1
|
Guo Y, Li M, Liu X, Duo H, Huang B, Lu H, Zhang X, Li X, Zhao Y, Lian K, Liu T, Shi Y, Gao Y, Meng L, Zhao D, Song L, Jiang R, Shi H. Perinatal exposure to polystyrene nanoplastics alters socioemotional behaviors via the microbiota-gut-brain axis in adult offspring mice. Brain Behav Immun 2025; 128:121-133. [PMID: 40187670 DOI: 10.1016/j.bbi.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025] Open
Abstract
Polystyrene nanoplastics (PS-NPs), ubiquitous environmental contaminants, have been detected in various tissues of humans and animals, raising significant concerns regarding their potential health hazards. The long-term consequences of PS-NPs exposure during early developmental stages remain inadequately characterized. In this study, we established a murine model to investigate the chronic oral administration of PS-NPs via drinking water during the perinatal period, with a focus on elucidating the impact of PS-NPs ingestion on the social behaviors of adult offspring and the underlying mechanisms, particularly those involving the gut-brain axis. Our findings revealed that perinatal PS-NPs exposure elicited depression-like behaviors, diminished social dominance, and reduced social interactions in adult offspring. Additionally, we observed a decrease in dendritic spine density within hippocampal neurons, along with ultrastructural damage to hippocampal neurons and synapses in the adult offspring. PS-NPs exposure also led to a reduction in the richness and evenness of gut microbiota species composition in both male and female mice, with gut dysbiosis being particularly pronounced in adult males. Furthermore, alterations in metabolite abundance and metabolic pathways were detected in the hippocampus of both male and female adult offspring. Notably, a significant correlation was identified between the relative abundance of intestinal microorganisms and hippocampal metabolites. These results offer new insights into the association between early-life PS-NPs exposure and adult social behaviors, mediated through the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yi Guo
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Mei Li
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Department of Emergency Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Xiaoyu Liu
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Huiling Duo
- Shijiazhuang TCM Hospital, Shijiazhuang 050000, China
| | - Boya Huang
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Hengtai Lu
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangyu Zhang
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuzhe Li
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China
| | - Ye Zhao
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Kaoqi Lian
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China
| | - Tengfei Liu
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China
| | - Yun Shi
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yuan Gao
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Li Meng
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China
| | - Di Zhao
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China
| | - Li Song
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.
| | - Rui Jiang
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China.
| | - Haishui Shi
- Hebei Key Laboratory of Early Life Health Promotion (SZX202419) Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Kellum CE, Kelly GC, Pollock JS. Ripple Effects of Early Life Stress on Vascular Health. Hypertension 2025; 82:549-560. [PMID: 39882616 DOI: 10.1161/hypertensionaha.124.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The term early life stress encompasses traumatic events occurring before the age of 18 years, such as physical abuse, verbal abuse, household dysfunctions, sexual abuse, childhood neglect, child maltreatment, and adverse childhood experiences. Adverse psychological experiences in early life are linked to enduring effects on mental and physical health in adulthood. In this review, we first describe the effects and potential mechanisms of early life stress on the components of the vasculature. Next, we dive into the impact of early life stress on the vasculature across the lifespan through alterations of the epigenetic landscape. Finally, we consolidate the critical gaps in knowledge for focusing future research including the potential for resilience in combatting the impact of early life stress on vascular health.
Collapse
Affiliation(s)
- Cailin E Kellum
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| | - Gillian C Kelly
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| |
Collapse
|
3
|
Arnold A, Wang H, Mehta CC, Nesbeth PDC, Bedi B, Kirkpatrick C, Moran CA, Powers A, Smith AK, Hagen K, Weitzmann MN, Ofotokun I, Lahiri CD, Alvarez JA, Quyyumi AA, Neigh GN, Michopoulos V. The impact of childhood maltreatment, HIV status, and their interaction on mental health outcomes and markers of systemic inflammation in women. Biol Sex Differ 2025; 16:21. [PMID: 40156075 PMCID: PMC11951744 DOI: 10.1186/s13293-025-00704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Childhood maltreatment and HIV are both associated with a greater risk for adverse mental health, including posttraumatic stress disorder (PTSD), depression, and increased systemic inflammation. However, it remains unknown whether childhood maltreatment and HIV interact to exacerbate PTSD, depression, and inflammation in a manner that may further increase the risk of adverse health outcomes in people living with HIV. This study investigated the interaction between childhood maltreatment and HIV status on PTSD and depression symptom severity, and on peripheral concentrations of lipopolysaccharide (LPS) and high sensitivity C-reactive protein (hsCRP) in women. We hypothesized that women living with HIV (WLWH) who report high levels of childhood maltreatment exposure would show the greatest PTSD and depressive symptoms, as well as the highest concentrations of LPS and hsCRP. METHODS We conducted a cross-sectional study of 116 women (73 WLWH and 43 women without HIV). Participants completed interviews to measure trauma exposure, including childhood maltreatment, and PTSD and depression symptoms. They also provided blood samples that were analyzed for LPS and hsCRP concentrations. RESULTS Both women living with and without HIV reported high rates of trauma exposure and showed no statistically significant differences in overall rates of childhood maltreatment. Moderate to severe childhood maltreatment was associated with higher PTSD symptom severity (p =.005), greater depression severity (p =.005), and elevated plasma LPS concentrations (p =.045), regardless of HIV status. There were no effects of childhood maltreatment on hsCRP concentrations. There were no detectable significant effects of HIV status, or interactions between HIV status and childhood maltreatment, on PTSD and depression symptoms, or LPS and hsCRP concentrations (all p's > 0.05). CONCLUSIONS Our findings highlight the impact of childhood maltreatment on depression and PTSD symptoms and LPS concentrations in women. These results underscore the importance of trauma-informed health care in addressing childhood maltreatment to potentially improve both mental and physical health outcomes of adult women.
Collapse
Affiliation(s)
- Amanda Arnold
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Emory University, Atlanta, GA, 30322, USA.
| | - Heqiong Wang
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - C Christina Mehta
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Paula-Dene C Nesbeth
- Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Brahmchetna Bedi
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Caitlin Kirkpatrick
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Caitlin A Moran
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Abigial Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimbi Hagen
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - M Neale Weitzmann
- Department of Behavioral, Social, and Health Education Sciences, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ighovwerha Ofotokun
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Cecile D Lahiri
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica A Alvarez
- Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Arshed A Quyyumi
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Ryan N, O’Mahony S, Leahy-Warren P, Philpott L, Mulcahy H. The impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes: A scoping review. PLoS One 2025; 20:e0318237. [PMID: 40019912 PMCID: PMC11870360 DOI: 10.1371/journal.pone.0318237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/14/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Perinatal maternal stress, which includes both psychological and physiological stress experienced by healthy women during pregnancy and the postpartum period, is becoming increasingly prevalent. Infant early exposure to adverse environments such as perinatal stress has been shown to increase the long-term risk to metabolic, immunologic and neurobehavioral disorders. Evidence suggests that the human microbiome facilitates the transmission of maternal factors to infants via the vaginal, gut, and human milk microbiomes. The colonization of aberrant microorganisms in the mother's microbiome, influenced by the microbiome-brain-gut axis, may be transferred to infants during a critical early developmental period. This transfer may predispose infants to a more inflammatory-prone microbiome which is associated with dysregulated metabolic process leading to adverse health outcomes. Given the prevalence and potential impact of perinatal stress on maternal and infant health, with no systematic mapping or review of the data to date, the aim of this scoping review is to gather evidence on the relationship between perinatal maternal stress, and the human milk, maternal, and infant gut microbiomes. METHODS This is an exploratory mapping scoping review, guided by the Joanna Briggs Institute's methodology along with use of the Prisma Scr reporting guideline. A comprehensive search was conducted using the following databases, CINAHL Complete; MEDLINE; PsycINFO, Web of Science and Scopus with a protocol registered with Open Science Framework DOI 10.17605/OSF.IO/5SRMV. RESULTS After screening 1145 papers there were 7 paper that met the inclusion criteria. Statistically significant associations were found in five of the studies which identify higher abundance of potentially pathogenic bacteria such as Erwinia, Serratia, T mayombie, Bacteroides with higher maternal stress, and lower levels of stress linked to potentially beneficial bacteria such Lactococcus, Lactobacillus, Akkermansia. However, one study presents conflicting results where it was reported that higher maternal stress was linked to the prevalence of more beneficial bacteria. CONCLUSION This review suggests that maternal stress does have an impact on the alteration of abundance and diversity of influential bacteria in the gut microbiome, however, it can affect colonisation in different ways. These bacterial changes have the capacity to influence long term health and disease. The review analyses data collection tools and methods, offers potential reasons for these findings as well as suggestions for future research.
Collapse
Affiliation(s)
- Niamh Ryan
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| | - Siobhain O’Mahony
- Department of Anatomy and Neuroscience, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Lloyd Philpott
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| | - Helen Mulcahy
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Tan H, Liu M, Ren H, Zhou J, Guo Y, Jiang X. Associations of Adverse Childhood Experiences with Falls and Fall Risk Factors Among Middle-Aged and Older Adults in China. Am J Prev Med 2025:S0749-3797(25)00051-0. [PMID: 39947448 DOI: 10.1016/j.amepre.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION This study examined the associations of adverse childhood experiences (ACEs) with falls and fall risk factors and investigated whether fall risk factors mediate the association between ACEs and falls. METHODS This population-based cross-sectional study included 9,961 participants aged ≥45 years from the 2014 Life History Survey and the 2015 follow-up survey of the China Health and Retirement Longitudinal Study. Data analysis was performed from April 3 to May 7, 2024. Logistic regression models were used to assess the associations of the cumulative number of ACEs with falls and fall risk factors, as well as each ACE type. The Karlson-Holm-Breen method was used to examine the total (direct and indirect) effect of fall risk factors mediating the association between each ACE type and falls. RESULTS Associations of the cumulative number of ACEs with falls and specific fall risk factors were observed. Seven of the 12 ACEs were associated with falls, including physical abuse, household mental illness, witnessed domestic violence, bullying, parental death, sibling death, and parental disability. Corresponding fall risk factor patterns totally or partly mediated the associations between the 6 ACE types (excluding parental death) and falls. Pain and depressive symptoms were the dominant contributors. CONCLUSIONS ACEs were associated with falls and specific fall risk factors. Pain and depressive symptoms predominantly mediated the association between each type of ACE and falls. Early identification and targeted treatment of pain and depressive symptoms are critical for reducing fall incidence of ACEs-exposed individuals in later life.
Collapse
Affiliation(s)
- Huiying Tan
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Meige Liu
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Huixia Ren
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Yi Guo
- Department of Neurology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Xin Jiang
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
6
|
Choe JY, Jones HP. Methods for Modeling Early Life Stress in Rodents. Methods Mol Biol 2025; 2868:205-219. [PMID: 39546232 DOI: 10.1007/978-1-0716-4200-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Animal models of early life stress/adversity (ELS) have provided a foundation from which our understanding of the psychoneuroimmunology of childhood trauma has expanded over recent decades. Rodent models are a cornerstone of the ELS literature with many studies utilizing paradigms based on early life separation/deprivation protocols and manipulating the cage environment. However, no animal model is perfect. In particular, the lack of standardization across ELS models has led to inconsistent results and raised questions regarding the translational value of common preclinical models. In this chapter, we present an overview of the history of ELS rodent models and discuss considerations relevant to the ongoing efforts to both improve existing models and generate novel paradigms to meet the evolving needs of molecular- and mechanism-based ELS research.
Collapse
Affiliation(s)
- Jamie Y Choe
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Harlan P Jones
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.
- Institute for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
7
|
Sarwer DB, Schroeder K, Fischbach SR, Atwood SM, Heinberg LJ. Applying the Principles of Trauma-Informed Care to the Evaluation and Management of Patients Who Undergo Metabolic and Bariatric Surgery. Obes Surg 2025; 35:305-311. [PMID: 39592546 PMCID: PMC11717798 DOI: 10.1007/s11695-024-07597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Evaluation of relevant psychosocial variables is an important aspect of comprehensive, high-quality metabolic and bariatric surgery (MBS) care. Given the high rates of adverse childhood experience (ACEs) and other forms of trauma experienced later in life reported by individuals with class III obesity, it is time to apply the principles of trauma-informed care to the multidisciplinary care of MBS patients. This narrative review begins with a summary of the literature on the psychosocial functioning of individuals who present for MBS. Emphasis is placed upon the relationship between ACEs, class III obesity, and MBS. Trauma-informed care is defined, and its principles are applied to the MBS care continuum. The paper ends with a recommendation on how the field of MBS can integrate trauma-informed care into clinical practice and future research.
Collapse
Affiliation(s)
- David B Sarwer
- Center for Obesity Research and Education, College of Public Health, Temple University, Suite 175, 3223 N. Broad St, Philadelphia, PA, 19104, USA.
| | - Krista Schroeder
- Department of Nursing, Temple University College of Public Health, Philadelphia, PA, USA
| | - Sarah R Fischbach
- Center for Obesity Research and Education, College of Public Health, Temple University, Suite 175, 3223 N. Broad St, Philadelphia, PA, 19104, USA
| | - Sophia M Atwood
- Center for Obesity Research and Education, College of Public Health, Temple University, Suite 175, 3223 N. Broad St, Philadelphia, PA, 19104, USA
| | - Leslie J Heinberg
- Department of Surgery, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| |
Collapse
|
8
|
Schroeder K, Dumenci L, Day SE, Konty K, Noll JG, Henry KA, Suglia SF, Wheeler DC, Argenio K, Sarwer DB. The Association Between a Neighborhood Adverse Childhood Experiences Index and Body Mass Index Among New York City Youth. Child Obes 2024; 20:598-610. [PMID: 38959156 PMCID: PMC11693955 DOI: 10.1089/chi.2024.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Background: The role of neighborhood factors in the association between adverse childhood experiences (ACEs) and body mass index (BMI) has not been widely studied. A neighborhood ACEs index (NAI) captures neighborhood environment factors associated with ACE exposure. This study examined associations between BMI and an NAI among New York City (NYC) youth. An exploratory objective examined the NAI geographic distribution across NYC neighborhoods. Methods: Data for students attending NYC public general education schools in kindergarten-12th grade from 2006-2017 (n = 1,753,867) were linked to 25 geospatial datasets capturing neighborhood characteristics for every census tract in NYC. Multivariable hierarchical linear regression tested associations between BMI and the NAI; analyses also were conducted by young (<8 years), school age (8-12 years), and adolescent (>12 years) subgroups. In addition, NAI was mapped by census tract, and local Moran's I identified clusters of high and low NAI neighborhoods. Results: Higher BMI was associated with higher NAI across all sex and age groups, with largest magnitude of associations for girls (medium NAI vs. low NAI: unstandardized β = 0.112 (SE 0.008), standardized β [effect size] = 0.097, p < 0.001; high NAI vs. low NAI: unstandardized β = 0.195 (SE 0.008), standardized β = 0.178, p < 0.001) and adolescents (medium NAI vs. low NAI: unstandardized β = 0.189 (SE 0.014), standardized β = 0.161, p < 0.001, high NAI vs. low NAI: unstandardized β = 0.364 (SE 0.015), standardized β = 0.334, p < 0.001 for adolescent girls; medium NAI vs. low NAI: unstandardized β = 0.122 (SE 0.014), standardized β = 0.095, p < 0.001, high NAI vs. low NAI: unstandardized β = 0.217 (SE 0.015), standardized β = 0.187, p < 0.001 for adolescent boys). Each borough of NYC included clusters of neighborhoods with higher and lower NAI exposure, although clusters varied in size and patterns of geographic dispersion across boroughs. Conclusions: A spatial index capturing neighborhood environment factors associated with ACE exposure is associated with higher BMI among NYC youth. Findings complement prior literature about relationships between neighborhood environment and obesity risk, existing research documenting ACE-obesity associations, and the potential for neighborhood factors to be a source of adversity. Collectively, evidence suggests that trauma-informed place-based obesity reduction efforts merit further exploration as potential means to interrupt ACE-obesity associations.
Collapse
Affiliation(s)
- Krista Schroeder
- Department of Nursing, Temple University College of Public Health, Philadelphia, PA, USA
| | - Levent Dumenci
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA
| | - Sophia E. Day
- Office of School Health, New York City Department of Health and Mental Hygiene, Long Island City, NY, USA
| | - Kevin Konty
- Office of School Health, New York City Department of Health and Mental Hygiene, Long Island City, NY, USA
| | - Jennie G. Noll
- Mt. Hope Family Center, University of Rochester, Rochester, NY, USA
| | - Kevin A. Henry
- Department of Geography and Urban Studies, Temple University College of Liberal Arts, Philadelphia, PA, USA
| | - Shakira F. Suglia
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - David C. Wheeler
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kira Argenio
- Office of School Health, New York City Department of Health and Mental Hygiene, Long Island City, NY, USA
| | - David B. Sarwer
- Department of Social and Behavioral Sciences, Temple University College of Public Health, Philadelphia, PA, USA
| |
Collapse
|
9
|
Anyane-Yeboa A, Casey K, Roberts AL, Lopes E, Burke K, Ananthakrishnan A, Richter J, Cozier YC, Koenen KC, Chan AT, Khalili H. Association of Childhood Abuse With Incident Inflammatory Bowel Disease. Clin Transl Gastroenterol 2024; 15:e00718. [PMID: 39450870 DOI: 10.14309/ctg.0000000000000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/21/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION A link between inflammatory bowel disease (IBD), stressful life events, and psychological factors has previously been reported. Our objective was to examine the relationship between emotional, physical, and sexual abuse of childhood and risk of IBD using a large cohort of female health professionals. METHODS We included participants in the Nurses' Health Study II who completed the Physical and Emotional Abuse Subscale of the Childhood Trauma Questionnaire and the Sexual Maltreatment Scale of the Parent-Child Conflict Tactics Scale in 2001. Diagnosis of IBD was determined by self-report and confirmed independently by 2 physicians through review of medical records. We used Cox proportional hazard modeling to estimate the risk of Crohn's disease (CD) and ulcerative colitis (UC) while adjusting for covariates. RESULTS Among 68,167 women followed from 1989 until 2017, there were 146 incident cases of CD and 215 incident cases of UC. Compared with women with no history of abuse, the adjusted hazard ratios of CD were 1.16 (95% confidence interval [CI] 0.67-2.02) for mild, 1.58 (95% CI 0.92-2.69) for moderate, and 1.95 (95% CI 1.22-3.10) for severe abuse ( Ptrend = 0.002). We did not observe an association between childhood abuse and risk of UC. DISCUSSION Women who reported early life severe abuse had an increased risk of CD. These data add to the growing body of evidence on the critical role of early life stressors in development of CD.
Collapse
Affiliation(s)
- Adjoa Anyane-Yeboa
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical, Translational, Epidemiology Unit (CTEU), The Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin Casey
- Clinical, Translational, Epidemiology Unit (CTEU), The Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrea L Roberts
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Emily Lopes
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical, Translational, Epidemiology Unit (CTEU), The Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kristin Burke
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical, Translational, Epidemiology Unit (CTEU), The Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ashwin Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical, Translational, Epidemiology Unit (CTEU), The Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James Richter
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yvette C Cozier
- Slone Epidemiology Center at Boston University, Boston, Massachusetts, USA
| | | | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical, Translational, Epidemiology Unit (CTEU), The Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical, Translational, Epidemiology Unit (CTEU), The Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Buytaers FE, Berger N, Van der Heyden J, Roosens NHC, De Keersmaecker SCJ. The potential of including the microbiome as biomarker in population-based health studies: methods and benefits. Front Public Health 2024; 12:1467121. [PMID: 39507669 PMCID: PMC11538166 DOI: 10.3389/fpubh.2024.1467121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
The key role of our microbiome in influencing our health status, and its relationship with our environment and lifestyle or health behaviors, have been shown in the last decades. Therefore, the human microbiome has the potential to act as a biomarker or indicator of health or exposure to health risks in the general population, if information on the microbiome can be collected in population-based health surveys or cohorts. It could then be associated with epidemiological participant data such as demographic, clinical or exposure profiles. However, to our knowledge, microbiome sampling has not yet been included as biological evidence of health or exposure to health risks in large population-based studies representative of the general population. In this mini-review, we first highlight some practical considerations for microbiome sampling and analysis that need to be considered in the context of a population study. We then present some examples of topics where the microbiome could be included as biological evidence in population-based health studies for the benefit of public health, and how this could be developed in the future. In doing so, we aim to highlight the benefits of having microbiome data available at the level of the general population, combined with epidemiological data from health surveys, and hence how microbiological data could be used in the future to assess human health. We also stress the challenges that remain to be overcome to allow the use of this microbiome data in order to improve proactive public health policies.
Collapse
|
11
|
Karaboycheva G, Conrad ML, Dörr P, Dittrich K, Murray E, Skonieczna-Żydecka K, Kaczmarczyk M, Łoniewski I, Klawitter H, Buss C, Entringer S, Binder E, Winter SM, Heim C. Altered Gut Microbiota Patterns in Young Children with Recent Maltreatment Exposure. Biomolecules 2024; 14:1313. [PMID: 39456245 PMCID: PMC11506340 DOI: 10.3390/biom14101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The brain and the intestinal microbiota are highly interconnected and especially vulnerable to disruptions in early life. Emerging evidence indicates that psychosocial adversity detrimentally impacts the intestinal microbiota, affecting both physical and mental health. This study aims to investigate the gut microbiome in young children in the immediate aftermath of maltreatment exposure. METHODS Maltreatment exposure was assessed in 88 children (ages 3-7) using the Maternal Interview for the Classification of Maltreatment [MICM]. Children were allocated to three groups according to the number of experienced maltreatment categories: no maltreatment, low maltreatment, and high maltreatment exposures. Stool samples were collected and analyzed by 16S rRNA sequencing. RESULTS Children subjected to high maltreatment exposure exhibited lower alpha diversity in comparison to those with both no and low maltreatment exposure (Simpson Index, Tukey post hoc, p = 0.059 and p = 0.007, respectively). No significant distinctions in beta diversity were identified. High maltreatment exposure was associated with the enrichment of several genera from the class Clostridia (Clostridium, Intestinibacter, Howardella and Butyrivibrio) and the depletion of the genus Phocaeicola (class Bacteriodia). CONCLUSIONS Severe maltreatment exposure is associated with alterations in the gut microbiota of young children. Longitudinal trajectories of intestinal microbiota composition in the context of maltreatment may reveal important insights related to psychiatric and somatic health outcomes.
Collapse
Affiliation(s)
- Gergana Karaboycheva
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Melanie L. Conrad
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peggy Dörr
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Katja Dittrich
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Elena Murray
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Research, Pomeranian Medical University, Szczecin, Poland; (K.S.-Ż.); (M.K.); (I.Ł.)
| | - Mariusz Kaczmarczyk
- Department of Biochemical Research, Pomeranian Medical University, Szczecin, Poland; (K.S.-Ż.); (M.K.); (I.Ł.)
| | - Igor Łoniewski
- Department of Biochemical Research, Pomeranian Medical University, Szczecin, Poland; (K.S.-Ż.); (M.K.); (I.Ł.)
| | - Heiko Klawitter
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
| | - Claudia Buss
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Sonja Entringer
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | | | - Sibylle M. Winter
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Christine Heim
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
12
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, Qanadilo H, Ali BR, Shehab S, Statsenko Y, Meribout S, Sadek B, Akour A, Hamad MIK. The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review. Life (Basel) 2024; 14:1234. [PMID: 39459534 PMCID: PMC11508655 DOI: 10.3390/life14101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Rana Alyaqoubi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Sara Saeed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alya Alhammadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Mirah Alshehhi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Haia Qanadilo
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA;
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1551, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| |
Collapse
|
13
|
Bonaz B, Sinniger V, Pellissier S. Role of stress and early-life stress in the pathogeny of inflammatory bowel disease. Front Neurosci 2024; 18:1458918. [PMID: 39319312 PMCID: PMC11420137 DOI: 10.3389/fnins.2024.1458918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Numerous preclinical and clinical studies have shown that stress is one of the main environmental factor playing a significant role in the pathogeny and life-course of bowel diseases. However, stressful events that occur early in life, even during the fetal life, leave different traces within the central nervous system, in area involved in stress response and autonomic network but also in emotion, cognition and memory regulation. Early-life stress can disrupt the prefrontal-amygdala circuit thus favoring an imbalance of the autonomic nervous system and the hypothalamic-pituitary adrenal axis, resulting in anxiety-like behaviors. The down regulation of vagus nerve and cholinergic anti-inflammatory pathway favors pro-inflammatory conditions. Recent data suggest that emotional abuse at early life are aggravating risk factors in inflammatory bowel disease. This review aims to unravel the mechanisms that explain the consequences of early life events and stress in the pathophysiology of inflammatory bowel disease and their mental co-morbidities. A review of therapeutic potential will also be covered.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Valérie Sinniger
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Sonia Pellissier
- Université Savoie Mont Blanc, Université Grenoble Alpes, LIP/PC2S, Chambéry, France
| |
Collapse
|
14
|
Han C, Manners MT, Robinson SA. Sex differences in opioid response: a role for the gut microbiome? Front Pharmacol 2024; 15:1455416. [PMID: 39268474 PMCID: PMC11390522 DOI: 10.3389/fphar.2024.1455416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Opioid drugs have been long known to induce different responses in males compared to females, however, the molecular mechanisms underlying these effects are yet to be fully characterized. Recent studies have established a link between the gut microbiome and behavioral responses to opioids. Chronic opioid use is associated with gut dysbiosis, or microbiome disruptions, which is thought to contribute to altered opioid analgesia and reward processing. Gut microbiome composition and functioning have also been demonstrated to be influenced by sex hormones. Despite this, there is currently very little work investigating whether sex differences in the gut microbiome mediate sex-dependent responses to opioids, highlighting a critical gap in the literature. Here, we briefly review the supporting evidence implicating a potential role for the gut microbiome in regulating sexually dimorphic opioid response and identify areas for future research.
Collapse
Affiliation(s)
- Caitlin Han
- Department of Psychology, Williams College, Williamstown, MA, United States
| | - Melissa T. Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, United States
| | - Shivon A. Robinson
- Department of Psychology, Williams College, Williamstown, MA, United States
| |
Collapse
|
15
|
Bae SJ, Jang Y, Kim Y, Park JH, Jang JH, Oh JY, Jang SY, Ahn S, Park HJ. Gut Microbiota Regulation by Acupuncture and Moxibustion: A Systematic Review and Meta-Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1245-1273. [PMID: 39192678 DOI: 10.1142/s0192415x24500502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
There have been numerous studies investigating the impact of acupuncture and/or moxibustion on the gut microbiota, but the results have been inconclusive. Therefore, we conducted a systematic review and meta-analysis that included both preclinical and clinical studies to assess the current evidence regarding the effects of acupuncture on gut microbiota changes. We collected relevant studies from EMBASE and PubMed, collected outcomes including diversity and relative abundance measures of the gut microbiome, and the summarized effect estimates were calculated using the ratio of means (ROM) with 95% confidence intervals. Our analysis identified three clinical studies and 20 preclinical studies, encompassing various diseases and models, including colitis and obesity. The pooled results indicated no significant difference in alpha diversity changes between treatment groups and controls, except for the Simpson index measure, which was significantly higher in the treatment groups. Additionally, the pooled results showed an increase in the Firmicutes and a decrease in the Bacteroidetes in the treatment groups, along with increases in the Lactobacillus and Ruminococcus genera. These findings suggest acupuncture treatment can target the modification of specific phyla and genera of gut microbiota. However, it is important to note that the effects of acupuncture on the gut microbiome are heterogeneous across studies, particularly in different disease models.
Collapse
Affiliation(s)
- Sun-Jeong Bae
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yumi Jang
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yejin Kim
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji-Han Park
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jae-Hwan Jang
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, 128 Beobwon-ro, Songpa-gu, Seoul 05854, Republic of Korea
| | - Ju-Young Oh
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sun-Young Jang
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sora Ahn
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of KHU-KIST Convergence Science & Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 027932, Republic of Korea
| |
Collapse
|
16
|
Guy A, McAuliffe S, Cross R, Zhang Y, Kennedy RE, Estes NR, Giordano-Mooga S, Loyd C. Pilot study assessing gut microbial diversity among sexual and gender minority young adults. PLoS One 2024; 19:e0306638. [PMID: 38959280 PMCID: PMC11221641 DOI: 10.1371/journal.pone.0306638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Evidence supports that people identifying as a sexual or gender minority (SGMs) experience minority-related stress resulting from discrimination or expectations of prejudice, and that this is associated with increased mental and physical health problems compared to cisgender heterosexuals. However, the biological mechanisms driving minority-related stress impacts remain unknown, including the role of the gut microbiome. Thus, the aim of this study was to determine the relationship between SGM status and gut microbiome health among young adults attending a 4-year university. To this end, a prospective pilot study was completed in the fall and spring semesters of 2021-22. Self-identified SGMs (N = 22) and cisgender-heterosexuals (CIS-HET, N = 43) completed in-person interviews to provide mental health data and demographic information. Nail and saliva samples were collected at the time of interview to quantify chronic and acute cortisol. Stool samples were collected within 48 hours of interview for microbiome analysis. Assessment of the gut microbiota identified a significant reduction in alpha diversity among the SGM group, even when adjusting for mental health outcome. SGM group showed trends for higher abundance of microbes in phylum Bacteroidetes and lower abundance of microbes in phyla Firmicutes, Actinobacteria, and Proteobacteria compared to the CIS-HET group. These findings support that the gut microbiome could be contributing to negative health effects among the SGM community.
Collapse
Affiliation(s)
- Ashley Guy
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shannon McAuliffe
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robbie Cross
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yue Zhang
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Richard E. Kennedy
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Norman R. Estes
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Samantha Giordano-Mooga
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christine Loyd
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
17
|
Ryan N, Leahy-Warren P, Mulcahy H, O’Mahony S, Philpott L. The impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes: A scoping review protocol. PLoS One 2024; 19:e0304787. [PMID: 38837966 PMCID: PMC11152305 DOI: 10.1371/journal.pone.0304787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE The objective of this scoping review is to review the research evidence regarding the impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes. INTRODUCTION Perinatal stress which refers to psychological stress experienced by individuals during pregnancy and the postpartum period is emerging as a public health concern. Early exposure of infants to perinatal maternal stress can potentially lead to metabolic, immune, and neurobehavioral disorders that extend into adulthood. The role of the gut and human milk microbiome in the microbiome-gut-brain axis as a mechanism of stress transfer has been previously reported. A transfer of colonised aberrant microbiota from mother to infant is proposed to predispose the infant to a pro- inflammatory microbiome with dysregulated metabolic process thereby initiating early risk of chronic diseases. The interplay of perinatal maternal stress and its relationship to the maternal and infant gut and human milk microbiome requires further systematic examination in the literature. INCLUSION CRITERIA This scoping review is an exploratory mapping review which will focus on the population of mothers and infants with the exploration of the key concepts of maternal stress and its impact on the maternal and infant gut and human milk microbiome in the context of the perinatal period. It will focus on the pregnancy and the post-natal period up to 6 months with infants who are exclusively breastfed. METHODS This study will be guided by the Joanna Briggs Institute's (JBI) methodology for scoping reviews along with use of the Prisma Scr reporting guideline. A comprehensive search will be conducted using the following databases, CINAHL Complete; MEDLINE; PsycINFO, Web of Science and Scopus. A search strategy with pre-defined inclusion and exclusion criteria will be used to retrieve peer reviewed data published in English from 2014 to present. Screening will involve a three-step process with screening tool checklists. Results will be presented in tabular and narrative summaries, covering thematic concepts and their relationships. This protocol is registered with Open Science Framework DOI 10.17605/OSF.IO/5SRMV.
Collapse
Affiliation(s)
- Niamh Ryan
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| | | | - Helen Mulcahy
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| | - Siobhain O’Mahony
- Department of Anatomy and Neuroscience, APC Microbiome Ireland, University College Cork, Ireland
| | - Lloyd Philpott
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| |
Collapse
|
18
|
Otaru N, Kourouma L, Pugin B, Constancias F, Braegger C, Mansuy IM, Lacroix C. Transgenerational effects of early life stress on the fecal microbiota in mice. Commun Biol 2024; 7:670. [PMID: 38822061 PMCID: PMC11143345 DOI: 10.1038/s42003-024-06279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Stress in early life can affect the progeny and increase the risk to develop psychiatric and cardiometabolic diseases across generations. The cross-generational effects of early life stress have been modeled in mice and demonstrated to be associated with epigenetic factors in the germline. While stress is known to affect gut microbial features, whether its effects can persist across life and be passed to the progeny is not well defined. Here we show that early postnatal stress in mice shifts the fecal microbial composition (binary Jaccard index) throughout life, including abundance of eight amplicon sequencing variants (ASVs). Further effects on fecal microbial composition, structure (weighted Jaccard index), and abundance of 16 ASVs are detected in the progeny across two generations. These effects are not accompanied by changes in bacterial metabolites in any generation. These results suggest that changes in the fecal microbial community induced by early life traumatic stress can be perpetuated from exposed parent to the offspring.
Collapse
Affiliation(s)
- Nize Otaru
- Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Lola Kourouma
- Department of Health Science and Technology of the ETH Zurich, Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Zurich, Switzerland
- Center for Neuroscience Zürich, ETH and University Zürich, Zurich, Switzerland
| | - Benoit Pugin
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Florentin Constancias
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Christian Braegger
- Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
| | - Isabelle M Mansuy
- Department of Health Science and Technology of the ETH Zurich, Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Zurich, Switzerland.
- Center for Neuroscience Zürich, ETH and University Zürich, Zurich, Switzerland.
| | - Christophe Lacroix
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
19
|
Howard KA, Ahmad SS, Chavez JV, Hoogerwoerd H, McIntosh RC. The central executive network moderates the relationship between posttraumatic stress symptom severity and gastrointestinal related issues. Sci Rep 2024; 14:10695. [PMID: 38724613 PMCID: PMC11082173 DOI: 10.1038/s41598-024-61418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Although most adults experience at least one traumatic event in their lifetime, a smaller proportion will go on to be clinically diagnosed with post-traumatic stress disorder (PTSD). Persons diagnosed with PTSD have a greater likelihood of developing gastrointestinal (GI) disorders. However, the extent to which subclinical levels of post-traumatic stress (PTS) correspond with the incidence of GI issues in a normative sample is unclear. Resting state fMRI, medical history, psychological survey, and anthropometric data were acquired from the Enhanced Nathan Kline Institute-Rockland Sample (n = 378; age range 18-85.6 years). The primary aim of this study was to test the main effect of subclinical PTS symptom severity on the number of endorsed GI issues. The secondary aim was to test the moderating effect of high versus low resting state functional connectivity (rsFC) of the central executive network (CEN) on the relationship between PTS symptom severity and GI issues. Trauma Symptom Checklist-40 (TSC-40) scores were positively associated with the number of endorsed GI issues (b = -0.038, SE = .009, p < .001). The interaction between TSC-40 scores and rsFC within the CEN was significant on GI issues after controlling for sociodemographic and cardiometabolic variables (b = -0.031, SE = .016, p < .05), such that above average rsFC within the CEN buffered the effect of TSC-40 scores on GI issues. Our findings of higher rsFC within the CEN moderating the magnitude of coincidence in PTS and GI symptom severity may reflect the mitigating role of executive control processes in the putative stress signaling mechanisms that contribute to gut dysbiosis.
Collapse
Affiliation(s)
- Kia A Howard
- Department of Psychology, University of Miami, Coral Gables, FL, 33146, USA
| | - Salman S Ahmad
- Department of Psychology, University of Miami, Coral Gables, FL, 33146, USA
| | - Jennifer V Chavez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA
| | - Hannah Hoogerwoerd
- Department of Psychology, University of Miami, Coral Gables, FL, 33146, USA
| | - Roger C McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL, 33146, USA.
| |
Collapse
|
20
|
Warren A, Nyavor Y, Beguelin A, Frame LA. Dangers of the chronic stress response in the context of the microbiota-gut-immune-brain axis and mental health: a narrative review. Front Immunol 2024; 15:1365871. [PMID: 38756771 PMCID: PMC11096445 DOI: 10.3389/fimmu.2024.1365871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
More than 20% of American adults live with a mental disorder, many of whom are treatment resistant or continue to experience symptoms. Other approaches are needed to improve mental health care, including prevention. The role of the microbiome has emerged as a central tenet in mental and physical health and their interconnectedness (well-being). Under normal conditions, a healthy microbiome promotes homeostasis within the host by maintaining intestinal and brain barrier integrity, thereby facilitating host well-being. Owing to the multidirectional crosstalk between the microbiome and neuro-endocrine-immune systems, dysbiosis within the microbiome is a main driver of immune-mediated systemic and neural inflammation that can promote disease progression and is detrimental to well-being broadly and mental health in particular. In predisposed individuals, immune dysregulation can shift to autoimmunity, especially in the presence of physical or psychological triggers. The chronic stress response involves the immune system, which is intimately involved with the gut microbiome, particularly in the process of immune education. This interconnection forms the microbiota-gut-immune-brain axis and promotes mental health or disorders. In this brief review, we aim to highlight the relationships between stress, mental health, and the gut microbiome, along with the ways in which dysbiosis and a dysregulated immune system can shift to an autoimmune response with concomitant neuropsychological consequences in the context of the microbiota-gut-immune-brain axis. Finally, we aim to review evidenced-based prevention strategies and potential therapeutic targets.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Aaron Beguelin
- The Department of Biotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
21
|
Kiran NS, Yashaswini C, Chatterjee A. Zebrafish: A trending model for gut-brain axis investigation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106902. [PMID: 38537435 DOI: 10.1016/j.aquatox.2024.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Zebrafish (Danio rerio) has ascended as a pivotal model organism in the realm of gut-brain axis research, principally owing to its high-throughput experimental capabilities and evolutionary alignment with mammals. The inherent transparency of zebrafish embryos facilitates unprecedented real-time imaging, affording unparalleled insights into the intricate dynamics of bidirectional communication between the gut and the brain. Noteworthy are the structural and functional parallels shared between the zebrafish and mammalian gut-brain axis components, rendering zebrafish an invaluable model for probing the molecular and cellular intricacies inherent in this critical physiological interaction. Recent investigations in zebrafish have systematically explored the impact of gut microbiota on neurodevelopment, behaviour, and disease susceptibility, underscoring the model's prowess in unravelling the multifaceted influence of microbial communities in shaping gut-brain interactions. Leveraging the genetic manipulability inherent in zebrafish, researchers have embarked on targeted explorations of specific pathways and molecular mechanisms, providing nuanced insights into the fundamental functioning of the gut-brain axis. This comprehensive review synthesizes pivotal findings and methodological advancements derived from zebrafish-based gut-brain axis research, accentuating the model's potential to significantly advance our understanding of this complex interplay. Furthermore, it underscores the translational significance of these insights, offering promising avenues for the identification of therapeutic targets in neuro-gastroenterological disorders and psychiatric conditions intricately linked with gut-brain interactions.
Collapse
Affiliation(s)
- Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
22
|
Bai Y, Shu C, Hou Y, Wang GH. Adverse childhood experience and depression: the role of gut microbiota. Front Psychiatry 2024; 15:1309022. [PMID: 38628262 PMCID: PMC11019508 DOI: 10.3389/fpsyt.2024.1309022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Depression is the most common psychiatric disorder that burdens modern society heavily. Numerous studies have shown that adverse childhood experiences can increase susceptibility to depression, and depression with adverse childhood experiences has specific clinical-biological features. However, the specific neurobiological mechanisms are not yet precise. Recent studies suggest that the gut microbiota can influence brain function and behavior associated with depression through the "microbe-gut-brain axis" and that the composition and function of the gut microbiota are influenced by early stress. These studies offer a possibility that gut microbiota mediates the relationship between adverse childhood experiences and depression. However, few studies directly link adverse childhood experiences, gut microbiota, and depression. This article reviews recent studies on the relationship among adverse childhood experiences, gut microbiota, and depression, intending to provide insights for new research.
Collapse
Affiliation(s)
- Yu Bai
- Department of Psychiatry, Renmin Hospital of Wuhan University, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Hou
- Peking University China-Japan Friendship School of Clinical Medicine, Department of Neurology, Beijing, China
| | - Gao-Hua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
23
|
Longtine AG, Greenberg NT, Bernaldo de Quirós Y, Brunt VE. The gut microbiome as a modulator of arterial function and age-related arterial dysfunction. Am J Physiol Heart Circ Physiol 2024; 326:H986-H1005. [PMID: 38363212 PMCID: PMC11279790 DOI: 10.1152/ajpheart.00764.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Yara Bernaldo de Quirós
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
24
|
Priego-Parra BA, Triana-Romero A, Lajud-Barquín FA, de Fátima Higuera-DelaTijera M, Martínez-Vázquez SE, Salgado-Álvarez GA, García-Mora U, Cruz-Márquez MÁ, Cano-Contreras AD, Cid HV, Remes-Troche JM. Association of adverse childhood experiences with irritable bowel syndrome in Mexican adults: A cross-sectional study. Neurogastroenterol Motil 2024; 36:e14743. [PMID: 38243398 DOI: 10.1111/nmo.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Adverse childhood experiences (ACEs) are linked to the development of gastrointestinal disorders during adulthood, but there is limited research on the prevalence of ACEs in Latin American populations. This study aimed to assess the prevalence and impact of ACEs on Mexican adults with irritable bowel syndrome (IBS). METHODS In this cross-sectional study, we recruited 290 Mexican adults (aged 18-65), including 90 individuals with IBS and 200 healthy controls. All participants completed four self-reported questionnaires: The Adverse Childhood Experiences Questionnaire (ACEs), Visceral Sensitivity Index, Irritable Bowel Syndrome Symptom Severity Scale, and Hospital Anxiety and Depression Scale. Statistical analyses included mean differences using either the Student's t-test or the Wilcoxon test, correlations assessed with Spearman's correlation coefficient, and logistic regression models. Statistical significance was defined as a p-value less than 0.05. KEY RESULTS Among IBS subjects, the prevalence of ACEs was 80%, significantly higher than the 59% prevalence observed in controls (p < 0.0001). Individuals with ACEs exhibited elevated levels of anxiety and depression. Seventy-five percent of IBS subjects with severe symptoms reported four or more ACEs. The presence of four or more ACEs was found to be associated with an increased risk of IBS. CONCLUSIONS AND INFERENCES ACEs are notably prevalent among Mexican individuals with IBS and are positively correlated with the severity of gastrointestinal pain. These findings underscore the critical significance of evaluating and addressing ACEs in the comprehensive management of IBS within Latin American populations.
Collapse
Affiliation(s)
- Bryan Adrian Priego-Parra
- Departamento de Fisiología y Motilidad Digestiva, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Veracruz, Mexico
| | - Arturo Triana-Romero
- Departamento de Fisiología y Motilidad Digestiva, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico
| | | | | | | | - Giovanni Alejandro Salgado-Álvarez
- Departamento de Fisiología y Motilidad Digestiva, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico
| | - Uriel García-Mora
- Departamento de Fisiología y Motilidad Digestiva, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico
| | - Miguel Ángel Cruz-Márquez
- Departamento de Fisiología y Motilidad Digestiva, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico
| | - Ana Delfina Cano-Contreras
- Departamento de Fisiología y Motilidad Digestiva, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico
| | - Héctor-Vivanco Cid
- Departamento de Fisiología y Motilidad Digestiva, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico
| | - José María Remes-Troche
- Departamento de Fisiología y Motilidad Digestiva, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico
| |
Collapse
|
25
|
Knight RO, Cedillo YE, Judd SE, Baker EH, Frugé AD, Moellering DR. A cross-sectional study observing the association of psychosocial stress and dietary intake with gut microbiota genera and alpha diversity among a young adult cohort of black and white women in Birmingham, Alabama. BMC Womens Health 2024; 24:142. [PMID: 38402148 PMCID: PMC10894488 DOI: 10.1186/s12905-024-02968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND The relationships between psychosocial stress and diet with gut microbiota composition and diversity deserve ongoing investigation. The primary aim of this study was to examine the associations of psychosocial stress measures and dietary variables with gut microbiota genera abundance and alpha diversity among young adult, black and white females. The secondary aim was to explore mediators of psychosocial stress and gut microbiota diversity and abundance. METHODS Data on 60 females who self-identified as African American (AA; n = 29) or European American (EA; n = 31) aged 21-45 years were included. Cortisol was measured in hair and saliva, and 16S analysis of stool samples were conducted. Discrimination experiences (recent and lifetime), perceived stress, and depression were evaluated based on validated instruments. Spearman correlations were performed to evaluate the influence of psychosocial stressors, cortisol measures, and dietary variables on gut microbiota genus abundance and alpha diversity measured by amplicon sequence variant (ASV) count. Mediation analyses assessed the role of select dietary variables and cortisol measures on the associations between psychosocial stress, Alistipes and Blautia abundance, and ASV count. RESULTS AA females were found to have significantly lower ASV count and Blautia abundance. Results for the spearman correlations assessing the influence of psychosocial stress and dietary variables on gut microbiota abundance and ASV count were varied. Finally, diet nor cortisol was found to partially or fully mediate the associations between subjective stress measures, ASV count, and Alistipes and Blautia abundance. CONCLUSION In this cross-sectional study, AA females had lower alpha diversity and Blautia abundance compared to EA females. Some psychosocial stressors and dietary variables were found to be correlated with ASV count and few gut microbiota genera. Larger scale studies are needed to explore the relationships among psychosocial stress, diet and the gut microbiome.
Collapse
Affiliation(s)
- Rachel O Knight
- The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yenni E Cedillo
- The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne E Judd
- The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
26
|
Biagioli V, Volpedo G, Riva A, Mainardi P, Striano P. From Birth to Weaning: A Window of Opportunity for Microbiota. Nutrients 2024; 16:272. [PMID: 38257165 PMCID: PMC10819289 DOI: 10.3390/nu16020272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: The first 1000 days of life constitute a critical window of opportunity for microbiota development. Nutrients play a crucial role in enriching and diversifying the microbiota, derived not only from solid food but also from maternal dietary patterns during gestation. (2) Methods: We conducted a comprehensive literature review using the PubMed database, covering eleven years (2013-2023). We included English-language reviews, original research papers, and meta-analyses, while excluding case reports and letters. (3) Results: Consensus in the literature emphasizes that our interaction with a multitude of microorganisms begins in the intrauterine environment and continues throughout our lives. The existing data suggest that early nutritional education programs, initiated during pregnancy and guiding infant diets during development, may influence the shaping of the gut microbiota, promoting long-term health. (4) Conclusions: Further research is necessary in the coming years to assess potential interventions and early nutritional models aimed at modulating the pediatric microbiota, especially in vulnerable populations such as premature newborns.
Collapse
Affiliation(s)
- Valentina Biagioli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Paolo Mainardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
- IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
27
|
Cullen AE, Labad J, Oliver D, Al-Diwani A, Minichino A, Fusar-Poli P. The Translational Future of Stress Neurobiology and Psychosis Vulnerability: A Review of the Evidence. Curr Neuropharmacol 2024; 22:350-377. [PMID: 36946486 PMCID: PMC10845079 DOI: 10.2174/1570159x21666230322145049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 03/23/2023] Open
Abstract
Psychosocial stress is a well-established risk factor for psychosis, yet the neurobiological mechanisms underlying this relationship have yet to be fully elucidated. Much of the research in this field has investigated hypothalamic-pituitary-adrenal (HPA) axis function and immuno-inflammatory processes among individuals with established psychotic disorders. However, as such studies are limited in their ability to provide knowledge that can be used to develop preventative interventions, it is important to shift the focus to individuals with increased vulnerability for psychosis (i.e., high-risk groups). In the present article, we provide an overview of the current methods for identifying individuals at high-risk for psychosis and review the psychosocial stressors that have been most consistently associated with psychosis risk. We then describe a network of interacting physiological systems that are hypothesised to mediate the relationship between psychosocial stress and the manifestation of psychotic illness and critically review evidence that abnormalities within these systems characterise highrisk populations. We found that studies of high-risk groups have yielded highly variable findings, likely due to (i) the heterogeneity both within and across high-risk samples, (ii) the diversity of psychosocial stressors implicated in psychosis, and (iii) that most studies examine single markers of isolated neurobiological systems. We propose that to move the field forward, we require well-designed, largescale translational studies that integrate multi-domain, putative stress-related biomarkers to determine their prognostic value in high-risk samples. We advocate that such investigations are highly warranted, given that psychosocial stress is undoubtedly a relevant risk factor for psychotic disorders.
Collapse
Affiliation(s)
- Alexis E. Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
- Department of Clinical Neuroscience, Division of Insurance Medicine, Karolinska Institutet, Solna, Sweden
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Javier Labad
- CIBERSAM, Sabadell, Barcelona, Spain
- Department of Mental Health and Addictions, Consorci Sanitari del Maresme, Mataró, Spain
| | - Dominic Oliver
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Adam Al-Diwani
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Amedeo Minichino
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- OASIS Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
28
|
Simão DO, Vieira VS, Tosatti JAG, Gomes KB. Lipids, Gut Microbiota, and the Complex Relationship with Alzheimer's Disease: A Narrative Review. Nutrients 2023; 15:4661. [PMID: 37960314 PMCID: PMC10649859 DOI: 10.3390/nu15214661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's Disease (AD) is a multifactorial, progressive, and chronic neurodegenerative disorder associated with the aging process. Memory deficits, cognitive impairment, and motor dysfunction are characteristics of AD. It is estimated that, by 2050, 131.5 million people will have AD. There is evidence that the gastrointestinal microbiome and diet may contribute to the development of AD or act preventively. Communication between the brain and the intestine occurs through immune cells in the mucosa and endocrine cells, or via the vagus nerve. Aging promotes intestinal dysbiosis, characterized by an increase in pro-inflammatory pathogenic bacteria and a reduction in anti-inflammatory response-mediating bacteria, thus contributing to neuroinflammation and neuronal damage, ultimately leading to cognitive decline. Therefore, the microbiota-gut-brain axis has a significant impact on neurodegenerative disorders. Lipids may play a preventive or contributory role in the development of AD. High consumption of saturated and trans fats can increase cortisol release and lead to other chronic diseases associated with AD. Conversely, low levels of omega-3 polyunsaturated fatty acids may be linked to neurodegenerative diseases. Unlike other studies, this review aims to describe, in an integrative way, the interaction between the gastrointestinal microbiome, lipids, and AD, providing valuable insights into how the relationship between these factors affects disease progression, contributing to prevention and treatment strategies.
Collapse
Affiliation(s)
- Daiane Oliveira Simão
- Faculty of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
| | - Vitoria Silva Vieira
- Department of Nutrition, School of Nursing, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
| | - Jéssica Abdo Gonçalves Tosatti
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil;
| | - Karina Braga Gomes
- Faculty of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
29
|
Keirns BH, Keirns NG, Tsotsoros CE, Layman HM, Stout ME, Medlin AR, Sciarrillo CM, Teague TK, Emerson SR, Hawkins MAW. Adverse childhood experiences and obesity linked to indicators of gut permeability and inflammation in adult women. Physiol Behav 2023; 271:114319. [PMID: 37562704 PMCID: PMC10592146 DOI: 10.1016/j.physbeh.2023.114319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Gut permeability may increase cardiovascular disease risk by allowing bacterial components (e.g., lipopolysaccharide or LPS) to enter the bloodstream, leading to low-grade inflammation. People with adverse childhood experiences (ACEs) consistently display evidence of chronic inflammation, but the source of this inflammation, and whether gut permeability may contribute, is unknown. Moreover, whether ACE status may further perturb obesity-associated gut permeability and inflammation is unknown. Women (N = 79, aged 18-84y) free of cardiometabolic diseases and inflammatory conditions and not regularly taking anti-inflammatory medications were included in a 2 × 2 factorial design with low or high ACE status (either 0 ACEs or 3+ ACEs) and body mass index (BMI) (either normal-weight [18.5-24.9 kg/m2; NW] or obesity [>30 kg/m2; OB]) as factors (n = 15-27/group). Serum LPS binding protein (LBP), soluble CD14 (sCD14), fatty-acid binding protein-2 (FABP2), LPS core IgM, and the ratio of LBP:sCD14 were used as indicators of gut permeability. Inflammatory markers C-reactive protein (CRP), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were also measured. Data were analyzed using 2-way ANCOVA (age-adjusted). LBP, LBP:sCD14 and FABP2 were higher in OB versus NW, regardless of ACE status (PBMI < 0.05). Higher ACE status was associated with increased circulating LBP:sCD14 and LPS core IgM (PACE < 0.05). sCD14 was unrelated to BMI or ACEs. CRP was elevated in OB versus NW (PBMI < 0.001) and tended to be higher with 3+ ACEs compared to 0 ACEs (PACE = 0.06). Moreover, TNF-α was greater in 3+ ACEs relative to 0 ACEs (PACE = 0.03). IL-6 was unrelated to BMI or ACE status. No interaction effects were observed for any marker of gut permeability or inflammation. In sum, ACE status and obesity were independently associated with evidence of gut permeability and systemic inflammation but did not interact in relation to indicators of gut permeability.
Collapse
Affiliation(s)
- Bryant H Keirns
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, United States of America.
| | - Natalie G Keirns
- Lifespan Cardiovascular Institute, The Miriam Hospital, Providence, RI, United States of America
| | - Cindy E Tsotsoros
- Department of Human Development and Family Science, University of Rhode Island, 2 Lower College Road, Kingston, RI 02881, United States of America
| | - Harley M Layman
- Department of Psychology, Oklahoma State University, 116 Psychology Building, Stillwater, OK, US 74078, United States of America
| | - Madison E Stout
- Department of Psychology, Oklahoma State University, 116 Psychology Building, Stillwater, OK, US 74078, United States of America
| | - Austin R Medlin
- Department of Health & Wellness Design, Indiana University School of Public Health, 1025 E. Seventh St., Bloomington, IN 47405, United States of America
| | - Christina M Sciarrillo
- Department of Nutritional Sciences, Oklahoma State University, 301 Nancy Randolph Davis, Stillwater, OK, US 74078, United States of America
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, United States of America; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, United States of America; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University, 301 Nancy Randolph Davis, Stillwater, OK, US 74078, United States of America
| | - Misty A W Hawkins
- Department of Health & Wellness Design, Indiana University School of Public Health, 1025 E. Seventh St., Bloomington, IN 47405, United States of America
| |
Collapse
|
30
|
Knight R, Cedillo Y, Judd S, Baker E, Fruge A, Moellering D. A cross-sectional study observing the association of psychosocial stress and dietary intake with gut microbiota genera and alpha diversity among a young adult cohort of black and white women in Birmingham, Alabama. RESEARCH SQUARE 2023:rs.3.rs-3146763. [PMID: 37609244 PMCID: PMC10441481 DOI: 10.21203/rs.3.rs-3146763/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background The relationships between psychosocial stress and diet with gut microbiota composition and diversity deserve ongoing investigation. The primary aim of this study was to examine the associations of psychosocial stress measures and dietary variables with gut microbiota genera abundance and alpha diversity among young adult, black and white females. The secondary aim was to explore mediators of psychosocial stress and gut microbiota diversity and abundance. Methods Data on 60 females who self-identified as African American (AA; n = 29) or European American (EA; n = 31) aged 21-45 years were included. Cortisol was measured in hair and saliva, and 16S analysis of stool samples were conducted. Discrimination experiences (recent and lifetime), perceived stress, and depression were evaluated based on validated instruments. Spearman correlations were performed to evaluate the influence of psychosocial stressors, cortisol measures, and dietary variables on gut microbiota genus abundance and alpha diversity measured by amplicon sequence variant(ASV) count. Mediation analyses assessed the mediating role of select dietary variables and cortisol measures on the associations between psychosocial stress, Alistipes and Blautia abundance, and ASV count. Results AA females were found to have significantly lower ASV count and Blautia abundance. Results for the spearman correlations assessing the influence of psychosocial stress and dietary variables on gut microbiota abundance and ASV count were varied. Finally, diet nor cortisol was found to partially or fully mediate the associations between subjective stress measures, ASV count, and Alistipes and Blautia abundance. Conclusion In this cross-sectional study, AA females had lower alpha diversity and Blautia abundance compared to EA females. Some psychosocial stressors and dietary variables were found to be correlated with ASV count and few gut microbiota genera. Larger scale studies are needed to explore the relationships among psychosocial stress, diet and the gut microbiome.
Collapse
|
31
|
Dong TS, Gee GC, Beltran-Sanchez H, Wang M, Osadchiy V, Kilpatrick LA, Chen Z, Subramanyam V, Zhang Y, Guo Y, Labus JS, Naliboff B, Cole S, Zhang X, Mayer EA, Gupta A. How Discrimination Gets Under the Skin: Biological Determinants of Discrimination Associated With Dysregulation of the Brain-Gut Microbiome System and Psychological Symptoms. Biol Psychiatry 2023; 94:203-214. [PMID: 36754687 PMCID: PMC10684253 DOI: 10.1016/j.biopsych.2022.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Discrimination is associated with negative health outcomes as mediated in part by chronic stress, but a full understanding of the biological pathways is lacking. Here we investigate the effects of discrimination involved in dysregulating the brain-gut microbiome (BGM) system. METHODS A total of 154 participants underwent brain magnetic resonance imaging to measure functional connectivity. Fecal samples were obtained for 16S ribosomal RNA profiling and fecal metabolites and serum for inflammatory markers, along with questionnaires. The Everyday Discrimination Scale was administered to measure chronic and routine experiences of unfair treatment. A sparse partial least squares-discriminant analysis was conducted to predict BGM alterations as a function of discrimination, controlling for sex, age, body mass index, and diet. Associations between discrimination-related BGM alterations and psychological variables were assessed using a tripartite analysis. RESULTS Discrimination was associated with anxiety, depression, and visceral sensitivity. Discrimination was associated with alterations of brain networks related to emotion, cognition and self-perception, and structural and functional changes in the gut microbiome. BGM discrimination-related associations varied by race/ethnicity. Among Black and Hispanic individuals, discrimination led to brain network changes consistent with psychological coping and increased systemic inflammation. For White individuals, discrimination was related to anxiety but not inflammation, while for Asian individuals, the patterns suggest possible somatization and behavioral (e.g., dietary) responses to discrimination. CONCLUSIONS Discrimination is attributed to changes in the BGM system more skewed toward inflammation, threat response, emotional arousal, and psychological symptoms. By integrating diverse lines of research, our results demonstrate evidence that may explain how discrimination contributes to health inequalities.
Collapse
Affiliation(s)
- Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California; Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, California.
| | - Gilbert C Gee
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California; California Center for Population Research, University of California, Los Angeles, Los Angeles, California
| | - Hiram Beltran-Sanchez
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California; California Center for Population Research, University of California, Los Angeles, Los Angeles, California
| | - May Wang
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California
| | - Vadim Osadchiy
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Zixi Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Vishvak Subramanyam
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Yurui Zhang
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Yinming Guo
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Bruce Naliboff
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Steve Cole
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry & Biobehavioral Sciences and Medicine, University of California, Los Angeles, Los Angeles, California
| | - Xiaobei Zhang
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
32
|
Graves CL, Norloff E, Thompson D, Kosyk O, Sang Y, Chen A, Zannas AS, Wallet SM. Chronic early life stress alters the neuroimmune profile and functioning of the developing zebrafish gut. Brain Behav Immun Health 2023; 31:100655. [PMID: 37449287 PMCID: PMC10336164 DOI: 10.1016/j.bbih.2023.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic early life stress (ELS) potently impacts the developing central nervous and immune systems and is associated with the onset of gastrointestinal disease in humans. Though the gut-brain axis is appreciated to be a major target of the stress response, the underlying mechanisms linking ELS to gut dysfunction later in life is incompletely understood. Zebrafish are a powerful model validated for stress research and have emerged as an important tool in delineating neuroimmune mechanisms in the developing gut. Here, we developed a novel model of ELS and utilized a comparative transcriptomics approach to assess how chronic ELS modulated expression of neuroimmune genes in the developing gut and brain. Zebrafish exposed to ELS throughout larval development exhibited anxiety-like behavior and altered expression of neuroimmune genes in a time- and tissue-dependent manner. Further, the altered gut neuroimmune profile, which included increased expression of genes associated with neuronal modulation, correlated with a reduction in enteric neuronal density and delayed gut transit. Together, these findings provide insights into the mechanisms linking ELS with gastrointestinal dysfunction and highlight the zebrafish model organism as a valuable tool in uncovering how "the body keeps the score."
Collapse
Affiliation(s)
- Christina L. Graves
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Stress Initiative, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| | - Erik Norloff
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Darius Thompson
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Oksana Kosyk
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yingning Sang
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Angela Chen
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anthony S. Zannas
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Carolina Stress Initiative, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| | - Shannon M. Wallet
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
33
|
Bhutta ZA, Bhavnani S, Betancourt TS, Tomlinson M, Patel V. Adverse childhood experiences and lifelong health. Nat Med 2023; 29:1639-1648. [PMID: 37464047 DOI: 10.1038/s41591-023-02426-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
With the advent of the sustainable development goals, the field of global child health has shifted its focus from reducing mortality to improving health, nutrition and development outcomes - often measured as human capital. A growing knowledge of the biology of development and neuroscience has highlighted the importance of adverse environmental exposures, collectively termed adverse childhood experiences (ACEs) on health outcomes. ACEs are associated with short-term, medium-term and long-term negative consequences for health and development and their effects may be multiplicative, especially during critical periods of sensitivity and developmental plasticity. Some of these effects are compounded by emerging global threats such as climate change, conflict and population displacement. In this Review, we discuss the key mechanisms linking ACEs to health outcomes and consider promising strategies to prevent and mitigate their effects, highlighting evidence from programs in low-income and middle-income countries. Finally, we emphasize the need for early recognition of ACEs and delivery of packages of interventions spanning key sectors such as health, education, women's empowerment and social protection.
Collapse
Affiliation(s)
- Zulfiqar A Bhutta
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada.
- Institute for Global Health & Development, The Aga Khan University, South Central Asia, East Africa, United Kingdom, and Karachi, Pakistan.
| | | | | | - Mark Tomlinson
- Institute for Life Course Health Research, Stellenbosch University, Cape Town, South Africa
- School of Nursing and Midwifery, Queens University, Belfast, UK
| | - Vikram Patel
- Department of Global Health and Population, Harvard Chan School of Public Health, Boston, MA, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Agusti A, Lamers F, Tamayo M, Benito-Amat C, Molina-Mendoza GV, Penninx BWJH, Sanz Y. The Gut Microbiome in Early Life Stress: A Systematic Review. Nutrients 2023; 15:nu15112566. [PMID: 37299527 DOI: 10.3390/nu15112566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Exposure to early life stress (ELS), prenatal or postnatal during childhood and adolescence, can significantly impact mental and physical health. The role of the intestinal microbiome in human health, and particularly mental health, is becoming increasingly evident. This systematic review aims to summarize the clinical data evaluating the effect of ELS on the human intestinal microbiome. The systematic review (CRD42022351092) was performed following PRISMA guidelines, with ELS considered as exposure to psychological stressors prenatally and during early life (childhood and adolescence). Thirteen articles met all inclusion criteria, and all studies reviewed found a link between ELS and the gut microbiome in both prenatal and postnatal periods. However, we failed to find consensus microbiome signatures associated with pre- or postnatal stress, or both. The inconsistency of results is likely attributed to various factors such as different experimental designs, ages examined, questionnaires, timing of sample collection and analysis methods, small population sizes, and the type of stressors. Additional studies using similar stressors and validated stress measures, as well as higher-resolution microbiome analytical approaches, are needed to draw definitive conclusions about the links between stress and the human gut microbiome.
Collapse
Affiliation(s)
- Ana Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa-Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Femke Lamers
- Amsterdam UMC, Amsterdam Public Health, Mental Health Program, Department of Psychiatry, Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Maria Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa-Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
- Department of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Carlos Benito-Amat
- Institute for the Management and Innovation of Knowledge (INGENIO-CSIC-UPV), Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Gara V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa-Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Brenda W J H Penninx
- Amsterdam UMC, Amsterdam Public Health, Mental Health Program, Department of Psychiatry, Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Yolanda Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa-Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
35
|
Dutton CL, Maisha FM, Quinn EB, Morales KL, Moore JM, Mulligan CJ. Maternal Psychosocial Stress Is Associated with Reduced Diversity in the Early Infant Gut Microbiome. Microorganisms 2023; 11:microorganisms11040975. [PMID: 37110398 PMCID: PMC10142543 DOI: 10.3390/microorganisms11040975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The developing infant gut microbiome is highly sensitive to environmental exposures, enabling its evolution into an organ that supports the immune system, confers protection from infection, and facilitates optimal gut and central nervous system function. In this study, we focus on the impact of maternal psychosocial stress on the infant gut microbiome. Forty-seven mother-infant dyads were recruited at the HEAL Africa Hospital in Goma, Democratic Republic of Congo. Extensive medical, demographic, and psychosocial stress data were collected at birth, and infant stool samples were collected at six weeks, three months, and six months. A composite maternal psychosocial stress score was created, based on eight questionnaires to capture a diverse range of stress exposures. Full-length 16S rRNA gene sequences were generated. Infants of mothers with high composite stress scores showed lower levels of gut microbiome beta diversity at six weeks and three months, as well as higher levels of alpha diversity at six months compared to infants of low stress mothers. Longitudinal analyses showed that infants of high stress mothers had lower levels of health-promoting Lactobacillus gasseri and Bifidobacterium pseudocatenulatum at six weeks compared to infants of low stress mothers, but the differences largely disappeared by three to six months. Previous research has shown that L. gasseri can be used as a probiotic to reduce inflammation, stress, and fatigue, as well as to improve mental state, while B. pseudocatenulatum is important in modulating the gut-brain axis in early development and in preventing mood disorders. Our finding of reduced levels of these health-promoting bacteria in infants of high stress mothers suggests that the infant gut microbiome may help mediate the effect of maternal stress on infant health and development.
Collapse
Affiliation(s)
- Christopher L Dutton
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
- Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Felicien Masanga Maisha
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
- HEAL Africa Hospital, Rue Lyn Lusi No. 111, Goma BP 319, Democratic Republic of the Congo
| | - Edward B Quinn
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| | - Katherine Liceth Morales
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| | - Julie M Moore
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Room V3-111B, P.O. Box 110880, Gainesville, FL 32611-4111, USA
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| |
Collapse
|
36
|
Korobkova L, Morin EL, Aoued H, Sannigrahi S, Garza KM, Siebert ER, Walum H, Cabeen RP, Sanchez MM, Dias BG. RNA in extracellular vesicles during adolescence reveal immune, energetic and microbial imprints of early life adversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529808. [PMID: 36865138 PMCID: PMC9980043 DOI: 10.1101/2023.02.23.529808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Exposure to early life adversity (ELA), including childhood maltreatment, is one of the most significant risk factors for the emergence of neuropsychiatric disorders in adolescence and adulthood. Despite this relationship being well established, the underlying mechanisms remain unclear. One way to achieve this understanding is to identify molecular pathways and processes that are perturbed as a consequence of childhood maltreatment. Ideally, these perturbations would be evident as changes in DNA, RNA or protein profiles in easily accessible biological samples collected in the shadow of childhood maltreatment. In this study, we isolated circulating extracellular vesicles (EVs) from plasma collected from adolescent rhesus macaques that had either experienced nurturing maternal care (CONT) or maternal maltreatment (MALT) in infancy. RNA sequencing of RNA in plasma EVs and gene enrichment analysis revealed that genes related to translation, ATP synthesis, mitochondrial function and immune response were downregulated in MALT samples, while genes involved in ion transport, metabolism and cell differentiation were upregulated. Interestingly, we found that a significant proportion of EV RNA aligned to the microbiome and that MALT altered the diversity of microbiome-associated RNA signatures found in EVs. Part of this altered diversity suggested differences in prevalence of bacterial species in CONT and MALT animals noted in the RNA signatures of the circulating EVs. Our findings provide evidence that immune function, cellular energetics and the microbiome may be important conduits via which infant maltreatment exerts effects on physiology and behavior in adolescence and adulthood. As a corollary, perturbations of RNA profiles related to immune function, cellular energetics and the microbiome may serve as biomarkers of responsiveness to ELA. Our results demonstrate that RNA profiles in EVs can serve as a powerful proxy to identify biological processes that might be perturbed by ELA and that may contribute to the etiology of neuropsychiatric disorders in the aftermath of ELA.
Collapse
|
37
|
Nealon NJ, Wood A, Rudinsky AJ, Klein H, Salerno M, Parker VJ, Quimby JM, Howard J, Winston JA. Fecal identification markers impact the feline fecal microbiota. Front Vet Sci 2023; 10:1039931. [PMID: 36846255 PMCID: PMC9946173 DOI: 10.3389/fvets.2023.1039931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023] Open
Abstract
Fecal diagnostics are a mainstay of feline medicine, and fecal identification markers help to distinguish individuals in a multi-cat environment. However, the impact of identification markers on the fecal microbiota are unknown. Given the increased interest in using microbiota endpoints to inform diagnosis and treatment, the objective of this study was to examine the effects of orally supplemented glitter and crayon shavings on the feline fecal microbiota (amplicon sequencing of 16S rRNA gene V4 region). Fecal samples were collected daily from six adult cats that were randomized to receive oral supplementation with either glitter or crayon for two weeks, with a two-week washout before receiving the second marker. No adverse effects in response to marker supplementation were seen for any cat, and both markers were readily identifiable in the feces. Microbiota analysis revealed idiosyncratic responses to fecal markers, where changes in community structure in response to glitter or crayon could not be readily discerned. Given these findings, it is not recommended to administered glitter or crayon shavings as a fecal marker when microbiome endpoints are used, however their clinical use with other diagnostics should still be considered.
Collapse
Affiliation(s)
- Nora Jean Nealon
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Comparative Hepatobiliary and Intestinal Research Program, The Ohio State University, Columbus, OH, United States,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Alexandra Wood
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Comparative Hepatobiliary and Intestinal Research Program, The Ohio State University, Columbus, OH, United States
| | - Adam J. Rudinsky
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Comparative Hepatobiliary and Intestinal Research Program, The Ohio State University, Columbus, OH, United States,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Hannah Klein
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Comparative Hepatobiliary and Intestinal Research Program, The Ohio State University, Columbus, OH, United States,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Matthew Salerno
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Comparative Hepatobiliary and Intestinal Research Program, The Ohio State University, Columbus, OH, United States,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Valerie J. Parker
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Comparative Hepatobiliary and Intestinal Research Program, The Ohio State University, Columbus, OH, United States,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Jessica M. Quimby
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - James Howard
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Comparative Hepatobiliary and Intestinal Research Program, The Ohio State University, Columbus, OH, United States,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Jenessa A. Winston
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Comparative Hepatobiliary and Intestinal Research Program, The Ohio State University, Columbus, OH, United States,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States,*Correspondence: Jenessa A. Winston ✉
| |
Collapse
|
38
|
Tcherni-Buzzeo M. Dietary interventions, the gut microbiome, and aggressive behavior: Review of research evidence and potential next steps. Aggress Behav 2023; 49:15-32. [PMID: 35997420 DOI: 10.1002/ab.22050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Research in biosocial criminology and other related disciplines has established links between nutrition and aggressive behavior. In addition to observational studies, randomized trials of nutritional supplements like vitamins, omega-3 fatty acids, and folic acid provide evidence of the dietary impact on aggression. However, the exact mechanism of the diet-aggression link is not well understood. The current article proposes that the gut microbiome plays an important role in the process, with the microbiota-gut-brain axis serving as such a mediating mechanism between diet and behavior. Based on animal and human studies, this review synthesizes a wide array of research across several academic fields: from the effects of dietary interventions on aggression, to the results of microbiota transplantation on socioemotional and behavioral outcomes, to the connections between early adversity, stress, microbiome, and aggression. Possibilities for integrating the microbiotic perspective with the more traditional, sociologically oriented theories in criminology are discussed, using social disorganization and self-control theories as examples. To extend the existing lines of research further, the article considers harnessing the experimental potential of noninvasive and low-cost dietary interventions to help establish the causal impact of the gut microbiome on aggressive behavior, while adhering to the high ethical standards and modern research requirements. Implications of this research for criminal justice policy and practice are essential: not only can it help determine whether the improved gut microbiome functioning moderates aggressive and violent behavior but also provide ways to prevent and reduce such behavior, alone or in combination with other crime prevention programs.
Collapse
|
39
|
Petitfils C, Maurel S, Payros G, Hueber A, Agaiz B, Gazzo G, Marrocco R, Auvray F, Langevin G, Motta JP, Floch P, Tremblay-Franco M, Galano JM, Guy A, Durand T, Lachambre S, Durbec A, Hussein H, Decraecker L, Bertrand-Michel J, Saoudi A, Oswald E, Poisbeau P, Dietrich G, Melchior C, Boeckxstaens G, Serino M, Le Faouder P, Cenac N. Identification of bacterial lipopeptides as key players in IBS. Gut 2022; 72:939-950. [PMID: 36241390 PMCID: PMC10086498 DOI: 10.1136/gutjnl-2022-328084] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/27/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVES Clinical studies revealed that early-life adverse events contribute to the development of IBS in adulthood. The aim of our study was to investigate the relationship between prenatal stress (PS), gut microbiota and visceral hypersensitivity with a focus on bacterial lipopeptides containing γ-aminobutyric acid (GABA). DESIGN We developed a model of PS in mice and evaluated, in adult offspring, visceral hypersensitivity to colorectal distension (CRD), colon inflammation, barrier function and gut microbiota taxonomy. We quantified the production of lipopeptides containing GABA by mass spectrometry in a specific strain of bacteria decreased in PS, in PS mouse colons, and in faeces of patients with IBS and healthy volunteers (HVs). Finally, we assessed their effect on PS-induced visceral hypersensitivity. RESULTS Prenatally stressed mice of both sexes presented visceral hypersensitivity, no overt colon inflammation or barrier dysfunction but a gut microbiota dysbiosis. The dysbiosis was distinguished by a decreased abundance of Ligilactobacillus murinus, in both sexes, inversely correlated with visceral hypersensitivity to CRD in mice. An isolate from this bacterial species produced several lipopeptides containing GABA including C14AsnGABA. Interestingly, intracolonic treatment with C14AsnGABA decreased the visceral sensitivity of PS mice to CRD. The concentration of C16LeuGABA, a lipopeptide which inhibited sensory neurons activation, was decreased in faeces of patients with IBS compared with HVs. CONCLUSION PS impacts the gut microbiota composition and metabolic function in adulthood. The reduced capacity of the gut microbiota to produce GABA lipopeptides could be one of the mechanisms linking PS and visceral hypersensitivity in adulthood.
Collapse
Affiliation(s)
- Camille Petitfils
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Sarah Maurel
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Gaelle Payros
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Amandine Hueber
- Lipidomic, MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France.,I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Bahija Agaiz
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Géraldine Gazzo
- Institut des Neurosciences Cellulaire et Integrative (INCI), Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Rémi Marrocco
- INFINITY, Université de Toulouse-Paul Sabatier, INSERM, CNRS, UPS, Toulouse, France
| | - Frédéric Auvray
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Geoffrey Langevin
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Paul Motta
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Pauline Floch
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France.,Service de bactériologie-hygiène, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Center in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.,Metatoul-AXIOM Platform, MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Simon Lachambre
- INFINITY, Université de Toulouse-Paul Sabatier, INSERM, CNRS, UPS, Toulouse, France
| | - Anaëlle Durbec
- Lipidomic, MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France.,I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Hind Hussein
- Laboratory of Intestinal Neuro-immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Lisse Decraecker
- Laboratory of Intestinal Neuro-immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Justine Bertrand-Michel
- Lipidomic, MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France.,I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Abdelhadi Saoudi
- INFINITY, Université de Toulouse-Paul Sabatier, INSERM, CNRS, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France.,Service de bactériologie-hygiène, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Pierrick Poisbeau
- Institut des Neurosciences Cellulaire et Integrative (INCI), Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Chloe Melchior
- Gastroenterology Department, Rouen University Hospital, Rouen, France.,Institute for Research and Innovation in Biomedicine, INSERM CIC-CRB 1404, INSERM UMR 1073, Normandy University, Rouen, France.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Guy Boeckxstaens
- Laboratory of Intestinal Neuro-immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Matteo Serino
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Pauline Le Faouder
- Lipidomic, MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France.,I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| |
Collapse
|
40
|
Schroeder K, Forke CM, Noll JG, Wheeler DC, Henry KA, Sarwer DB. The association between adverse childhood experiences, neighborhood greenspace, and body mass index: A cross-sectional study. Prev Med Rep 2022; 29:101915. [PMID: 35911582 PMCID: PMC9326311 DOI: 10.1016/j.pmedr.2022.101915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
An association between adverse childhood experiences (ACEs) and elevated body mass index (BMI) has been found in previous investigations. ACEs' effects on BMI have been primarily considered via individual-level physiological and behavioral frameworks. Neighborhood factors, such as greenspace, are also associated with BMI and may merit consideration in studies examining ACEs-BMI associations. This exploratory study examined associations of BMI with ACEs and neighborhood greenspace and tested whether greenspace moderated ACEs-BMI associations. Methods entailed secondary analysis of cross-sectional data. ACEs and BMI were captured from 2012/2013 Philadelphia ACE Survey and 2012 Southeastern Household Heath Survey data; greenspace percentage in participants' (n = 1,679 adults) home neighborhoods was calculated using National Land Cover Database data. Multi-level, multivariable linear regression 1) examined associations between BMI, ACEs, (0 ACEs [reference], 1-3 ACEs, 4 + ACEs), and neighborhood greenspace levels (high [reference], medium, low) and 2) tested whether greenspace moderated the ACEs-BMI association (assessed via additive interaction) before and after controlling for sociodemographic and health-related covariates. Experiencing 4 + ACEs (β = 1.21; 95 %CI: 0.26, 2.15; p = 0.01), low neighborhood greenspace (β = 1.51; 95 %CI: 0.67, 2.35; p < 0.01), and medium neighborhood greenspace (β = 1.37; 95 %CI: 0.52, 2.21; p < 0.01) were associated with BMI in unadjusted models. Only low neighborhood greenspace was associated with BMI (β = 0.95; 95 %CI: 0.14, 1.75; p = 0.02) in covariate-adjusted models. The ACEs-greenspace interaction was not significant in unadjusted (p = 0.89-0.99) or covariate-adjusted (p = 0.46-0.79) models. In conclusion, when considered simultaneously, low neighborhood greenspace, but not ACEs, was associated with BMI among urban-dwelling adults in covariate-adjusted models.
Collapse
Affiliation(s)
- Krista Schroeder
- Temple University College of Public Health, Department of Nursing, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Christine M Forke
- University of Pennsylvania, Perelman School of Medicine, Master of Public Health Program, Philadelphia, PA, USA.,Children's Hospital of Philadelphia, Center for Violence Prevention, Philadelphia, PA, USA
| | - Jennie G Noll
- Penn State College of Health and Human Development, Department of Human Development and Family Studies, University Park, PA, USA
| | - David C Wheeler
- Virginia Commonwealth University School of Medicine, Department of Biostatistics, Richmond, VA, USA
| | - Kevin A Henry
- Temple University College of Liberal Arts, Department of Geography and Urban Studies, Philadelphia, PA, USA
| | - David B Sarwer
- Temple University College of Public Health, Department of Social and Behavioral Sciences, USA.,Temple University Center for Obesity Research and Education, Philadelphia, PA, USA
| |
Collapse
|
41
|
Schroeder K, Dumenci L, Sarwer DB, Noll JG, Henry KA, Suglia SF, Forke CM, Wheeler DC. The Intersection of Neighborhood Environment and Adverse Childhood Experiences: Methods for Creation of a Neighborhood ACEs Index. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137819. [PMID: 35805478 PMCID: PMC9265402 DOI: 10.3390/ijerph19137819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
This study evaluated methods for creating a neighborhood adverse childhood experiences (ACEs) index, a composite measure that captures the association between neighborhood environment characteristics (e.g., crime, healthcare access) and individual-level ACEs exposure, for a particular population. A neighborhood ACEs index can help understand and address neighborhood-level influences on health among individuals affected by ACEs. Methods entailed cross-sectional secondary analysis connecting individual-level ACEs data from the Philadelphia ACE Survey (n = 1677) with 25 spatial datasets capturing neighborhood characteristics. Four methods were tested for index creation (three methods of principal components analysis, Bayesian index regression). Resulting indexes were compared using Akaike Information Criteria for accuracy in explaining ACEs exposure. Exploratory linear regression analyses were conducted to examine associations between ACEs, the neighborhood ACEs index, and a health outcome—in this case body mass index (BMI). Results demonstrated that Bayesian index regression was the best method for index creation. The neighborhood ACEs index was associated with higher BMI, both independently and after controlling for ACEs exposure. The neighborhood ACEs index attenuated the association between BMI and ACEs. Future research can employ a neighborhood ACEs index to inform upstream, place-based interventions and policies to promote health among individuals affected by ACEs.
Collapse
Affiliation(s)
- Krista Schroeder
- Department of Nursing, Temple University College of Public Health, Philadelphia, PA 19122, USA
- Correspondence:
| | - Levent Dumenci
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA 19122, USA;
| | - David B. Sarwer
- Department of Social and Behavioral Sciences, Center for Obesity Research and Education, Temple University College of Public Health, Philadelphia, PA 19122, USA;
| | - Jennie G. Noll
- Department of Human Development and Family Studies, Penn State College of Health and Human Development, University Park, PA 16802, USA;
| | - Kevin A. Henry
- Department of Geography and Urban Studies, Temple University College of Liberal Arts, Philadelphia, PA 19122, USA;
| | - Shakira F. Suglia
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA;
| | - Christine M. Forke
- Master of Public Health Program, Perelman School of Medicine, University of Pennsylvania, Center for Violence Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - David C. Wheeler
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA;
| |
Collapse
|
42
|
Li K, Ly K, Mehta S, Braithwaite A. Importance of crosstalk between the microbiota and the neuroimmune system for tissue homeostasis. Clin Transl Immunology 2022; 11:e1394. [PMID: 35620584 PMCID: PMC9125509 DOI: 10.1002/cti2.1394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022] Open
Abstract
The principal function of inflammation is cellular defence against ‘danger signals’ such as tissue injury and pathogen infection to maintain the homeostasis of the organism. The initiation and progression of inflammation are not autonomous as there is substantial evidence that inflammation is known to be strongly influenced by ‘neuroimmune crosstalk’, involving the production and expression of soluble signalling molecules that interact with cell surface receptors. In addition, microbiota have been found to be involved in the development and function of the nervous and immune systems and play an important role in health and disease. Herein, we provide an outline of the mechanisms of neuroimmune communication in the regulation of inflammation and immune response and then provide evidence for the involvement of microbiota in the development and functions of the host nervous and immune systems. It appears that the nervous and immune systems in multicellular organisms have co‐evolved with the microbiota, such that all components are in communication to maximise the ability of the organism to adapt to a wide range of environmental stresses to maintain or restore tissue homeostasis.
Collapse
Affiliation(s)
- Kunyu Li
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Kevin Ly
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Sunali Mehta
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Antony Braithwaite
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| |
Collapse
|
43
|
D-Amino Acids as a Biomarker in Schizophrenia. Diseases 2022; 10:diseases10010009. [PMID: 35225861 PMCID: PMC8883943 DOI: 10.3390/diseases10010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
D-amino acids may play key roles for specific physiological functions in different organs including the brain. Importantly, D-amino acids have been detected in several neurological disorders such as schizophrenia, amyotrophic lateral sclerosis, and age-related disorders, reflecting the disease conditions. Relationships between D-amino acids and neurophysiology may involve the significant contribution of D-Serine or D-Aspartate to the synaptic function, including neurotransmission and synaptic plasticity. Gut-microbiota could play important roles in the brain-function, since bacteria in the gut provide a significant contribution to the host pool of D-amino acids. In addition, the alteration of the composition of the gut microbiota might lead to schizophrenia. Furthermore, D-amino acids are known as a physiologically active substance, constituting useful biomarkers of several brain disorders including schizophrenia. In this review, we wish to provide an outline of the roles of D-amino acids in brain health and neuropsychiatric disorders with a focus on schizophrenia, which may shed light on some of the superior diagnoses and/or treatments of schizophrenia.
Collapse
|
44
|
Using Microbiome-Based Approaches to Deprogram Chronic Disorders and Extend the Healthspan following Adverse Childhood Experiences. Microorganisms 2022; 10:microorganisms10020229. [PMID: 35208684 PMCID: PMC8879770 DOI: 10.3390/microorganisms10020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Adverse childhood experiences (ACEs), which can include child trafficking, are known to program children for disrupted biological cycles, premature aging, microbiome dysbiosis, immune-inflammatory misregulation, and chronic disease multimorbidity. To date, the microbiome has not been a major focus of deprogramming efforts despite its emerging role in every aspect of ACE-related dysbiosis and dysfunction. This article examines: (1) the utility of incorporating microorganism-based, anti-aging approaches to combat ACE-programmed chronic diseases (also known as noncommunicable diseases and conditions, NCDs) and (2) microbiome regulation of core systems biology cycles that affect NCD comorbid risk. In this review, microbiota influence over three key cyclic rhythms (circadian cycles, the sleep cycle, and the lifespan/longevity cycle) as well as tissue inflammation and oxidative stress are discussed as an opportunity to deprogram ACE-driven chronic disorders. Microbiota, particularly those in the gut, have been shown to affect host–microbe interactions regulating the circadian clock, sleep quality, as well as immune function/senescence, and regulation of tissue inflammation. The microimmunosome is one of several systems biology targets of gut microbiota regulation. Furthermore, correcting misregulated inflammation and increased oxidative stress is key to protecting telomere length and lifespan/longevity and extending what has become known as the healthspan. This review article concludes that to reverse the tragedy of ACE-programmed NCDs and premature aging, managing the human holobiont microbiome should become a routine part of healthcare and preventative medicine across the life course.
Collapse
|
45
|
Serini S, Calviello G. New Insights on the Effects of Dietary Omega-3 Fatty Acids on Impaired Skin Healing in Diabetes and Chronic Venous Leg Ulcers. Foods 2021; 10:foods10102306. [PMID: 34681353 PMCID: PMC8535038 DOI: 10.3390/foods10102306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
Long-chain Omega-3 polyunsaturated fatty acids (Omega-3 PUFAs) are widely recognized as powerful negative regulators of acute inflammation. However, the precise role exerted by these dietary compounds during the healing process is still largely unknown, and there is increasing interest in understanding their specific effects on the implicated cells/molecular factors. Particular attention is being focused also on their potential clinical application in chronic pathologies characterized by delayed and impaired healing, such as diabetes and vascular diseases in lower limbs. On these bases, we firstly summarized the current knowledge on wound healing (WH) in skin, both in normal conditions and in the setting of these two pathologies, with particular attention to the cellular and molecular mechanisms involved. Then, we critically reviewed the outcomes of recent research papers investigating the activity exerted by Omega-3 PUFAs and their bioactive metabolites in the regulation of WH in patients with diabetes or venous insufficiency and showing chronic recalcitrant ulcers. We especially focused on recent studies investigating the mechanisms through which these compounds may act. Considerations on the optimal dietary doses are also reported, and, finally, possible future perspectives in this area are suggested.
Collapse
|