1
|
Lacorazza HD. Pharmacological inhibition of the MAP2K7 kinase in human disease. Front Oncol 2024; 14:1486756. [PMID: 39717752 PMCID: PMC11663940 DOI: 10.3389/fonc.2024.1486756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
The MAP2K7 signaling pathway activates the c-Jun NH2-terminal protein kinase (JNK) in response to stress signals, such as inflammatory cytokines, osmotic stress, or genomic damage. While there has been interest in inhibiting JNK due to its involvement in inflammatory processes and cancer, there is increasing focus on developing MAP2K7 inhibitors to enhance specificity when MAP2K7 activation is associated with disease progression. Despite some progress, further research is needed to fully comprehend the role of MAP2K7 in cancer and assess the potential use of kinase inhibitors in cancer therapy. This review examines the role of MAP2K7 in cancer and the development of small-molecule inhibitors.
Collapse
Affiliation(s)
- H. Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Liu D, Yang S, Yu S. Interactions Between Ferroptosis and Oxidative Stress in Ischemic Stroke. Antioxidants (Basel) 2024; 13:1329. [PMID: 39594471 PMCID: PMC11591163 DOI: 10.3390/antiox13111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Ischemic stroke is a devastating condition that occurs due to the interruption of blood flow to the brain, resulting in a range of cellular and molecular changes. In recent years, there has been growing interest in the role of ferroptosis, a newly identified form of regulated cell death, in ischemic stroke. Ferroptosis is driven by the accumulation of lipid peroxides and is characterized by the loss of membrane integrity. Additionally, oxidative stress, which refers to an imbalance between prooxidants and antioxidants, is a hallmark of ischemic stroke and significantly contributes to the pathogenesis of the disease. In this review, we explore the interactions between ferroptosis and oxidative stress in ischemic stroke. We examine the underlying mechanisms through which oxidative stress induces ferroptosis and how ferroptosis, in turn, exacerbates oxidative stress. Furthermore, we discuss potential therapeutic strategies that target both ferroptosis and oxidative stress in the treatment of ischemic stroke. Overall, this review highlights the complex interplay between ferroptosis and oxidative stress in ischemic stroke and underscores the need for further research to identify novel therapeutic targets for this condition.
Collapse
Affiliation(s)
| | - Sha Yang
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Shuguang Yu
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| |
Collapse
|
3
|
Jiang Y, Hu L, Wang B, Zhang B, Shao M, Meng L, Xu Y, Chen R, Li M, Du C. Disrupting PIAS3-mediated SUMOylation of MLK3 ameliorates poststroke neuronal damage and deficits in cognitive and sensorimotor behaviors. Cell Mol Life Sci 2024; 81:119. [PMID: 38456949 PMCID: PMC10924033 DOI: 10.1007/s00018-024-05166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
Activated small ubiquitin-like modifiers (SUMOs) have been implicated in neuropathological processes following ischemic stroke. However, the target proteins of SUMOylation and their contribution to neuronal injury remain to be elucidated. MLK3 (mixed-lineage kinase 3), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, is a critical regulator of neuronal lesions following cerebral ischemia. Here, we found that SUMOylation of MLK3 increases in both global and focal ischemic rodent models and primary neuronal models of oxygen and glucose deprivation (OGD). SUMO1 conjugation at the Lys401 site of MLK3 promoted its activation, stimulated its downstream p38/c-Jun N-terminal kinase (JNK) cascades, and led to cell apoptosis. The interaction of MLK3 with PIAS3, a SUMO ligase, was elevated following ischemia and reperfusion. The PINIT domain of PIAS3 was involved in direct interactions with MLK3. Overexpression of the PINIT domain of PIAS3 disrupted the MLK3-PIAS3 interaction, inhibited SUMOylation of MLK3, suppressed downstream signaling, and reduced cell apoptosis and neurite damage. In rodent ischemic models, the overexpression of the PINIT domain reduced brain lesions and alleviated deficits in learning, memory, and sensorimotor functions. Our findings demonstrate that brain ischemia-induced MLK3 SUMOylation by PIAS3 is a potential target against poststroke neuronal lesions and behavioral impairments.
Collapse
Affiliation(s)
- Yu Jiang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lulu Hu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Baixue Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bingge Zhang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Mengwen Shao
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Meng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yan Xu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Rourou Chen
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Meng Li
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Caiping Du
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
4
|
Jiang Y, Wang BX, Xie Y, Meng L, Li M, Du CP. MLK3 localizes mainly to the cytoplasm and promotes oxidative stress injury via a positive feedback loop. Cell Biochem Biophys 2023; 81:469-479. [PMID: 37550525 DOI: 10.1007/s12013-023-01159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Activation of mixed lineage kinase 3 (MLK3) by phosphorylation at Thr277/Ser281 stimulates downstream apoptotic pathways and ultimately leads to cell injury. MLK3 is reported to localize to both the cytoplasm and nucleus in human ovarian cancer cells and immortalized ovarian epithelial cells (T80 and T90 cells), and phosphorylation at Thr477 is required for the cytoplasmic retention of MLK3 in T80 cells. However, the subcellular distribution of MLK3 in other cell types has rarely been reported, and whether phosphorylation of MLK3 at Thr277/Ser281 affects its subcellular distribution is unknown. Here, our bioinformatics analysis predicted that MLK3 was mainly distributed in the cytoplasm and nucleus. In the human HEK293T embryonic kidney cell line and murine HT22 hippocampal neuronal cell line, endogenous MLK3 was more abundant in the cytoplasm and less abundant in the nucleus. In addition, overexpressed Myc-tagged MLK3 and EGFP-tagged MLK3 were also observed to localize mainly to the cytoplasm. MLK3 that was activated by phosphorylation at Thr277/Ser281 was mainly distributed in the cytoplasm, and phosphorylation deficient (T277A/S281A) and mimic (T277E/S281E) mutants both showed distributions similar to that of wild type (wt) MLK3, further proving that phosphorylation at Thr277/Ser281 was not involved in regulating MLK3 subcellular localization. In HEK293T cells, H2O2 stimulation accelerated MLK3 phosphorylation (activation), and this phosphorylation was reduced by the antioxidant N-acetylcysteine in a dose-dependent manner. Overexpressing wt MLK3 promoted the production of intracellular reactive oxygen species and increased cell apoptosis, both of which were enhanced by the phosphorylation-mimic (T277E/S281E) MLK3 variant but not by the phosphorylation-deficient (T277A/S281A) MLK3 variant. These findings provided additional evidence for the cytoplasmic and nuclear distribution of MLK3 in HEK293T cells or HT22 cells and revealed the pivotal role of MLK3 in the positive feedback loop of oxidative stress injury.
Collapse
Affiliation(s)
- Yu Jiang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Bai-Xue Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yi Xie
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Li Meng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Meng Li
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Cai-Ping Du
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
5
|
Li M, Guo M, Xu Y, Wu L, Chen M, Dong Y, Zheng L, Chen D, Qiao Y, Ke Z, Shi X. Murine cytomegalovirus employs the mixed lineage kinases family to regulate the spiral ganglion neuron cell death and hearing loss. Neurosci Lett 2023; 793:136990. [PMID: 36455693 DOI: 10.1016/j.neulet.2022.136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Cytomegalovirus (CMV)-induced sensorineural hearing loss (SNHL) is a worldwide epidemic. Recent studies have shown that the degree of spiral ganglion neuron (SGN) loss is correlated with hearing loss after CMV infection. We aimed to better understand the pathological mechanisms of CMV-related SGN death and to search for intervention measures. We found that both apoptosis and pyroptosis are involved in CMV-induced SGN death, which may be caused by the simultaneous activation of the p53/JNK and NLRP3/caspase-1 signaling pathways, respectively. Moreover, considering that mixed lineage kinase family (MLK1/2/3) are host restriction factors against viral infection and upstream regulators of the p53/JNK and inflammatory (including NLRP3-caspase1) signaling pathways, we further demonstrated that the MLKs inhibitor URMC-099 exhibited a protective effect against CMV-induced SGN death and hearing loss. These results indicate that MLKs signaling may be a key regulator and promising novel target for preventing apoptosis and even pyroptosis during the CMV infection of SGN cells and for treating hearing loss.
Collapse
Affiliation(s)
- Menghua Li
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Minyan Guo
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yice Xu
- Department of Otolaryngology-Head and Neck Surgery, Xiaogan Hospital, Wuhan University of Science and Technology, Xiaogan 432000, China
| | - Liyuan Wu
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China; The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | | | - Yanfen Dong
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China
| | - Liting Zheng
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China
| | - Daishi Chen
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yuehua Qiao
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China.
| | - Zhaoyang Ke
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Xi Shi
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China.
| |
Collapse
|
6
|
Dai C, Zhu J, Huang H. 混合谱系激酶3在心血管疾病中的研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Ali FF, Mokhemer SA, Elroby Ali DM. Administration of hemin ameliorates ovarian ischemia reperfusion injury via modulation of heme oxygenase-1 and p-JNK/p-NF-κBp65/iNOS signaling pathway. Life Sci 2022; 296:120431. [PMID: 35218766 DOI: 10.1016/j.lfs.2022.120431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
Abstract
AIMS Ovarian torsion is the fifth common gynecological emergency that can affect females of all ages particularly during reproductive age and its management by detorsion leads to ovarian ischemia reperfusion (IR) injury. Therefore, prophylactic measures are required to protect the ovarian function after detorsion. So that, our study aimed to assess the effect and underlying mechanisms of heme oxygenase-1 (HO-1) inducer; hemin against ovarian damage induced by IR injury in rats. MAIN METHODS Female rats were divided into: sham group, hemin group, ovarian IR (OIR) groups with and without hemin treatment. Serum levels of reduced glutathione (GSH) and interleukin 1 β (IL-1β) were measured in addition to ovarian levels of malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD). Ovarian phospho-Janus kinase (p-JNK) levels and gene expressions of HO-1 and inducible nitric oxide synthase (iNOS) were determined. Moreover, histopathological changes and expressions of phospho-nuclear factor kappa B p65 (p-NF-κB p65) and cleaved caspase-3 were done. KEY FINDINGS Treatment of OIR rats with hemin led to significant attenuation of ovarian damage through histological examination which was associated with significant increase in ovarian expression of HO-1, ovarian SOD and serum GSH levels with significant decrease in ovarian p-JNK levels, expressions of p-NF-κB p65, iNOS and cleaved caspase-3 in addition to serum IL-1β levels. SIGNIFICANCE The protective effect of hemin can be attributed to the increased expression of HO-1 which showed antioxidant, anti-inflammatory and anti-apoptotic effects. Therefore, hemin can be administered to prevent ovarian IR injury which occurs after detorsion.
Collapse
Affiliation(s)
- Fatma F Ali
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Sahar A Mokhemer
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Doaa M Elroby Ali
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| |
Collapse
|
8
|
Yang Y, Chen X, Tian K, Tian C, Chen L, Mi W, Li Q, Qiu J, Lin Y, Zha D. Heme Oxygenase-1 Protects Hair Cells From Gentamicin-Induced Death. Front Cell Neurosci 2022; 16:783346. [PMID: 35496911 PMCID: PMC9043494 DOI: 10.3389/fncel.2022.783346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Gentamicin ototoxicity can generate free radicals within the inner ear, leading to permanent damage to sensory hair cells (HCs) and eventually hearing loss. The following study examined the alterations of oxidative damage-related genes in the cochlea and important molecules responsible for oxidation following gentamicin injury in vitro. The RT2 Profiler polymerase chain reaction (PCR) array was used to screen candidate targets for treatment to prevent hearing loss caused by gentamicin. We found that during gentamicin-induced death in HCs, Heme oxygenase-1 (HO-1) had a high fold change in the HCs of the cochlea. Moreover, the use of CoPPIX to induce HO-1 inhibited gentamicin-induced HC death, while HO-1 inhibitors ZnPPIX after CoPPIX reversed this process. Furthermore, the inhibitors of NF-E2-related factor-2 (Nrf2) reduced the expression of HO-1 and inhibited the protective effect of HO-1 after gentamicin, thus suggesting that the Nrf2/HO-1 axis might regulate gentamicin-associated ototoxicity. We further demonstrated that induction of HO-1 up-regulated the expression of Nrf2 in both cochlear and HEI-OC1 cells. In summary, these findings indicated that HO-1 protects HCs from gentamicin by up-regulating its expression in HCs and interacting with Nrf2 to inhibit reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Yang Yang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xin Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Keyong Tian
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Chaoyong Tian
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, China
| | - Wenjuan Mi
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Qiong Li
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Jianhua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Ying Lin
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Ying Lin,
| | - Dingjun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- Dingjun Zha,
| |
Collapse
|
9
|
CARMA1 is required for Notch1-induced NF-κB activation in SIL-TAL1-negative T cell acute lymphoblastic leukemia. J Mol Med (Berl) 2021; 99:1447-1458. [PMID: 34223928 DOI: 10.1007/s00109-021-02101-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022]
Abstract
The NF-κB signaling pathway is an important downstream pathway of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL) cells. However, the molecular mechanisms underlying the cascade activation of Notch1 in T-ALL cells are poorly understood. Here, we evaluated the role of CARMA1 in Notch1-induced NF-κB activation in T-ALL cells. CARMA1 was highly and specifically expressed in T-ALL cells and correlated with the prognosis of T-ALL patients. Interestingly, CARMA1 knockdown only inhibited the growth and proliferation of SIL-TAL1 fusion gene-negative T-ALL cells. In addition, CARMA1 knockdown arrested T-ALL cells at the G1 phase. Furthermore, CARMA1 knockdown significantly inhibited the proliferation of T-ALL cells in vivo and prolonged the survival of mice. Mechanistically, CARMA1 deficiency abolished Notch1-induced NF-κB transcriptional activation and significantly reduced expression levels of the NF-κB target genes c-Myc, Bcl-2, and CCR7. Taken together, these results of our study identify CARMA1 as one of the crucial mediators of Notch1-induced transformation of T-All cells, suggesting that CARMA1 is a promising therapeutic target for T-ALL due to its specific expression in lymphocytes. KEY MESSAGES: CARMA1 contributes to cell survival only in SIL-TAL1 negative T-ALL cells. CARMA1 is a crucial mediator of Notch1-induced activation of NF-κB pathway. CARMA1 is a promising therapeutic target for T-ALL.
Collapse
|
10
|
Jin L, Bo XM. Neuroprotection of sevoflurane against ischemia/reperfusion-induced brain injury through inhibiting GluN2A/GluN2B-PSD-95-MLK3 module. Exp Brain Res 2021; 239:2701-2709. [PMID: 34223957 DOI: 10.1007/s00221-021-06157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
To investigate the role of GluN2A and GluN2B in neuroprotective effect of sevoflurane preconditioning against cerebral ischemia-reperfusion injury (CIRI). Rats were randomly divided into five groups as follows: control, ischemia-reperfusion (I/R) 6 h, sevoflurane preconditioning (SP), SP + amantadine, SP + NMDA. Immunoblot and immunoprecipitation were used to detect the tyrosine phosphorylation of GluN2A/GluN2B, the interaction of GluN2A/GluN2B-PSD-95-MLK3 and the expression of phosphorylation of MLK3, MKK7 and JNK3. Cresyl violet staining was employed to analyse neuronal injury in rat hippocampal CA1 subfields. Sevoflurane preconditioning inhibits the tyrosine phosphorylation of GluN2A/GluN2B, the interaction of GluN2A/GluN2B-PSD-95-MLK3 and the phosphorylation of MLK3, MKK7 and JNK3 in rat hippocampus. An N-methyl-D-aspartate receptor (NMDAR) antagonist amantadine reversed the MLK3-MKK7- JNK3 signal events. Such reversion was also realized by NMDA (60 and 80 nmol) and low doses of NMDA (0-40 nmol) could not change the inhibitory effect of sevoflurane preconditioning on MLK3-MKK7-JNK3 signal events. Finally, Cresyl violet staining also confirmed that low dose of NMDA reduced neuronal loss in rat hippocampal CA1 subfields. Sevoflurane preconditioning provides neuroprotection against CIRI by inhibiting NMDAR over-activation.
Collapse
Affiliation(s)
- Lei Jin
- Medical Biological Experiment Credit Center, Basic Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xiu Mei Bo
- Medical Biological Experiment Credit Center, Basic Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Zhang S, Jiang X, Wang Y, Lin K, Zhang Z, Zhang Z, Zhu P, Ng ML, Qu S, Sze SCW, Yung KKL. Protective Effect of An-Gong-Niu-Huang Wan Pre-treatment Against Experimental Cerebral Ischemia Injury via Regulating GSK-3β/HO-1 Pathway. Front Pharmacol 2021; 12:640297. [PMID: 33935731 PMCID: PMC8085595 DOI: 10.3389/fphar.2021.640297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
An-Gong-Niu-Huang Wan (AGNHW), a famous formula in traditional Chinese medicine, has been clinically used for centuries for treating cerebral diseases, but the protective effects of pre-treatment with AGNHW on cerebral ischemia have not yet been reported. The present study aimed to test such protective effects and elucidate the underlying mechanisms on cerebral ischemia in rats by phenotypic approaches (i.e. including the neurological functional score, cerebral infarct area, neuron apoptosis, and brain oxidative stress status) and target-based approaches (i.e. involving the GSK-3β/HO-1 pathway). AGNHW was administered orally at the doses of 386.26, 772.52, and 1545.04 mg/kg respectively for 7 days to male Sprague-Dawley rats and then cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 1.5 h. Pre-treatment with AGNHW significantly ameliorated ischemic damage to the brain in a dose-dependent manner, including reduction of the neurological deficit score and infarct area. AGNHW pre-treatment increased the number of Nissl+ cells, NeuN+ and DCX+ cells, and decreased the number of Tunel+ cells. Moreover, AGNHW reversed the up-regulation of ROS and MDA induced by cerebral ischemia. AGNHW pre-treatment increased the expression of p-GSK-3β(Ser9)/GSK-3β (glycogen synthase kinase-3β) ratio and heme oxygenase-1 (HO-1). These results firstly revealed that short-term pre-treatment of AGNHW could significantly protect the rats from injury caused by cerebral ischemia-reperfusion, which support further clinical studies for disease prevention. The in vivo protective effect of AGNWH pre-treatment could be associated with its antioxidant properties by the activation of GSK-3β-mediated HO-1 pathway.
Collapse
Affiliation(s)
- Shiqing Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region (HKSAR), Kowloon Tong, China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, HKSAR, Kowloon Tong, China
| | - Xiaoli Jiang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region (HKSAR), Kowloon Tong, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, HKSAR, Kowloon Tong, China
| | - Ying Wang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region (HKSAR), Kowloon Tong, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, HKSAR, Kowloon Tong, China
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China.,Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region (HKSAR), Kowloon Tong, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, HKSAR, Kowloon Tong, China
| | - Zhang Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region (HKSAR), Kowloon Tong, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, HKSAR, Kowloon Tong, China
| | - Zhu Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region (HKSAR), Kowloon Tong, China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, HKSAR, Kowloon Tong, China
| | - Peili Zhu
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region (HKSAR), Kowloon Tong, China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, HKSAR, Kowloon Tong, China
| | - Man Ling Ng
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region (HKSAR), Kowloon Tong, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, HKSAR, Kowloon Tong, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Stephen Cho Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region (HKSAR), Kowloon Tong, China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, HKSAR, Kowloon Tong, China
| | - Ken Kin Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region (HKSAR), Kowloon Tong, China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, HKSAR, Kowloon Tong, China
| |
Collapse
|
12
|
Haines DD, Tosaki A. Heme Degradation in Pathophysiology of and Countermeasures to Inflammation-Associated Disease. Int J Mol Sci 2020; 21:ijms21249698. [PMID: 33353225 PMCID: PMC7766613 DOI: 10.3390/ijms21249698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The class of tetrapyrrol "coordination complexes" called hemes are prosthetic group components of metalloproteins including hemoglobin, which provide functionality to these physiologically essential macromolecules by reversibly binding diatomic gasses, notably O2, which complexes to ferrous (reduced/Fe(II)) iron within the heme porphyrin ring of hemoglobin in a pH- and PCO2-dependent manner-thus allowing their transport and delivery to anatomic sites of their function. Here, pathologies associated with aberrant heme degradation are explored in the context of their underlying mechanisms and emerging medical countermeasures developed using heme oxygenase (HO), its major degradative enzyme and bioactive metabolites produced by HO activity. Tissue deposits of heme accumulate as a result of the removal of senescent or damaged erythrocytes from circulation by splenic macrophages, which destroy the cells and internal proteins, including hemoglobin, leaving free heme to accumulate, posing a significant toxicogenic challenge. In humans, HO uses NADPH as a reducing agent, along with molecular oxygen, to degrade heme into carbon monoxide (CO), free ferrous iron (FeII), which is sequestered by ferritin protein, and biliverdin, subsequently metabolized to bilirubin, a potent inhibitor of oxidative stress-mediated tissue damage. CO acts as a cellular messenger and augments vasodilation. Nevertheless, disease- or trauma-associated oxidative stressors sufficiently intense to overwhelm HO may trigger or exacerbate a wide range of diseases, including cardiovascular and neurologic syndromes. Here, strategies are described for counteracting the effects of aberrant heme degradation, with a particular focus on "bioflavonoids" as HO inducers, shown to cause amelioration of severe inflammatory diseases.
Collapse
Affiliation(s)
- Donald David Haines
- Advanced Biotherapeutics, London W2 1EB, UK;
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Arpad Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-255586
| |
Collapse
|
13
|
Musi CA, Agrò G, Santarella F, Iervasi E, Borsello T. JNK3 as Therapeutic Target and Biomarker in Neurodegenerative and Neurodevelopmental Brain Diseases. Cells 2020; 9:cells9102190. [PMID: 32998477 PMCID: PMC7600688 DOI: 10.3390/cells9102190] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
The c-Jun N-terminal kinase 3 (JNK3) is the JNK isoform mainly expressed in the brain. It is the most responsive to many stress stimuli in the central nervous system from ischemia to Aβ oligomers toxicity. JNK3 activity is spatial and temporal organized by its scaffold protein, in particular JIP-1 and β-arrestin-2, which play a crucial role in regulating different cellular functions in different cellular districts. Extensive evidence has highlighted the possibility of exploiting these adaptors to interfere with JNK3 signaling in order to block its action. JNK plays a key role in the first neurodegenerative event, the perturbation of physiological synapse structure and function, known as synaptic dysfunction. Importantly, this is a common mechanism in many different brain pathologies. Synaptic dysfunction and spine loss have been reported to be pharmacologically reversible, opening new therapeutic directions in brain diseases. Being JNK3-detectable at the peripheral level, it could be used as a disease biomarker with the ultimate aim of allowing an early diagnosis of neurodegenerative and neurodevelopment diseases in a still prodromal phase.
Collapse
Affiliation(s)
- Clara Alice Musi
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Graziella Agrò
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Francesco Santarella
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Erika Iervasi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genoa, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Correspondence: or ; Tel.: +39-023-901-4469; Fax: +39-023-900-1916
| |
Collapse
|
14
|
Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J, Zhou Z, Zhang L, Liang B, He J, Chen Z, Yan C, Yang Z, Xian S, Wang L. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis 2020; 11:574. [PMID: 32710001 PMCID: PMC7382480 DOI: 10.1038/s41419-020-02777-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Chronic heart failure (CHF) is the final outcome of many cardiovascular diseases, and is a severe health issue faced by the elderly population. Mixed lineage kinase 3 (MLK3), a member of MAP3K family, is associated with aging, inflammation, oxidative stress, and related diseases, such as CHF. MLK3 has also been reported to play an important role in protecting against cardiomyocyte injury; however, its function in myocardial fibrosis is unknown. To investigate the role of MLK3 in myocardial fibrosis, we inhibited the expression of MLK3, and examined cardiac function and remodeling in TAC mice. In addition, we assessed the expression of MLK3 protein in ventricular cells and its downstream associated protein. We found that MLK3 mainly regulates NF-κB/NLRP3 signaling pathway-mediated inflammation and that pyroptosis causes myocardial fibrosis in the early stages of CHF. Similarly, MLK3 mainly regulates the JNK/p53 signaling pathway-mediated oxidative stress and that ferroptosis causes myocardial fibrosis in the advanced stages of CHF. We also found that promoting the expression of miR-351 can inhibit the expression of MLK3, and significantly improve cardiac function in mice subjected to TAC. These results suggest the pyroptosis and ferroptosis induced by MLK3 signaling in cardiomyocytes are essential for adverse myocardial fibrosis, in response to pressure overload. Furthermore, miR-351, which has a protective effect on ventricular remodeling in heart failure caused by pressure overload, may be a key target for the regulation of MLK3.
Collapse
Affiliation(s)
- Junyan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qing Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Weitao Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zheng Zhou
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lu Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Birong Liang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiaqi He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Cui Yan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China.
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China.
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China.
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
15
|
Fan F, Yang L, Li R, Zou X, Li N, Meng X, Zhang Y, Wang X. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother 2020; 129:110458. [PMID: 32603893 DOI: 10.1016/j.biopha.2020.110458] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Salidroside (Sal) is a bioactive extract principally from traditional herbal medicine such as Rhodiola rosea L., which has been commonly used for hundreds of years in Asia countries. The excellent neuroprotective capacity of Sal has been illuminated in recent studies. This work focused on the source, pharmacokinetics, safety and anti-ischemic stroke (IS) effect of Sal, especially emphasizing its mechanism of action and BBB permeability. Extensive databases, including Pubmed, Web of science (WOS), Google Scholar and China National Knowledge Infrastructure (CNKI), were applied to obtain relevant online literatures. Sal exerts powerful therapeutic effects on IS in experimental models either in vitro or in vivo due to its neuroprotection, with significantly diminishing infarct size, preventing cerebral edema and improving neurological function. Also, the findings suggest the underlying mechanisms involve anti-oxidation, anti-inflammation and anti-apoptosis by regulating multiple signaling pathways and key molecules, such as NF-κB, TNF-α and PI3K/Akt pathway. In pharmacokinetics, although showing a rapid absorption and elimination, bioavailability of Sal is elevated under some non-physiological conditions. The component and its metabolite (tyrosol) are capable of distributing to brain tissue and the later keeps a higher level of concentration. Moreover, Sal scarcely has obvious toxicity or side effects in a variety of animal experiments and clinical trials, but combination of drugs and perinatal use of medicine should be taken more attentions. Finally, as an active ingredient, not only is Sal isolated from diverse plants with limited yield, but also large batches of the products can be harvested by biological and chemical synthesis. With higher efficacy and better safety profiles, Sal could sever as a promising neuroprotectant for preventing and treating IS. Nevertheless, further investigations are still required to explore the pharmacodynamic and pharmacokinetic properties of Sal in the treatment of IS.
Collapse
Affiliation(s)
- Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Zou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ning Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Liu X, Yue C, Shi L, Liu G, Cao Q, Shan Q, Wang Y, Chen X, Li H, Wang J, Gao S, Niu M, Yu R. MALT1 is a potential therapeutic target in glioblastoma and plays a crucial role in EGFR-induced NF-κB activation. J Cell Mol Med 2020; 24:7550-7562. [PMID: 32452133 PMCID: PMC7339184 DOI: 10.1111/jcmm.15383] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumour in the adult brain and hard to treat. Nuclear factor κB (NF-κB) signalling has a crucial role in the tumorigenesis of GBM. EGFR signalling is an important driver of NF-κB activation in GBM; however, the correlation between EGFR and the NF-κB pathway remains unclear. In this study, we investigated the role of mucosa-associated lymphoma antigen 1 (MALT1) in glioma progression and evaluated the anti-tumour activity and effectiveness of MI-2, a MALT1 inhibitor in a pre-clinical GBM model. We identified a paracaspase MALT1 that is involved in EGFR-induced NF-kB activation in GBM. MALT1 deficiency or inhibition significantly affected the proliferation, survival, migration and invasion of GBM cells both in vitro and in vivo. Moreover, MALT1 inhibition caused G1 cell cycle arrest by regulating multiple cell cycle-associated proteins. Mechanistically, MALTI inhibition blocks the degradation of IκBα and prevents the nuclear accumulation of the NF-κB p65 subunit in GBM cells. This study found that MALT1, a key signal transduction cascade, can mediate EGFR-induced NF-kB activation in GBM and may be potentially used as a novel therapeutic target for GBM.
Collapse
Affiliation(s)
- Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chenglong Yue
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Surgical Deparment 9, Xuzhou Children's Hospital, Xuzhou, China
| | - Lin Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Guanzheng Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Qiyu Cao
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Qianqian Shan
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yifeng Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xiangyu Chen
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Huan Li
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jie Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Shangfeng Gao
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingshan Niu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Daverey A, Agrawal SK. Curcumin Protects against White Matter Injury through NF-κB and Nrf2 Cross Talk. J Neurotrauma 2020; 37:1255-1265. [PMID: 31914858 DOI: 10.1089/neu.2019.6749] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inflammation and oxidative stress play a central role in the pathogenesis of white matter injury (WMI). Curcumin (Cur), a polyphenolic compound, exhibits anti-inflammatory and anti-oxidant effects on several conditions. The objective of this study was to investigate neuroprotective effects of Cur on WMI and explore its underlying mechanisms of action. Sprague-Dawley rats were subjected to the removal of white matter from the dorsal column of the spinal cord. Dorsal columns were randomly divided into three groups: Sham (Ringer's solution bubbled with 95% O2 and 5% CO2), hypoxia (Hyp; Ringer's solution bubbled with 95% N2 and 5% CO2 for 1 h), and Cur-treated (Hyp+Cur; Ringer's solution bubbled with 95% N2 and 5% CO2 for 1 h in the presence of 50 μM Cur). For NF-κB inhibition experiments, dorsal columns were incubated with 50 μM BAY 11-7082 (BAY) for 30 min in 95% O2 and 5% CO2 prior to 1-h incubation with 50 μM Cur in 95% N2 and 5% CO2. Our data show that Cur inhibited hypoxia-induced HIF1-α expression and tissue damage by demonstrating the improved morphology of astrocytes and remarkable reduction in vacuolation. Cur also inhibited the hypoxia-induced upregulation of glial fibrillary acidic protein (GFAP) and neurofilament-H (NF-H) after hypoxia and downregulated the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 1 (IL-1). Terminal dexynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-assay analysis showed that Cur effectively attenuated apoptosis in white matter. In addition, we demonstrated that Cur exerted its neuroprotective effect through cross talk between nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. In conclusion, our results indicate that treatment with Cur inhibited the hypoxia, inflammation and apoptosis associated with WMI. Further, the Nrf-2 pathway inhibits NF-κB activation by preventing IkB degradation and increasing HO-1 expression, which in turn reduces reactive oxygen species (ROS) and as a result NF-κB activation is suppressed. Similarly, NF-κB-mediated transcription reduces Nrf2 activation by reducing anti-oxidant response element (ARE) gene and free CREB binding protein by competing with Nrf2 for CBP thus inhibiting the Nrf-2 activation.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|