1
|
Mottarlini F, Miglioranza P, Rizzi B, Taddini S, Parolaro S, Caprioli D, Ciccocioppo R, Caffino L, Fumagalli F. Repeated cocaine exposure and prolonged withdrawal induce spatial memory impairment and dysregulate the glutamatergic synapse composition in the dorsal hippocampus of male rats. Neuropharmacology 2025; 273:110453. [PMID: 40187639 DOI: 10.1016/j.neuropharm.2025.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Adolescents are particularly susceptible to various forms of gratification, among which psychostimulants. During adolescence the hippocampus, a brain area relevant to spatial memory domain, undergoes maturational processes, such as structural and molecular reorganization of the excitatory synapses. Our goal was to reveal putatively enduring spatial memory deficits and molecular correlates in male rats exposed to repeated cocaine after a period of withdrawal. Towards this goal, adolescent Sprague-Dawley male rats were exposed to chronic cocaine treatment (5 mg/kg/day, subcutaneously) for 15 days and, after 2 weeks of withdrawal, were subjected to spatial order object recognition (SOOR) test, a memory task based on the rat's ability to recognize objects displacement. Next, we investigated subcellular specific expression of markers of the glutamate synapse in the dorsal hippocampus. Our findings show that withdrawal from repeated cocaine exposure during adolescence is associated with spatial memory impairment. Such deficit was correlated to a reduced expression and retention of NMDA receptor subunits, GluN1, GluN2A and GluN2B, at both synaptic and extra-synaptic sites, an effect indicative of impaired NMDA receptor trafficking. Analysis of endocytosis markers (Rab family of monomeric GTPase) revealed that cocaine-withdrawn rats favor the degradative pathway (Rab7-Rab9) over the recycling pathway (Rab11). In contrast, saline-treated rats primarily activate the recycling pathway. Our findings, mislocalization of glutamatergic receptors together with sorting of NMDA receptor towards degradation, rather than recycling, may contribute to the understanding of the mechanisms underlying the spatial memory deficits in male rats with an adolescent history of cocaine.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Paolo Miglioranza
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy; School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Sofia Taddini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Susanna Parolaro
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| | - Daniele Caprioli
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy.
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
2
|
Jagersma JD, Pyott SJ, Olivier JDA. Slight and hidden hearing loss differentially affect short- and long-term memory in young rats. Behav Pharmacol 2025:00008877-990000000-00131. [PMID: 40238643 DOI: 10.1097/fbp.0000000000000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Mild forms of hearing loss (HL) have been linked to cognitive impairments in children, yet the neurobiological mechanisms underlying this connection remain unclear. Existing research using animal models mostly focuses on more severe levels of HL or investigates only limited aspects of cognition. To gain a broader understanding of how slight/hidden HL affects cognitive behaviors, we induced HL in 4-week-old Wistar rats through noise exposure. Auditory brainstem response measurements confirmed slight and hidden HL, but this auditory impairment did not alter the density of inner hair cells or their synapses with the spiral ganglion (primary auditory) neurons. Both short- and long- term memory formation were tested using the object location, novel object recognition, and social recognition task. Behaviorally, rats with slight/hidden HL performed better than normal hearing (NH) rats during short-term cognition tests. However, long-term memory was impaired in rats with slight/hidden HL when compared to NH controls. Slight/hidden HL also did not consistently affect (social) exploration. In conclusion, this study demonstrates that slight and hidden HL differentially affect short- and long-term cognitive processes in an animal model of early (noise-induced) HL, without affecting (social) exploration. These results suggest a nuanced relationship between slight and hidden HL and both short- and long-term memory formation, underscoring the importance of broader cognitive phenotyping and further investigation into the neurobiological structures linking hearing impairment with cognitive function.
Collapse
Affiliation(s)
- Joëlle D Jagersma
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, Groningen, The Netherlands
| | - Sonja J Pyott
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, Groningen, The Netherlands
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London, UK and
| | - Jocelien D A Olivier
- Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Tzakis N, Ethier-Gagnon M, Epp T, Holahan MR. Assessment of cFos labeling in the hippocampus and anterior cingulate cortex following recent and remote re-exposure to an unreinforced open field in preadolescent and postadolescent rats. Behav Brain Res 2025; 476:115284. [PMID: 39393683 DOI: 10.1016/j.bbr.2024.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Spatial tasks are often goal-directed or reward-facilitated confounding the assessment of "pure" recent and remote spatial memories. The current work re-exposed preadolescent and postadolescent male rats to a non-reinforced, free exploration task to investigate cFos patterns within the hippocampus and anterior cingulate cortex (ACC) associated with recent and remote periods. Male rats were exposed to an open field task for one, 30 min session on postnatal day (P) 20, 25, or 50 and re-exposed for 30 min at either a recent (24 hours) or remote (3 weeks) timepoint. Distance traveled in the open field was measured as well as cFos labeling. In the P20 age group, there was elevated exploration at the 24-hour and 3-week tests compared to training and compared to the other age groups. In the hippocampus CA1, cFos levels were higher after the remote test than the recent test in the P20 group but higher after the recent test than remote test in the P25 and P50 groups. cFos labeling in the ACC was higher in all remote-tested groups compared to the recent-tested groups across all ages. In the P20, the 24-hour test was associated with less CA1 activity than the other age groups supporting the hypothesis that the hippocampus is not fully developed at this time point. In the P20 group, the remote representation of this task did not seem to be complete as there continued to be CA1 activity along with ACC activity following the remote test associated with elevated exploration. These results indicate the utility of unreinforced spatial navigation tasks for exploring systems consolidation processes over the lifespan and show that a fully developed hippocampus is required for optimal systems consolidation.
Collapse
Affiliation(s)
- Nikolaos Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Tanisse Epp
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
4
|
Miyata S, Tsuda M, Mitsui S. Overexpression of Motopsin, an Extracellular Serine Protease Related to Intellectual Disability, Promotes Adult Neurogenesis and Neuronal Responsiveness in the Dentate Gyrus. Mol Neurobiol 2024; 61:4929-4948. [PMID: 38153682 DOI: 10.1007/s12035-023-03890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Motopsin, a serine protease encoded by PRSS12, is secreted by neuronal cells into the synaptic clefts in an activity-dependent manner, where it induces synaptogenesis by modulating Na+/K+-ATPase activity. In humans, motopsin deficiency leads to severe intellectual disability and, in mice, it disturbs spatial memory and social behavior. In this study, we investigated mice that overexpressed motopsin in the forebrain using the Tet-Off system (DTG-OE mice). The elevated agrin cleavage or the reduced Na+/K+-ATPase activity was not detected. However, motopsin overexpression led to a reduction in spine density in hippocampal CA1 basal dendrites. While motopsin overexpression decreased the ratio of mature mushroom spines in the DG, it increased the ratio of immature thin spines in CA1 apical dendrites. Female DTG-OE mice showed elevated locomotor activity in their home cages. DTG-OE mice showed aberrant behaviors, such as delayed latency to the target hole in the Barnes maze test and prolonged duration of sniffing objects in the novel object recognition test (NOR), although they retained memory comparable to that of TRE-motopsin littermates, which normally express motopsin. After NOR, c-Fos-positive cells increased in the dentate gyrus (DG) of DTG-OE mice compared with that of DTG-SO littermates, in which motopsin overexpression was suppressed by the administration of doxycycline, and TRE-motopsin littermates. Notably, the numbers of doublecortin- and 5-bromo-2'-deoxyuridine-labeled cells significantly increased in the DG of DTG-OE mice, suggesting increased adult neurogenesis. Importantly, our results revealed a new function in addition to modulating neuronal responsiveness and spine morphology in the DG: the regulation of neurogenesis.
Collapse
Affiliation(s)
- Shiori Miyata
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma, 371-8514, Japan
| | - Masayuki Tsuda
- Division of Laboratory Animal Science, Science Research Center, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma, 371-8514, Japan.
| |
Collapse
|
5
|
Feng Y, Huang Z, Ma X, Zong X, Xu P, Lin HW, Zhang Q. Intermittent theta-burst stimulation alleviates hypoxia-ischemia-caused myelin damage and neurologic disability. Exp Neurol 2024; 378:114821. [PMID: 38782349 PMCID: PMC11214828 DOI: 10.1016/j.expneurol.2024.114821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Neonatal hypoxia-ischemia (HI) results in behavioral deficits, characterized by neuronal injury and retarded myelin formation. To date, limited treatment methods are available to prevent or alleviate neurologic sequelae of HI. Intermittent theta-burst stimulation (iTBS), a non-invasive therapeutic procedure, is considered a promising therapeutic tool for treating some neurocognitive disorders and neuropsychiatric diseases. Hence, this study aims to investigate whether iTBS can prevent the negative behavioral manifestations of HI and explore the mechanisms for associations. We exposed postnatal day 10 Sprague-Dawley male and female rats to 2 h of hypoxia (6% O2) following right common carotid artery ligation, resulting in oligodendrocyte (OL) dysfunction, including reduced proliferation and differentiation of oligodendrocyte precursor cells (OPCs), decreased OL survival, and compromised myelin in the corpus callosum (CC) and hippocampal dentate gyrus (DG). These alterations were concomitant with cognitive dysfunction and depression-like behaviors. Crucially, early iTBS treatment (15 G, 190 s, seven days, initiated one day post-HI) significantly alleviated HI-caused myelin damage and mitigated the neurologic sequelae both in male and female rats. However, the late iTBS treatment (initiated 18 days after HI insult) could not significantly impact these behavioral deficits. In summary, our findings support that early iTBS treatment may be a promising strategy to improve HI-induced neurologic disability. The underlying mechanisms of iTBS treatment are associated with promoting the differentiation of OPCs and alleviating myelin damage.
Collapse
Affiliation(s)
- Yu Feng
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Xuemei Zong
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, College of Pharmacy, 715 Sumter Street, CLS609D, Columbia, SC 29208, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA.
| |
Collapse
|
6
|
Lee KKY, Chattopadhyaya B, do Nascimento ASF, Moquin L, Rosa-Neto P, Amilhon B, Di Cristo G. Neonatal hypoxia impairs serotonin release and cognitive functions in adult mice. Neurobiol Dis 2024; 193:106465. [PMID: 38460800 DOI: 10.1016/j.nbd.2024.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. We established a MPA mouse model, which displays recognition and spatial memory impairments and dysfunctional cognitive flexibility. We found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies.
Collapse
Affiliation(s)
- Karen Ka Yan Lee
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada
| | | | | | - Luc Moquin
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Canada
| | - Pedro Rosa-Neto
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Canada
| | - Bénédicte Amilhon
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada.
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada.
| |
Collapse
|
7
|
Contreras MP, Mendez M, Shan X, Fechner J, Sawangjit A, Born J, Inostroza M. Context memory formed in medial prefrontal cortex during infancy enhances learning in adulthood. Nat Commun 2024; 15:2475. [PMID: 38509099 PMCID: PMC10954687 DOI: 10.1038/s41467-024-46734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Adult behavior is commonly thought to be shaped by early-life experience, although episodes experienced during infancy appear to be forgotten. Exposing male rats during infancy to discrete spatial experience we show that these rats in adulthood are significantly better at forming a spatial memory than control rats without such infantile experience. We moreover show that the adult rats' improved spatial memory capability is mainly based on memory for context information during the infantile experiences. Infantile spatial experience increased c-Fos activity at memory testing during adulthood in the prelimbic medial prefrontal cortex (mPFC), but not in the hippocampus. Inhibiting prelimbic mPFC at testing during adulthood abolished the enhancing effect of infantile spatial experience on learning. Adult spatial memory capability only benefitted from spatial experience occurring during the sensitive period of infancy, but not when occurring later during childhood, and when sleep followed the infantile experience. In conclusion, the infantile brain, by a sleep-dependent mechanism, favors consolidation of memory for the context in which episodes are experienced. These representations comprise mPFC regions and context-dependently facilitate learning in adulthood.
Collapse
Affiliation(s)
- María P Contreras
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural & Behavioral Science, International Max Planck Research School, Tübingen, Germany
- Leibniz-Institute of Neurobiology, Magdeburg, Germany
| | - Marta Mendez
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Plaza Feijoo, Oviedo, Spain
| | - Xia Shan
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural & Behavioral Science, International Max Planck Research School, Tübingen, Germany
| | - Julia Fechner
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural & Behavioral Science, International Max Planck Research School, Tübingen, Germany
| | - Anuck Sawangjit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
- Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD)-Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich (IDM) at the University Tübingen, Tübingen, Germany.
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Olsen LC, Galler M, Witter MP, Saetrom P, O'Reilly KC. Transcriptional development of the hippocampus and the dorsal-intermediate-ventral axis in rats. Hippocampus 2023; 33:1028-1047. [PMID: 37280038 DOI: 10.1002/hipo.23549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023]
Abstract
Risk and resilience for neuropsychiatric illnesses are established during brain development, and transcriptional markers of risk may be identifiable in early development. The dorsal-ventral axis of the hippocampus has behavioral, electrophysiological, anatomical, and transcriptional gradients and abnormal hippocampus development is associated with autism, schizophrenia, epilepsy, and mood disorders. We previously showed that differential gene expression along the dorsoventral hippocampus in rats was present at birth (postnatal day 0, P0), and that a subset of differentially expressed genes (DEGs) was present at all postnatal ages examined (P0, P9, P18, and P60). Here, we extend the analysis of that gene expression data to understand the development of the hippocampus as a whole by examining DEGs that change with age. We additionally examine development of the dorsoventral axis by looking at DEGs along the axis at each age. Using both unsupervised and supervised analyses, we find that the majority of DEGs are present from P0 to P18, with many expression profiles presenting peaks or dips at P9/18. During development of the hippocampus, enriched pathways associated with learning, memory, and cognition increase with age, as do pathways associated with neurotransmission and synaptic function. Development of the dorsoventral axis is greatest at P9 and P18 and is marked by DEGs associated with metabolic functions. Our data indicate that neurodevelopmental disorders like epilepsy, schizophrenia and affective disorders are enriched with developmental DEGs in the hippocampus, regardless of dorsoventral location, with the greatest enrichment of these clinical disorders seen in genes whose expression changes from P0-9. When comparing DEGs from the ventral and dorsal poles, the greatest number of neurodevelopmental disorders is enriched with DEGs found at P18. Taken together, the developing hippocampus undergoes substantial transcriptional maturation during early postnatal development, with expression of genes involved in neurodevelopmental disorders also showing maximal expression changes within this developmental period.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Bioinformatics Core Facility - BioCore, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Microbiology, St. Olavs Hospital, Trondheim, Norway
| | - Meital Galler
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, New York, USA
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Saetrom
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Bioinformatics Core Facility - BioCore, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computer and Information Science, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
9
|
Shan X, Contreras MP, Sawangjit A, Dimitrov S, Born J, Inostroza M. Rearing is critical for forming spatial representations in pre-weanling rats. Behav Brain Res 2023; 452:114545. [PMID: 37321311 DOI: 10.1016/j.bbr.2023.114545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Rearing, i.e., standing on the hind limbs in an upright posture, is part of a rat's innate exploratory motor program. Here, we examined in developing rats whether rearing is critical for the pup's capability to form spatial representations based on distal environmental cues. Pups (male) were tested at PD18, i.e., the first day they typically exhibit stable rearing, on a spatial habituation paradigm comprising a Familiarization session (with the pup exposed to an arena with a specific configuration of distal cues) followed, 3 h later, by a Test session where the pups were either re-exposed to the identical distal cue configuration (NoChange) or a changed configuration (DistalChange). In Experiment 1, rearing activity (rearing events, duration) decreased from Familiarization to Test in the NoChange pups but, remained elevated in the DistalChange group indicating that these pups recognized the distal novelty. Recognition of distal novelty was associated with increased c-Fos expression in hippocampal and medial prefrontal cortex (mPFC) areas, compared with NoChange pups. Analysis of GAD67+ cells suggested a parallel increase in excitation and inhibition specifically in prelimbic mPFC networks in response to distal cue changes. In Experiment 2, the pups were mechanically prevented from rearing while still seeing the distal cues during Familiarization. Rearing activity in the Test session of these pups did not differ between groups that were or were not exposed to a changed distal cue configuration at Test. The findings evidence a critical role of rearing for the emergence of allocentric representations integrating distal space during early development.
Collapse
Affiliation(s)
- Xia Shan
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - María Paz Contreras
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Anuck Sawangjit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Germany.
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Contreras MP, Fechner J, Born J, Inostroza M. Accelerating Maturation of Spatial Memory Systems by Experience: Evidence from Sleep Oscillation Signatures of Memory Processing. J Neurosci 2023; 43:3509-3519. [PMID: 36931711 PMCID: PMC10184732 DOI: 10.1523/jneurosci.1967-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 03/19/2023] Open
Abstract
During early development, memory systems gradually mature over time, in parallel with the gradual accumulation of knowledge. Yet, it is unknown whether and to what extent maturation is driven by discrete experience. Sleep is thought to contribute to the formation of long-term memory and knowledge through a systems consolidation process that is driven by specific sleep oscillations (i.e., ripples, spindles, and slow oscillations) in cortical and hippocampal networks. Based on these oscillatory signatures, we show here in rats that discrete spatial experience speeds the functional maturation of spatial memory systems during development. Juvenile male rats were exposed for 5 min periods to changes in the spatial configuration of two identical objects on postnatal day (PD)25, PD27, and PD29 (Spatial experience group), while a Control group was exposed on these occasions to the same two objects without changing their positions. On PD31, both groups were tested on a classical Object Place Recognition (OPR) task with a 3 h retention interval during which the sleep-associated EEG and hippocampal local field potentials were recorded. On PD31, consistent with forgoing studies, Control rats still did not express OPR memory. By contrast, rats with Spatial experience formed significant OPR memory and, in parallel, displayed an increased percentage of hippocampal ripples coupled to parietal slow oscillation-spindle complexes, and a stronger ripple-spindle phase-locking during the retention sleep. Our findings support the idea that experience promotes the maturation of memory systems during development by enhancing cortico-hippocampal information exchange and the formation of integrated knowledge representations during sleep.SIGNIFICANCE STATEMENT Cognitive and memory capabilities mature early in life. We show here that and how discrete spatial experience contributes to this process. Using a simple recognition paradigm in developing rats, we found that exposure of the rat pups to three short-lasting experiences enhances spatial memory capabilities to adult-like levels. The adult-like capability of building spatial memory was connected to a more precise coupling of ripples in the hippocampus with slow oscillation-spindle complexes in the thalamo-cortical system when the memory was formed during sleep. Our findings support the view that discrete experience accelerates maturation of cognitive and memory capabilities by enhancing the dialogue between hippocampus and cortex when these experiences are reprocessed during sleep.
Collapse
Affiliation(s)
- María P Contreras
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, 72076, Germany
| | - Julia Fechner
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, 72076, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, 72076, Germany
- German Center for Diabetes Research, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, 72076, Germany
- Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, 72076, Germany
| |
Collapse
|
11
|
Pinizzotto CC, Dreyer KM, Aje OA, Caffrey RM, Madhira K, Kritzer MF. Spontaneous Object Exploration in a Recessive Gene Knockout Model of Parkinson's Disease: Development and Progression of Object Recognition Memory Deficits in Male Pink1-/- Rats. Front Behav Neurosci 2022; 16:951268. [PMID: 36560930 PMCID: PMC9763898 DOI: 10.3389/fnbeh.2022.951268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cognitive impairments appear at or before motor signs in about one third of patients with Parkinson's disease (PD) and have a cumulative prevalence of roughly 80% overall. These deficits exact an unrelenting toll on patients' quality and activities of daily life due in part to a lack of available treatments to ameliorate them. This study used three well-validated novel object recognition-based paradigms to explore the suitability of rats with knockout of the PTEN-induced putative kinase1 gene (Pink1) for investigating factors that induce cognitive decline in PD and for testing new ways to mitigate them. Longitudinal testing of rats from 3-9 months of age revealed significant impairments in male Pink1-/- rats compared to wild type controls in Novel Object Recognition, Novel Object Location and Object-in-Place tasks. Task-specific differences in the progression of object discrimination/memory deficits across age were also seen. Finally, testing using an elevated plus maze, a tapered balance beam and a grip strength gauge showed that in all cases recognition memory deficits preceded potentially confounding impacts of gene knockout on affect or motor function. Taken together, these findings suggest that knockout of the Pink1 gene negatively impacts the brain circuits and/or neurochemical systems that support performance in object recognition tasks. Further investigations using Pink1-/- rats and object recognition memory tasks should provide new insights into the neural underpinnings of the visual recognition memory and visuospatial information processing deficits that are often seen in PD patients and accelerate the pace of discovery of better ways to treat them.
Collapse
Affiliation(s)
- Claudia C. Pinizzotto
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Katherine M. Dreyer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
- InSTAR Program, Ward Melville High School, East Setauket, NY, United States
| | - Oluwagbohunmi A. Aje
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Ryan M. Caffrey
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
- Master’s Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States
| | - Keertana Madhira
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
- Hauppauge High School Science Research Program, Hauppauge High School, Hauppauge, NY, United States
| | - Mary F. Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
12
|
Ross TW, Easton A. Rats use strategies to make object choices in spontaneous object recognition tasks. Sci Rep 2022; 12:16973. [PMID: 36216920 PMCID: PMC9550825 DOI: 10.1038/s41598-022-21537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022] Open
Abstract
Rodent spontaneous object recognition (SOR) paradigms are widely used to study the mechanisms of complex memory in many laboratories. Due to the absence of explicit reinforcement in these tasks, there is an underlying assumption that object exploratory behaviour is 'spontaneous'. However, rodents can strategise, readily adapting their behaviour depending on the current information available and prior predications formed from learning and memory. Here, using the object-place-context (episodic-like) recognition task and novel analytic methods relying on multiple trials within a single session, we demonstrate that rats use a context-based or recency-based object recognition strategy for the same types of trials, depending on task conditions. Exposure to occasional ambiguous conditions changed animals' responses towards a recency-based preference. However, more salient and predictable conditions led to animals exploring objects on the basis of episodic novelty reliant on contextual information. The results have important implications for future research using SOR tasks, especially in the way experimenters design, analyse and interpret object recognition experiments in non-human animals.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK.
- Centre for Learning and Memory Processes, Durham University, Durham, UK.
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
- Centre for Learning and Memory Processes, Durham University, Durham, UK
| |
Collapse
|
13
|
García-Pérez MA, Irani M, Tiznado V, Bustamante T, Inostroza M, Maldonado PE, Valdés JL. Cortico-Hippocampal Oscillations Are Associated With the Developmental Onset of Hippocampal-Dependent Memory. Front Neurosci 2022; 16:891523. [PMID: 35812209 PMCID: PMC9260104 DOI: 10.3389/fnins.2022.891523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hippocampal-dependent memories emerge late during postnatal development, aligning with hippocampal maturation. During sleep, the two-stage memory formation model states that through hippocampal-neocortical interactions, cortical slow-oscillations (SO), thalamocortical Spindles, and hippocampal sharp-wave ripples (SWR) are synchronized, allowing for the consolidation of hippocampal-dependent memories. However, evidence supporting this hypothesis during development is still lacking. Therefore, we performed successive object-in-place tests during a window of memory emergence and recorded in vivo the occurrence of SO, Spindles, and SWR during sleep, immediately after the memory encoding stage of the task. We found that hippocampal-dependent memory emerges at the end of the 4th postnatal week independently of task overtraining. Furthermore, we observed that those animals with better performance in the memory task had increased Spindle density and duration and lower density of SWR. Moreover, we observed changes in the SO-Spindle and Spindle-SWR temporal-coupling during this developmental period. Our results provide new evidence for the onset of hippocampal-dependent memory and its relationship to the oscillatory phenomenon occurring during sleep that helps us understand how memory consolidation models fit into the early stages of postnatal development.
Collapse
Affiliation(s)
- María A. García-Pérez
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias UC, Pontificia Universidad Católica de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Martin Irani
- Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vicente Tiznado
- Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tamara Bustamante
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Pedro E. Maldonado
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- National Center for Artificial Intelligence, CENIA, Santiago, Chile
| | - José L. Valdés
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Lagartos-Donate MJ, Doan TP, Girão PJB, Witter MP. Postnatal development of projections of the postrhinal cortex to the entorhinal cortex in the rat. eNeuro 2022; 9:ENEURO.0057-22.2022. [PMID: 35715208 PMCID: PMC9239852 DOI: 10.1523/eneuro.0057-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The ability to encode and retrieve contextual information is an inherent feature of episodic memory that starts to develop during childhood. The postrhinal cortex, an area of the parahippocampal region, has a crucial role in encoding object-space information and translating egocentric to allocentric representation of local space. The strong connectivity of POR with the adjacent entorhinal cortex, and consequently the hippocampus, suggests that the development of these connections could support the postnatal development of contextual memory. Here, we report that postrhinal cortex projections of the rat develop progressively from the first to the third postnatal week starting in the medial entorhinal cortex before spreading to the lateral entorhinal cortex. The increased spread and complexity of postrhinal axonal distributions is accompanied by an increased complexity of entorhinal dendritic trees and an increase of postrhinal - entorhinal synapses, which supports a gradual maturation in functional activity.SIGNIFICANCE STATEMENTPostrhinal-entorhinal cortical interplay mediates important aspects of encoding and retrieval of contextual information that is important for episodic memory. To better understand the function of the postrhinal interactions with the entorhinal cortex we studied the postnatal development of the connection between the two cortical areas. Our study describes the postnatal development of the postrhinal-to-entorhinal projections as established with neuroanatomical and electrophysiological methods. The projections gradually reach functionally different areas of the entorhinal cortex, reaching the area involved in spatial functions first, followed by the part involved in representing information about objects and sequences of events.
Collapse
Affiliation(s)
- Maria Jose Lagartos-Donate
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Thanh Pierre Doan
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, 7030 Trondheim, Norway
- Department of Neuromedicine and Movement Science, NTNU, N-7491 Trondheim, Norway
| | - Paulo J B Girão
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
15
|
Costa CS, Oliveira AWC, Easton A, Barros M. A single brief stressful event time-dependently affects object recognition memory and promotes familiarity preference in marmoset monkeys. Behav Processes 2022; 199:104645. [PMID: 35489542 DOI: 10.1016/j.beproc.2022.104645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
Abstract
A stressful experience can enhance information storage and impair memory retrieval in the rodent novel object recognition (NOR) task. However, recent conflicting results underscore the need for further investigation. Nonhuman primates may provide a unique, underexplored and more translational means to investigate stress-mediated changes in memory. Therefore, we assessed whether a single brief extrinsic stress event affects information encoding, storage and/or retrieval in adult marmoset monkeys submitted to the NOR task. This consisted of an initial 10 min familiarization period with two identical neutral objects. After a 6 h delay, a 10 min test trial was held where a new and familiar object could be explored. Stress was induced by a 15 min restraint event held before or after the encoding phase, or prior to retrieval. Pre-encoding stress had no effect on task performance, as this group displayed above-chance novelty preference similar to non-stressed controls. Post-encoding stress induced memory deficits, with both objects being explored equally. Interestingly, pre-retrieval stress induced an above-chance familiarity preference. A single brief stressful event thus affects recognition memory in a time-dependent manner. Also, negative discrimination ratios can be used as a measure of memory in the NOR task and a change in strategy may not mean memory failure in spontaneous learning paradigms.
Collapse
Affiliation(s)
- Clara S Costa
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - André W C Oliveira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Alexander Easton
- Department of Psychology, Durham University, Durham, United Kingdom; Centre for Learning and Memory Processes, Durham University, Durham, United Kingdom
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, Brazil; Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
16
|
Shan X, Contreras MP, Mendez M, Born J, Inostroza M. Unfolding of spatial representation at systems level in infant rats. Hippocampus 2021; 32:121-133. [PMID: 34786798 DOI: 10.1002/hipo.23392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022]
Abstract
Spatial representations enable navigation from early life on. However, the brain regions essential to form spatial representations, like the hippocampus, are considered functionally immature before weaning. Here, we examined the formation of representations of space in rat pups on postnatal day (PD) 16, using a simple habituation paradigm where the pups were exposed to an arena on three occasions, separated by ~140 min. Whereas on the first two occasions the arena was the same, on the third "test" occasion either proximal cues (Prox group), or distal cues (Dist group), or proximal and distal cues (Prox-Dist group), or no cues (No-change group) were rearranged. Locomotion (distance traveled) was used as behavioral measure of habituation, and c-Fos expression to measure regional brain activity at test. Locomotion generally decreased across the first two occasions. At test, it reached a minimum in the No-change group, indicating familiarity with the spatial conditions. By contrast, the Prox-Dist group displayed a significant increase in locomotion which was less robust in the Prox group and absent in the Dist group, a pattern suggesting that the pups relied more on proximal than distal cues during spatial exploration. c-Fos activity in the No-change group was significantly suppressed in the hippocampus (CA1, CA3, dentate gyrus) but simultaneously enhanced in the prelimbic area (PL) of the medial prefrontal cortex, compared with untreated Home-cage controls, pointing to a possible involvement of the PL in regulating locomotion in familiar spaces. By contrast, in both Prox-Dist and Prox groups c-Fos activity was enhanced in hippocampal CA1 and CA3 regions, suggesting these regions might be particularly involved in regulating exploration of spatial novelty. Our findings show that functional representations of space at a systems level are formed already in pre-weanling rats.
Collapse
Affiliation(s)
- Xia Shan
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Graduate School of Neural & Behavioral Science, International Max Planck Research School, Tübingen, Germany
| | - María P Contreras
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Graduate School of Neural & Behavioral Science, International Max Planck Research School, Tübingen, Germany
| | - Marta Mendez
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Plaza Feijoo, Oviedo, Spain
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany.,Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Lissner LJ, Wartchow KM, Toniazzo AP, Gonçalves CA, Rodrigues L. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience. Pharmacol Biochem Behav 2021; 210:173273. [PMID: 34536480 DOI: 10.1016/j.pbb.2021.173273] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Object recognition (OR) and the Morris water maze (MWM) are classical tasks widely used to assess memory parameters and deficits in rodents. Learning processes in both tasks involve integrity of the hippocampus and associated regions, and prefrontal cortex connections. Here, we highlight the idea that these classical tests can be used to indicate memory deficits caused by models of disease that affect hippocampal function in rats, and identify some practical issues of OR and MWM, based on the literature and our experience. Additionally, we have shown that the performance of both tasks does not alter blood levels of corticosterone, considering exposure to a single task. Hence, taking into consideration the difficulties and care required during task execution, the infrastructure needed and the training of the experimenter, we suggest that OR and its variations offer minimal manageable stressful conditions, representing an effective and practical tool for hippocampal-related memory assessment of rats. Thus, OR may provide similar information to that of the MWM, despite controversy regarding hippocampus participation in OR and given due differences in the types of memory evaluated and researchers' objectives. We recommend the observation of some important precautions and details, also based on the literature and our own experience.
Collapse
Affiliation(s)
- Lílian Juliana Lissner
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Krista Minéia Wartchow
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Ana Paula Toniazzo
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Leticia Rodrigues
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil.
| |
Collapse
|
18
|
Intermittent Hypoxia and Effects on Early Learning/Memory: Exploring the Hippocampal Cellular Effects of Pediatric Obstructive Sleep Apnea. Anesth Analg 2021; 133:93-103. [PMID: 33234943 DOI: 10.1213/ane.0000000000005273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review provides an update on the neurocognitive phenotype of pediatric obstructive sleep apnea (OSA). Pediatric OSA is associated with neurocognitive deficits involving memory, learning, and executive functioning. Adenotonsillectomy (AT) is presently accepted as the first-line surgical treatment for pediatric OSA, but the executive function deficits do not resolve postsurgery, and the timeline for recovery remains unknown. This finding suggests that pediatric OSA potentially causes irreversible damage to multiple areas of the brain. The focus of this review is the hippocampus, 1 of the 2 major sites of postnatal neurogenesis, where new neurons are formed and integrated into existing circuitry and the mammalian center of learning/memory functions. Here, we review the clinical phenotype of pediatric OSA, and then discuss existing studies of OSA on different cell types in the hippocampus during critical periods of development. This will set the stage for future study using preclinical models to understand the pathogenesis of persistent neurocognitive dysfunction in pediatric OSA.
Collapse
|
19
|
Ontogeny of spontaneous recognition memory in rodents. Neurobiol Learn Mem 2020; 177:107361. [PMID: 33307181 DOI: 10.1016/j.nlm.2020.107361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Spontaneous recognition memory tasks explore thewhat,whereandwhencomponents of recognition memory. These tasks are widely used in rodents to assess cognitive function across the lifespan. While several neurodevelopmental and mental disorders present symptom onset in early life, very little is known about how memories are expressed in early life, and as a consequence how they may be affected in pathological conditions. In this review, we conduct an analysis of the studies examining the expression of spontaneous recognition memory in young rodents. We compiled studies using four different tasks: novel object recognition, object location, temporal order recognition and object place. First, we identify major sources of variability between early life spontaneous recognition studies and classify them for later comparison. Second, we use these classifications to explore the current knowledge on the ontogeny of each of these four spontaneous recognition memory tasks. We conclude by discussing the possible implications of the relative time of onset for each of these tasks and their respective neural correlates. In compiling this research, we hope to advance on establishing a developmental timeline for the emergence of distinct components of recognition memory, while also identifying key areas of focus for future research. Establishing the ontogenetic profile of rodent spontaneous recognition memory tasks will create a necessary blueprint for cognitive assessment in animal models of neurodevelopmental and mental disorders, a first step towards improved and earlier diagnosis as well as novel intervention strategies.
Collapse
|