1
|
Shero JA, Lindholm ME, Sandri M, Stanford KI. Skeletal Muscle as a Mediator of Interorgan Crosstalk During Exercise: Implications for Aging and Obesity. Circ Res 2025; 136:1407-1432. [PMID: 40403102 PMCID: PMC12101524 DOI: 10.1161/circresaha.124.325614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 05/24/2025]
Abstract
Physical exercise is critical for preventing and managing chronic conditions, such as cardiovascular disease, type 2 diabetes, hypertension, and sarcopenia. Regular physical activity significantly reduces cardiovascular and all-cause mortality. Exercise also enhances metabolic health by promoting muscle growth, mitochondrial biogenesis, and improved nutrient storage while preventing age-related muscle dysfunction. Key metabolic benefits include increased glucose uptake, enhanced fat oxidation, and the release of exercise-induced molecules called myokines, which mediate interorgan communication and improve overall metabolic function. These myokines and other exercise-induced signaling molecules hold promise as therapeutic targets for aging and obesity-related conditions.
Collapse
Affiliation(s)
- Julia A. Shero
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Maléne E. Lindholm
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
2
|
Hu Y, Yang S. A cross-sectional study of serum lipids, body mass index and age relationships with breast cancer risk. World J Surg Oncol 2025; 23:168. [PMID: 40287713 PMCID: PMC12034170 DOI: 10.1186/s12957-025-03817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Globally, the most common malignancy in women today is breast cancer. Numerous factors affect the incidence of breast cancer; therefore, we examined the connections involving age, body mass index (BMI), serum lipid levels, and breast cancer risk in women. METHODS This was a cross-sectional analytical study. 382 female patients with a breast cancer diagnosis in this study, and 11842 healthy, age-matched females who were selected from physical examination centers in the same period. Univariate analysis was conducted first, after which factors with statistically significant differences were used to construct a multi-factor binary logistic regression equation. We explored associations across different ages, BMI, triglyceride (TG), and high-density lipoprotein-cholesterol (HDL-C) levels, and breast cancer risk. RESULTS Age, BMI, TG, and HDL-C were the risk factors that showed the most significant association with breast cancer. Age, BMI, low-density lipoprotein-cholesterol (LDL-C) and TG levels in the breast cancer group were higher than those in the control group, but HDL-C and total cholesterol (TC) levels were lower. As BMI and TG levels increased, the risk of developing breast cancer increased, and, as HDL-C levels decreased, the risk of developing breast cancer increased. Women aged ≥ 40 years old had an increased breast cancer risk. There were no significant variations in TC and LDL-C levels between groups. CONCLUSIONS In this study, a lower risk of breast cancer was linked to high HDL-C levels, while a higher risk of breast cancer was linked to high BMI and TG levels. Women aged ≥ 40 years old had an increased breast cancer risk.
Collapse
Affiliation(s)
- Yuning Hu
- Department of Breast Surgery, The Fifth Affiliated Hospital, Southern Medical University, 566 Congcheng Avenue, Conghua District, Guangzhou, Guangdong, China
| | - Suoping Yang
- Department of Breast Surgery, The Fifth Affiliated Hospital, Southern Medical University, 566 Congcheng Avenue, Conghua District, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Datta S, Koka S, Boini KM. Understanding the Role of Adipokines in Cardiometabolic Dysfunction: A Review of Current Knowledge. Biomolecules 2025; 15:612. [PMID: 40427505 PMCID: PMC12109550 DOI: 10.3390/biom15050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiometabolic risk and associated dysfunctions contribute largely to the recent rise in mortality globally. Advancements in multi-omics in recent years promise a better understanding of potential biomarkers that enable an early diagnosis of cardiometabolic dysfunction. However, the molecular mechanisms driving the onset and progression of cardiometabolic disorders remain poorly understood. Adipokines are adipocyte-specific cytokines that are central to deleterious cardiometabolic alterations. They exhibit both pro-inflammatory and anti-inflammatory effects, complicating their association with cardiometabolic disturbances. Thus, understanding the cardiometabolic association of adipokines from a molecular and signaling perspective assumes great importance. This review presents a comprehensive outline of the most prominent adipokines exhibiting pro-inflammatory and/or anti-inflammatory functions in cardiometabolic dysfunction. The review also presents an insight into the pathophysiological implications of such adipokines in different cardiometabolic dysfunction conditions, the status of adipokine druggability, and future studies that can be undertaken to address the existing scientific gap. A clear understanding of the functional and mechanistic role of adipokines can potentially improve our understanding of cardiovascular disease pathophysiology and enhance our current therapeutic regimen in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A & M University, Kingsville, TX 78363, USA
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| |
Collapse
|
4
|
Schleh MW, Ryan BJ, Ahn C, Ludzki AC, Van Pelt DW, Pitchford LM, Chugh OK, Luker AT, Luker KE, Samovski D, Abumrad NA, Burant CF, Horowitz JF. Impaired suppression of fatty acid release by insulin is a strong predictor of reduced whole-body insulin-mediated glucose uptake and skeletal muscle insulin receptor activation. Acta Physiol (Oxf) 2025; 241:e14249. [PMID: 39487600 DOI: 10.1111/apha.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 11/04/2024]
Abstract
AIM To examine factors underlying why most, but not all, adults with obesity exhibit impaired insulin-mediated glucose uptake, we compared: (1) adipose tissue fatty acid (FA) release, (2) skeletal muscle lipid droplet (LD) characteristics, and (3) insulin signalling events, in skeletal muscle of adults with obesity with relatively high versus low insulin-mediated glucose uptake. METHODS Seventeen adults with obesity (BMI: 36 ± 3 kg/m2) completed a 2 h hyperinsulinemic-euglycemic clamp with stable isotope tracer infusions to measure glucose rate of disappearance (glucose Rd) and FA rate of appearance (FA Ra). Skeletal muscle biopsies were collected at baseline and 30 min into the insulin infusion. Participants were stratified into HIGH (n = 7) and LOW (n = 10) insulin sensitivity cohorts by their glucose Rd during the hyperinsulinemic clamp (LOW< 400; HIGH >550 nmol/kgFFM/min/[μU/mL]). RESULTS Insulin-mediated suppression of FA Ra was lower in LOW compared with HIGH (p < 0.01). In skeletal muscle, total intramyocellular lipid content did not differ between cohorts. However, the size of LDs in the subsarcolemmal region (SS) of type II muscle fibres was larger in LOW compared with HIGH (p = 0.01). Additionally, insulin receptor-β (IRβ) interactions with regulatory proteins CD36 and Fyn were lower in LOW versus HIGH (p < 0.01), which aligned with attenuated insulin-mediated Tyr phosphorylation of IRβ and downstream insulin-signalling proteins in LOW. CONCLUSION Collectively, reduced ability for insulin to suppress FA mobilization, with accompanying modifications in intramyocellular LD size and distribution, and diminished IRβ interaction with key regulatory proteins may be key contributors to impaired insulin-mediated glucose uptake commonly found in adults with obesity.
Collapse
Affiliation(s)
- Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Olivia K Chugh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Austin T Luker
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Dmitri Samovski
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nada A Abumrad
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Alberto RPJ, Benjamin GN, Elizabeth RMJ, Alberto CDL, Eliseo PDB. Understanding COVID-19-related Acute Renal Injury in Elderly Individuals: Preexisting Systemic Inflammation before COVID-19 (SIC). Endocr Metab Immune Disord Drug Targets 2025; 25:300-309. [PMID: 38919086 DOI: 10.2174/0118715303312433240611093855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
In this study, we examined preexisting systemic inflammation before COVID-19 (SIC), as assessed through C-reactive protein (CRP) levels, to gain insights into the origins of acute kidney injury (AKI) in adults with comorbidities affected by COVID-19. Although aging is not categorized as a disease, it is characterized by chronic inflammation, and older individuals typically exhibit higher circulating levels of inflammatory molecules, particularly CRP, compared to younger individuals. Conversely, elevated CRP concentrations in older adults have been linked with the development of comorbidities. Simultaneously, these comorbidities contribute to the production of inflammatory molecules, including CRP. Consequently, older adults with comorbidities have higher CRP concentrations than their counterparts without comorbidities or those with fewer comorbidities. Given that CRP levels are correlated with the development and severity of AKI in non-COVID-19 patients, we hypothesized that individuals with greater SIC are more likely to develop AKI during SARS-CoV-2 infection than those with less SIC.
Collapse
Affiliation(s)
- Ruiz-Pacheco Juan Alberto
- Investigador por México-CONAHCYT, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, México
| | - Gomez-Navarro Benjamin
- Servicio de Nefrología y Trasplantes, Hospital Country 2000, Guadalajara, Jalisco, México
| | | | - Castillo-Díaz Luis Alberto
- Departamento de Medicina y Ciencias de la Salud, Facultad Interdiciplinaria de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, México
| | - Portilla-de Buen Eliseo
- División de Investigación Quirúrgica, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, México
| |
Collapse
|
7
|
Zhang X, Xu C, Cao K, Luo H, Zhang X. Analysis of type 2 diabetes mellitus-related genes by constructing the pathway-based weighted network. IET Syst Biol 2025; 19:e12110. [PMID: 39661495 PMCID: PMC11821747 DOI: 10.1049/syb2.12110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Complex network is an effective approach to studying complex diseases, and provides another perspective for understanding their pathological mechanisms by illustrating the interactions between various factors of diseases. Type 2 diabetes mellitus (T2DM) is a complex polygenic metabolic disease involving genetic and environmental factors. By combining the complex network approach with biological data, this study constructs a pathway-based weighted network model of T2DM-related genes to explore the interrelationships between genes, here a weight is assigned to each edge in terms of the number of the same pathways in which the two nodes (genes) connected to the edge are involved. The edge weights can reflect differences in the strength of connections (interactions) between nodes (genes), which intuitively reflect the extent of biological correlations between genes and contribute to the importance of the nodes. Analysis of statistical and topological characteristics shows that the edge weights are correlated to the network topology, and the edge weight distribution decays as a power-law. The disparity of the weights indicates that the edge weight distribution for the nodes with the same degree is of approximately equal weights; and most edges with the higher weights tend to connect with the higher degree nodes. To determine the key hub genes of the weighted network, an integrated ranking index is used to comprehensively reflect the contribution of the three indices (strength, degree and number of pathways) of nodes; by taking the threshold of integrated ranking index greater than 0.56, 12 key hub genes are identified: MAPK1, PIK3CD, PIK3CA, PIK3R1, AKT2, AKT1, KRAS, TNF, MAPK8, PRKCA, IL6 and MTOR. These genes should play an important role in the occurrence and development of T2DM, and can be regarded as potential therapeutic targets for further biological and medical research on their functions in T2DM. It can be expected that combining complex network approach with other data analysis techniques can provide more clues for exploring the pathogenesis and treatment of T2DM and other complex diseases in the future.
Collapse
Affiliation(s)
- Xue‐Yan Zhang
- Center for Nonlinear Complex SystemsDepartment of PhysicsSchool of Physics and AstronomyYunnan UniversityKunmingYunnanChina
| | - Chuan‐Yun Xu
- Center for Nonlinear Complex SystemsDepartment of PhysicsSchool of Physics and AstronomyYunnan UniversityKunmingYunnanChina
| | - Ke‐Fei Cao
- Center for Nonlinear Complex SystemsDepartment of PhysicsSchool of Physics and AstronomyYunnan UniversityKunmingYunnanChina
| | - Hong Luo
- School of EducationYunnan UniversityKunmingYunnanChina
| | - Xu‐Sheng Zhang
- Department of StatisticsModelling and EconomicsUK Health Security AgencyLondonUK
- Medical Research Council Centre for Global Infectious Disease AnalysisDepartment of Infectious Disease EpidemiologySchool of Public HealthImperial College LondonLondonUK
| |
Collapse
|
8
|
Odeniyi IA, Ahmed B, Anbiah B, Hester G, Abraham PT, Lipke EA, Greene MW. An improved in vitro 3T3-L1 adipocyte model of inflammation and insulin resistance. Adipocyte 2024; 13:2414919. [PMID: 39415617 PMCID: PMC11487959 DOI: 10.1080/21623945.2024.2414919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Tumor necrosis factor alpha (TNF-α)/hypoxia-treated 3T3-L1 adipocytes have been used to model inflamed and insulin-resistant adipose tissue: this study examines gaps in the model. We tested whether modulating TNF-α/hypoxia treatment time could reduce cell death while still inducing inflammation and insulin resistance. Adipocytes were treated with TNF-α (12 h or 24 h) and incubated in a hypoxic chamber for 24 h. To examine maintenance of the phenotype over time, glucose and FBS were added at 24 h post initiation of treatment, and the cells were maintained for an additional 48 h. Untreated adipocytes were used as a control. Viability, insulin resistance, and inflammation were assessed using Live/Dead staining, RT-qPCR, ELISA, and glucose uptake assays. Treatment for 12 h with TNF-α in the presence of hypoxia resulted in an increase in the percentage of live cells compared to 24 h treated cells. Importantly, insulin resistance and inflammation were still induced in the 12 h treated adipocytes: the expression of the insulin sensitive and inflammatory genes was decreased and increased, respectively. In 72 h treated adipocytes, no significant differences were found in the viability, glucose uptake or insulin-sensitive and inflammatory gene expression. This study provides a modified approach to in vitro odeling adipocyte inflammation and insulin resistance. .
Collapse
Affiliation(s)
| | - Bulbul Ahmed
- Department of Nutritional Sciences, Auburn University, Auburn, AL, USA
| | - Benjamin Anbiah
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Grace Hester
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Peter T. Abraham
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | | | - Michael W. Greene
- Department of Nutritional Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
9
|
Jin T, Jia J, Li W, Wu P, Liu T, Luo B, Zhang Z. Doramectin attenuates inflammation, obesity and insulin resistance in food-borne obese mice. Biochem Biophys Res Commun 2024; 732:150404. [PMID: 39033553 DOI: 10.1016/j.bbrc.2024.150404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The avermectin derivative doramectin is widely used clinically as an antiparasitic drug and, in addition, doramectin may have a modulatory role in obesity. Adipose tissue macrophage recruitment and polarization play an important role in obesity-induced inflammation and insulin resistance. The aim of this study was to investigate the effects of doramectin on high-fat diet-induced inflammation and macrophage polarization in white adipose tissue of epididymis of obese mice. We found that compared with high-fat diet-fed obese mice, doramectin treatment resulted in a significant decrease in body weight and lipid levels, improved insulin resistance, an increase in the proportion of M2-type macrophages and a decrease in the proportion of M1-type macrophages in the epididymal white adipose tissues, as well as a decrease in the infiltration of inflammatory cells in the adipose tissues. Thus, doramectin can ameliorate high-fat diet-induced obesity and adipose inflammation by affecting macrophage polarization in white adipose tissue.
Collapse
Affiliation(s)
- Tianrong Jin
- Medical College of Chongqing University, 131 Yubei Road, Shapingba District, Chongqing, 400030, China
| | - Jialin Jia
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Wenhua Li
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Pengfei Wu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400037, China
| | - Tingting Liu
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Bangwei Luo
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China.
| | - Zhiren Zhang
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China.
| |
Collapse
|
10
|
Gawryjołek M, Wiciński M, Zabrzyńska M, Ohla J, Zabrzyński J. Effect of Vitamin D Supplementation on Inflammatory Markers in Obese Patients with Acute and Chronic Orthopedic Conditions. Nutrients 2024; 16:3735. [PMID: 39519568 PMCID: PMC11547427 DOI: 10.3390/nu16213735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Numerous studies have shown that vitamin D may play an important role in modulating the inflammatory process. This study aimed to evaluate the effect of vitamin D supplementation on inflammatory markers in patients with orthopedic disorders and obesity. Thirty-three obese subjects were included in the study and were divided into two groups based on their medical condition: acute orthopedic diseases and chronic orthopedic diseases. Inclusion criteria for the research included age 18-75 years, BMI > 30 kg/m2, vitamin D deficiency, and no previous vitamin D supplementation. Samples were collected before and after 3 months of 4000 IU/day vitamin D supplementation. The study used enzyme-linked immunosorbent assay (ELISA) and measured serum levels of markers such as chitinase-3-like protein 1 (YKL-40), interleukin 6 (IL-6), interleukin 17 (IL-17), tumor necrosis factor (TNF-α), and adiponectin. After 3 months of vitamin D supplementation, a statistically significant increase in vitamin D and IL-17 levels was observed in the group with acute orthopedic diseases. Similarly, after supplementation, a statistically significant increase in vitamin D, IL-6 and TNF-α levels was observed in the group with chronic orthopedic diseases. Moreover, after vitamin D supplementation, statistically significantly higher adiponectin levels were observed in the chronic orthopedic group than in the acute orthopedic group. Despite high-dose vitamin D supplementation, inflammatory markers increased in acute and chronic orthopedic conditions. Based on our study, vitamin D does not reduce inflammation in patients with orthopedic conditions and obesity.
Collapse
Affiliation(s)
- Michał Gawryjołek
- Department of Orthopaedics and Traumatology, Dr L. Blazek Multi-Specialty Hospital, 88-100 Inowroclaw, Poland
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maria Zabrzyńska
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland;
| | - Jakub Ohla
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (J.O.); (J.Z.)
| | - Jan Zabrzyński
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (J.O.); (J.Z.)
| |
Collapse
|
11
|
Chen X, Zhang H, Fang Z, Wang D, Song Y, Zhang Q, Hou J, Yang S, Xu D, Fei Y, Zhang W, Zhang J, Tang J, Li L. Adipocytes promote metastasis of breast cancer by attenuating the FOXO1 effects and regulating copper homeostasis. Cancer Cell Int 2024; 24:284. [PMID: 39135158 PMCID: PMC11320833 DOI: 10.1186/s12935-024-03433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Obesity and the forkhead box O1(FOXO1) affect the survival of breast cancer patients, but the underlying mechanism remains unclear. We aimed to investigate the role of FOXO1 in obesity-associated-breast cancer. METHODS We screened 383 breast disease patients from the first affiliated hospital with Nanjing Medical University in 2020. We performed wound healing, transwell, matrigel assays to assess the metastatic ability of cancer cells. We adopted mRNAs sequencing to select the differentially expressed transcripts in breast cancer. We applied immunohistochemistry, western blot, tissue microarrays to assess the level of FOXO1 and epithelial-mesenchymal transition (EMT) pathways. We conducted bioinformatic analysis to investigate interactions between FOXO1 and miR-135b. We used fluorescence in situ hybridization, RT-qPCR to confirm the characteristics of circCNIH4. We conducted luciferase reporter assay, rescue experiments to investigate interactions between circCNIH4 and miR-135b. RESULTS Obesity was positively correlated with the incidence and progression of breast cancer. Adipocytes enhanced the migration of breast cancer and attenuated the effects of FOXO1. MiR-135b was a binding gene of FOXO1 and was regulated by circCNIH4. CircCNIH4 exhibited antitumor activity in vitro and in vivo. CONCLUSION Adipocytes might accelerate the progression of breast cancer by modulating FOXO1/miR-135b/ circCNIH4 /EMT axis and regulating copper homeostasis.
Collapse
Affiliation(s)
- Xiu Chen
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Heda Zhang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zheng Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Dandan Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuxin Song
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Junchen Hou
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Sujin Yang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Di Xu
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yinjiao Fei
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Lei Li
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
12
|
Wang Y, Chen G, Xu M, Cui Y, He W, Zeng H, Zeng T, Cheng R, Li X. Caspase-1 Deficiency Modulates Adipogenesis through Atg7-Mediated Autophagy: An Inflammatory-Independent Mechanism. Biomolecules 2024; 14:501. [PMID: 38672517 PMCID: PMC11048440 DOI: 10.3390/biom14040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity stands as a significant risk factor for type 2 diabetes, hyperlipidemia, and cardiovascular diseases, intertwining increased inflammation and decreased adipogenesis with metabolic disorders. Studies have highlighted the correlation between Caspase-1 and inflammation in obesity, elucidating its essential role in the biological functions of adipose tissue. However, the impact of Caspase-1 on adipogenesis and the underlying mechanisms remain largely elusive. In our study, we observed a positive correlation between Caspase-1 expression and obesity and its association with adipogenesis. In vivo experiments revealed that, under normal diet conditions, Caspase-1 deficiency improved glucose homeostasis, stimulated subcutaneous adipose tissue expansion, and enhanced adipogenesis. Furthermore, our findings indicate that Caspase-1 deficiency promotes the expression of autophagy-related proteins and inhibits autophagy with 3-MA or CQ blocked Caspase-1 deficiency-induced adipogenesis in vitro. Notably, Caspase-1 deficiency promotes adipogenesis via Atg7-mediated autophagy activation. In addition, Caspase-1 deficiency resisted against high-fat diet-induced obesity and glucose intolerance. Our study proposes the downregulation of Caspase-1 as a promising strategy for mitigating obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Cheng
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
14
|
Li Z, Shen G, Shi M, Zheng Y, Guan Y, Xin Y, Wang M, Zhao F, Ren D, Zhao J. Association between high body mass index and prognosis of patients with early-stage breast cancer: A systematic review and meta-analysis. CANCER PATHOGENESIS AND THERAPY 2023; 1:205-215. [PMID: 38327841 PMCID: PMC10846319 DOI: 10.1016/j.cpt.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 02/09/2024]
Abstract
Background A high body mass index (BMI) can indicate overweight or obesity and is a crucial risk factor for breast cancer survivors. However, the association between high BMI and prognosis in early-stage breast cancer (EBC) remains unclear. We aimed to assess the effects of high BMI on the prognosis of patients with EBC. Methods The PubMed, Embase, and Cochrane Library databases and proceedings of major oncological conferences related to the effects of BMI on the prognosis of breast cancer were searched up to November 2021. Fixed- and random-effects models were used for meta-analyses. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) for disease-free survival (DFS) and overall survival (OS) were extracted from the included literature. Results Twenty retrospective cohort studies with 33,836 patients with EBC were included. Overweight patients had worse DFS (HR: 1.16, 95% CI: 1.05-1.27, P = 0.002) and OS (HR: 1.20; 95% CI: 1.09-1.33, P < 0.001). Obesity also had adverse effects on DFS (HR: 1.17, 95% CI: 1.07-1.29, P = 0.001) and OS (HR: 1.30, 95% CI: 1.17-1.45, P < 0.001). Likewise, patients with high BMI had worse DFS (HR: 1.16, 95% CI: 1.08-1.26, P < 0.001) and OS (HR: 1.25, 95% CI: 1.14-1.39, P < 0.001). In subgroup analyses, overweight had adverse effects on DFS (HR: 1.11, 95% CI: 1.04-1.18, P = 0.001) and OS (HR: 1.18, 95% CI: 1.11-1.26, P < 0.001) in multivariate analyses, whereas the relationship that overweight had negative effects on DFS (HR: 1.21, 95% CI: 0.99-1.48, P = 0.058) and OS (HR: 1.39, 95% CI: 0.92-2.10, P = 0.123) was not statistically significant in univariate analysis. By contrast, obesity had adverse effects on DFS (HR: 1.21, 95% CI: 1.06-1.38, P = 0.004 and HR: 1.14, 95% CI: 1.08-1.22, P < 0.001) and OS (HR: 1.33, 95% CI: 1.15-1.54, P < 0.001 and HR: 1.23, 95% CI: 1.15-1.31, P < 0.001) in univariate and multivariate analyses, respectively. Conclusions Compared with normal weight, increased body weight (overweight, obesity, and high BMI) led to worse DFS and OS in patients with EBC. Once validated, these results should be considered in the development of prevention programs.
Collapse
Affiliation(s)
| | | | | | - Yonghui Zheng
- Breast Disease Diagnosis and Treatment Center of the Affiliated Hospital of Qinghai University and the Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai 810000, China
| | - Yumei Guan
- Breast Disease Diagnosis and Treatment Center of the Affiliated Hospital of Qinghai University and the Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai 810000, China
| | - Yuanfang Xin
- Breast Disease Diagnosis and Treatment Center of the Affiliated Hospital of Qinghai University and the Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai 810000, China
| | - Miaozhou Wang
- Breast Disease Diagnosis and Treatment Center of the Affiliated Hospital of Qinghai University and the Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of the Affiliated Hospital of Qinghai University and the Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai 810000, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of the Affiliated Hospital of Qinghai University and the Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai 810000, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of the Affiliated Hospital of Qinghai University and the Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai 810000, China
| |
Collapse
|
15
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
16
|
Ruscitti P, Sesti G, Cipriani P, Gerli R, Giacomelli R. Correspondence on 'Disease activity, cytokines, chemokines and the risk of incident diabetes in rheumatoid arthritis'. Ann Rheum Dis 2023; 82:e119. [PMID: 33619161 DOI: 10.1136/annrheumdis-2021-220047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Piero Ruscitti
- Department of Clinical Sciences and Applied Biotechnology, University of L'Aquila, L'Aquila, Abruzzo, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Roma, Lazio, Italy
| | - Paola Cipriani
- Department of Clinical Sciences and Applied Biotechnology, University of L'Aquila, L'Aquila, Abruzzo, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberto Giacomelli
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
17
|
Shimamura Y, Noaki R, Oura Y, Ichikawa K, Kan T, Masuda S. Regulation of Staphylococcal Enterotoxin-Induced Inflammation in Spleen Cells from Diabetic Mice by Polyphenols. Microorganisms 2023; 11:microorganisms11041039. [PMID: 37110462 PMCID: PMC10143252 DOI: 10.3390/microorganisms11041039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Patients with diabetes are known to be more susceptible to infections following the establishment of Staphylococcus aureus in their nasal passages and on their skin. The present study evaluated the effects of staphylococcal enterotoxin A (SEA) on the immune responses of spleen cells derived from diabetic mice, and examined the effects of polyphenols, catechins, and nobiletin on inflammation-related gene expression associated with the immune response. (-)-Epigallocatechin gallate (EGCG), possessing hydroxyl groups, interacted with SEA, whereas nobiletin, possessing methyl groups, did not interact with SEA. The exposure of spleen cells derived from diabetic mice to SEA enhanced the expression of interferon gamma, suppressor of cytokine signaling 1, signal transducer and activator of transcription 3, interferon-induced transmembrane protein 3, Janus kinase 2, and interferon regulatory factor 3, suggesting that SEA sensitivity is variable in the development of diabetes. Both EGCG and nobiletin changed the expression of genes related to SEA-induced inflammation in spleen cells, suggesting that they inhibit inflammation through different mechanisms. These results may lead to a better understanding of the SEA-induced inflammatory response during diabetogenesis, and the establishment of methods to control these effects with polyphenols.
Collapse
Affiliation(s)
- Yuko Shimamura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Rina Noaki
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yukino Oura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenya Ichikawa
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshiyuki Kan
- Department of Synthetic Organic & Medicinal Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shuichi Masuda
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
18
|
Liu J, Hermon T, Gao X, Dixon D, Xiao H. Arsenic and Diabetes Mellitus: A Putative Role for the Immune System. ALL LIFE 2023; 16:2167869. [PMID: 37152101 PMCID: PMC10162781 DOI: 10.1080/26895293.2023.2167869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is an enormous public health issue worldwide. Recent data suggest that chronic arsenic exposure is linked to the risk of developing type 1 and type 2 DM, albeit the underlying mechanisms are unclear. This review discusses the role of the immune system as a link to possibly explain some of the mechanisms of developing T1DM or T2DM associated with arsenic exposure in humans, animal models, and in vitro studies. The rationale for the hypothesis includes: (1) Arsenic is a well-recognized modulator of the immune system; (2) arsenic exposures are associated with increased risk of DM; and (3) dysregulation of the immune system is one of the hallmarks in the pathogenesis of both T1DM and T2DM. A better understanding of DM in association with immune dysregulation and arsenic exposures may help to understand how environmental exposures modulate the immune system and how these effects may impact the manifestation of disease.
Collapse
Affiliation(s)
- Jingli Liu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Tonia Hermon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Xiaohua Gao
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
19
|
Sahu B, Bal NC. Adipokines from white adipose tissue in regulation of whole body energy homeostasis. Biochimie 2023; 204:92-107. [PMID: 36084909 DOI: 10.1016/j.biochi.2022.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Diseases originating from altered energy homeostasis including obesity, and type 2 diabetes are rapidly increasing worldwide. Research in the last few decades on animal models and humans demonstrates that the white adipose tissue (WAT) is critical for energy balance and more than just an energy storage site. WAT orchestrates the whole-body metabolism through inter-organ crosstalk primarily mediated by cytokines named "Adipokines". The adipokines influence metabolism and fuel selection of the skeletal muscle and liver thereby fine-tuning the load on WAT itself in physiological conditions like starvation, exercise and cold. In addition, adipokine secretion is influenced by various pathological conditions like obesity, inflammation and diabetes. In this review, we have surveyed the current state of knowledge on important adipokines and their significance in regulating energy balance and metabolic diseases. Furthermore, we have summarized the interplay of pro-inflammatory and anti-inflammatory adipokines in the modulation of pathological conditions.
Collapse
Affiliation(s)
- Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
20
|
Gu J, Zhou P, Liu Y, Xu Q, Chen X, Chen M, Lu C, Qu C, Tong Y, Yu Q, Lu X, Yu C, Liu Z. Down-regulating Interleukin-22/Interleukin-22 binding protein axis promotes inflammation and aggravates diet-induced metabolic disorders. Mol Cell Endocrinol 2022; 557:111776. [PMID: 36108991 DOI: 10.1016/j.mce.2022.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Abstract
The prevalence of metabolic diseases has become a severe public health problem. Previously, we reported that Interleukin-22 (IL-22) was independently associated with type 2 diabetes mellitus and cardiovascular disease, and could protect endothelial cells from glucose- and lysophosphatidylcholine-induced injury. The activity of IL-22 is strongly regulated by IL-22-binding protein (IL-22BP). The aim of this investigation was to determine the effect of IL-22/IL-22BP axis on glucolipid metabolism. Serum IL-22 and IL-22BP expression in metabolic syndrome (MetS) patients and healthy controls was examined. IL-22BP-knockout (IL-22ra2-/-) and wild-type (WT) mice were fed with control diet (CTD) and high-fat diet (HFD) for 12 weeks. The IL-22 related pathway expression, the glucolipid metabolism, and inflammatory markers in mice were examined. Serum IL-22 and IL-22BP levels were found significantly increased in MetS patients (p < 0.001). IL-22BP deficiency down-regulated IL-22-related pathway, aggravated glucolipid metabolism disorder, and promoted inflammation in mice. Collectively, this work deepens the understanding of the relationship between IL-22/IL-22BP axis and metabolism disorders, and identified that down-regulation of IL-22/IL-22BP axis promotes metabolic disorders in mice.
Collapse
Affiliation(s)
- Jiayi Gu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Ping Zhou
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Ying Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Qiao Xu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Xi Chen
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Mengqi Chen
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Chen Lu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, 109 Longmian Avenue, Jiangning District, Nanjing, China
| | - Chen Qu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Yanli Tong
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, 109 Longmian Avenue, Jiangning District, Nanjing, China; Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, PR China.
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 210011, PR China.
| |
Collapse
|
21
|
Yao J, Wu D, Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Front Immunol 2022; 13:977485. [PMID: 36119080 PMCID: PMC9478335 DOI: 10.3389/fimmu.2022.977485] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue macrophage (ATM) has been appreciated for its critical contribution to obesity-associated metabolic diseases in recent years. Here, we discuss the regulation of ATM on both metabolic homeostatsis and dysfunction. In particular, the macrophage polarization and recruitment as well as the crosstalk between ATM and adipocyte in thermogenesis, obesity, insulin resistance and adipose tissue fibrosis have been reviewed. A better understanding of how ATM regulates adipose tissue remodeling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- *Correspondence: Yifu Qiu,
| |
Collapse
|
22
|
Yang YC, Fu H, Zhang B, Wu YB. Interleukin-6 Downregulates the Expression of Vascular Endothelial-Cadherin and Increases Permeability in Renal Glomerular Endothelial Cells via the Trans-Signaling Pathway. Inflammation 2022; 45:2544-2558. [DOI: 10.1007/s10753-022-01711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022]
Abstract
AbstractThe pathogenesis of IgA nephropathy (IgAN) is still unknown, but reportedly, interleukin 6 (IL-6) is involved in this process. However, its role in damaging glomerular endothelial cells is still unclear. Therefore, in this study, to clarify the mechanism of the pathogenesis of IgAN, we investigated the effect of IL-6 on the permeability of glomerular endothelial cells. A rat model of IgAN was established, and the animals divided into two groups, namely, the normal and IgAN groups. Glomerular endothelial cell injury was evaluated via electron microscopy. Furthermore, IL-6-induced changes in the permeability of human renal glomerular endothelial cells (HRGECs) were measured via trans-endothelial resistance (TEER) measurements and fluorescein isothiocyanate-dextran fluorescence. Furthermore, vascular endothelial-cadherin (VE-cadherin) was overexpressed to clarify the effect of IL-6 on HRGEC permeability, and to determine the pathway by which it acts. The classical signaling pathway was blocked by silencing IL-6R and the trans-signaling pathway was blocked by sgp30Fc. In IgAN rats, electron microscopy showed glomerular endothelial cell damage and western blotting revealed a significant increase in IL-6 expression, while VE-cadherin expression decreased significantly in the renal tissues. IL-6/IL-6R stimulation also significantly increased the permeability of HRGECs (p < 0.05). This effect was significantly reduced by VE-cadherin overexpression (p < 0.01). After IL-6R was silenced, IL-6/IL-6R still significantly reduced VE-cadherin expression and sgp30Fc blocked the trans-signaling pathway as well as the upregulation of IL-6/IL-6R-induced VE-cadherin expression. This suggests that IL-6 mainly acts via the trans-signaling pathway. IL-6 increased the permeability of HRGECs by decreasing the expression of VE-cadherin via the trans-signaling pathway.
Collapse
|
23
|
Larkin JR, Anthony S, Johanssen VA, Yeo T, Sealey M, Yates AG, Smith CF, Claridge TD, Nicholson BD, Moreland JA, Gleeson F, Sibson NR, Anthony DC, Probert F. Metabolomic Biomarkers in Blood Samples Identify Cancers in a Mixed Population of Patients with Nonspecific Symptoms. Clin Cancer Res 2022; 28:1651-1661. [PMID: 34983789 PMCID: PMC7613224 DOI: 10.1158/1078-0432.ccr-21-2855] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Early diagnosis of cancer is critical for improving patient outcomes, but cancers may be hard to diagnose if patients present with nonspecific signs and symptoms. We have previously shown that nuclear magnetic resonance (NMR) metabolomics analysis can detect cancer in animal models and distinguish between differing metastatic disease burdens. Here, we hypothesized that biomarkers within the blood metabolome could identify cancers within a mixed population of patients referred from primary care with nonspecific symptoms, the so-called "low-risk, but not no-risk" patient group, as well as distinguishing between those with and without metastatic disease. EXPERIMENTAL DESIGN Patients (n = 304 comprising modeling, n = 192, and test, n = 92) were recruited from 2017 to 2018 from the Oxfordshire Suspected CANcer (SCAN) pathway, a multidisciplinary diagnostic center (MDC) referral pathway for patients with nonspecific signs and symptoms. Blood was collected and analyzed by NMR metabolomics. Orthogonal partial least squares discriminatory analysis (OPLS-DA) models separated patients, based upon diagnoses received from the MDC assessment, within 62 days of initial appointment. RESULTS Area under the ROC curve for identifying patients with solid tumors in the independent test set was 0.83 [95% confidence interval (CI): 0.72-0.95]. Maximum sensitivity and specificity were 94% (95% CI: 73-99) and 82% (95% CI: 75-87), respectively. We could also identify patients with metastatic disease in the cohort of patients with cancer with sensitivity and specificity of 94% (95% CI: 72-99) and 88% (95% CI: 53-98), respectively. CONCLUSIONS For a mixed group of patients referred from primary care with nonspecific signs and symptoms, NMR-based metabolomics can assist their diagnosis, and may differentiate both those with malignancies and those with and without metastatic disease. See related commentary by Van Tine and Lyssiotis, p. 1477.
Collapse
Affiliation(s)
- James R. Larkin
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Susan Anthony
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Vanessa A. Johanssen
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Tianrong Yeo
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| | - Megan Sealey
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Abi G. Yates
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Claire Friedemann Smith
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Brian D. Nicholson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Julie-Ann Moreland
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Fergus Gleeson
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Nicola R. Sibson
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Daniel C. Anthony
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Fay Probert
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Moolenaar LR, de Waard NE, Heger M, de Haan LR, Slootmaekers CPJ, Nijboer WN, Tushuizen ME, van Golen RF. Liver Injury and Acute Liver Failure After Bariatric Surgery: An Overview of Potential Injury Mechanisms. J Clin Gastroenterol 2022; 56:311-323. [PMID: 35180151 DOI: 10.1097/mcg.0000000000001662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The obesity epidemic has caused a surge in the use of bariatric surgery. Although surgery-induced weight loss is an effective treatment of nonalcoholic fatty liver disease, it may precipitate severe hepatic complications under certain circumstances. Acute liver injury (ALI) and acute liver failure (ALF) following bariatric surgery have been reported in several case series. Although rare, ALI and ALF tend to emerge several months after bariatric surgery. If so, it can result in prolonged hospitalization, may necessitate liver transplantation, and in some cases prove fatal. However, little is known about the risk factors for developing ALI or ALF after bariatric surgery and the mechanisms of liver damage in this context are poorly defined. This review provides an account of the available data on ALI and ALF caused by bariatric surgery, with emphasis on potential injury mechanisms and the outcomes of liver transplantation for ALF after bariatric surgery.
Collapse
Affiliation(s)
- Laura R Moolenaar
- Departments of Gastroenterology and Hepatology
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, P.R. China
| | | | - Michal Heger
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, P.R. China
| | - Lianne R de Haan
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, P.R. China
| | - Caline P J Slootmaekers
- Department of Gastroenterology and Hepatology, Sint Franciscus Gasthuis, Rotterdam, The Netherlands
| | | | | | - Rowan F van Golen
- Departments of Gastroenterology and Hepatology
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, P.R. China
| |
Collapse
|
25
|
Wrba L, Halbgebauer R, Roos J, Huber-Lang M, Fischer-Posovszky P. Adipose tissue: a neglected organ in the response to severe trauma? Cell Mol Life Sci 2022; 79:207. [PMID: 35338424 PMCID: PMC8956559 DOI: 10.1007/s00018-022-04234-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
Abstract
Despite the manifold recent efforts to improve patient outcomes, trauma still is a clinical and socioeconomical issue of major relevance especially in younger people. The systemic immune reaction after severe injury is characterized by a strong pro- and anti-inflammatory response. Besides its functions as energy storage depot and organ-protective cushion, adipose tissue regulates vital processes via its secretion products. However, there is little awareness of the important role of adipose tissue in regulating the posttraumatic inflammatory response. In this review, we delineate the local and systemic role of adipose tissue in trauma and outline different aspects of adipose tissue as an immunologically active modifier of inflammation and as an immune target of injured remote organs after severe trauma.
Collapse
Affiliation(s)
- Lisa Wrba
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
- Department of Trauma, Orthopedic, Plastic and Hand Surgery, University Hospital of Augsburg, Augsburg, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany.
| |
Collapse
|
26
|
Della Guardia L, Shin AC. White and brown adipose tissue functionality is impaired by fine particulate matter (PM2.5) exposure. J Mol Med (Berl) 2022; 100:665-676. [PMID: 35286401 PMCID: PMC9110515 DOI: 10.1007/s00109-022-02183-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/09/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, via Fratelli Cervi 93, 20090, Segrate, Milano, Italy.
| | - Andrew C Shin
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
27
|
Grube D, Wei G, Boucher R, Abraham N, Zhou N, Gonce V, Carle J, Simmons DL, Beddhu S. Insulin use in chronic kidney disease and the risk of hypoglycemic events. BMC Nephrol 2022; 23:73. [PMID: 35189851 PMCID: PMC8862360 DOI: 10.1186/s12882-022-02687-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We examined in persons with type 2 diabetes (T2D) whether the use of insulin and the risk of serious hypoglycemic events with insulin is higher in persons with more advanced CKD. METHODS In a national cohort of 855,133 veterans with T2D seen at Veteran Affairs clinics between Jan 1, 2008 and December 31, 2010 with at least two serum creatinine measurements, we defined insulin use from pharmacy records and serious hypoglycemic events by ICD-9/10 codes from emergency room visits or hospitalizations that occurred until December 31, 2016. RESULTS Mean age was 66 ± 11 years and 97% were men. Mean baseline eGFR was 73 ± 22 ml/min/1.73 m2. In a multivariable Cox regression model of those without insulin use at baseline (N = 653,200), compared to eGFR ≥90 group, eGFR < 30 group had higher hazard (HR 1.80, 95% CI 1.74 to 1.88) of subsequent insulin use. In a multivariable Cox model with propensity score matching for baseline insulin use (N = 305,570), both insulin use (HR 2.34, 95% CI 2.24 to 2.44) and advanced CKD (HR 2.28, 95% CI 2.07 to 2.51 for comparison of eGFR < 30 to eGFR ≥90 ml/min/1.73 m2 groups) were associated with increased risk of subsequent serious hypoglycemic events. CONCLUSIONS AND RELEVANCE In T2D, more advanced CKD was associated with greater insulin use. Both insulin use and advanced CKD were risk factors for serious hypoglycemic events. The safety of insulin compared to newer glycemic agents in more advanced CKD needs further study.
Collapse
Affiliation(s)
- Daulton Grube
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Guo Wei
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health Sciences, Salt Lake City, UT, USA.,Study Design and Biostatistics Center, University of Utah Health Sciences, Salt Lake City, UT, USA
| | - Robert Boucher
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health Sciences, Salt Lake City, UT, USA
| | - Nikita Abraham
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health Sciences, Salt Lake City, UT, USA
| | - Na Zhou
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health Sciences, Salt Lake City, UT, USA
| | - Victoria Gonce
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health Sciences, Salt Lake City, UT, USA
| | - Judy Carle
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health Sciences, Salt Lake City, UT, USA
| | - Debra L Simmons
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA.,Department of Internal Medicine, Division of Endocrinology, University of Utah Health Sciences, Salt Lake City, UT, USA
| | - Srinivasan Beddhu
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health Sciences, Salt Lake City, UT, USA. .,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA. .,University of Utah Health Sciences, 421 Wakara Way Suite 360, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
28
|
Antuna-Puente B, Fellahi S, McAvoy C, Fève B, Bastard JP. Interleukins in adipose tissue: Keeping the balance. Mol Cell Endocrinol 2022; 542:111531. [PMID: 34910978 DOI: 10.1016/j.mce.2021.111531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
The role of the immune system is to defend the host and preserve the functionality in response to stress. This function is not limited to infection or injury as it also plays a role in the response to overnutrition. Indeed, low-grade chronic activation of the immune system associated with overnutrition may be deleterious, contributing importantly to diabetes and long-term complications, such as cardiovascular disorders. Increasing evidence shows that adipose tissue participates in the obesity-related inflammatory response and that interleukins are one of the key players, either as a pro-inflammatory response to the metabolic dysregulation or to restore homeostasis. The crosstalk between adipocytes and immune cells through some important interleukins and their role in metabolic disruption is the topic of this review.
Collapse
Affiliation(s)
- Barbara Antuna-Puente
- Infection Disease Division, Department of Medicine, Queen's University, Kingston, ON, Canada.
| | - Soraya Fellahi
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de Biochimie-pharmacologie-biologie Moléculaire-génétique Médicale, Créteil, France; Sorbonne Université-Inserm, Centre de Recherche Saint-Antoine UMR S_938, 75012, Paris Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Paris, France
| | - Chloé McAvoy
- Unité de Recherche Clinique de L'Est Parisien (URC-Est), Hôpital Saint Antoine, Paris, France
| | - Bruno Fève
- Sorbonne Université-Inserm, Centre de Recherche Saint-Antoine UMR S_938, 75012, Paris Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Paris, France; Assistance Publique- Hôpitaux de Paris -Hôpital Saint-Antoine, Service D'Endocrinologie-Diabétologie, Centre de Référence des Maladies Rares de L'Insulino-Sécrétion et de L'Insulino-Sensibilité (PRISIS), 75012, Paris, France
| | - Jean-Philippe Bastard
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de Biochimie-pharmacologie-biologie Moléculaire-génétique Médicale, Créteil, France; FHU-SENEC, INSERM U955 and Université Paris Est (UPEC), UMR U955, Faculté de Santé, Créteil, France
| |
Collapse
|
29
|
Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity 2022; 55:31-55. [PMID: 35021057 PMCID: PMC8773457 DOI: 10.1016/j.immuni.2021.12.013] [Citation(s) in RCA: 915] [Impact Index Per Article: 305.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/13/2023]
Abstract
Obesity leads to chronic, systemic inflammation and can lead to insulin resistance (IR), β-cell dysfunction, and ultimately type 2 diabetes (T2D). This chronic inflammatory state contributes to long-term complications of diabetes, including non-alcoholic fatty liver disease (NAFLD), retinopathy, cardiovascular disease, and nephropathy, and may underlie the association of type 2 diabetes with other conditions such as Alzheimer's disease, polycystic ovarian syndrome, gout, and rheumatoid arthritis. Here, we review the current understanding of the mechanisms underlying inflammation in obesity, T2D, and related disorders. We discuss how chronic tissue inflammation results in IR, impaired insulin secretion, glucose intolerance, and T2D and review the effect of inflammation on diabetic complications and on the relationship between T2D and other pathologies. In this context, we discuss current therapeutic options for the treatment of metabolic disease, advances in the clinic and the potential of immune-modulatory approaches.
Collapse
Affiliation(s)
- Theresa V. Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel T. Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Jerrold M. Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Correspondence:
| |
Collapse
|
30
|
Rengachar P, Polavarapu S, Das UN. Insights in diabetes: Molecular mechanisms-Protectin DX, an anti-inflammatory and a stimulator of inflammation resolution metabolite of docosahexaenoic acid, protects against the development of streptozotocin-induced type 1 and type 2 diabetes mellitus in male Swiss albino mice. Front Endocrinol (Lausanne) 2022; 13:1053879. [PMID: 36778598 PMCID: PMC9908003 DOI: 10.3389/fendo.2022.1053879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
Our previous studies revealed that certain endogenous low molecular weight lipids have potent anti-diabetic actions. Of all, arachidonic acid (AA) and its anti-inflammatory and inflammation resolving metabolite lipoxin A4 (LXA4) are the most potent anti-diabetic molecules. Similar anti-diabetic action is also shown by resolvins. In our efforts to identify other similar lipid based anti-diabetic molecules, we investigated potential anti-diabetic action of protectin DX that also has anti-inflammatory and inducer of inflammation resolution action(s) like LXA4. Protectin DX {10(S),17(S)-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid, also called as 10(S),17(S)-DiHDoHE)} prevented the development of streptozotocin-induced type 1 and type 2 diabetes mellitus in Swiss male albino mice. Protectin DX showed potent anti-inflammatory, antioxidant and anti-apoptotic actions that could explain its anti-diabetic action. In view of these beneficial actions, efforts need to be developed to exploit PDX and other similar compounds as potential anti-diabetic molecule in humans.
Collapse
Affiliation(s)
- Poorani Rengachar
- BioScience Research Centre, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam, India
- Department of Microbiology, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam, India
| | - Sailaja Polavarapu
- BioScience Research Centre, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam, India
- Department of Microbiology, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam, India
| | - Undurti N. Das
- BioScience Research Centre, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam, India
- R&D, UND Life Sciences, Battle Ground, WA, United States
- Department of Biotechnology, Indian Institute of Technology-Hyderabad, Sangareddy, Telangana, India
- *Correspondence: Undurti N. Das,
| |
Collapse
|
31
|
Krueger ES, Lloyd TS, Tessem JS. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients 2021; 13:nu13082873. [PMID: 34445033 PMCID: PMC8400152 DOI: 10.3390/nu13082873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial molecular effects observed in metabolic disease research.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Correspondence: ; Tel.: +1-801-422-9082
| |
Collapse
|
32
|
Kunz HE, Hart CR, Gries KJ, Parvizi M, Laurenti M, Dalla Man C, Moore N, Zhang X, Ryan Z, Polley EC, Jensen MD, Vella A, Lanza IR. Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. Am J Physiol Endocrinol Metab 2021; 321:E105-E121. [PMID: 33998291 PMCID: PMC8321823 DOI: 10.1152/ajpendo.00070.2021] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is accompanied by numerous systemic and tissue-specific derangements, including systemic inflammation, insulin resistance, and mitochondrial abnormalities in skeletal muscle. Despite growing recognition that adipose tissue dysfunction plays a role in obesity-related disorders, the relationship between adipose tissue inflammation and other pathological features of obesity is not well-understood. We assessed macrophage populations and measured the expression of inflammatory cytokines in abdominal adipose tissue biopsies in 39 nondiabetic adults across a range of body mass indexes (BMI 20.5-45.8 kg/m2). Skeletal muscle biopsies were used to evaluate mitochondrial respiratory capacity, ATP production capacity, coupling, and reactive oxygen species production. Insulin sensitivity (SI) and β cell responsivity were determined from test meal postprandial glucose, insulin, c-peptide, and triglyceride kinetics. We examined the relationships between adipose tissue inflammatory markers, systemic inflammatory markers, SI, and skeletal muscle mitochondrial physiology. BMI was associated with increased adipose tissue and systemic inflammation, reduced SI, and reduced skeletal muscle mitochondrial oxidative capacity. Adipose-resident macrophage numbers were positively associated with circulating inflammatory markers, including tumor necrosis factor-α (TNFα) and C-reactive protein (CRP). Local adipose tissue inflammation and circulating concentrations of TNFα and CRP were negatively associated with SI, and circulating concentrations of TNFα and CRP were also negatively associated with skeletal muscle oxidative capacity. These results demonstrate that obese humans exhibit increased adipose tissue inflammation concurrently with increased systemic inflammation, reduced insulin sensitivity, and reduced muscle oxidative capacity and suggest that adipose tissue and systemic inflammation may drive obesity-associated metabolic derangements.NEW AND NOTEWORTHY Adipose inflammation is proposed to be at the nexus of the systemic inflammation and metabolic derangements associated with obesity. The present study provides evidence to support adipose inflammation as a central feature of the pathophysiology of obesity. Adipose inflammation is associated with systemic and peripheral metabolic derangements, including increased systemic inflammation, reduced insulin sensitivity, and reduced skeletal muscle mitochondrial respiration.
Collapse
Affiliation(s)
- Hawley E Kunz
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Corey R Hart
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin J Gries
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mojtaba Parvizi
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Marcello Laurenti
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Chiara Dalla Man
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Natalie Moore
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xiaoyan Zhang
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Zachary Ryan
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Eric C Polley
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael D Jensen
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Adrian Vella
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ian R Lanza
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
33
|
Wróblewski A, Strycharz J, Świderska E, Balcerczyk A, Szemraj J, Drzewoski J, Śliwińska A. Chronic and Transient Hyperglycemia Induces Changes in the Expression Patterns of IL6 and ADIPOQ Genes and Their Associated Epigenetic Modifications in Differentiating Human Visceral Adipocytes. Int J Mol Sci 2021; 22:ijms22136964. [PMID: 34203452 PMCID: PMC8268546 DOI: 10.3390/ijms22136964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Adipokines secreted by hypertrophic visceral adipose tissue (VAT) instigate low-grade inflammation, followed by hyperglycemia (HG)-related metabolic disorders. The latter may develop with the participation of epigenetic modifications. Our aim was to assess how HG influences selected epigenetic modifications and the expression of interleukin 6 (IL-6) and adiponectin (APN; gene symbol ADIPOQ) during the adipogenesis of human visceral preadipocytes (HPA-v). Adipocytes (Ads) were chronically or transiently HG-treated during three stages of adipogenesis (proliferation, differentiation, maturation). We measured adipokine mRNA, protein, proven or predicted microRNA expression (RT-qPCR and ELISA), and enrichment of H3K9/14ac, H3K4me3, and H3K9me3 at gene promoter regions (chromatin immunoprecipitation). In chronic HG, we detected different expression patterns of the studied adipokines at the mRNA and protein levels. Chronic and transient HG-induced changes in miRNA (miR-26a-5p, miR-26b-5p, let-7d-5p, let-7e-5p, miR-365a-3p, miR-146a-5p) were mostly convergent to altered IL-6 transcription. Alterations in histone marks at the IL6 promoter were also in agreement with IL-6 mRNA. The open chromatin marks at the ADIPOQ promoter mostly reflected the APN transcription during NG adipogenesis, while, in the differentiation stage, HG-induced changes in all studied marks were in line with APN mRNA levels. In summary, HG dysregulated adipokine expression, promoting inflammation. Epigenetic changes coexisted with altered expression of adipokines, especially for IL-6; therefore, epigenetic marks induced by transient HG may act as epi-memory in Ads. Such changes in the epigenome and expression of adipokines could be instrumental in the development of inflammation and metabolic deregulation of VAT.
Collapse
Affiliation(s)
- Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
- Correspondence: (A.W.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acids Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (A.Ś.)
| |
Collapse
|
34
|
Prestwood TR, Asgariroozbehani R, Wu S, Agarwal SM, Logan RW, Ballon JS, Hahn MK, Freyberg Z. Roles of inflammation in intrinsic pathophysiology and antipsychotic drug-induced metabolic disturbances of schizophrenia. Behav Brain Res 2021; 402:113101. [PMID: 33453341 PMCID: PMC7882027 DOI: 10.1016/j.bbr.2020.113101] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a debilitating psychiatric illness that remains poorly understood. While the bulk of symptomatology has classically been associated with disrupted brain functioning, accumulating evidence demonstrates that schizophrenia is characterized by systemic inflammation and disturbances in metabolism. Indeed, metabolic disease is a major determinant of the high mortality rate associated with schizophrenia. Antipsychotic drugs (APDs) have revolutionized management of psychosis, making it possible to rapidly control psychotic symptoms. This has ultimately reduced relapse rates of psychotic episodes and improved overall quality of life for people with schizophrenia. However, long-term APD use has also been associated with significant metabolic disturbances including weight gain, dysglycemia, and worsening of the underlying cardiometabolic disease intrinsic to schizophrenia. While the mechanisms for these intrinsic and medication-induced metabolic effects remain unclear, inflammation appears to play a key role. Here, we review the evidence for roles of inflammatory mechanisms in the disease features of schizophrenia and how these mechanisms interact with APD treatment. We also discuss the effects of common inflammatory mediators on metabolic disease. Then, we review the evidence of intrinsic and APD-mediated effects on systemic inflammation in schizophrenia. Finally, we speculate about possible treatment strategies. Developing an improved understanding of inflammatory processes in schizophrenia may therefore introduce new, more effective options for treating not only schizophrenia but also primary metabolic disorders.
Collapse
Affiliation(s)
- Tyler R Prestwood
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Roshanak Asgariroozbehani
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, ON, Canada
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Jacob S Ballon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, ON, Canada.
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Wang CR, Tsai HW. Anti- and non-tumor necrosis factor-α-targeted therapies effects on insulin resistance in rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. World J Diabetes 2021; 12:238-260. [PMID: 33758645 PMCID: PMC7958474 DOI: 10.4239/wjd.v12.i3.238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
In addition to β-cell failure with inadequate insulin secretion, the crucial mechanism leading to establishment of diabetes mellitus (DM) is the resistance of target cells to insulin, i.e. insulin resistance (IR), indicating a requirement of beyond-normal insulin concentrations to maintain euglycemic status and an ineffective strength of transduction signaling from the receptor, downstream to the substrates of insulin action. IR is a common feature of most metabolic disorders, particularly type II DM as well as some cases of type I DM. A variety of human inflammatory disorders with increased levels of proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, have been reported to be associated with an increased risk of IR. Autoimmune-mediated arthritis conditions, including rheumatoid arthritis (RA), psoriatic arthritis (PsA) and ankylosing spondylitis (AS), with the involvement of proinflammatory cytokines as their central pathogenesis, have been demonstrated to be associated with IR, especially during the active disease state. There is an increasing trend towards using biologic agents and small molecule-targeted drugs to treat such disorders. In this review, we focus on the effects of anti-TNF-α- and non-TNF-α-targeted therapies on IR in patients with RA, PsA and AS. Anti-TNF-α therapy, IL-1 blockade, IL-6 antagonist, Janus kinase inhibitor and phospho-diesterase type 4 blocker can reduce IR and improve diabetic hyper-glycemia in autoimmune-mediated arthritis.
Collapse
Affiliation(s)
- Chrong-Reen Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| |
Collapse
|
36
|
Inflammatory Response, a Key Pathophysiological Mechanism of Obesity-Induced Depression. Mediators Inflamm 2020; 2020:8893892. [PMID: 33299381 PMCID: PMC7707993 DOI: 10.1155/2020/8893892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, with the acceleration of life rhythm and the increase of social competition, the incidence of obesity and depression has been increasing, which has seriously affected the quality of life and health of people. Obesity and depression, two seemingly unrelated physical and psychological diseases, in fact, are closely related: obese people are more likely to have depression than nonobese ones. We have reviewed and analyzed the relevant research literature and found that the inflammatory response plays a key role in obesity-induced depression. This article will discuss in detail the inflammatory mechanisms by which obesity induces depression.
Collapse
|
37
|
Krasniqi E, Pizzuti L, Barchiesi G, Sergi D, Carpano S, Botti C, Kayal R, Sanguineti G, Marchetti P, Botticelli A, Marinelli D, Gamucci T, Natoli C, Grassadonia A, Tinari N, Tomao S, Tonini G, Santini D, Michelotti A, Mentuccia L, Vaccaro A, Magnolfi E, Gelibter A, Magri V, Cortesi E, D'Onofrio L, Cassano A, Cazzaniga M, Moscetti L, Fabbri A, Scinto AF, Corsi D, Carbognin L, Bria E, La Verde N, Garufi C, Di Stefano P, Mirabelli R, Veltri E, Paris I, Giotta F, Lorusso V, Landucci E, Ficorella C, Roselli M, Adamo V, Ricciardi G, Russo A, Valerio MR, Berardi R, Pistelli M, Cannita K, Zamagni C, Garrone O, Baldini E, Livi L, Meattini I, Del Medico P, Generali D, De Maria R, Risi E, Ciliberto G, Villa A, Sperduti I, Mazzotta M, Barba M, Giordano A, Vici P. Impact of BMI on HER2+ metastatic breast cancer patients treated with pertuzumab and/or trastuzumab emtansine. Real-world evidence. J Cell Physiol 2020; 235:7900-7910. [PMID: 31943171 DOI: 10.1002/jcp.29445] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022]
Abstract
Body mass index (BMI) is a main indicator of obesity and its association with breast cancer is well established. However, little is known in the metastatic setting, especially in HER2-positive patients. We assessed the influence of BMI on clinical outcomes of patients treated with pertuzumab and/or trastuzumab emtansine (T-DM1) for HER2+ metastatic breast cancer (mBC). BMI was addressed as a categorical variable, being classified on the basis of the following ranges, that is, 18.5-24.9, 25-29.9, and 30.0-34.9, namely, normal weight, overweight, and Class I obesity. The outcomes chosen were progression-free survival to first-line chemotherapy (PFS1) and overall survival (OS). Overall (N = 709), no impact of BMI was observed on PFS1 (p = .15), while BMI ≥ 30 was associated with worse OS (p = .003). In subjects who progressed to first line (N = 575), analyzing data across PFS1 quartiles and strata of disease burden, BMI predicted lower PFS1 in patients within the I PFS1 quartile and with the lowest disease burden (p = .001). Univariate analysis showed a detrimental effect of BMI ≥ 30 on OS for women within the I PFS1 quartile (p = .03). Results were confirmed in multivariate analysis. According to PFS1 quartiles a higher percentage of patients with high BMI and low disease burden progressed within 6 months of therapy. The effect of BMI on prognosis was also confirmed in multivariate analysis of OS for overall population. In our cohort, a BMI ≥ 30 correlated with worse OS in patients with HER2+ mBC who received pertuzumab and/or T-DM1 but had no impact on PFS to first line. BMI predicted worse I PFS1 quartile.
Collapse
Affiliation(s)
- Eriseld Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Barchiesi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Domenico Sergi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Carpano
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Botti
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ramy Kayal
- Department of Radiology and Diagnostic Imaging, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paolo Marchetti
- Medical Oncology Unit B, Policlinico Umberto I, Rome, Italy
- Department of Clinical and Molecular Medicine, Azienda Ospedaliera Sant'Andrea, "Sapienza" University of Rome, Rome, Italy
| | | | - Daniele Marinelli
- Department of Clinical and Molecular Medicine, Azienda Ospedaliera Sant'Andrea, "Sapienza" University of Rome, Rome, Italy
| | | | - Clara Natoli
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, G. D'Annunzio University, Chieti, Italy
| | - Antonino Grassadonia
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, G. D'Annunzio University, Chieti, Italy
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, G. D'Annunzio University, Chieti, Italy
| | - Silverio Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Policlinico Umberto I, 'Sapienza' University of Rome, Rome, Italy
| | - Giuseppe Tonini
- Department of Oncology, University Campus Biomedico of Rome, Rome, Italy
| | - Daniele Santini
- Department of Oncology, University Campus Biomedico of Rome, Rome, Italy
| | - Aandrea Michelotti
- Dipartimento di Oncologia, Dei Trapianti e Delle Nuove Tecnologie, UO Oncologia Medica I, S. Chiara Hospital, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | | | | | - Alain Gelibter
- Medical Oncology Unit B, Policlinico Umberto I, Rome, Italy
| | | | - Enrico Cortesi
- Medical Oncology Unit B, Policlinico Umberto I, Rome, Italy
| | - Loretta D'Onofrio
- Department of Oncology, University Campus Biomedico of Rome, Rome, Italy
| | - Alessandra Cassano
- Department of Medical Oncology, Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Marina Cazzaniga
- Research Unit Phase I Trials and Oncology Unit, ASST Monza, Monza, Italy
| | - Luca Moscetti
- Division of Medical Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Agnese Fabbri
- Medical Oncology Unit, Belcolle Hospital, Viterbo, Italy
| | | | - Domenico Corsi
- Medical Oncology Unit, Fatebenefratelli Hospital, Rome, Italy
| | - Luisa Carbognin
- University of Verona, Verona, Italy
- Division of Gynecologic Oncology, Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Emilio Bria
- University of Verona, Verona, Italy
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Nicla La Verde
- Oncology Unit, ASST Fatebenefratelli Sacco Presidio Ospedaliero Fatebenefratelli, Milano, Italy
| | - Carlo Garufi
- Medical Oncology, "Santo Spirito" Hospital, Pescara, Italy
| | - Pia Di Stefano
- Medical Oncology, "Santo Spirito" Hospital, Pescara, Italy
| | - Rossana Mirabelli
- Department of Hematology & Oncology, Azienda Ospedaliera Pugliese-Ciaccio, Catanzaro, Italy
| | - Enzo Veltri
- Oncology Unit, S. Maria Goretti Hospital, Latina, Italy
| | - Ida Paris
- Division of Gynecologic Oncology, Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Francesco Giotta
- Department of Medical Oncology, "Giovanni Paolo II" Institute, Bari, Italy
| | - Vito Lorusso
- Department of Medical Oncology, "Giovanni Paolo II" Institute, Bari, Italy
| | - Elisa Landucci
- Dipartimento di Oncologia, Dei Trapianti e Delle Nuove Tecnologie, UO Oncologia Medica I, S. Chiara Hospital, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Corrado Ficorella
- Department of Biotechnological and Applied Clinical Sciences, Medical Oncology, University of L'Aquila, L'Aquila, Italy
| | - Mario Roselli
- Department of Systems Medicine, Medical Oncology, University of Rome "Tor Vergata", Rome, Italy
| | - Vincenzo Adamo
- Department of Human Pathology, Medical Oncology Unit A.O. Papardo, University of Messina, Messina, Italy
| | - Giuseppina Ricciardi
- Department of Human Pathology, Medical Oncology Unit A.O. Papardo, University of Messina, Messina, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Maria Rosaria Valerio
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Rossana Berardi
- Oncology Clinic, Università Politecnica delle Marche, Ancona, Italy
| | - Mirco Pistelli
- Oncology Clinic, Università Politecnica delle Marche, Ancona, Italy
| | - Katia Cannita
- Medical Oncology, St. Salvatore Hospital, L'Aquila, Italy
| | - Claudio Zamagni
- Medical Oncology Unit, Addarii Institute of Oncology, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Ornella Garrone
- Medical Oncology, A.O. Ospedale di Insegnamento S. Croce e Carle, Cuneo, Italy
| | | | - Lorenzo Livi
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio," Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Icro Meattini
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio," Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Pietro Del Medico
- Division of Medical Oncology, Reggio Calabria General Hospital, Reggio Calabria, Italy
| | - Daniele Generali
- Breast Cancer Unit & Translational Research Unit, ASST Cremona, Cremona, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy
| | - Emanuela Risi
- Department of "Sandro Pitigliani" Medical Oncology, Santo Stefano Hospital, Prato, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alice Villa
- Endocrinology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Isabella Sperduti
- Department of Bio-Statistics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Mazzotta
- Department of Clinical and Molecular Medicine, Azienda Ospedaliera Sant'Andrea, "Sapienza" University of Rome, Rome, Italy
| | - Maddalena Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania
| | - Patrizia Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
38
|
Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, Herrema H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front Immunol 2020; 11:571731. [PMID: 33178196 PMCID: PMC7596417 DOI: 10.3389/fimmu.2020.571731] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota has been linked to the development of obesity and type 2 diabetes (T2D). The underlying mechanisms as to how intestinal microbiota may contribute to T2D are only partly understood. It becomes progressively clear that T2D is characterized by a chronic state of low-grade inflammation, which has been linked to the development of insulin resistance. Here, we review the current evidence that intestinal microbiota, and the metabolites they produce, could drive the development of insulin resistance in obesity and T2D, possibly by initiating an inflammatory response. First, we will summarize major findings about immunological and gut microbial changes in these metabolic diseases. Next, we will give a detailed view on how gut microbial changes have been implicated in low-grade inflammation. Lastly, we will critically discuss clinical studies that focus on the interaction between gut microbiota and the immune system in metabolic disease. Overall, there is strong evidence that the tripartite interaction between gut microbiota, host immune system and metabolism is a critical partaker in the pathophysiology of obesity and T2D.
Collapse
Affiliation(s)
- Torsten P M Scheithauer
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, BC, Canada
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
39
|
Metabolic and Molecular Mechanisms of Macrophage Polarisation and Adipose Tissue Insulin Resistance. Int J Mol Sci 2020; 21:ijms21165731. [PMID: 32785109 PMCID: PMC7460862 DOI: 10.3390/ijms21165731] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/26/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation plays a key role in the development and progression of type-2 diabetes (T2D), a disease characterised by peripheral insulin resistance and systemic glucolipotoxicity. Visceral adipose tissue (AT) is the main source of inflammation early in the disease course. Macrophages are innate immune cells that populate all peripheral tissues, including AT. Dysregulated AT macrophage (ATM) responses to microenvironmental changes are at the root of aberrant inflammation and development of insulin resistance, locally and systemically. The inflammatory activation of macrophages is regulated at multiple levels: cell surface receptor stimulation, intracellular signalling, transcriptional and metabolic levels. This review will cover the main mechanisms involved in AT inflammation and insulin resistance in T2D. First, we will describe the physiological and pathological changes in AT that lead to inflammation and insulin resistance. We will next focus on the transcriptional and metabolic mechanisms described that lead to the activation of ATMs. We will discuss more novel metabolic mechanisms that influence macrophage polarisation in other disease or tissue contexts that may be relevant to future work in insulin resistance and T2D.
Collapse
|
40
|
CXCL13 is a differentiation- and hypoxia-induced adipocytokine that exacerbates the inflammatory phenotype of adipocytes through PHLPP1 induction. Biochem J 2020; 476:3533-3548. [PMID: 31710352 DOI: 10.1042/bcj20190709] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/16/2023]
Abstract
Hypoxia in adipose tissue is regarded as a trigger that induces dysregulation of the secretory profile in adipocytes. Similarly, local dysregulation of adipocytokine secretion is an initial event in the deleterious effects of obesity on metabolism. We previously reported that CXCL13 is highly produced during adipogenesis, however little is known about the roles of CXCL13 in adipocytes. Here, we found that hypoxia, as modeled by 1% O2 or exposure to the hypoxia-mimetic reagent desferrioxamine (DFO) has strong inductive effects on the expression of CXCL13 and CXCR5, a CXCL13 receptor, in both undifferentiated and differentiated adipocytes and in organ-cultured white adipose tissue (WAT). CXCL13 was also highly expressed in WAT from high fat diet-fed mice. Hypoxic profile, typified by increased expression of interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) and decreased expression of adiponectin, was significantly induced by CXCL13 treatment during adipogenic differentiation. Conversely, the treatment of adipocytes with a neutralizing-antibody against CXCL13 as well as CXCR5 knockdown by specific siRNA effectively inhibited DFO-induced inflammation. The phosphorylation of Akt2, a protective factor of adipose inflammation, was significantly inhibited by CXCL13 treatment during adipogenic differentiation. Mechanistically, CXCL13 induces the expression of PHLPP1, an Akt2 phosphatase, through focal adhesion kinase (FAK) signaling; and correspondingly we show that CXCL13 and DFO-induced IL-6 and PAI-1 expression was blocked by Phlpp1 knockdown. Furthermore, we revealed the functional binding sites of PPARγ2 and HIF1-α within the Cxcl13 promoter. Taken together, these results indicate that CXCL13 is an adipocytokine that facilitates hypoxia-induced inflammation in adipocytes through FAK-mediated induction of PHLPP1 in autocrine and/or paracrine manner.
Collapse
|
41
|
Gehrke N, Schattenberg JM. Metabolic Inflammation-A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology 2020; 158:1929-1947.e6. [PMID: 32068022 DOI: 10.1053/j.gastro.2020.02.020] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global and growing health concern. Emerging evidence points toward metabolic inflammation as a key process in the fatty liver that contributes to multiorgan morbidity. Key extrahepatic comorbidities that are influenced by NAFLD are type 2 diabetes, cardiovascular disease, and impaired neurocognitive function. Importantly, the presence of nonalcoholic steatohepatitis and advanced hepatic fibrosis increase the risk for systemic comorbidity in NAFLD. Although the precise nature of the crosstalk between the liver and other organs has not yet been fully elucidated, there is emerging evidence that metabolic inflammation-in part, emanating from the fatty liver-is the engine that drives cellular dysfunction, cell death, and deleterious remodeling within various body tissues. This review describes several inflammatory pathways and mediators that have been implicated as links between NAFLD and type 2 diabetes, cardiovascular disease, and neurocognitive decline.
Collapse
Affiliation(s)
- Nadine Gehrke
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany.
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
42
|
Abstract
Worldwide obesity is increasing at an alarming rate in children and adolescents, with the consequent emergence of co-morbidities. Moreover, the maternal environment during pregnancy plays an important role in obesity, contributing to transgenerational transmission of the same and metabolic dysfunction. White adipose tissue represents a prime target of metabolic programming induced by maternal milieu. In this article, we review adipose tissue physiology and development, as well as maternal influences during the perinatal period that may lead to obesity in early postnatal life and adulthood. First, we describe the adipose tissue cell composition, distribution and hormonal action, together with the evidence of hormonal factors participating in fetal/postnatal programming. Subsequently, we describe the critical periods of adipose tissue development and the relationship of gestational and early postnatal life with healthy fetal adipose tissue expansion. Furthermore, we discuss the evidence showing that adipose tissue is an important target for nutritional, hormonal and epigenetic signals to modulate fetal growth. Finally, we describe nutritional, hormonal, epigenetic and microbiome changes observed in maternal obesity, and whether their disruption alters fetal growth and adiposity. The presented evidence supports the developmental origins of health and disease concept, which proposes that the homeostatic system is affected during gestational and postnatal development, impeding the ability to regulate body weight after birth, thereby resulting in adult obesity. Consequently, we anticipate that promoting a healthy early-life programming of adipose tissue and increasing the knowledge of the mechanisms by which maternal factors affect the health of future generations may offer novel strategies for explaining and addressing worldwide health problems such as obesity.
Collapse
|
43
|
Burini RC, Anderson E, Durstine JL, Carson JA. Inflammation, physical activity, and chronic disease: An evolutionary perspective. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:1-6. [PMID: 35783338 PMCID: PMC9219305 DOI: 10.1016/j.smhs.2020.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Low-grade inflammation is emerging as a common feature of contemporary metabolic, psychiatric, and neurodegenerative diseases. Both physical inactivity and abdominal adiposity are associated with persistent systemic low-grade inflammation. Thus, the behavioral, biological, and physiological changes that cause a predisposition to obesity and other co-morbidities could have epigenetic underpinnings in addition to various evolutionary scenarios. A key assumption involves the potential for a mismatch between the human genome molded over generations, and the issue of adapting to the modern high calorie diet and common built environments promoting inactivity. This biological mismatch appears to have dire health consequences. Therefore, the goal of this article is to provide a brief overview on the importance of inflammation as part of human survival and how physical activity (PA) and physical inactivity are critical regulators of systemic inflammation. The review will highlight anti-inflammatory effects of PA and exercise training from a metabolic and systemic signaling perspective, which includes skeletal muscle to utilization of fatty acids, TLR4 signaling, and myokine/adipokine effects. The available evidence suggests that PA, regular exercise, and weight loss offer both protection against and treatment for a wide variety of chronic diseases associated with low-grade inflammation through an improved inflammatory profile.
Collapse
Affiliation(s)
| | - Elizabeth Anderson
- Arnold School of Public Health, Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - J. Larry Durstine
- Arnold School of Public Health, Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - James A. Carson
- College of Health Professions, Division of Rehabilitation Science, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
44
|
Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, Beguinot F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol 2020; 10:1607. [PMID: 32063863 PMCID: PMC7000657 DOI: 10.3389/fphys.2019.01607] [Citation(s) in RCA: 618] [Impact Index Per Article: 123.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is one of the major health burdens of the 21st century as it contributes to the growing prevalence of its related comorbidities, including insulin resistance and type 2 diabetes. Growing evidence suggests a critical role for overnutrition in the development of low-grade inflammation. Specifically, chronic inflammation in adipose tissue is considered a crucial risk factor for the development of insulin resistance and type 2 diabetes in obese individuals. The triggers for adipose tissue inflammation are still poorly defined. However, obesity-induced adipose tissue expansion provides a plethora of intrinsic signals (e.g., adipocyte death, hypoxia, and mechanical stress) capable of initiating the inflammatory response. Immune dysregulation in adipose tissue of obese subjects results in a chronic low-grade inflammation characterized by increased infiltration and activation of innate and adaptive immune cells. Macrophages are the most abundant innate immune cells infiltrating and accumulating into adipose tissue of obese individuals; they constitute up to 40% of all adipose tissue cells in obesity. In obesity, adipose tissue macrophages are polarized into pro-inflammatory M1 macrophages and secrete many pro-inflammatory cytokines capable of impairing insulin signaling, therefore promoting the progression of insulin resistance. Besides macrophages, many other immune cells (e.g., dendritic cells, mast cells, neutrophils, B cells, and T cells) reside in adipose tissue during obesity, playing a key role in the development of adipose tissue inflammation and insulin resistance. The association of obesity, adipose tissue inflammation, and metabolic diseases makes inflammatory pathways an appealing target for the treatment of obesity-related metabolic complications. In this review, we summarize the molecular mechanisms responsible for the obesity-induced adipose tissue inflammation and progression toward obesity-associated comorbidities and highlight the current therapeutic strategies.
Collapse
Affiliation(s)
- Federica Zatterale
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Michele Longo
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Jamal Naderi
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Gregory Alexander Raciti
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Antonella Desiderio
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
45
|
Takagaki Y, Lee SM, Dongqing Z, Kitada M, Kanasaki K, Koya D. Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy 2020; 16:1905-1914. [PMID: 31965901 DOI: 10.1080/15548627.2020.1713641] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Macroautophagy/autophagy plays a vital role in the homeostasis of diverse cell types. Vascular endothelial cells contribute to vascular health and play a unique role in vascular biology. Here, we demonstrated that autophagy defects in endothelial cells induced IL6 (interleukin 6)-dependent endothelial-to-mesenchymal transition (EndMT) and organ fibrosis with metabolic defects in mice. Inhibition of autophagy, either by a specific inhibitor or small interfering RNA (siRNA) for ATG5 (autophagy related 5), in human microvascular endothelial cells (HMVECs) induced EndMT. The IL6 level was significantly higher in ATG5 siRNA-transfected HMVECs culture medium compared with the control HMVECs culture medium, and neutralization of IL6 by a specific antibody completely inhibited EndMT in ATG5 siRNA-transfected HMVECs. Similar to the in vitro data, endothelial-specific atg5 knockout mice (Atg5 Endo; Cdh5-Cre Atg5 flox/flox mice) displayed both EndMT-associated kidney and heart fibrosis when compared to littermate controls. The plasma level of IL6 was higher in Atg5 Endo compared to that of control mice, and fibrosis was accelerated in Atg5 Endo treated with a HFD; neutralization of IL6 by a specific antibody inhibited EndMT and fibrosis in HFD-fed Atg5 Endo associated with the amelioration of metabolic defects. These results revealed the essential role of autophagy in endothelial cell integrity and revealed that the disruption of endothelial autophagy could lead to significant pathological IL6-dependent EndMT and organ fibrosis. Abbreviations: 3-MA: 3-methyladenine; ATG5: autophagy related 5; EndMT: endothelial-to-mesenchymal transition; HES: hematoxylin and eosin stain; HFD: high-fat diet; HMVECs: human microvascular endothelial cells; IFNG: interferon gamma; IL6: interleukin 6; MTS: Masson's trichrome staining; NFD: normal-fat diet; siRNA: small interfering RNA; SMAD3: SMAD family member 3; TGFB: transforming growth factor β; TNF: tumor necrosis factor; VEGFA: vascular endothelial growth factor A.
Collapse
Affiliation(s)
- Yuta Takagaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan
| | - Seon Myeong Lee
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan
| | - Zha Dongqing
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University , Uchinada, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University , Uchinada, Japan.,Internal Medicine 1, Shimane University Faculty of Medicine , Izumo, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University , Uchinada, Japan
| |
Collapse
|
46
|
Ye Z, Wang S, Zhang C, Zhao Y. Coordinated Modulation of Energy Metabolism and Inflammation by Branched-Chain Amino Acids and Fatty Acids. Front Endocrinol (Lausanne) 2020; 11:617. [PMID: 33013697 PMCID: PMC7506139 DOI: 10.3389/fendo.2020.00617] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
As important metabolic substrates, branched-chain amino acids (BCAAs) and fatty acids (FAs) participate in many significant physiological processes, such as mitochondrial biogenesis, energy metabolism, and inflammation, along with intermediate metabolites generated in their catabolism. The increased levels of BCAAs and fatty acids can lead to mitochondrial dysfunction by altering mitochondrial biogenesis and adenosine triphosphate (ATP) production and interfering with glycolysis, fatty acid oxidation, the tricarboxylic acid cycle (TCA) cycle, and oxidative phosphorylation. BCAAs can directly activate the mammalian target of rapamycin (mTOR) signaling pathway to induce insulin resistance, or function together with fatty acids. In addition, elevated levels of BCAAs and fatty acids can activate the canonical nuclear factor-κB (NF-κB) signaling pathway and inflammasome and regulate mitochondrial dysfunction and metabolic disorders through upregulated inflammatory signals. This review provides a comprehensive summary of the mechanisms through which BCAAs and fatty acids modulate energy metabolism, insulin sensitivity, and inflammation synergistically.
Collapse
Affiliation(s)
- Zhenhong Ye
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Siyu Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Chunmei Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Yue Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yue Zhao
| |
Collapse
|
47
|
Chen L, Lin X, Xu X, Wang L, Teng H, Cao H. Anti-inflammatory effect of self-emulsifying delivery system containing Sonchus oleraceus Linn extract on streptozotocin-induced diabetic rats. Food Chem Toxicol 2020; 135:110953. [DOI: 10.1016/j.fct.2019.110953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
|
48
|
Shi J, Fan J, Su Q, Yang Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne) 2019; 10:703. [PMID: 31736870 PMCID: PMC6833922 DOI: 10.3389/fendo.2019.00703] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Clear evidence indicates that cytokines, for instance, adipokines, hepatokines, inflammatory cytokines, myokines, and osteokines, contribute substantially to the development of abnormal glucose and lipid metabolism. Some cytokines play a positive role in metabolism action, while others have a negative metabolic role linking to the induction of metabolic dysfunction. The mechanisms involved are not fully understood, but are associated with lipid accumulation in organs and tissues, especially in the adipose and liver tissue, changes in energy metabolism, and inflammatory signals derived from various cell types, including immune cells. In this review, we describe the roles of certain cytokines in the regulation of metabolism and inter-organ signaling in regard to the pathophysiological aspects. Given the disease-related changes in circulating levels of relevant cytokines, these factors may serve as biomarkers for the early detection of metabolic disorders. Moreover, based on preclinical studies, certain cytokines that can induce improvements in glucose and lipid metabolism and immune response may emerge as novel targets of broader and more efficacious treatments and prevention of metabolic disease.
Collapse
Affiliation(s)
- Jie Shi
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangao Fan
- Shanghai Key Laboratory of Children's Digestion and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
More than an Anti-diabetic Bariatric Surgery, Metabolic Surgery Alleviates Systemic and Local Inflammation in Obesity. Obes Surg 2019; 28:3658-3668. [PMID: 30187424 DOI: 10.1007/s11695-018-3400-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity, associated with increased risk of type 2 diabetes (T2D), cardiovascular disease, and hepatic steatosis et al., has become a major global health problem. Recently, obesity has been proven to be under a status of low-grade, chronic inflammation, which contributes to insulin resistance and T2D. Bariatric surgery is currently an effective treatment for the control of morbid obesity and T2D, which impels ongoing efforts to clarify physiological and molecular mechanisms mediating these benefits. The correlation between obesity, inflammation, and T2D has been revealed to a certain extent, and studies have shed light on the effect of bariatric surgery on inflammatory status of subjects with obesity. Based on recent findings, this review focuses on the relationship between inflammation, obesity, and bariatric surgery.
Collapse
|
50
|
Jiang N, Li Y, Shu T, Wang J. Cytokines and inflammation in adipogenesis: an updated review. Front Med 2019; 13:314-329. [PMID: 30066061 DOI: 10.1007/s11684-018-0625-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
The biological relevance of cytokines is known for more than 20 years. Evidence suggests that adipogenesis is one of the biological events involved in the regulation of cytokines, and pro-inflammatory cytokines (e.g., TNFα and IL-1β) inhibit adipogenesis through various pathways. This inhibitory effect can constrain the hyperplastic expandability of adipose tissues. Meanwhile, chronic low-grade inflammation is commonly observed in obese populations. In some individuals, the impaired ability of adipose tissues to recruit new adipocytes to adipose depots during overnutrition results in adipocyte hypertrophy, ectopic lipid accumulation, and insulin resistance. Intervention studies showed that pro-inflammatory cytokine antagonists improve metabolism in patients with metabolic syndrome. This review focuses on the cytokines currently known to regulate adipogenesis under physiological and pathophysiological circumstances. Recent studies on how inhibited adipogenesis leads to metabolic disorders were summarized. Although the interplay of cytokines and lipid metabolism is yet incompletely understood, cytokines represent a class of potential therapeutic targets in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Ning Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Yao Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|