1
|
Pagliaro P, Weber NC, Femminò S, Alloatti G, Penna C. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol 2024; 119:509-544. [PMID: 38878210 PMCID: PMC11319428 DOI: 10.1007/s00395-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy.
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy.
| | - Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science (ACS), Amsterdam, The Netherlands
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy
| |
Collapse
|
2
|
Vezzoli A, Mrakic-Sposta S, Brizzolari A, Balestra C, Camporesi EM, Bosco G. Oxy-Inflammation in Humans during Underwater Activities. Int J Mol Sci 2024; 25:3060. [PMID: 38474303 DOI: 10.3390/ijms25053060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Underwater activities are characterized by an imbalance between reactive oxygen/nitrogen species (RONS) and antioxidant mechanisms, which can be associated with an inflammatory response, depending on O2 availability. This review explores the oxidative stress mechanisms and related inflammation status (Oxy-Inflammation) in underwater activities such as breath-hold (BH) diving, Self-Contained Underwater Breathing Apparatus (SCUBA) and Closed-Circuit Rebreather (CCR) diving, and saturation diving. Divers are exposed to hypoxic and hyperoxic conditions, amplified by environmental conditions, hyperbaric pressure, cold water, different types of breathing gases, and air/non-air mixtures. The "diving response", including physiological adaptation, cardiovascular stress, increased arterial blood pressure, peripheral vasoconstriction, altered blood gas values, and risk of bubble formation during decompression, are reported.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
| | | | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
3
|
Scheid S, Goebel U, Ulbrich F. Neuroprotection Is in the Air-Inhaled Gases on Their Way to the Neurons. Cells 2023; 12:2480. [PMID: 37887324 PMCID: PMC10605176 DOI: 10.3390/cells12202480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Cerebral injury is a leading cause of long-term disability and mortality. Common causes include major cardiovascular events, such as cardiac arrest, ischemic stroke, and subarachnoid hemorrhage, traumatic brain injury, and neurodegenerative as well as neuroinflammatory disorders. Despite improvements in pharmacological and interventional treatment options, due to the brain's limited regeneration potential, survival is often associated with the impairment of crucial functions that lead to occupational inability and enormous economic burden. For decades, researchers have therefore been investigating adjuvant therapeutic options to alleviate neuronal cell death. Although promising in preclinical studies, a huge variety of drugs thought to provide neuroprotective effects failed in clinical trials. However, utilizing medical gases, noble gases, and gaseous molecules as supportive treatment options may offer new perspectives for patients suffering neuronal damage. This review provides an overview of current research, potentials and mechanisms of these substances as a promising therapeutic alternative for the treatment of cerebral injury.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, 48145 Muenster, Germany;
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
4
|
Some Beneficial Effects of Inert Gases on Blood Oxidative Metabolism: In Vivo Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5857979. [PMID: 36573196 PMCID: PMC9789907 DOI: 10.1155/2022/5857979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The aim of the study was to assess the effect of external use of inert gases (helium and argon) on the state of free radical processes in vivo. The experiment was performed on 30 male Wistar stock rats (age-3 months, weight-200-220 g.), randomly distributed into 3 equal groups. The first group of animals was intact (n = 10). The animals of the second and third groups were treated with argon and helium streams, respectively. Our research has allowed us to establish that the studied inert gases have a modulating effect on the state of oxidative metabolism of rat blood, and the nature of this effect is directly determined by the type of gas. The results of this study allowed us to establish the potential antioxidant effect of the helium stream, mainly realized due to the activation of the catalytic properties of the enzymatic link of the antioxidant system of rat blood plasma. At the same time, the revealed features of shifts in oxidative metabolism during treatment with argon flow include not only stimulation of the antioxidant system but also the pronounced induction of free radical oxidation. Thus, the conducted studies made it possible to verify the specificity of the response of the oxidative metabolism of blood plasma to the use of inert gases, depending on their type.
Collapse
|
5
|
Yin H, Chen Z, Zhao H, Huang H, Liu W. Noble gas and neuroprotection: From bench to bedside. Front Pharmacol 2022; 13:1028688. [PMID: 36532733 PMCID: PMC9750501 DOI: 10.3389/fphar.2022.1028688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/03/2022] [Indexed: 07/26/2023] Open
Abstract
In recent years, inert gases such as helium, argon, and xenon have gained considerable attention for their medical value. Noble gases present an intriguing scientific paradox: although extremely chemically inert, they display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge about their mechanisms of action, some noble gases have been used successfully in clinical practice. The neuroprotection elicited by these noble gases has been investigated in experimental animal models of various types of brain injuries, such as traumatic brain injury, stroke, subarachnoid hemorrhage, cerebral ischemic/reperfusion injury, and neurodegenerative diseases. Collectively, these central nervous system injuries are a leading cause of morbidity and mortality every year worldwide. Treatment options are presently limited to thrombolytic drugs and clot removal for ischemic stroke, or therapeutic cooling for other brain injuries before the application of noble gas. Currently, there is increasing interest in noble gases as novel treatments for various brain injuries. In recent years, neuroprotection elicited by particular noble gases, xenon, for example, has been reported under different conditions. In this article, we have reviewed the latest in vitro and in vivo experimental and clinical studies of the actions of xenon, argon, and helium, and discuss their potential use as neuroprotective agents.
Collapse
Affiliation(s)
- Haiying Yin
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zijun Chen
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hailin Zhao
- Division of Anesthetics, Department of Surgery and Cancer, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Han Huang
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenwen Liu
- Department of Anesthesia Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Ministry of Education, Sichuan University and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| |
Collapse
|
6
|
Zhong W, Cheng J, Yang X, Liu W, Li Y. Heliox Preconditioning Exerts Neuroprotective Effects on Neonatal Ischemia/Hypoxia Injury by Inhibiting Necroptosis Induced by Ca 2+ Elevation. Transl Stroke Res 2022; 14:409-424. [PMID: 35445968 DOI: 10.1007/s12975-022-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Our previous studies have indicated that heliox preconditioning (HePC) may exert neuroprotective effects on neonatal hypoxic-ischemic encephalopathy (HIE). The present study was to investigate whether HePC alleviates neonatal HIE by inhibiting necroptosis and explore the potential mechanism. Seven-day-old rat pups were randomly divided into Sham group, HIE group, HIE + HePC group, HIE + Dantrolene (DAN) group, and HIE + Necrostatin-1 (Nec-1) group. HIE was induced by common carotid artery ligation and subsequent hypoxia exposure. The neurological function, brain injury, and molecular mechanism were evaluated by histological staining, neurobehavioral test, Western blotting, Ca2+, immunofluorescence staining, co-immunoprecipitation (Co-IP), and transmission electron microscopy (TEM). Results supported that the expression of necroptosis markers and p-RyR2 in the brain increased significantly after HIE. HePC, DAN, or Nec-1 was found to improve the neurological deficits after H/I and inhibit neuronal necroptosis. Interestingly, both HePC and DAN inhibited the increases in cytoplasmic Ca2+ and CaMK-II phosphorylation in the brain secondary to HIE, but Nec-1 failed to affect Ca2+. In conclusion, our results suggest HePC may alleviate cytoplasmic Ca2+ overload by regulating p-RyR2, which inhibits the necroptosis in the brain, exerting neuroprotective effects on HIE.
Collapse
Affiliation(s)
- Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Juan Cheng
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaosheng Yang
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Wenwu Liu
- Naval Characteristic Medical Center Diving and Hyperbaric Medicine Research Laboratory, Shanghai, 200433, People's Republic of China.
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
7
|
Zhang J, Liu W, Bi M, Xu J, Yang H, Zhang Y. Noble Gases Therapy in Cardiocerebrovascular Diseases: The Novel Stars? Front Cardiovasc Med 2022; 9:802783. [PMID: 35369316 PMCID: PMC8966230 DOI: 10.3389/fcvm.2022.802783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiocerebrovascular diseases (CCVDs) are the leading cause of death worldwide; therefore, to deeply explore the pathogenesis of CCVDs and to find the cheap and efficient strategies to prevent and treat CCVDs, these are of great clinical and social significance. The discovery of nitric oxide (NO), as one of the endothelium-derived relaxing factors and its successful utilization in clinical practice for CCVDs, provides new ideas for us to develop drugs for CCVDs: “gas medicine” or “medical gases.” The endogenous gas molecules such as carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide (SO2), methane (CH4), and hydrogen (H2) have essential biological effects on modulating cardiocerebrovascular homeostasis and CCVDs. Moreover, it has been shown that noble gas atoms such as helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe) display strong cytoprotective effects and therefore, act as the exogenous pharmacologic preventive and therapeutic agents for CCVDs. Mechanistically, besides the competitive inhibition of N-methyl-D-aspartate (NMDA) receptor in nervous system by xenon, the key and common mechanisms of noble gases are involved in modulation of cell death and inflammatory or immune signals. Moreover, gases interaction and reduction in oxidative stress are emerging as the novel biological mechanisms of noble gases. Therefore, to investigate the precise actions of noble gases on redox signals, gases interaction, different cell death forms, and the emerging field of gasoimmunology, which focus on the effects of gas atoms/molecules on innate immune signaling or immune cells under both the homeostatic and perturbed conditions, these will help us to uncover the mystery of noble gases in modulating CCVDs.
Collapse
Affiliation(s)
- Jiongshan Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingmin Bi
- Department of Otorhinolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
How to Survive 33 min after the Umbilical of a Saturation Diver Severed at a Depth of 90 msw? Healthcare (Basel) 2022; 10:healthcare10030453. [PMID: 35326931 PMCID: PMC8956028 DOI: 10.3390/healthcare10030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
In 2012, a severe accident happened during the mission of a professional saturation diver working at a depth of 90 m in the North Sea. The dynamic positioning system of the diver support vessel crashed, and the ship drifted away from the working place, while one diver’s umbilical became snagged on a steel platform and was severed. After 33 min, he was rescued into the diving bell, without exhibiting any obvious neurological injury. In 2019, the media and a later ‘documentary’ film suggested that a miracle had happened to permit survival of the diver once his breathing gas supply was limited to only 5 min. Based on the existing data and phone calls with the diver concerned (Dc), the present case report tries to reconstruct, on rational grounds, how Dc could have survived after he was cut off from breathing gas, hot water, light and communication while 90 m deep at the bottom of the sea. Dc carried bail-out heliox (86/14) within two bottles (2 × 12 L × 300 bar: 7200 L). Calculating Dc’s varying per-minute breathing gas consumption over time, both the decreased viscosity of the helium mix and the pressure-related increase in viscosity did not exhibit a breathing gas gap. Based on the considerable respiratory heat loss, the core temperature was calculated to be as low as 28.8 °C to 27.2 °C after recovery in the diving bell. In accordance with the literature, such values would be associated with impaired or lost consciousness, respectively. Relocating Dc on the drilling template by using a remotely operated vehicle (ROV), the transport of the victim to the bell and subsequent care in the hyperbaric chamber must be regarded as exemplary. We conclude that, based on rational arguments and available literature data, Dc’s healthy survival is not a miracle, as it can be convincingly explained by means of reliable data. Remaining with a breathing gas supply sufficient for five minutes only would not have ended in a miracle but would have ended in death by suffocation. Nevertheless, survival of such an accident may appear surprising, and probably the limit for a healthy outcome was very close. We conclude, in addition, that highly effective occupational safety measures, in particular the considerable bail-out heliox reserve, secured the healthy survival. Nevertheless, the victim’s survival is likely to be due to his excellent diving training, together with many years of diving routine. The rescue action of the second diver and Dc’s retrieval by the ROV operator are also suggestive of the behavior of carefully selected crew members with the high degree of professional qualification needed to correctly function in a hostile environment.
Collapse
|
9
|
Rocco M, Maggi L, Loffredo C, Pelli M, Benedetto PD, Fiorelli S, Simmaco M, De Blasi RA. The impact of different gas mixtures on inflammatory responses in advanced recreational divers. Diving Hyperb Med 2021; 51:140-146. [PMID: 34157728 PMCID: PMC8426122 DOI: 10.28920/dhm51.2.140-146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 01/15/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Decompression sickness (DCS) is considered a 'bubble disease'. Intravascular bubbles activate inflammatory responses associated with endothelial dysfunction. Breathing gas has been proposed as a potential risk factor but this is inadequately studied. Different gases are used in scuba diving. Helium-containing 'trimix' could theoretically mitigate inflammation and therefore reduce DCS risk. This study determined the effect of air and trimix on the inflammatory response following dives to 50 metres of sea water, and evaluated the differences between them in advanced recreational divers. METHODS Thirty-three divers were enrolled in this observational study and were divided in two groups: 17 subjects were included in the air group, and 16 different subjects were included in the trimix (21% oxygen, 35% helium, 44% nitrogen) group. Each subject conducted a single dive, and both groups used a similar diving profile of identical duration. A venous blood sample was taken 30 min before diving and 2 h after surfacing to evaluate changes in interleukins (IL) IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumour necrosis factor α (TNFα), vascular endothelial growth factor (VEGF), Interferon γ (IFN-γ), monocyte chemoattractant protein 1 (MCP-1) and epithelial growth factor (EGF) after diving. RESULTS No differences were observed between groups in demographic data or diving experience. Following the dive, IL-6 values showed a slight increase, while IL-8 and EGF decreased in both groups, without significant variation between the groups. CONCLUSIONS In physically fit divers, trimix and air gas mixture during deep diving did not cause relevant changes in the inflammatory markers tested.
Collapse
Affiliation(s)
- Monica Rocco
- Department of Surgical and Medical Science and Translation Medicine, Sapienza University, Rome, Italy
| | - Luigi Maggi
- Department of Anesthesia, Sant'Andrea Hospital, Rome, Italy
- Corresponding author: Dr Luigi Maggi, Department of Anesthesia, Sant'Andrea Hospital, Rome, Italy,
| | - Chiara Loffredo
- Department of Surgical and Medical Science and Translation Medicine, Sapienza University, Rome, Italy
| | - Massimiliano Pelli
- Department of Surgical and Medical Science and Translation Medicine, Sapienza University, Rome, Italy
| | | | - Silvia Fiorelli
- Department of Surgical and Medical Science and Translation Medicine, Sapienza University, Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University, Rome, Italy
| | - Roberto Alberto De Blasi
- Department of Surgical and Medical Science and Translation Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
10
|
Deng RM, Li HY, Li X, Shen HT, Wu DG, Wang Z, Chen G. Neuroprotective effect of helium after neonatal hypoxic ischemia: a narrative review. Med Gas Res 2021; 11:121-123. [PMID: 33942783 PMCID: PMC8174408 DOI: 10.4103/2045-9912.314332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neonatal hypoxic ischemia is one of the leading causes of permanent morbidity and mortality in newborns, which is caused by difficulty in supplying blood and oxygen to brain tissue and is often associated with epilepsy, cerebral palsy, death, short-term or long-term neurological and cognitive impairment. In recent years, the clinical therapeutic effects of noble gases have been gradually discovered and recognized. Numerous studies have shown that noble gases have unique neuroprotective effects to restore damaged nerve and relieve symptoms in patients. Although research on the neuroprotective mechanisms of xenon and argon has yielded a lot of results, studies on helium have stalled. Helium is a colorless, odorless, monoatomic inert gas. The helium has no hemodynamic or neurocognitive side effects and can be used as an ideal pre-adaptor for future clinical applications. In recent years, studies have shown that heliox (a mixture of helium and oxygen) pretreatment can protect the heart, brain, liver and intestine from damage in several animal models, where a variety of signaling pathways have been proved to be involved. There are numerous studies on it even though the mechanism of helium for protecting newborns has not been fully elucidated. It is urgent to find an effective treatment due to the high death rate and disability rate of neonatal hypoxic ischemia. It is believed that helium will be approved safely and effectively for clinical use in the near future.
Collapse
Affiliation(s)
- Ru-Ming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Tao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - De-Gang Wu
- Department of Neurosurgery, Yijishan Hospital of Wan-nan Medical College, Wuhu, Anhui Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Weber NC, Preckel B. Gaseous mediators: an updated review on the effects of helium beyond blowing up balloons. Intensive Care Med Exp 2019; 7:73. [PMID: 31858285 PMCID: PMC6923303 DOI: 10.1186/s40635-019-0288-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Noble gases, although supposed to be chemically inert, mediate numerous physiological and cellular effects, leading to protection against ischaemia-reperfusion injury in different organs. Clinically, the noble gas helium is used in treatment of airway obstruction and ventilation disorders in children and adults. In addition, studies from recent years in cells, isolated tissues, animals and finally humans show that helium has profound biological effects: helium applied before, during or after an ischaemic event reduced cellular damage, known as "organ conditioning", in some tissue, e.g. the myocardium. Although extensive research has been performed, the exact molecular mechanisms behind these organ-protective effects of helium are yet not completely understood. In addition, there are significant differences of protective effects in different organs and animal models. A translation of experimental findings to the clinical situation has yet not been shown.
Collapse
Affiliation(s)
- Nina C Weber
- Amsterdam University Medical Centers, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Benedikt Preckel
- Amsterdam University Medical Centers, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Tolaymat Y, Doré S, Griffin HW, Shih S, Edwards ME, Weiss MD. Inhaled Gases for Neuroprotection of Neonates: A Review. Front Pediatr 2019; 7:558. [PMID: 32047729 PMCID: PMC6996209 DOI: 10.3389/fped.2019.00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022] Open
Abstract
Importance: Hypoxic-ischemic encephalopathy (HIE) is a significant cause of morbidity and mortality in neonates. The incidence of HIE is 1-8 per 1,000 live births in developed countries. Whole-body hypothermia reduces the risk of disability or death, but 7 infants needed to be treated to prevent death or major neurodevelopmental disability. Inhalational gases may be promising synergistic agents due to their rapid onset and easy titratability. Objective: To review current data on different inhaled gases with neuroprotective properties that may serve as adjunct therapies to hypothermia. Evidence review: Literature review was performed using the PubMed database, google scholar, and ClinicalTrials.Gov. Results focused on articles published from January 1, 2005, through December 31, 2017. Articles published earlier than 2005 were included when appropriate for historical perspective. Our review emphasized preclinical and clinical studies relevant to the use of inhaled agents for neuroprotection. Findings: Based on the relevance to our topic, 111 articles were selected pertaining to the incidence of HIE, pathophysiology of HIE, therapeutic hypothermia, and emerging therapies for hypoxic-ischemic encephalopathy in preclinical and clinical settings. Supplemental tables summarizes highly relevant 49 publications that were included in this review. The selected publications emphasize the emergence of promising inhaled gases that may improve neurologic survival and alleviate neurodevelopmental disability when combined with therapeutic hypothermia in the future. Conclusions: Many inhaled agents have neuroprotective properties and could serve as an adjunct therapy to whole-body hypothermia. Inhaled agents are ideal due to their easy administration, titrability, and rapid onset and offset.
Collapse
Affiliation(s)
- Youness Tolaymat
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Departments of Neurology, Psychiatry, Pharmaceuticals and Neuroscience, University of Florida, Gainesville, FL, United States
| | - Hudson W Griffin
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Susana Shih
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Mary E Edwards
- Health Science Center Libraries, University of Florida, Gainesville, FL, United States
| | - Michael D Weiss
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Lan M, Tang X, Zhang J, Yao Z. Insights in pathogenesis of multiple sclerosis: nitric oxide may induce mitochondrial dysfunction of oligodendrocytes. Rev Neurosci 2018; 29:39-53. [PMID: 28822986 DOI: 10.1515/revneuro-2017-0033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 01/01/2023]
Abstract
Demyelinating diseases, such as multiple sclerosis (MS), are kinds of common diseases in the central nervous system (CNS), and originated from myelin loss and axonal damage. Oligodendrocyte dysfunction is the direct reason of demyelinating lesions in the CNS. Nitric oxide (NO) plays an important role in the pathological process of demyelinating diseases. Although the neurotoxicity of NO is more likely mediated by peroxynitrite rather than NO itself, NO can impair oligodendrocyte energy metabolism through mediating the damaging of mitochondrial DNA, mitochondrial membrane and mitochondrial respiratory chain complexes. In the progression of MS, NO can mainly mediate demyelination, axonal degeneration and cell death. Hence, in this review, we extensively discuss endangerments of NO in oligodendrocytes (OLs), which is suggested to be the main mediator in demyelinating diseases, e.g. MS. We hypothesize that NO takes part in MS through impairing the function of monocarboxylate transporter 1, especially causing axonal degeneration. Then, it further provides a new insight that NO for OLs may be a reliable therapeutic target to ameliorate the course of demyelinating diseases.
Collapse
Affiliation(s)
- Minghong Lan
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyi Tang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Jie Zhang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Zhongxiang Yao
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
14
|
Odorcyk FK, Kolling J, Sanches EF, Wyse ATS, Netto CA. Experimental neonatal hypoxia ischemia causes long lasting changes of oxidative stress parameters in the hippocampus and the spleen. J Perinat Med 2018; 46:433-439. [PMID: 28841577 DOI: 10.1515/jpm-2017-0070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/25/2017] [Indexed: 11/15/2022]
Abstract
Neonatal hypoxia ischemia (HI) is the main cause of mortality and morbidity in newborns. The mechanisms involved in its progression start immediately and persist for several days. Oxidative stress and inflammation are determinant factors of the severity of the final lesion. The spleen plays a major part in the inflammatory response to HI. This study assessed the temporal progression of HI-induced alterations in oxidative stress parameters in the hippocampus, the most affected brain structure, and in the spleen. HI was induced in Wistar rat pups in post-natal day 7. Production of reactive oxygen species (ROS), and the activity of the anti oxidant enzyme superoxide dismutase and catalase were assessed 24 h, 96 h and 38 days post-HI. Interestingly, both structures showed a similar pattern, with few alterations in the production of ROS species up to 96 h often combined with an increased activity of the anti oxidant enzymes. However, 38 days after the injury, ROS were at the highest in both structures, coupled with a decrease in the activity of the enzymes. Altogether, present results suggest that HI causes long lasting alterations in the hippocampus as well as in the spleen, suggesting a possible target for delayed treatments for HI.
Collapse
Affiliation(s)
- Felipe Kawa Odorcyk
- Post-graduation Program of Neurosciences, Departamento de Bioquímica, Instituto das Ciências da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 anexo 90035-003, Porto Alegre, RS, Brazil, Tel./Fax: 0055-051 33085568
| | - Janaína Kolling
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Farias Sanches
- Post-graduation Program of Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Xu N, Zhang Y, Doycheva DM, Ding Y, Zhang Y, Tang J, Guo H, Zhang JH. Adiponectin attenuates neuronal apoptosis induced by hypoxia-ischemia via the activation of AdipoR1/APPL1/LKB1/AMPK pathway in neonatal rats. Neuropharmacology 2018; 133:415-428. [PMID: 29486166 DOI: 10.1016/j.neuropharm.2018.02.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/15/2018] [Accepted: 02/23/2018] [Indexed: 02/03/2023]
Abstract
Adiponectin is an important adipocyte-derived plasma protein that has beneficial effects on cardio- and cerebrovascular diseases. A low level of plasma Adiponectin is associated with increased mortality post ischemic stroke; however, little is known about the causal role of Adiponectin as well as its molecular mechanisms in neonatal hypoxia ischemia (HI). In the present study, ten-day-old rat pups were subjected to right common carotid artery ligation followed by 2.5 h hypoxia. Recombinant human Adiponectin (rh-Adiponectin) was administered intranasally 1 h post HI. Adiponectin Receptor 1 (AdipoR1) siRNA, APPL1 siRNA, LKB1 siRNA were administered through intracerebroventricular injection 48 h before HI. Brain infarct area measurement, neurological function test, western blot, Fluoro Jade C (FJC), TUNEL, and immunofluorescence staining were conducted. Results revealed that endogenous Adiponectin, AdipoR1 and APPL1 were increased in a time dependent manner after HI. Administration of rh-Adiponectin reduced brain infarct area, neuronal apoptosis, brain atrophy and improved neurological function at 24 h and 4 weeks post HI. Furthermore, rh-Adiponectin treatment increased Adiponectin, AdipoR1, APPL1, cytosolic LKB1, p-AMPK expression levels and thereby attenuated apoptosis as shown by the decreased expression of the pro-apoptotic marker, Cleaved Caspase 3 (C-Cas3), as well as the number of FJC and TUNEL positively stained neurons. AdipoR1, APPL1 and LKB1 siRNAs abolished the anti-apoptotic effects of rh-Adiponectin at 24 h after HI. Collectively, the data provided evidence that intranasal administration of rh-Adiponectin attenuated neuronal apoptosis at least in part via activating AdipoR1/APPL1/LKB1/AMPK signaling pathway. Adiponectin could represent a therapeutic target for treatment of neonatal hypoxic ischemic encephalopathy.
Collapse
MESH Headings
- AMP-Activated Protein Kinase Kinases
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adiponectin/therapeutic use
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Body Weight/drug effects
- Brain Infarction/drug therapy
- Brain Infarction/etiology
- Caspase 3/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Escape Reaction/drug effects
- Female
- Fluoresceins/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/pathology
- In Situ Nick-End Labeling
- Male
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurologic Examination
- Neurons/drug effects
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Reflex/drug effects
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Statistics, Nonparametric
- Swimming/physiology
- Time Factors
Collapse
Affiliation(s)
- Ningbo Xu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yixin Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yiting Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hongbo Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
16
|
Abstract
Stroke is considered to be an acute cerebrovascular disease, including ischemic stroke and hemorrhagic stroke. The high incidence and poor prognosis of stroke suggest that it is a highly disabling and highly lethal disease which can pose a serious threat to human health. Nitric oxide (NO), a common gas in nature, which is often thought as a toxic gas, because of its intimate relationship with the pathological processes of many diseases, especially in the regulation of blood flow and cell inflammation. However, recent years have witnessed an increased interest that NO plays a significant and positive role in stroke as an essential gas signal molecule. In view of the fact that the neuroprotective effect of NO is closely related to its concentration, cell type and time, only in the appropriate circumstances can NO play a protective effect. The purpose of this review is to summarize the roles of NO in ischemic stroke and hemorrhagic stroke.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ru-Tao Mou
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott & White Clinic-Temple, Temple, TX, USA
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
17
|
Tran NQV, Nguyen AN, Takabe K, Yamagata Z, Miyake K. Pre-treatment with amitriptyline causes epigenetic up-regulation of neuroprotection-associated genes and has anti-apoptotic effects in mouse neuronal cells. Neurotoxicol Teratol 2017; 62:1-12. [PMID: 28511916 DOI: 10.1016/j.ntt.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Antidepressants, such as imipramine and fluoxetine, are known to alter gene expression patterns by inducing changes in the epigenetic status of neuronal cells. There is also some evidence for the anti-apoptotic effect of various groups of antidepressants; however, this effect is complicated and cell-type dependent. Antidepressants of the tricyclic group, in particular amitriptyline, have been suggested to be beneficial in the treatment of neurodegenerative disorders. We examined whether amitriptyline exerts an anti-apoptotic effect via epigenetic mechanisms. Using DNA microarray, we analyzed global gene expression in mouse primary cultured neocortical neurons after treatment with amitriptyline and imipramine. The neuroprotection-associated genes, activating transcription factor 3 (Atf3) and heme oxygenase 1 (Hmox1), were up-regulated at both mRNA and protein levels by treatment with amitriptyline. Quantitative chromatin immunoprecipitation assay revealed that amitriptyline increased enrichments of trimethylation of histone H3 lysine 4 in the promoter regions of Atf3 and Hmox1 and acetylation of histone H3 lysine 9 in the promoter regions of Atf3, which indicate an active epigenetic status. Amitriptyline pre-treatment attenuated 1-methyl-4-phenylpyridinium ion (MPP+)- or amyloid β peptide 1-42 (Aβ1-42)-induced neuronal cell death and inhibited the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). We found that Atf3 and Hmox1 were also up-regulated after Aβ1-42 treatment, and were further increased when pre-treated with amitriptyline. Interestingly, the highest up-regulation of Atf3 and Hmox1, at least at mRNA level, was observed after co-treatment with Aβ1-42 and amitriptyline, together with the loss of the neuroprotective effect. These findings suggest preconditioning and neuroprotective effects of amitriptyline; however, further investigations are needed for clarifying the contribution of epigenetic up-regulation of Atf3 and Hmox1 genes.
Collapse
Affiliation(s)
- Nguyen Quoc Vuong Tran
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - An Nghia Nguyen
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kyoko Takabe
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kunio Miyake
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
18
|
Spisni E, Marabotti C, De Fazio L, Valerii MC, Cavazza E, Brambilla S, Hoxha K, L'Abbate A, Longobardi P. A comparative evaluation of two decompression procedures for technical diving using inflammatory responses: compartmental versus ratio deco. Diving Hyperb Med 2017; 47:9-16. [PMID: 28357819 DOI: 10.28920/dhm47.1.9-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The aim of this study was to compare two decompression procedures commonly adopted by technical divers: the ZH-L16 algorithm modified by 30/85 gradient factors (compartmental decompression model, CDM) versus the 'ratio decompression strategy' (RDS). The comparison was based on an analysis of changes in diver circulating inflammatory profiles caused by decompression from a single dive. METHODS Fifty-one technical divers performed a single trimix dive to 50 metres' sea water (msw) for 25 minutes followed by enriched air (EAN50) and oxygen decompression. Twenty-three divers decompressed according to a CDM schedule and 28 divers decompressed according to a RDS schedule. Peripheral blood for detection of inflammatory markers was collected before and 90 min after diving. Venous gas emboli were measured 30 min after diving using 2D echocardiography. Matched groups of 23 recreational divers (dive to 30 msw; 25 min) and 25 swimmers were also enrolled as control groups to assess the effects of decompression from a standard air dive or of exercise alone on the inflammatory profile. RESULTS Echocardiography at the single 30 min observation post dive showed no significant differences between the two decompression procedures. Divers adopting the RDS showed a worsening of post-dive inflammatory profile compared to the CDM group, with significant increases in circulating chemokines CCL2 (P = 0.001) and CCL5 (P = 0.006) levels. There was no increase in chemokines following the CDM decompression. The air scuba group also showed a statistically significant increase in CCL2 (P < 0.001) and CCL5 (P = 0.003) levels post dive. No cases of decompression sickness occurred. CONCLUSION The ratio deco strategy did not confer any benefit in terms of bubbles but showed the disadvantage of increased decompression-associated secretion of inflammatory chemokines involved in the development of vascular damage.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, Translational Physiology and Nutrition Unit, University of Bologna, Via Selmi 3, 40126 Bologna, Italy,
| | - Claudio Marabotti
- Department of Biological, Geological and Environmental, Sciences, University of Bologna, Italy.,Department of Cardiology, Civic Hospital Cecina, Italy
| | - Luigia De Fazio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Elena Cavazza
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Stefano Brambilla
- Institute for Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Klarida Hoxha
- Hyperbaric Center of Ravenna, Via Augusto Torre 3, Ravenna, Italy
| | - Antonio L'Abbate
- Institute for Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Pasquale Longobardi
- Institute for Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Hyperbaric Center of Ravenna, Via Augusto Torre 3, Ravenna, Italy
| |
Collapse
|
19
|
Demarest TG, Waite EL, Kristian T, Puche AC, Waddell J, McKenna MC, Fiskum G. Sex-dependent mitophagy and neuronal death following rat neonatal hypoxia-ischemia. Neuroscience 2016; 335:103-13. [PMID: 27555552 DOI: 10.1016/j.neuroscience.2016.08.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022]
Abstract
Males are more susceptible than females to long-term cognitive deficits following neonatal hypoxic-ischemic encephalopathy (HIE). Mitochondrial dysfunction is implicated in the pathophysiology of cerebral hypoxia-ischemia (HI), but the influence of sex on mitochondrial quality control (MQC) after HI is unknown. Therefore, we tested the hypothesis that mitophagy is sexually dimorphic and neuroprotective 20-24h following the Rice-Vannucci model of rat neonatal HI at postnatal day 7 (PN7). Mitochondrial and lysosomal morphology and degree of co-localization were determined by immunofluorescence in the cerebral cortex. No difference in mitochondrial abundance was detected in the cortex after HI. However, net mitochondrial fission increased in both hemispheres of female brain, but was most extensive in the ipsilateral hemisphere of male brain following HI. Basal autophagy, assessed by immunoblot for the autophagosome marker LC3BI/II, was greater in males suggesting less intrinsic reserve capacity for autophagy following HI. Autophagosome formation, lysosome size, and TOM20/LAMP2 co-localization were increased in the contralateral hemisphere following HI in female, but not male brain. An accumulation of ubiquitinated mitochondrial protein was observed in male, but not female brain following HI. Moreover, neuronal cell death with NeuN/TUNEL co-staining occurred in both hemispheres of male brain, but only in the ipsilateral hemisphere of female brain after HI. In summary, mitophagy induction and neuronal cell death are sex dependent following HI. The deficit in elimination of damaged/dysfunctional mitochondria in the male brain following HI may contribute to male vulnerability to neuronal death and long-term neurobehavioral deficits following HIE.
Collapse
Affiliation(s)
- T G Demarest
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - E L Waite
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 21201, USA
| | - T Kristian
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA; Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - A C Puche
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - J Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - M C McKenna
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - G Fiskum
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
Trans-cinnamaldehyde protected PC12 cells against oxygen and glucose deprivation/reperfusion (OGD/R)-induced injury via anti-apoptosis and anti-oxidative stress. Mol Cell Biochem 2016; 421:67-74. [DOI: 10.1007/s11010-016-2785-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/05/2016] [Indexed: 01/20/2023]
|
21
|
Li Y, Zhang P, Liu Y, Liu W, Yin N. Helium preconditioning protects the brain against hypoxia/ischemia injury via improving the neurovascular niche in a neonatal rat model. Behav Brain Res 2016; 314:165-72. [PMID: 27515290 DOI: 10.1016/j.bbr.2016.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/03/2016] [Accepted: 08/07/2016] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate whether helium preconditioning (He-PC) is able to exert neuroprotective effects via improving focal neurovascular niche in a neonatal rat hypoxia/ischemia (HI) brain injury model. Seven day old rat pups were divided into control group, HI group and He-PC group. HI was induced by exposure to 8% oxygen for 90min one day after preconditioning with 70% helium-30% oxygen for three 5-min periods. At 3 and 7 days, the brain was collected for the detection of inflammation related factors (tumor necrosis factor α [TNF-α], interleukin-1β [IL-1β], IL-10) and growth/neurotrophic factors (brain-derived neurotrophic factor [BDNF], basic fibroblast growth factor [bFGF] and nerve growth factor [NGF]); at 7 days, neurobehaviors were evaluated, and the brain was collected for the detection of mRNA expression of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) by PCR, protein expression of angiogenesis related molecules (VEGF, Ang-1, Tie-2 and Flt-1) by Western blotting and microvessel density (MCD) by immunohistochemistry for vWF. Results showed He-PC was able to reduce TNF-α and IL-1β, further increase IL-10, BDNF, bFGF and NGF, elevate the mRNA expression of VEGF and Ang-1, increase the protein expression of VEGF, Ang-1, Tie-2 and Flt-1, promote angiogenesis and improve neurobehaviors as compared to HI group. These findings suggest that He-PC may improve the post-stroke neurovascular niche to exert neuroprotective effects on neonatal HI brain injury.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| | - Peixi Zhang
- Department of Cardiothoracic Surgery, The First Hospital of Jining City, No 6, Jiankang Road, Jining City, Shandong 272011, China
| | - Ying Liu
- Department of Pathology, Yantaishan Hospital, No 91, Jiefang Road, Zhifu District, Yantai City, Shandong 264001, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, The Second Military Medical University, Shanghai, China.
| | - Na Yin
- Department of Anesthesiology & Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
22
|
Treatment temperature and insult severity influence the neuroprotective effects of therapeutic hypothermia. Sci Rep 2016; 6:23430. [PMID: 26997257 PMCID: PMC4800445 DOI: 10.1038/srep23430] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
Abstract
Therapeutic hypothermia (HT) is standard care for moderate and severe neonatal hypoxic-ischaemic encephalopathy (HIE), the leading cause of permanent brain injury in term newborns. However, the optimal temperature for HT is still unknown, and few preclinical studies have compared multiple HT treatment temperatures. Additionally, HT may not benefit infants with severe encephalopathy. In a neonatal rat model of unilateral hypoxia-ischaemia (HI), the effect of five different HT temperatures was investigated after either moderate or severe injury. At postnatal-day seven, rat pups underwent moderate or severe HI followed by 5 h at normothermia (37 °C), or one of five HT temperatures: 33.5 °C, 32 °C, 30 °C, 26 °C, and 18 °C. One week after treatment, neuropathological analysis of hemispheric and hippocampal area loss, and CA1 hippocampal pyramidal neuron count, was performed. After moderate injury, a significant reduction in hemispheric and hippocampal loss on the injured side, and preservation of CA1 pyramidal neurons, was seen in the 33.5 °C, 32 °C, and 30 °C groups. Cooling below 33.5 °C did not provide additional neuroprotection. Regardless of treatment temperature, HT was not neuroprotective in the severe HI model. Based on these findings, and previous experience translating preclinical studies into clinical application, we propose that milder cooling should be considered for future clinical trials.
Collapse
|