to uncontrollable stress that have been reported in the literature but were previously poorly understood.
Collapse
Affiliation(s)
- LaTasha K. Crawford
- Anesthesiology Department, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania,
United States
- Mahoney Institute
of Neurological Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United
States
| | - Shumaia F. Rahman
- Anesthesiology Department, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania,
United States
| | - Sheryl G. Beck
- Anesthesiology Department, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania,
United States
- Mahoney Institute
of Neurological Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- University of Pennsylvania Perelman School of Medicine, Philadelphia,
Pennsylvania, United States
| |
Collapse
|
35
|
Sørensen C, Johansen IB, Øverli Ø. Neural plasticity and stress coping in teleost fishes. Gen Comp Endocrinol 2013; 181:25-34. [PMID: 23274407 DOI: 10.1016/j.ygcen.2012.12.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 12/25/2022]
Abstract
Physiological and behavioural responses to environmental change are individually variable traits, which manifest phenotypically and are subject to natural selection as correlated trait-clusters (coping styles, behavioural syndromes, or personality traits). Comparative research has revealed a range of neuroendocrine-behavioural associations which are conserved throughout the vertebrate subphylum. Regulatory mechanisms universally mediate a switch between proactive (e.g. active/aggressive) and reactive (e.g. conservation/withdrawal) behaviour in response to unpredictable and uncontrollable events. Thresholds for switching from active coping to behavioural inhibition are individually variable, and depend on experience and genetic factors. Such factors affect physiological stress responses as well as perception, learning, and memory. Here we review the role of an important contributor to neural processing, the set of biochemical, molecular, and structural processes collectively referred to as neural plasticity. We will concentrate on work in teleost fishes, while also elucidating conserved aspects. In fishes, environmental and physiological control of brain cell proliferation and neurogenesis has received recent attention. This work has revealed that the expression of genes involved in CNS plasticity is affected by heritable variation in stress coping style, and is also differentially affected by short- and long-term stress. Chronic stress experienced by subordinate fish in social hierarchies leads to a marked suppression of brain cell proliferation. Interestingly, typically routine dependent and inflexible behaviour in proactive individuals is also associated with low transcription of neurogenesis related genes. The potential for these findings to illuminate stress-related neurobiological disorders in other vertebrates is also discussed.
Collapse
Affiliation(s)
- Christina Sørensen
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316 Oslo, Norway
| | | | | |
Collapse
|
36
|
Schoenfeld TJ, Gould E. Differential effects of stress and glucocorticoids on adult neurogenesis. Curr Top Behav Neurosci 2013; 15:139-164. [PMID: 23670817 DOI: 10.1007/7854_2012_233] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Stress is known to inhibit neuronal growth in the hippocampus. In addition to reducing the size and complexity of the dendritic tree, stress and elevated glucocorticoid levels are known to inhibit adult neurogenesis. Despite the negative effects of stress hormones on progenitor cell proliferation in the hippocampus, some experiences which produce robust increases in glucocorticoid levels actually promote neuronal growth. These experiences, including running, mating, enriched environment living, and intracranial self-stimulation, all share in common a strong hedonic component. Taken together, the findings suggest that rewarding experiences buffer progenitor cells in the dentate gyrus from the negative effects of elevated stress hormones. This chapter considers the evidence that stress and glucocorticoids inhibit neuronal growth along with the paradoxical findings of enhanced neuronal growth under rewarding conditions with a view toward understanding the underlying biological mechanisms.
Collapse
Affiliation(s)
- Timothy J Schoenfeld
- Department of Psychology, Neuroscience Institute, Princeton University, Princeton, NJ, 08545, USA
| | | |
Collapse
|
37
|
Jiang B, Xiong Z, Yang J, Wang W, Wang Y, Hu ZL, Wang F, Chen JG. Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol 2012; 166:1872-87. [PMID: 22335772 DOI: 10.1111/j.1476-5381.2012.01902.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Ginsenoside Rg1 (Rg1) is one of the major bioactive ingredients of Panax ginseng with little toxicity and has been shown to have neuroprotective effects. In this study, we investigated the antidepressant-like effect of Rg1 in models of depression in mice. EXPERIMENTAL APPROACH The effects of Rg1 were assessed in the forced swimming test (FST) and tail suspension test (TST) in mice. Rg1 was also investigated in the chronic mild stress (CMS) mouse model of depression with imipramine as the positive control. Changes in hippocampal neurogenesis and spine density, the brain-derived neurotrophic factor (BDNF) signalling pathway, and serum corticosterone level after chronic stress and Rg1 treatment were then investigated. The tryptophan hydroxylase inhibitor and the tyrosine kinase B inhibitor were also used to explore the antidepressive mechanisms of Rg1. KEY RESULTS Ginsenoside Rg1 exhibited antidepressant-like activity in the FST and TST in mice without affecting locomotor activity. It was also effective in the CMS model of depression. Furthermore, Rg1 up-regulated the BDNF signalling pathway in the hippocampus and down-regulated serum corticosterone level during the CMS procedure. In addition, Rg1 was able to reverse the decrease in dendritic spine density and hippocampal neurogenesis caused by CMS. However, Rg1 had no discernable effect on the monoaminergic system. CONCLUSIONS AND IMPLICATIONS Our results provide the first evidence that Rg1 has antidepressant activity via activation of the BDNF signalling pathway and up-regulation of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Garza JC, Guo M, Zhang W, Lu XY. Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling. Mol Psychiatry 2012; 17:790-808. [PMID: 22182938 PMCID: PMC3368076 DOI: 10.1038/mp.2011.161] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stress and glucocorticoid stress hormones inhibit neurogenesis, whereas antidepressants increase neurogenesis and block stress-induced decrease in neurogenesis. Our previous studies have shown that leptin, an adipocyte-derived hormone with antidepressant-like properties, promotes baseline neurogenesis in the adult hippocampus. This study aimed to determine whether leptin is able to restore suppression of neurogenesis in a rat chronic unpredictable stress (CUS) model of depression. Chronic treatment with leptin reversed the CUS-induced reduction of hippocampal neurogenesis and depression-like behaviors. Leptin treatment elicited a delayed long-lasting antidepressant-like effect in the forced swim behavioral despair test, and this effect was blocked by ablation of neurogenesis with X-irradiation. The functional isoform of the leptin receptor, LepRb, and the glucocorticoid receptor (GR) were colocalized in hippocampal neural stem/progenitor cells in vivo and in vitro. Leptin treatment reversed the GR agonist dexamethasone (DEX)-induced reduction of proliferation of cultured neural stem/progenitor cells from adult hippocampus. Further mechanistic analysis revealed that leptin and DEX converged on glycogen synthase kinase-3β (GSK-3β) and β-catenin. While DEX decreased Ser9 phosphorylation and increased Tyr216 phosphorylation of GSK-3β, leptin increased Ser9 phosphorylation and attenuated the effects of DEX at both Ser9 and Tyr216 phosphorylation sites of GSK-3β. Moreover, leptin increased total level and nuclear translocation of β-catenin, a primary substrate of GSK-3β and a key regulator in controlling hippocampal neural progenitor cell proliferation, and reversed the inhibitory effects of DEX on β-catenin. Taken together, our results suggest that adult neurogenesis is involved in the delayed long-lasting antidepressant-like behavioral effects of leptin, and leptin treatment counteracts chronic stress and glucocorticoid-induced suppression of hippocampal neurogenesis via activating the GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jacob C. Garza
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Ming Guo
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Wei Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229,To whom correspondence should be addressed: Xin-Yun Lu, M.D., Ph.D., Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, Phone: 210-567-0803, Fax : 210-567-4303,:
| |
Collapse
|
39
|
Lieberwirth C, Wang Z. The social environment and neurogenesis in the adult Mammalian brain. Front Hum Neurosci 2012; 6:118. [PMID: 22586385 PMCID: PMC3347626 DOI: 10.3389/fnhum.2012.00118] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/16/2012] [Indexed: 12/17/2022] Open
Abstract
Adult neurogenesis - the formation of new neurons in adulthood - has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones) as well as exogenous (e.g., physical activity and environmental complexity) factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. More recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult-adult (e.g., mating and chemosensory interactions) and adult-offspring (e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant-subordinate interactions) on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed.
Collapse
Affiliation(s)
- Claudia Lieberwirth
- Program in Neuroscience, Department of Psychology, Florida State UniversityTallahassee, FL, USA
| | - Zuoxin Wang
- Program in Neuroscience, Department of Psychology, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
40
|
Leão RM, Cruz FC, Marin MT, Planeta CDS. Stress induces behavioral sensitization, increases nicotine-seeking behavior and leads to a decrease of CREB in the nucleus accumbens. Pharmacol Biochem Behav 2012; 101:434-42. [PMID: 22330674 DOI: 10.1016/j.pbb.2012.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/17/2022]
Abstract
Experimental evidence shows that exposure to stress engenders behavioral sensitization and increases drug-seeking and leads to intense drug taking. However the molecular mechanisms involved in these processes is not well known yet. The present experiments examined the effects of exposure to variable stress on nicotine-induced locomotor activation, cAMP-response element-binding protein (CREB) and extracellular signal-regulated kinase (ERK) activity and nicotine intravenous self-administration in rats. Male Wistar rats were exposed to variable stress that consisted of the exposure to different stressors twice a day in random order for 10 days. During this period the control group was left undisturbed except for cage cleaning. Ten days after the last stress episode, rats were challenged with either saline or nicotine (0.4 mg/kgs.c.) and the locomotor activity was recorded for 20 min. Immediately after behavioral recordings rats were sacrificed and their brains were removed to posterior western blotting analysis of CREB, phosphoCREB, ERK and phosphoERK in the nucleus accumbens. An independent set of control and stressed animals were subjected to an intravenous nicotine self-administration protocol. The break point during a progressive ratio schedule and nicotine intake patterns during a 24-hour binge was analyzed. Repeated variable stress caused a sensitized motor response to a single challenge of nicotine and decreased CREB in the nucleus accumbens. Furthermore, in the self-administration experiments previous stress exposure caused an increase in the break point and nicotine intake.
Collapse
Affiliation(s)
- Rodrigo Molini Leão
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú Km 1, 14801-902, Araraquara, São Paulo, Brazil
| | | | | | | |
Collapse
|
41
|
Hanson ND, Owens MJ, Boss-Williams KA, Weiss JM, Nemeroff CB. Several stressors fail to reduce adult hippocampal neurogenesis. Psychoneuroendocrinology 2011; 36:1520-9. [PMID: 21600697 PMCID: PMC3185166 DOI: 10.1016/j.psyneuen.2011.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 04/11/2011] [Accepted: 04/19/2011] [Indexed: 02/01/2023]
Abstract
Neurogenesis in the dentate gyrus of the hippocampus of adult laboratory animals has been widely reported to be vulnerable to many psychological and physical stressors. However, we have found no effects of acute restraint stress, acute or subchronic tailshock stress, or acute, subchronic, or chronic resident-intruder stress on neural progenitor cell (NPC) proliferation, short or long term survival of newborn cells, or brain-derived neurotrophic factor (BDNF) mRNA expression in adult rats. In addition, we did not observe any effect of chronic resident-intruder stress on NPC proliferation in adolescent rats. A selectively bred stress-sensitive line was also found to exhibit no alterations in NPC proliferation following tailshock stress, although this line did exhibit a lower proliferation rate under baseline (unstressed) conditions when compared with non-selected rats. These results challenge the prevailing hypothesis that any stressor of sufficient intensity and duration has a marked negative impact upon the rate of hippocampal neurogenesis, and suggest that some yet unidentified factors related to stress and experimental conditions are crucial in the regulation of neurogenesis.
Collapse
Affiliation(s)
- Nicola D Hanson
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States.
| | | | | | | | | |
Collapse
|
42
|
Abstract
A stressful event increases the risk of developing depression later in life, but the possible predisposing factors remain unknown. Our study aims to characterize latent vulnerability traits underlying the development of depressive disorders in adult animals. Four weeks after a priming stressful event, serum corticosterone concentration returned to control values in all animals, whereas the other biological parameters returned to basal level in only 58% of animals (called nonvulnerable). In contrast, 42% of animals displayed persistent decreased serum and hippocampus BDNF concentrations, reduced hippocampal volume and neurogenesis, CA3 dendritic retraction and decrease in spine density, as well as amygdala neuron hypertrophy, constituting latent vulnerability traits to depression. In this group, called vulnerable, a subsequent mild stress evoked a rise of serum corticosterone levels and a "depressive" phenotype, in contrast to nonvulnerable animals. Intracerebroventricular administration of 7,8-dihydroxyflavone, a selective TrkB receptor agonist, dampened the development of the "depressive" phenotype. Our results thus characterize the presence of latent vulnerability traits that underlie the emergence of depression and identify the association of low BDNF with normal corticosterone serum concentrations as a predictive biomarker of vulnerability to depression.
Collapse
|
43
|
Petrik D, Lagace DC, Eisch AJ. The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology 2011; 62:21-34. [PMID: 21945290 DOI: 10.1016/j.neuropharm.2011.09.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/03/2011] [Accepted: 09/06/2011] [Indexed: 01/22/2023]
Abstract
Hypotheses are scaffoldings erected in front of a building and then dismantled when the building is finished. They are indispensable for the workman; but you mustn't mistake the scaffolding for the building. Johann Wolfgang von Goethe. The neurogenesis hypothesis of affective disorders - in its simplest form - postulates that the generation of neurons in the postnatal hippocampal dentate gyrus is involved in the etiology and treatment efficacy of major depressive disorder (MDD). The hypothesis was established in the 1990s but was built on a broad foundation of earlier research on the hippocampus, serotonin and MDD. It has gone through several growth phases fueled by discoveries both correlative and causative in nature. Recently, the hypothesis has also been broadened to also include potential relevance for anxiety disorders, like post-traumatic stress disorder (PTSD). As any hypothesis should be, it has been tested and challenged, sometimes vigorously. Here we review the current standing of the neurogenesis hypothesis of affective and anxiety disorders, noting in particular how a central postulate - that decreased neurogenesis results in depression or anxiety - has, in general, been rejected. We also review the controversies on whether treatments for these disorders, like antidepressants, rely on intact neurogenesis for their efficacy, and the existence of neurogenesis-dependent and -independent effects of antidepressants. In addition, we review the implications that the hypothesis has for the response to stress, PTSD, and the neurobiology of resilience, and highlight our own work showing that adult-generated neurons are functionally important for the behavioral response to social stress. We conclude by emphasizing how advancements in transgenic mouse technology, rodent behavioral analyses, and our understanding of the neurogenesis process will allow us to refine our conclusions and perform ever more specific experiments. Such scrutiny is critical, since if we "mistake the scaffolding for the building" we could overlook opportunities for translational impact in the clinic. This article is part of a special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- David Petrik
- Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9070, USA
| | | | | |
Collapse
|
44
|
Differential long-term effects of social stress during adolescence on anxiety in Wistar and wild-type rats. Behav Processes 2011; 87:176-82. [DOI: 10.1016/j.beproc.2011.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 01/04/2011] [Accepted: 03/19/2011] [Indexed: 01/30/2023]
|
45
|
Nunez-Parra A, Pugh V, Araneda RC. Regulation of adult neurogenesis by behavior and age in the accessory olfactory bulb. Mol Cell Neurosci 2011; 47:274-85. [PMID: 21600286 DOI: 10.1016/j.mcn.2011.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/16/2011] [Accepted: 05/03/2011] [Indexed: 01/16/2023] Open
Abstract
The vomeronasal system (VNS) participates in the detection and processing of pheromonal information related to social and sexual behaviors. Within the VNS, two different populations of sensory neurons, with a distinct pattern of distribution, line the epithelium of the vomeronasal organ (VNO) and give rise to segregated sensory projections to the accessory olfactory bulb (AOB). Apical sensory neurons in the VNO project to the anterior AOB (aAOB), while basal neurons project to the posterior AOB (pAOB). In the AOB, the largest population of neurons are inhibitory, the granule and periglomerular cells (GCs and PGs) and remarkably, these neurons are continuously born and functionally integrated in the adult brain, underscoring their role on olfactory function. Here we show that behaviors mediated by the VNS differentially regulate adult neurogenesis across the anterior-posterior axis of the AOB. We used immunohistochemical labeling of newly born cells under different behavioral conditions in mice. Using a resident-intruder aggression paradigm, we found that subordinate mice exhibited increased neurogenesis in the aAOB. In addition, in sexually naive adult females exposed to soiled bedding odorized by adult males, the number of newly born cells was significantly increased in the pAOB; however, neurogenesis was not affected in females exposed to female odors. In addition, we found that at two months of age adult neurogenesis was sexually dimorphic, with male mice exhibiting higher levels of newly born cells than females. Interestingly, adult neurogenesis was greatly reduced with age and this decrease correlated with a decrease in progenitor cells proliferation but not with an increase in cell death in the AOB. These results indicate that the physiological regulation of adult neurogenesis in the AOB by behaviors is both sex and age dependent and suggests an important role of newly born neurons in sex dependent behaviors mediated by the VNS.
Collapse
Affiliation(s)
- Alexia Nunez-Parra
- Department of Biology and Neuroscience and Cognitive Sciences Program, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
46
|
Social defeat stress in rats: escalation of cocaine and "speedball" binge self-administration, but not heroin. Psychopharmacology (Berl) 2011; 215:165-75. [PMID: 21197616 PMCID: PMC3707112 DOI: 10.1007/s00213-010-2139-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 11/29/2010] [Indexed: 01/09/2023]
Abstract
RATIONALE Exposure to intermittent episodes of social defeat stress can increase drug seeking and leads to intense drug taking in rats. OBJECTIVES This study investigated the consequences of repeated, intermittent social defeat stress on patterns of drug self-administration in rats with access to heroin, cocaine, or a heroin-cocaine combination ("speedball"). METHODS Male Long-Evans rats were either handled (controls) or subjected to 25-min social defeat stress episodes on days 1, 4, 7, and 10 during confrontations with an aggressive resident. Ten days following the last defeat, rats were assessed for locomotor cross-sensitization in response to heroin or cocaine. Animals were then prepared with intrajugular catheters for drug self-administration. Separate groups of controls and defeated rats were examined for self-administration of heroin (experiment 1), a heroin-cocaine combination (experiment 2), or cocaine (experiment 3). Drug self-administration patterns were evaluated using fixed or progressive ratio schedules of reinforcement during limited access sessions or a 24-h unlimited access binge. RESULTS Rats with a history of intermittent social defeat stress showed sensitized locomotor behavior when challenged with heroin or cocaine relative to controls. During the 24-h binge session, defeated rats escalated cocaine-taking behavior (ca. 110 mg/kg vs. 66 mg/kg in controls), persisted in self-administering cocaine or the heroin-cocaine mixture for more hours, and showed a tendency for increased heroin-cocaine intake, but no effects on heroin taking. CONCLUSIONS A history of social defeat stress seems to preferentially promote escalated intake of cocaine but not heroin, unless a heroin-cocaine combination is available.
Collapse
|
47
|
Schoenfeld TJ, Gould E. Stress, stress hormones, and adult neurogenesis. Exp Neurol 2011; 233:12-21. [PMID: 21281629 DOI: 10.1016/j.expneurol.2011.01.008] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/18/2011] [Accepted: 01/24/2011] [Indexed: 01/17/2023]
Abstract
The dentate gyrus of the hippocampus continues to produce new neurons throughout adulthood. Adult neurogenesis has been linked to hippocampal function, including learning and memory, anxiety regulation and feedback of the stress response. It is thus not surprising that stress, which affects hippocampal function, also alters the production and survival of new neurons. Glucocorticoids, along with other neurochemicals, have been implicated in stress-induced impairment of adult neurogenesis. Paradoxically, increases in corticosterone levels are sometimes associated with enhanced adult neurogenesis in the dentate gyrus. In these circumstances, the factors that buffer against the suppressive influence of elevated glucocorticoids remain unknown; their discovery may provide clues to reversing pathological processes arising from chronic exposure to aversive stress.
Collapse
Affiliation(s)
- Timothy J Schoenfeld
- Department of Psychology, Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
48
|
Okajima D, Kudo G, Yokota H. Antidepressant-like behavior in brain-specific angiogenesis inhibitor 2-deficient mice. J Physiol Sci 2011; 61:47-54. [PMID: 21110148 PMCID: PMC10716985 DOI: 10.1007/s12576-010-0120-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/29/2010] [Indexed: 01/19/2023]
Abstract
Brain-specific angiogenesis inhibitor 2 (BAI2) is a transmembrane protein that is predominantly expressed in the brain. Although BAI2 is supposed to correlate with antiangiogenesis in the brain, its psychiatric function is still unclear. In this study, we examined the influence of BAI2 gene disruption on mood-related behavior using BAI2-deficient mice. BAI2-deficient mice showed significant antidepressant-like behavior in the social defeat test and in the tail suspension test compared with wild-type mice. On the other hand, BAI2-deficient mice had normal basal locomotor activity in the home cage and in the open field test, and normal learning ability and memory retention in the Morris water maze test. Additionally, we found that hippocampal cell proliferation in BAI2-deficient mice was higher than that in wild-type mice. These results indicate that BAI2 has an important role related to depression and influences the hippocampal neurogenesis. BAI2 may be a novel therapeutic target for mood-related disorders.
Collapse
Affiliation(s)
- Daisuke Okajima
- Biologics Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan.
| | | | | |
Collapse
|
49
|
Chronic restraint stress impairs neurogenesis and hippocampus-dependent fear memory in mice: possible involvement of a brain-specific transcription factor Npas4. J Neurochem 2010; 114:1840-51. [DOI: 10.1111/j.1471-4159.2010.06893.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Buwalda B, van der Borght K, Koolhaas JM, McEwen BS. Testosterone decrease does not play a major role in the suppression of hippocampal cell proliferation following social defeat stress in rats. Physiol Behav 2010; 101:719-25. [PMID: 20732337 DOI: 10.1016/j.physbeh.2010.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 12/11/2022]
Abstract
Stress of social defeat in rodents is known to have a strong and long-lasting effect on brain, physiology and behavior, which bears similarities with certain human stress related psychopathologies. Previous experiments in this lab showed that social defeat stress suppresses testosterone secretion and causes a lasting desensitization of the serotonergic 5-HT(1A) receptors. Testosterone supplementation in socially stressed tree shrews prevented a decrease in hippocampal 5-HT(1A) receptor binding. These receptors are hypothesized to play an important role in neurogenesis in this brain structure. We designed the present experiment to test if social defeat reduces hippocampal cell proliferation and neurogenesis in rats and if testosterone supplementation can prevent this reduction. The results indicate that repeated social defeat stress on 5 successive days induces a significant drop in plasma testosterone levels in male rats and suppresses hippocampal cell proliferation 24h and 3weeks after the end of the stress period. Testosterone supplementation prevented the social stress induced drop in plasma testosterone levels. The hormone supplementation also reduced the negative effect of stress on hippocampal BrdU labeling at 3weeks post-defeat. This effect was, however, rather weak and was caused by the tendency of the hormone in itself to suppress proliferation and the failure to fully recover the proliferation rate. Survival of dentate gyrus cells that either proliferated prior to the stress period or 24h after the last defeat was not affected by the social defeats. Thus the stress-induced lowering of hippocampal cell proliferation is not likely to be caused by transient inhibition of testosterone secretion during social stress.
Collapse
Affiliation(s)
- Bauke Buwalda
- Behavioral Physiology, University of Groningen, P.O. Box 14, 9750AA HAREN, The Netherlands.
| | | | | | | |
Collapse
|