1
|
Javed Z, Shin DH, Pan W, White SR, Elhaw AT, Kim YS, Kamlapurkar S, Cheng YY, Benson JC, Abdelnaby AE, Phaëton R, Wang HG, Yang S, Sullivan MLG, St Croix CM, Watkins SC, Mullett SJ, Gelhaus SL, Lee N, Coffman LG, Aird KM, Trebak M, Mythreye K, Walter V, Hempel N. Drp1 splice variants regulate ovarian cancer mitochondrial dynamics and tumor progression. EMBO Rep 2024; 25:4281-4310. [PMID: 39191946 PMCID: PMC11467262 DOI: 10.1038/s44319-024-00232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Aberrant mitochondrial fission/fusion dynamics are frequently associated with pathologies, including cancer. We show that alternative splice variants of the fission protein Drp1 (DNM1L) contribute to the complexity of mitochondrial fission/fusion regulation in tumor cells. High tumor expression of the Drp1 alternative splice variant lacking exon 16 relative to other transcripts is associated with poor outcome in ovarian cancer patients. Lack of exon 16 results in Drp1 localization to microtubules and decreased association with mitochondrial fission sites, culminating in fused mitochondrial networks, enhanced respiration, changes in metabolism, and enhanced pro-tumorigenic phenotypes in vitro and in vivo. These effects are inhibited by siRNAs designed to specifically target the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the pathophysiological importance of Drp1 alternative splicing, highlight the divergent functions and consequences of changing the relative expression of Drp1 splice variants in tumor cells, and strongly warrant consideration of alternative splicing in future studies focused on Drp1.
Collapse
Affiliation(s)
- Zaineb Javed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Dong Hui Shin
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Weihua Pan
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sierra R White
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amal Taher Elhaw
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shriya Kamlapurkar
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ya-Yun Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rébécca Phaëton
- Department of Obstetrics & Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- GlaxoSmithKline, Collegeville, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mara L G Sullivan
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudette M St Croix
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nam Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Lan G Coffman
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine M Aird
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mohamed Trebak
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vonn Walter
- Department of Public Health Sciences, Division of Biostatistics and Bioinformatics and Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Javed Z, Shin DH, Pan W, White SR, Kim YS, Elhaw AT, Kamlapurkar S, Cheng YY, Benson JC, Abdelnaby AE, Phaëton R, Wang HG, Yang S, Sullivan ML, St.Croix CM, Watkins SC, Mullett SJ, Gelhaus SL, Lee N, Coffman LG, Aird KM, Trebak M, Mythreye K, Walter V, Hempel N. Alternative splice variants of the mitochondrial fission protein DNM1L/Drp1 regulate mitochondrial dynamics and tumor progression in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.20.558501. [PMID: 37790404 PMCID: PMC10542115 DOI: 10.1101/2023.09.20.558501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aberrant mitochondrial fission/fusion dynamics have been reported in cancer cells. While post translational modifications are known regulators of the mitochondrial fission/fusion machinery, we show that alternative splice variants of the fission protein Drp1 (DNM1L) have specific and unique roles in cancer, adding to the complexity of mitochondrial fission/fusion regulation in tumor cells. Ovarian cancer specimens express an alternative splice transcript variant of Drp1 lacking exon 16 of the variable domain, and high expression of this splice variant relative to other transcripts is associated with poor patient outcome. Unlike the full-length variant, expression of Drp1 lacking exon 16 leads to decreased association of Drp1 to mitochondrial fission sites, more fused mitochondrial networks, enhanced respiration, and TCA cycle metabolites, and is associated with a more metastatic phenotype in vitro and in vivo. These pro-tumorigenic effects can also be inhibited by specific siRNA-mediated inhibition of the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the significance of the pathophysiological consequences of Drp1 alternative splicing and divergent functions of Drp1 splice variants, and strongly warrant consideration of Drp1 splicing in future studies.
Collapse
Affiliation(s)
- Zaineb Javed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Dong Hui Shin
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Weihua Pan
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - Sierra R. White
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, PA, USA
| | - Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Amal Taher Elhaw
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Shriya Kamlapurkar
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - Ya-Yun Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA
| | - Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA
| | - Rébécca Phaëton
- Department of Obstetrics & Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, PA, USA
| | - Mara L.G. Sullivan
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, PA, USA; Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Claudette M. St.Croix
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, PA, USA; Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Simon C. Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, PA, USA; Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, PA, USA
| | - Stacy L. Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, PA, USA
| | - Nam Lee
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, PA, USA; Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Lan G. Coffman
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - Katherine M. Aird
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mohamed Trebak
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vonn Walter
- Department of Public Health Sciences, Division of Biostatistics and Bioinformatics and Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, PA, USA
| |
Collapse
|
3
|
Bhargava S, Kulkarni R, Dewangan B, Kulkarni N, Jiaswar C, Kumar K, Kumar A, Bodhe PR, Kumar H, Sahu B. Microtubule stabilising peptides: new paradigm towards management of neuronal disorders. RSC Med Chem 2023; 14:2192-2205. [PMID: 37974959 PMCID: PMC10650357 DOI: 10.1039/d3md00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuronal cells made of soma, axon, and dendrites are highly compartmentalized and possess a specialized transport system that can convey long-distance electrical signals for the cross-talk. The transport system is made up of microtubule (MT) polymers and MT-binding proteins. MTs play vital and diverse roles in various cellular processes. Therefore, defects and dysregulation of MTs and their binding proteins lead to many neurological disorders as exemplified by Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and many others. MT-stabilising agents (MSAs) altering the MT-associated protein connections have shown great potential for several neurodegenerative disorders. Peptides are an important class of molecules with high specificity, biocompatibility and are devoid of side effects. In the past, peptides have been explored in various neuronal disorders as therapeutics. Davunetide, a MT-stabilising octapeptide, has entered into phase II clinical trials for schizophrenia. Numerous examples of peptides emerging as MSAs reflect the emergence of a new paradigm for peptides which can be explored further as drug candidates for neuronal disorders. Although small molecule-based MSAs have been reviewed in the past, there is no systematic review in recent years focusing on peptides as MSAs apart from davunetide in 2013. Therefore, a systematic updated review on MT stabilising peptides may shed light on many hidden aspects and enable researchers to develop new therapies for diseases related to the CNS. In this review we have summarised the recent examples of peptides as MSAs.
Collapse
Affiliation(s)
- Shubhangi Bhargava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Riya Kulkarni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bhaskar Dewangan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Chirag Jiaswar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Kunal Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Amit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Praveen Reddy Bodhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| |
Collapse
|
4
|
Posey AE, Ross KA, Bagheri M, Lanum EN, Khan MA, Jennings CE, Harwig MC, Kennedy NW, Hilser VJ, Harden JL, Hill RB. The variable domain from dynamin-related protein 1 promotes liquid-liquid phase separation that enhances its interaction with cardiolipin-containing membranes. Protein Sci 2023; 32:e4787. [PMID: 37743569 PMCID: PMC10578129 DOI: 10.1002/pro.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" important for regulation. For the mitochondrial fission dynamin, dynamin-related protein 1, a regulatory role for the variable domain (VD) is demonstrated by gain- and loss-of-function mutations, yet the basis for this is unclear. Here, the isolated VD is shown to be intrinsically disordered and undergo a cooperative transition in the stabilizing osmolyte trimethylamine N-oxide. However, the osmolyte-induced state is not folded and surprisingly appears as a condensed state. Other co-solutes including known molecular crowder Ficoll PM 70, also induce a condensed state. Fluorescence recovery after photobleaching experiments reveal this state to be liquid-like indicating the VD undergoes a liquid-liquid phase separation under crowding conditions. These crowding conditions also enhance binding to cardiolipin, a mitochondrial lipid, which appears to promote phase separation. Since dynamin-related protein 1 is found assembled into discrete punctate structures on the mitochondrial surface, the inference from the present work is that these structures might arise from a condensed state involving the VD that may enable rapid tuning of mechanoenzyme assembly necessary for fission.
Collapse
Affiliation(s)
- Ammon E. Posey
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
- Present address:
Department of Biomedical EngineeringWashington UniversitySt. LouisMissouriUSA
| | - Kyle A. Ross
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Mehran Bagheri
- Department of PhysicsUniversity of OttawaOttawaOntarioUSA
| | - Elizabeth N. Lanum
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Misha A. Khan
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | | | - Megan C. Harwig
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Nolan W. Kennedy
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Vincent J. Hilser
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - R. Blake Hill
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
5
|
Bhatti JS, Kaur S, Mishra J, Dibbanti H, Singh A, Reddy AP, Bhatti GK, Reddy PH. Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166798. [PMID: 37392948 DOI: 10.1016/j.bbadis.2023.166798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that manifests its pathology through synaptic damage, mitochondrial abnormalities, microRNA deregulation, hormonal imbalance, increased astrocytes & microglia, accumulation of amyloid β (Aβ) and phosphorylated Tau in the brains of AD patients. Despite extensive research, the effective treatment of AD is still unknown. Tau hyperphosphorylation and mitochondrial abnormalities are involved in the loss of synapses, defective axonal transport and cognitive decline in patients with AD. Mitochondrial dysfunction is evidenced by enhanced mitochondrial fragmentation, impaired mitochondrial dynamics, mitochondrial biogenesis and defective mitophagy in AD. Hence, targeting mitochondrial proteins might be a promising therapeutic strategy in treating AD. Recently, dynamin-related protein 1 (Drp1), a mitochondrial fission protein, has gained attention due to its interactions with Aβ and hyperphosphorylated Tau, altering mitochondrial morphology, dynamics, and bioenergetics. These interactions affect ATP production in mitochondria. A reduction in Drp1 GTPase activity protects against neurodegeneration in AD models. This article provides a comprehensive overview of Drp1's involvement in oxidative damage, apoptosis, mitophagy, and axonal transport of mitochondria. We also highlighted the interaction of Drp1 with Aβ and Tau, which may contribute to AD progression. In conclusion, targeting Drp1 could be a potential therapeutic approach for preventing AD pathology.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| | - Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | | - Arti Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
6
|
Posey AE, Bagheri M, Ross KA, Lanum EN, Khan MA, Jennings CM, Harwig MC, Kennedy NW, Hilser VJ, Harden JL, Hill RB. The variable domain from the mitochondrial fission mechanoenzyme Drp1 promotes liquid-liquid phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542732. [PMID: 37398258 PMCID: PMC10312466 DOI: 10.1101/2023.05.29.542732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" (VD) important for regulation. For the mitochondrial fission dynamin, Drp1, a regulatory role for the VD is demonstrated by mutations that can elongate, or fragment, mitochondria. How the VD encodes inhibitory and stimulatory activity is unclear. Here, isolated VD is shown to be intrinsically disordered (ID) yet undergoes a cooperative transition in the stabilizing osmolyte TMAO. However, the TMAO stabilized state is not folded and surprisingly appears as a condensed state. Other co-solutes including known molecular crowder Ficoll PM 70, also induce a condensed state. Fluorescence recovery after photobleaching experiments reveal this state to be liquid-like indicating the VD undergoes a liquid-liquid phase separation under crowding conditions. These crowding conditions also enhance binding to cardiolipin, a mitochondrial lipid, raising the possibility that phase separation may enable rapid tuning of Drp1 assembly necessary for fission.
Collapse
|
7
|
Rosdah AA, Smiles WJ, Oakhill JS, Scott JW, Langendorf CG, Delbridge LMD, Holien JK, Lim SY. New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacol Ther 2020; 213:107594. [PMID: 32473962 DOI: 10.1016/j.pharmthera.2020.107594] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are dynamic organelles constantly undergoing fusion and fission. A concerted balance between the process of mitochondrial fusion and fission is required to maintain cellular health under different physiological conditions. Mutation and dysregulation of Drp1, the major driver of mitochondrial fission, has been associated with various neurological, oncological and cardiovascular disorders. Moreover, when subjected to pathological insults, mitochondria often undergo excessive fission, generating fragmented and dysfunctional mitochondria leading to cell death. Therefore, manipulating mitochondrial fission by targeting Drp1 has been an appealing therapeutic approach for cytoprotection. However, studies have been inconsistent. Studies employing Drp1 constructs representing alternate Drp1 isoforms, have demonstrated differing impacts of these isoforms on mitochondrial fission and cell death. Furthermore, there are distinct expression patterns of Drp1 isoforms in different tissues, suggesting idiosyncratic engagement in specific cellular functions. In this review, we will discuss these inherent variations among human Drp1 isoforms and how they could affect Drp1-mediated mitochondrial fission and cell death.
Collapse
Affiliation(s)
- Ayeshah A Rosdah
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia; Department of Surgery, University of Melbourne, Victoria, Australia
| | - William J Smiles
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia
| | - John W Scott
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia; Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Christopher G Langendorf
- Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Jessica K Holien
- Department of Surgery, University of Melbourne, Victoria, Australia; Structural Bioinformatics and Drug Discovery, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Department of Surgery, University of Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Pejman S, Riazi G, Pooyan S, Lanjanian H. Peptide LIQ Promotes Cell Protection against Zinc-Induced Cytotoxicity through Microtubule Stabilization. ACS Chem Neurosci 2020; 11:515-534. [PMID: 31972082 DOI: 10.1021/acschemneuro.9b00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stability of the microtubule protein (MTP) network required for its physiological functions is disrupted in the course of neurodegenerative disorders. Thus, the design of novel therapeutic approaches for microtubule stabilization is a focus of intensive study. Dynamin-related protein-1 (Drp1) is a guanosine triphosphatase (GTPase), which plays a prevailing role in mitochondrial fission. Several isoforms of Drp1 have been identified, of which one of these isoforms (Drp1-x01) has been previously described with MTP stabilizing activity. Here, we synthesized peptide LIQ, an 11-amino-acid peptide derived from the Drp1-x01 isoform, and reported that LIQ could induce tubulin assembly in vitro. Using a Stern-Volmer plot and continuous variation method, we proposed one binding site on tubulin for this peptide. Interestingly, FRET experiment and docking studies showed that LIQ binds the taxol-binding site on β-tubulin. Furthermore, circular dichroism (CD) spectroscopy and 8-anilino-1-naphthalenesulfonic acid (ANS) assay provided data on tubulin structural changes upon LIQ binding that result in formation of more stable tubulin dimers. Flow cytometry analysis and fluorescence microscopy displayed that cellular internalization of 5-FAM-labeled LIQ is attributed to a mechanism that mostly involves endocytosis. In addition, LIQ promoted polymerization of tubulin and stabilized MTP in primary astroglia cells and also protected these cells against zinc toxicity. This excellent feature of cellular neuroprotection by LIQ provides a promising therapeutic approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sina Pejman
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shahriar Pooyan
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Rooyan Darou Pharmaceutical Company, Tehran, Iran
| | - Hossein Lanjanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Pagliuso A, Cossart P, Stavru F. The ever-growing complexity of the mitochondrial fission machinery. Cell Mol Life Sci 2018; 75:355-374. [PMID: 28779209 PMCID: PMC5765209 DOI: 10.1007/s00018-017-2603-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/24/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
The mitochondrial network constantly changes and remodels its shape to face the cellular energy demand. In human cells, mitochondrial fusion is regulated by the large, evolutionarily conserved GTPases Mfn1 and Mfn2, which are embedded in the mitochondrial outer membrane, and by OPA1, embedded in the mitochondrial inner membrane. In contrast, the soluble dynamin-related GTPase Drp1 is recruited from the cytosol to mitochondria and is key to mitochondrial fission. A number of new players have been recently involved in Drp1-dependent mitochondrial fission, ranging from large cellular structures such as the ER and the cytoskeleton to the surprising involvement of the endocytic dynamin 2 in the terminal abscission step. Here we review the recent findings that have expanded the mechanistic model for the mitochondrial fission process in human cells and highlight open questions.
Collapse
Affiliation(s)
- Alessandro Pagliuso
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- U604 Inserm, Paris, France
- USC2020 INRA, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- U604 Inserm, Paris, France
- USC2020 INRA, Paris, France
| | - Fabrizia Stavru
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France.
- U604 Inserm, Paris, France.
- USC2020 INRA, Paris, France.
- SNC5101 CNRS, Paris, France.
| |
Collapse
|
10
|
Balog J, Mehta SL, Vemuganti R. Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab 2016; 36:2022-2033. [PMID: 27677674 PMCID: PMC5363672 DOI: 10.1177/0271678x16671528] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/15/2016] [Accepted: 09/05/2016] [Indexed: 11/15/2022]
Abstract
Mitochondria are dynamically active organelles, regulated through fission and fusion events to continuously redistribute them across axons, dendrites, and synapses of neurons to meet bioenergetics requirements and to control various functions, including cell proliferation, calcium buffering, neurotransmission, oxidative stress, and apoptosis. However, following acute or chronic injury to CNS, altered expression and function of proteins that mediate fission and fusion lead to mitochondrial dynamic imbalance. Particularly, if the fission is abnormally increased through pro-fission mediators such as Drp1, mitochondrial function will be impaired and mitochondria will become susceptible to insertion of proapototic proteins. This leads to the formation of mitochondrial transition pore, which eventually triggers apoptosis. Thus, mitochondrial dysfunction is a major promoter of neuronal death and secondary brain damage after an insult. This review discusses the implications of mitochondrial dynamic imbalance in neuronal death after acute and chronic CNS insults.
Collapse
Affiliation(s)
- Justin Balog
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA .,Neuroscience Training Program, University of Wisconsin, Madison, WI, USA.,Cellular & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, USA.,William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
11
|
Sesaki H, Adachi Y, Kageyama Y, Itoh K, Iijima M. In vivo functions of Drp1: lessons learned from yeast genetics and mouse knockouts. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1179-85. [PMID: 24326103 DOI: 10.1016/j.bbadis.2013.11.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 01/19/2023]
Abstract
Mitochondria grow, divide, and fuse in cells. Mitochondrial division is critical for the maintenance of the structure and function of mitochondria. Alterations in this process have been linked to many human diseases, including peripheral neuropathies and aging-related neurological disorders. In this review, we discuss recent progress in mitochondrial division by focusing on molecular and in vivo analyses of the evolutionarily conserved, central component of mitochondrial division, dynamin-related protein 1 (Drp1), in the yeast and mouse model organisms.
Collapse
Affiliation(s)
- Hiromi Sesaki
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yoshihiro Adachi
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yusuke Kageyama
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kie Itoh
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Strack S, Wilson TJ, Cribbs JT. Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules. ACTA ACUST UNITED AC 2013; 201:1037-51. [PMID: 23798729 PMCID: PMC3691453 DOI: 10.1083/jcb.201210045] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The splice isoform Drp1-x01 promotes mitochondrial fission and is regulated by Cdk phosphorylation-dependent changes in microtubule association. Fission and fusion reactions determine mitochondrial morphology and function. Dynamin-related protein 1 (Drp1) is a guanosine triphosphate–hydrolyzing mechanoenzyme important for mitochondrial fission and programmed cell death. Drp1 is subject to alternative splicing of three exons with previously unknown functional significance. Here, we report that splice variants including the third but excluding the second alternative exon (x01) localized to and copurified with microtubule bundles as dynamic polymers that resemble fission complexes on mitochondria. A major isoform in immune cells, Drp1-x01 required oligomeric assembly and Arg residues in alternative exon 3 for microtubule targeting. Drp1-x01 stabilized and bundled microtubules and attenuated staurosporine-induced mitochondrial fragmentation and apoptosis. Phosphorylation of a conserved Ser residue adjacent to the microtubule-binding exon released Drp1-x01 from microtubules and promoted mitochondrial fragmentation in a splice form–specific manner. Phosphorylation by Cdk1 contributed to dissociation of Drp1-x01 from mitotic microtubules, whereas Cdk5-mediated phosphorylation modulated Drp1-x01 targeting to interphase microtubules. Thus, alternative splicing generates a latent, cytoskeletal pool of Drp1 that is selectively mobilized by cyclin-dependent kinase signaling.
Collapse
Affiliation(s)
- Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, IA 52246, USA.
| | | | | |
Collapse
|
13
|
Zhao J, Lendahl U, Nistér M. Regulation of mitochondrial dynamics: convergences and divergences between yeast and vertebrates. Cell Mol Life Sci 2012; 70:951-76. [PMID: 22806564 PMCID: PMC3578726 DOI: 10.1007/s00018-012-1066-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/20/2022]
Abstract
In eukaryotic cells, the shape of mitochondria can be tuned to various physiological conditions by a balance of fusion and fission processes termed mitochondrial dynamics. Mitochondrial dynamics controls not only the morphology but also the function of mitochondria, and therefore is crucial in many aspects of a cell’s life. Consequently, dysfunction of mitochondrial dynamics has been implicated in a variety of human diseases including cancer. Several proteins important for mitochondrial fusion and fission have been discovered over the past decade. However, there is emerging evidence that there are as yet unidentified proteins important for these processes and that the fusion/fission machinery is not completely conserved between yeast and vertebrates. The recent characterization of several mammalian proteins important for the process that were not conserved in yeast, may indicate that the molecular mechanisms regulating and controlling the morphology and function of mitochondria are more elaborate and complex in vertebrates. This difference could possibly be a consequence of different needs in the different cell types of multicellular organisms. Here, we review recent advances in the field of mitochondrial dynamics. We highlight and discuss the mechanisms regulating recruitment of cytosolic Drp1 to the mitochondrial outer membrane by Fis1, Mff, and MIEF1 in mammals and the divergences in regulation of mitochondrial dynamics between yeast and vertebrates.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden,
| | | | | |
Collapse
|
14
|
Uo T, Dworzak J, Kinoshita C, Inman DM, Kinoshita Y, Horner PJ, Morrison RS. Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons. Exp Neurol 2009; 218:274-85. [PMID: 19445933 PMCID: PMC2733949 DOI: 10.1016/j.expneurol.2009.05.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/02/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
Mitochondria exist as dynamic networks that are constantly remodeled through the opposing actions of fusion and fission proteins. Changes in the expression of these proteins alter mitochondrial shape and size, and may promote or inhibit the propagation of apoptotic signals. Using mitochondrially targeted EGFP or DsRed2 to identify mitochondria, we observed a short, distinctly tubular mitochondrial morphology in postnatal cortical neurons in culture and in retinal ganglion cells in vivo, whereas longer, highly interconnected mitochondrial networks were detected in cortical astrocytes in vitro and non-neuronal cells in the retina in vivo. Differential expression patterns of fusion and fission proteins, in part, appear to determine these morphological differences as neurons expressed markedly high levels of Drp1 and OPA1 proteins compared to non-neuronal cells. This finding was corroborated using optic tissue samples. Moreover, cortical neurons expressed several splice variants of Drp1 including a neuron-specific isoform which incorporates exon 3. Knockdown or dominant-negative interference of endogenous Drp1 significantly increased mitochondrial length in both neurons and non-neuronal cells, but caused cell death only in cortical neurons. Conversely, depletion of the fusion protein, Mfn2, but not Mfn1, caused extensive mitochondrial fission and cell death. Thus, Drp1 and Mfn2 in normal cortical neurons not only regulate mitochondrial morphology, but are also required for cell survival. The present findings point to unique patterns of Drp1 expression and selective vulnerability to reduced levels of Drp1 expression/activity in neurons, and demonstrate that the regulation of mitochondrial dynamics must be tightly regulated in neurons.
Collapse
Affiliation(s)
- Takuma Uo
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, 98195-6470, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Waterham HR, Koster J, van Roermund CWT, Mooyer PAW, Wanders RJA, Leonard JV. A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 2007; 356:1736-41. [PMID: 17460227 DOI: 10.1056/nejmoa064436] [Citation(s) in RCA: 578] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report on a newborn girl with microcephaly, abnormal brain development, optic atrophy and hypoplasia, persistent lactic acidemia, and a mildly elevated plasma concentration of very-long-chain fatty acids. We found a defect of the fission of both mitochondria and peroxisomes, as well as a heterozygous, dominant-negative mutation in the dynamin-like protein 1 gene (DLP1). The DLP1 protein has previously been implicated, in vitro, in the fission of both these organelles. Overexpression of the mutant DLP1 in control cells reproduced the fission defect. Our findings are representative of a class of disease characterized by defects in both mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Hans R Waterham
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Zhu PP, Patterson A, Stadler J, Seeburg DP, Sheng M, Blackstone C. Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Biol Chem 2004; 279:35967-74. [PMID: 15208300 DOI: 10.1074/jbc.m404105200] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian Drp1 is a dynamin-like GTPase required for mitochondrial fission. Although it exists primarily as a cytosolic homo-tetramer in vivo, it can also self-assemble into higher order structures on the mitochondrial outer membrane, where it is required for proper mitochondrial division. Functional studies and sequence comparisons have revealed four different structural domains in Drp1, comprising N-terminal GTP-binding, middle, insert B, and C-terminal GTPase effector (GED) domains. Here we describe an intramolecular interaction within Drp1 between the GED and the N-terminal GTP-binding and middle domains. A point mutation (K679A) within the C-terminal GED domain inhibits this intramolecular association, without affecting the formation of Drp1 tetramers or the intermolecular associations among isolated C-terminal domains. Mutant Drp1 K679A exhibits impaired GTPase activity, and when overexpressed in mammalian cells it decreases mitochondrial division. Sedimentation experiments indicate that the K679A mutation either increases Drp1 complex formation or, more likely, decreases complex disassembly as compared with wild-type Drp1. Taken together, these data suggest that the C-terminal GED domain is important for stimulation of GTPase activity, formation and stability of higher order complexes, and efficient mitochondrial division.
Collapse
Affiliation(s)
- Peng-Peng Zhu
- Cellular Neurology Unit, NINDS, National Institutes of Health, Bethesda, Maryland 20892-3704, USA
| | | | | | | | | | | |
Collapse
|