1
|
Liu H, Xia Y, Li B, Pan J, Lv M, Wang X, An F. Prolyl hydroxylase 3 overexpression accelerates the progression of atherosclerosis in ApoE-/- mice. Biochem Biophys Res Commun 2016; 473:99-106. [PMID: 26995088 DOI: 10.1016/j.bbrc.2016.03.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 01/13/2023]
Abstract
PHD3 belongs to the family of 2-oxoglutarate and iron-dependent dioxygenases and is a critical regulator of HIF-1α. Its expression is increased in cardiovascular diseases such as cardiomyopathy, myocardial ischemia-reperfusion injury, and congestive heart failure. However, the association between PHD3 and atherosclerosis has not been clearly elucidated. In the present study, we investigated the potential effect and mechanism of PHD3 in apolipoprotein E-deficient (ApoE-/-) mice. Murine PHD3 lentivirus and shRNA -PHD3 lentivirus were constructed and injected intravenously into ApoE-/- mice fed on a high fat diet. The aortic atherosclerotic lesion area was larger with PHD3 over-expression. With increased PHD3 levels, macrophages and smooth muscle cells were enhanced. The apoptosis of atherosclerotic plaques revealed an increase when PHD3 was elevated. Furthermore, the expression of intercellular cell adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), monocyte chemotactic protein 1 (MCP-1), interleukin-1beta (IL-1β) and tumor necrosis factor-α(TNF-α) were upregulated with PHD3 over-expression. In vitro, we explored the specific signaling pathway of PHD3 in HUVECs. PHD3 over-expression is associated with activation of ERK1/2 and JNK phosphorylation of MAPK signaling pathway. PHD3 inhibition decreased the apoptosis of HUVECs treated with ox-LDL (50 μg/ml). Our study suggests that PHD3 is not only a regulator of HIF-1α but also an active participant in atherogenesis.
Collapse
Affiliation(s)
- Hui Liu
- Qilu Hospital of Shandong University, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Jinan, Shandong 250012, China
| | - Yanfei Xia
- Qilu Hospital of Shandong University, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Jinan, Shandong 250012, China
| | - Beibei Li
- Qilu Hospital of Shandong University, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Jinan, Shandong 250012, China
| | - Jinyu Pan
- Qilu Hospital of Shandong University, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Jinan, Shandong 250012, China
| | - Mei Lv
- Qilu Hospital of Shandong University, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Jinan, Shandong 250012, China
| | - Xuyang Wang
- Qilu Hospital of Shandong University, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Jinan, Shandong 250012, China
| | - Fengshuang An
- Qilu Hospital of Shandong University, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Place TL, Domann FE. Prolyl-hydroxylase 3: Evolving Roles for an Ancient Signaling Protein. HYPOXIA 2013; 2013:13-17. [PMID: 24672806 PMCID: PMC3963164 DOI: 10.2147/hp.s50091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability of cells to sense oxygen is a highly evolved process that facilitates adaptations to the local oxygen environment and is critical to energy homeostasis. In vertebrates, this process is largely controlled by three intracellular prolyl-4-hydroxylases (PHD) 1–3. These related enzymes share the ability to hydroxylate the hypoxia-inducible transcription factor (HIF), and therefore control the transcription of genes involved in metabolism and vascular recruitment. However, it is becoming increasingly apparent that PHD controls much more than HIF signaling, with PHD3 emerging as an exceptionally unique and functionally diverse PHD isoform. In fact, PHD3-mediated hydroxylation has recently been purported to function in such diverse roles as sympathetic neuronal and muscle development, sepsis, glycolytic metabolism, and cell fate. PHD3 expression is also highly distinct from that of the other PHD enzymes, and varies considerably between different cell types and oxygen concentrations. This review will examine the evolution of oxygen sensing by the HIF family of PHD enzymes, with a specific focus on the complex nature of PHD3 expression and function in mammalian cells.
Collapse
Affiliation(s)
- Trenton L Place
- Molecular and Cellular Biology Program, The University of Iowa, Iowa City, Iowa, USA
| | - Frederick E Domann
- Molecular and Cellular Biology Program, The University of Iowa, Iowa City, Iowa, USA ; Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Corcoran A, O'Connor JJ. Hypoxia-inducible factor signalling mechanisms in the central nervous system. Acta Physiol (Oxf) 2013; 208:298-310. [PMID: 23692777 DOI: 10.1111/apha.12117] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/01/2013] [Accepted: 05/16/2013] [Indexed: 12/22/2022]
Abstract
In the CNS, neurones are highly sensitive to the availability of oxygen. In conditions where oxygen availability is decreased, neuronal function can be altered, leading to injury and cell death. Hypoxia has been implicated in a number of central nervous system pathologies including stroke, head trauma and neurodegenerative diseases. Cellular responses to oxygen deprivation are complex and result in activation of short- and long-term mechanisms to conserve energy and protect cells. Failure of synaptic transmission can be observed within minutes following this hypoxia. The acute effects of hypoxia on synaptic transmission are primarily mediated by altering ion fluxes across membranes, pre-synaptic effects of adenosine and other actions at glutamatergic receptors. A more long-term feature of the response of neurones to hypoxia is the activation of transcription factors such as hypoxia-inducible factor. The activation of hypoxia-inducible factor is governed by a family of dioxygenases called hypoxia-inducible factor prolyl 4 hydroxylases (PHDs). Under hypoxic conditions, PHD activity is inhibited, thereby allowing hypoxia-inducible factor to accumulate and translocate to the nucleus, where it binds to the hypoxia-responsive element sequences of target gene promoters. Inhibition of PHD activity stabilizes hypoxia-inducible factor and other proteins thus acting as a neuroprotective agent. This review will focus on the response of neuronal cells to hypoxia-inducible factor and its targets, including the prolyl hydroxylases. We also present evidence for acute effects of PHD inhibition on synaptic transmission and plasticity in the hippocampus.
Collapse
Affiliation(s)
- A. Corcoran
- UCD School of Biomolecular and Biomedical Science; UCD Conway Institute of Biomolecular and Biomedical Research; UniversityCollege Dublin; Dublin; Ireland
| | - J. J. O'Connor
- UCD School of Biomolecular and Biomedical Science; UCD Conway Institute of Biomolecular and Biomedical Research; UniversityCollege Dublin; Dublin; Ireland
| |
Collapse
|
4
|
Sen Banerjee S, Thirunavukkarasu M, Tipu Rishi M, Sanchez JA, Maulik N, Maulik G. HIF-prolyl hydroxylases and cardiovascular diseases. Toxicol Mech Methods 2012; 22:347-58. [PMID: 22424133 DOI: 10.3109/15376516.2012.673088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prolyl hydroxylases belong to the family of iron- and 2-oxoglutamate-dependent dioxygenase enzyme. Several distinct prolyl hydroxylases have been identified. The hypoxia-inducible factor (HIF) prolyl hydroxylase termed prolyl hydroxylase domain (PHD) enzymes play an important role in oxygen regulation in the physiological network. There are three isoforms that have been identified: PHD1, PHD2 and PHD3. Deletion of PHD enzymes result in stabilization of HIFs and offers potential treatment options for many ischemic disorders such as peripheral arterial occlusive disease, myocardial infarction, and stroke. All three isoforms are oxygen sensors that regulate the stability of HIFs. The degradation of HIF-1α is regulated by hydroxylation of the 402/504 proline residue by PHDs. Under hypoxic conditions, lack of oxygen causes hydroxylation to cease HIF-1α stabilization and subsequent translocation to the nucleus where it heterodimerizes with the constitutively expressed β subunit. Binding of the HIF-heterodimer to specific DNA sequences, named hypoxia-responsive elements, triggers the transactivation of target genes. PHD regulation of HIF-1α-mediated cardioprotection has resulted in considerable interest in these molecules as potential therapeutic targets in cardiovascular and ischemic diseases. In recent years, attention has been directed towards identifying small molecule inhibitors of PHD. It is postulated that such inhibition might lead to a clinically useful strategy for protecting the myocardium against ischemia and reperfusion injury. Recently, it has been reported that the orally absorbed PHD inhibitor GSK360A can modulate HIF-1α signaling and protect the failing heart following myocardial infarction. Furthermore, PHD1 deletion has been found to have beneficial effects through an increase in tolerance to hypoxia of skeletal muscle by reprogramming basal metabolism. In the mouse liver, such deletion has resulted in protection against ischemia and reperfusion. As a result of these preliminary findings, PHDs is attracting increasing interest as potential therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Sucharita Sen Banerjee
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Vogel S, Wottawa M, Farhat K, Zieseniss A, Schnelle M, Le-Huu S, von Ahlen M, Malz C, Camenisch G, Katschinski DM. Prolyl hydroxylase domain (PHD) 2 affects cell migration and F-actin formation via RhoA/rho-associated kinase-dependent cofilin phosphorylation. J Biol Chem 2010; 285:33756-63. [PMID: 20801873 DOI: 10.1074/jbc.m110.132985] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells are responding to hypoxia via prolyl-4-hydroxylase domain (PHD) enzymes, which are responsible for oxygen-dependent hydroxylation of the hypoxia-inducible factor (HIF)-1α subunit. To gain further insight into PHD function, we generated knockdown cell models for the PHD2 isoform, which is the main isoform regulating HIF-1α hydroxylation and thus stability in normoxia. Induction of a PHD2 knockdown in tetracycline-inducible HeLa PHD2 knockdown cells resulted in increased F-actin formation as detected by phalloidin staining. A similar effect could be observed in the stably transfected PHD2 knockdown cell clones 1B6 and 3B7. F-actin is at least in part responsible for shaping cell morphology as well as regulating cell migration. Cell migration was impaired significantly as a consequence of PHD2 knockdown in a scratch assay. Mechanistically, PHD2 knockdown resulted in activation of the RhoA (Ras homolog gene family member A)/Rho-associated kinase pathway with subsequent phosphorylation of cofilin. Because cofilin phosphorylation impairs its actin-severing function, this may explain the F-actin phenotype, thereby providing a functional link between PHD2-dependent signaling and cell motility.
Collapse
Affiliation(s)
- Sabine Vogel
- Department of Cardiovascular Physiology, Universitätsmedizin Göttingen, Georg-August University Göttingen, D-37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Katschinski DM. In vivo functions of the prolyl-4-hydroxylase domain oxygen sensors: direct route to the treatment of anaemia and the protection of ischaemic tissues. Acta Physiol (Oxf) 2009; 195:407-14. [PMID: 19183336 DOI: 10.1111/j.1748-1716.2008.01952.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The prolyl-4-hydroxylase domain (PHD) 1-3 enzymes have been identified based on their ability to regulate the stability of hypoxia-inducible factor alpha subunits and thus to modify hypoxia-inducible gene expression. Transgenic mouse models provided insights into the isoform-specific functions of these oxygen sensors with physiological implications for angiogenesis, erythropoiesis/oxygen transport, cardiovascular function, metabolism and tissue homeostasis. This knowledge is important for the ongoing development of small molecule PHD inhibitors that are currently tested in preclinical and clinical trials for the treatment of anaemia and for cytoprotection. This review aims at summarizing the insights obtained from key mouse knock-out models as well as first experiences in the therapeutic application of PHD inhibitors.
Collapse
Affiliation(s)
- D M Katschinski
- Department of Cardiovascular Physiology, Georg-August University of Göttingen, Germany.
| |
Collapse
|
7
|
Köditz J, Nesper J, Wottawa M, Stiehl DP, Camenisch G, Franke C, Myllyharju J, Wenger RH, Katschinski DM. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 2007; 110:3610-7. [PMID: 17684156 DOI: 10.1182/blood-2007-06-094441] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AbstractThe activating transcription factor-4 (ATF-4) is translationally induced under anoxic conditions, mediates part of the unfolded protein response following endoplasmic reticulum (ER) stress, and is a critical regulator of cell fate. Here, we identified the zipper II domain of ATF-4 to interact with the oxygen sensor prolyl-4-hydroxylase domain 3 (PHD3). The PHD inhibitors dimethyloxalylglycine (DMOG) and hypoxia, or proteasomal inhibition, all induced ATF-4 protein levels. Hypoxic induction of ATF-4 was due to increased protein stability, but was independent of the ubiquitin ligase von Hippel–Lindau protein (pVHL). A novel oxygen-dependent degradation (ODD) domain was identified adjacent to the zipper II domain. Mutations of 5 prolyl residues within this ODD domain or siRNA-mediated down-regulation of PHD3, but not of PHD2, was sufficient to stabilize ATF-4 under normoxic conditions. These data demonstrate that PHD-dependent oxygen-sensing recruits both the hypoxia-inducible factor (HIF) and ATF-4 systems, and hence not only confers adaptive responses but also cell fate decisions.
Collapse
Affiliation(s)
- Jens Köditz
- Department of Heart and Circulatory Physiology, Center of Physiology and Pathophysiology, Georg-August University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rohrbach S, Simm A, Pregla R, Franke C, Katschinski DM. Age-dependent increase of prolyl-4-hydroxylase domain (PHD) 3 expression in human and mouse heart. Biogerontology 2006; 6:165-71. [PMID: 16041620 DOI: 10.1007/s10522-005-7950-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The hypoxia-inducible factor (HIF)-1 is a master transcriptional activator of oxygen-regulated genes involved in energy metabolism, angiogenesis, and erythropoiesis. HIF-1 is composed of the two subunits HIF-1alpha and HIF-1beta (also called ARNT). The destruction of HIF-1alpha in the presence of oxygen is initiated by prolyl-4-hydroxylation. In human cells three closely related prolyl hydroxylases (PHDs) have been identified. An age-dependent decrease in HIF-1alpha expression was reported previously in brain, liver and kidney, which may be associated with a reduced adaptation to hypoxia as found in aged animals and humans. We have determined the expression of HIF-1alpha and the PHDs in human atrial trabeculae under normoxic and hypoxic conditions, in samples of human left ventricles as well as in heart extracts from female mice of different age (5 up to 16 months). With increasing age we found a decreased expression of HIF-1alpha, which correlated to an increased PHD3 expression in mouse and human heart. PHD3 was the most prominent HIF modifying hydroxylase found in human heart samples. Additionally, we found a strong ischemia/hypoxia-inducibility of PHD3 compared to PHD1 and PHD2 in atrial trabeculae. These data may explain the previously reported reduction of HIF-1alpha and HIF-1 target genes such as the vascular endothelial growth factor in ageing tissue.
Collapse
Affiliation(s)
- Susanne Rohrbach
- Institute of Pathophysiology, Martin-Luther University Halle, Germany
| | | | | | | | | |
Collapse
|
9
|
Hopfer U, Hopfer H, Jablonski K, Stahl RAK, Wolf G. The Novel WD-repeat Protein Morg1 Acts as a Molecular Scaffold for Hypoxia-inducible Factor Prolyl Hydroxylase 3 (PHD3). J Biol Chem 2006; 281:8645-55. [PMID: 16407229 DOI: 10.1074/jbc.m513751200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1), a transcriptional complex composed of an oxygen-sensitive alpha- and a beta-subunit, plays a pivotal role in cellular adaptation to low oxygen availability. Under normoxia, the alpha-subunit of HIF-1 is hydroxylated by a family of prolyl hydroxylases (PHDs) and consequently targeted for proteasomal degradation. Three different PHDs have been identified, but the difference among their in vivo roles remain unclear. PHD3 is strikingly expressed by hypoxia, displays high substrate specificity, and has been identified in other signaling pathways. PHD3 may therefore hydroxylate divergent substrates and/or connect divergent cellular responses with HIF. We identified a novel WD-repeat protein, recently designated Morg1 (MAPK organizer 1), by screening a cDNA library with yeast two-hybrid assays. The interaction between PHD3 and Morg1 was confirmed in vitro and in vivo. We found seven WD-repeat domains by cloning the full-length cDNA of Morg1. By confocal microscopy both proteins co-localize within the cytoplasm and the nucleus and display a similar tissue expression pattern in Northern blots. Binding occurs at a conserved region predicted to the top surface of one propeller blade. Finally, HIF-mediated reporter gene activity is decreased by Morg1 and reduced to basal levels when Morg1 is co-expressed with PHD3. Suppression of Morg1 or PHD3 by stealth RNA leads to a marked increase of HIF-1 activity. These results indicate that Morg1 specifically interacts with PHD3 most likely by acting as a molecular scaffold. This interaction may provide a molecular framework between HIF regulation and other signaling pathways.
Collapse
Affiliation(s)
- Ulrike Hopfer
- Department of Medicine, University of Hamburg, Martinistr. 52, D-20246 Hamburg.
| | | | | | | | | |
Collapse
|
10
|
Demyanenko GP, Halberstadt AI, Pryzwansky KB, Werner C, Hofmann F, Maness PF. Abnormal neocortical development in mice lacking cGMP-dependent protein kinase I. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:1-8. [PMID: 16154207 DOI: 10.1016/j.devbrainres.2005.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/21/2005] [Accepted: 07/23/2005] [Indexed: 11/28/2022]
Abstract
Cyclic GMP-dependent protein kinase type I (cGKI) is a key signaling intermediate important for synaptic potentiation in the hippocampus and cerebellum, but its expression and function in cortical development have not been elucidated. The expression of cGKI in the developing mouse neocortex was evaluated by immunofluorescence labeling, and effect of cGKI deletion on cortical development was studied in adult cGKI knockout mice. cGKI was expressed at highest levels at embryonic stages in young neurons and radial glial fibers, corresponding to the major period of radial migration and laminar development of pyramidal neurons (embryonic day E13.5-E14.5), declining upon maturation (E17.5-postnatal day P28). The cerebral cortex of homozygous null mutant mice lacking cGKI exhibited heterotopic collections of neurons in the upper cortical layers and abnormal invaginations of layer I, in accord with a neuronal migration or positioning defect. Some cGKI mutant mice displayed defects in midline development resulting in partial fusion of cerebral hemispheres with adjacent neuronal heterotopias. Apical dendrites of cortical pyramidal neurons were misoriented in the cerebral cortex of cGKI null mutants, as shown in reporter mice expressing yellow fluorescent protein in layer V pyramidal neurons and by Golgi impregnation. These results demonstrate a role for cGKI signaling in cortical development related to neuronal migration/positioning that is important for dendritic orientation and connectivity.
Collapse
Affiliation(s)
- Galina P Demyanenko
- Department of Biochemistry and Biophysics CB#7260, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
11
|
Pescador N, Cuevas Y, Naranjo S, Alcaide M, Villar D, Landázuri M, del Peso L. Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J 2005; 390:189-97. [PMID: 15823097 PMCID: PMC1184574 DOI: 10.1042/bj20042121] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low oxygen levels induce an adaptive response in cells through the activation of HIFs (hypoxia-inducible factors). These transcription factors are mainly regulated by a group of proline hydroxylases that, in the presence of oxygen, target HIF for degradation. The expression of two such enzymes, EGLN1 [EGL nine homologous protein 1, where EGL stands for egg laying defective (Caenorhabditis elegans gene)] and EGLN3, is induced by hypoxia through a negative feedback loop, and we have demonstrated recently that hypoxic induction of EGLN expression is HIF-dependent. In the present study, we have identified an HRE (hypoxia response element) in the region of the EGLN3 gene using a combination of bioinformatics and biological approaches. Initially, we isolated a number of HRE consensus sequences in a region of 40 kb around the human EGLN3 gene and studied their evolutionary conservation. Subsequently, we examined the functionality of the conserved HRE sequences in reporter and chromatin precipitation assays. One of the HREs, located within a conserved region of the first intron of the EGLN3 gene 12 kb downstream of the transcription initiation site, bound HIF in vivo. Furthermore, this sequence was able to drive reporter gene expression under conditions of hypoxia in an HRE-dependent manner. Indeed, we were able to demonstrate that HIF was necessary and sufficient to induce gene expression from this enhancer sequence.
Collapse
Affiliation(s)
- Nuria Pescador
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | - Yolanda Cuevas
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | - Salvador Naranjo
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | - Marisa Alcaide
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
- †Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Diego de León 62, 28006 Madrid, Spain
| | - Diego Villar
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | - Manuel O. Landázuri
- †Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Diego de León 62, 28006 Madrid, Spain
| | - Luis del Peso
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
- To whom correspondence should be addressed (email or )
| |
Collapse
|
12
|
Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP, Farese RV, Freeman RS, Carter BD, Kaelin WG, Schlisio S. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 2005; 8:155-67. [PMID: 16098468 DOI: 10.1016/j.ccr.2005.06.015] [Citation(s) in RCA: 400] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 04/29/2005] [Accepted: 06/07/2005] [Indexed: 01/11/2023]
Abstract
Germline NF1, c-RET, SDH, and VHL mutations cause familial pheochromocytoma. Pheochromocytomas derive from sympathetic neuronal precursor cells. Many of these cells undergo c-Jun-dependent apoptosis during normal development as NGF becomes limiting. NF1 encodes a GAP for the NGF receptor TrkA, and NF1 mutations promote survival after NGF withdrawal. We found that pheochromocytoma-associated c-RET and VHL mutations lead to increased JunB, which blunts neuronal apoptosis after NGF withdrawal. We also found that the prolyl hydroxylase EglN3 acts downstream of c-Jun and is specifically required among the three EglN family members for apoptosis in this setting. Moreover, EglN3 proapoptotic activity requires SDH activity because EglN3 is feedback inhibited by succinate. These studies suggest that failure of developmental apoptosis plays a role in pheochromocytoma pathogenesis.
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Brahimi-Horn MC, Pouysségur J. The hypoxia-inducible factor and tumor progression along the angiogenic pathway. ACTA ACUST UNITED AC 2005; 242:157-213. [PMID: 15598469 DOI: 10.1016/s0074-7696(04)42004-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hypoxia-inducible factor (HIF) is a transcription factor that plays a key role in the response of cells to oxygen levels. HIF is a heterodimer of alpha- and beta-subunits where the alpha-subunit is translated constitutively but has a very short half-life under normal oxygen concentrations. Negative regulation of the half-life and activity of the alpha-subunit is dependent on its posttranslational hydroxylation by hydroxylases that are dependent on oxygen for activity. Thus under low oxygen (hypoxic) conditions the hydroxylases are inactive and the alpha-subunit is stable and able to interact with the beta-subunit to bind and induce transcription of target genes. Hypoxic conditions are encountered in development and in disease states such as cancer. Tumors that have outstripped their blood supply become hypoxic and express high levels of HIF. HIF in turn targets genes that induce survival, glycolysis, and angiogenesis, a form of neovascularization, which ensures the tumor with a continued supply of oxygen and nutrients for further growth.
Collapse
Affiliation(s)
- M Christiane Brahimi-Horn
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre A. Lacassagne, 06189 Nice, France
| | | |
Collapse
|