1
|
Lovewell TRJ, McDonagh AJG, Messenger AG, Azzouz M, Tazi-Ahnini R. Meta-Analysis of Autoimmune Regulator-Regulated Genes in Human and Murine Models: A Novel Human Model Provides Insights on the Role of Autoimmune Regulator in Regulating STAT1 and STAT1-Regulated Genes. Front Immunol 2018; 9:1380. [PMID: 30002654 PMCID: PMC6031710 DOI: 10.3389/fimmu.2018.01380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Autoimmune regulator (AIRE) regulates promiscuous expression of tissue-restricted antigens in medullary epithelial cells (mTEC) of the thymus. To understand the diverse effects of AIRE, it is crucial to elucidate the molecular mechanisms underlying the process of AIRE-regulated gene expression. In this study, we generated a recombinant AIRE expression variant of the TEC 1A3 human cell line, TEC 1A3 AIREhi, to determine genes targeted by AIRE, and using microarray analysis, we identified 482 genes showing significant differential expression (P < 0.05; false discovery rate <5%), with 353 upregulated and 129 downregulated by AIRE expression. Microarray data were validated by quantitative PCR, confirming the differential expression of 12 known AIRE-regulated genes. Comparison of AIRE-dependent differential expression in our cell line model with murine datasets identified 447 conserved genes with a number of transcription regulatory interactions, forming several key nodes, including STAT1, which had over 30 interactions with other AIRE-regulated genes. As STAT1 mutations cause dominant chronic mucocutaneous candidiasis and decreased STAT1 levels in monocytes of autoimmune polyglandular syndrome 1 (APS-1) patients, it was important to further characterize AIRE-STAT1 interactions. TEC 1A3AIREhi were treated with the STAT1 phosphorylation inhibitors fludarabine and LLL3 showed that phosphorylated STAT1 (p-STAT1) was not responsible for any of the observed differential expression. Moreover, treatment of TEC 1A3 AIREhi with STAT1 shRNA did not induce any significant variation in the expression of unphosphorylated STAT1 (U-STAT1) downstream genes, suggesting that these genes were directly regulated by AIRE but not via U-STAT1. The novel model system we have developed provides potential opportunities for further analysis of the pathogenesis of (APS-1) and the wider roles of the AIRE gene.
Collapse
Affiliation(s)
- Thomas R. J. Lovewell
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | | | - Andrew G. Messenger
- Department of Dermatology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Rachid Tazi-Ahnini
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
|
3
|
Fujikado N, Mann AO, Bansal K, Romito KR, Ferre EMN, Rosenzweig SD, Lionakis MS, Benoist C, Mathis D. Aire Inhibits the Generation of a Perinatal Population of Interleukin-17A-Producing γδ T Cells to Promote Immunologic Tolerance. Immunity 2016; 45:999-1012. [PMID: 27851927 PMCID: PMC5133707 DOI: 10.1016/j.immuni.2016.10.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 08/02/2016] [Accepted: 08/22/2016] [Indexed: 01/13/2023]
Abstract
Aire's primary mechanism of action is to regulate transcription of a battery of genes in medullary thymic epithelial cells (mTECs) and, consequently, negative selection of effector T cells and positive selection of regulatory T cells. We found that Aire-deficient mice had expanded thymic and peripheral populations of perinatally generated IL-17A+Vγ6+Vδ1+ T cells, considered to be "early responders" to tissue stress and drivers of inflammatory reactions. Aire-dependent control of Il7 expression in mTECs regulated the size of thymic IL-17A+Vγ6+Vδ1+ compartments. In mice lacking Aire and γδ T cells, certain tissues typically targeted in the "Aire-less" disease, notably the retina, were only minimally infiltrated. IL-17A+Vγ6+Vδ1+ cells were present in the retina of wild-type mice and expanded very early in Aire-deficient mice. A putatively parallel population of IL-17A+Vγ9+Vδ2+ T cells was increased in humans lacking Aire. Thus, Aire exerts multi-faceted autoimmune control that extends to a population of innate-like T cells.
Collapse
Affiliation(s)
- Noriyuki Fujikado
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander O Mann
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kushagra Bansal
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly R Romito
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Elise M N Ferre
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Incani F, Cossu C, Meloni A, Faà V, Serra ML, Dettori F, Meloni A, Rosatelli MC. β-defensin CNV is not associated with susceptibility to Candida albicans infections in Sardinian APS I patients. J Oral Pathol Med 2016; 46:393-397. [PMID: 27682444 DOI: 10.1111/jop.12506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether a variation in the genomic copy number (CNV) of the β-defensin cluster could be associated with the pre-disposition to chronic mucocutaneous candidiasis (CMC) in Sardinian APECED patients. SUBJECTS AND METHODS The β-defensin copy number variation was determined by MLPA analysis in 18 Sardinian APECED patients with CMC and in 21 Sardinian controls. Statistical analyses were performed with one-way ANOVA test. RESULTS No statistically significant results were observed between the patients and controls groups. CONCLUSIONS According to the results we have obtained, it appears that either β-defensin genomic CNV is not a modifier locus for CMC susceptibility in APECED patients, or any effect is too small for it to be detected using such sample size. An extensive study on APECED patients from different geographical areas might reveal the real implication of the β-defensin CNV in the susceptibility to Candida albicans infections.
Collapse
Affiliation(s)
- Federica Incani
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, Cagliari, Italy
| | - Carla Cossu
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, Cagliari, Italy
| | - Alessandra Meloni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, c/o Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Valeria Faà
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, c/o Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Maria Luisa Serra
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, Cagliari, Italy
| | - Federico Dettori
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, Cagliari, Italy
| | - Antonella Meloni
- Clinica pediatrica II, Ospedale Pediatrico Microcitemico 'Antonio Cao', Cagliari, Italy
| | - Maria Cristina Rosatelli
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, Cagliari, Italy
| |
Collapse
|
5
|
Radhakrishnan K, Bhagya KP, Kumar AT, Devi AN, Sengottaiyan J, Kumar PG. Autoimmune Regulator (AIRE) Is Expressed in Spermatogenic Cells, and It Altered the Expression of Several Nucleic-Acid-Binding and Cytoskeletal Proteins in Germ Cell 1 Spermatogonial (GC1-spg) Cells. Mol Cell Proteomics 2016; 15:2686-98. [PMID: 27281783 PMCID: PMC4974344 DOI: 10.1074/mcp.m115.052951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 05/24/2016] [Indexed: 11/06/2022] Open
Abstract
Autoimmune regulator (AIRE) is a gene associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed heavily in the thymic epithelial cells and is involved in maintaining self-tolerance through regulating the expression of tissue-specific antigens. The testes are the most predominant extrathymic location where a heavy expression of AIRE is reported. Homozygous Aire-deficient male mice were infertile, possibly due to impaired spermatogenesis, deregulated germ cell apoptosis, or autoimmunity. We report that AIRE is expressed in the testes of neonatal, adolescent, and adult mice. AIRE expression was detected in glial cell derived neurotrophic factor receptor alpha (GFRα)(+) (spermatogonia), GFRα(-)/synaptonemal complex protein (SCP3)(+) (meiotic), and GFRα(-)/Phosphoglycerate kinase 2 (PGK2)(+) (postmeiotic) germ cells in mouse testes. GC1-spg, a germ-cell-derived cell line, did not express AIRE. Retinoic acid induced AIRE expression in GC1-spg cells. Ectopic expression of AIRE in GC1-spg cells using label-free LC-MS/MS identified a total of 371 proteins that were differentially expressed. 100 proteins were up-regulated, and 271 proteins were down-regulated. Data are available via ProteomeXchange with identifier PXD002511. Functional analysis of the differentially expressed proteins showed increased levels of various nucleic-acid-binding proteins and transcription factors and a decreased level of various cytoskeletal and structural proteins in the AIRE overexpressing cells as compared with the empty vector-transfected controls. The transcripts of a select set of the up-regulated proteins were also elevated. However, there was no corresponding decrease in the mRNA levels of the down-regulated set of proteins. Molecular function network analysis indicated that AIRE influenced gene expression in GC1-spg cells by acting at multiple levels, including transcription, translation, RNA processing, protein transport, protein localization, and protein degradation, thus setting the foundation in understanding the functional role of AIRE in germ cell biology.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- From the §Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Kongattu P Bhagya
- From the §Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Anil Tr Kumar
- From the §Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Anandavalli N Devi
- From the §Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Jeeva Sengottaiyan
- From the §Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Pradeep G Kumar
- From the §Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| |
Collapse
|
6
|
Lovewell T, Tazi-Ahnini R. Models to explore the molecular function and regulation of AIRE. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2011. [DOI: 10.1016/j.ejmhg.2011.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Ko HJ, Kinkel SA, Hubert FX, Nasa Z, Chan J, Siatskas C, Hirubalan P, Toh BH, Scott HS, Alderuccio F. Transplantation of autoimmune regulator-encoding bone marrow cells delays the onset of experimental autoimmune encephalomyelitis. Eur J Immunol 2010; 40:3499-509. [PMID: 21108470 DOI: 10.1002/eji.201040679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/12/2010] [Accepted: 09/02/2010] [Indexed: 01/04/2023]
Abstract
The autoimmune regulator (AIRE) promotes "promiscuous" expression of tissue-restricted antigens (TRA) in thymic medullary epithelial cells to facilitate thymic deletion of autoreactive T-cells. Here, we show that AIRE-deficient mice showed an earlier development of myelin oligonucleotide glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). To determine the outcome of ectopic Aire expression, we used a retroviral transduction system to over-express Aire in vitro, in cell lines and in bone marrow (BM). In the cell lines that included those of thymic medullary and dendritic cell origin, ectopically expressed Aire variably promoted expression of TRA including Mog and Ins2 (proII) autoantigens associated, respectively, with the autoimmune diseases multiple sclerosis and type 1 diabetes. BM chimeras generated from BM transduced with a retrovirus encoding Aire displayed elevated levels of Mog and Ins2 expression in thymus and spleen. Following induction of EAE with MOG(35-55), transplanted mice displayed significant delay in the onset of EAE compared with control mice. To our knowledge, this is the first example showing that in vivo ectopic expression of AIRE can modulate TRA expression and alter autoimmune disease development.
Collapse
Affiliation(s)
- Hyun-Ja Ko
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Mutations in the transcriptional regulator, Aire, cause APECED, a polyglandular autoimmune disease with monogenic transmission. Animal models of APECED have revealed that Aire plays an important role in T cell tolerance induction in the thymus, mainly by promoting ectopic expression of a large repertoire of transcripts encoding proteins normally restricted to differentiated organs residing in the periphery. The absence of Aire results in impaired clonal deletion of self-reactive thymocytes, which escape into the periphery and attack a variety of organs. In addition, Aire is a proapoptotic factor, expressed at the final maturation stage of thymic medullary epithelial cells, a function that may promote cross-presentation of the antigens encoded by Aire-induced transcripts in these cells. Transcriptional regulation by Aire is unusual in being very broad, context-dependent, probabilistic, and noisy. Structure/function analyses and identification of its interaction partners suggest that Aire may impact transcription at several levels, including nucleosome displacement during elongation and transcript splicing or other aspects of maturation.
Collapse
Affiliation(s)
- Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; and the Harvard Stem Cell Institute, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
9
|
Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol 2008; 8:948-57. [PMID: 19008896 PMCID: PMC2785478 DOI: 10.1038/nri2450] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The negative selection of T cells in the thymus is necessary for the maintenance of self tolerance. Medullary thymic epithelial cells have a key function in this process as they express a large number of tissue-specific self antigens that are presented to developing T cells. Mutations in the autoimmune regulator (AIRE) protein cause a breakdown of central tolerance that is associated with decreased expression of self antigens in the thymus. In this Review, we discuss the role of AIRE in the thymus and recent advances in our understanding of how AIRE might function at the molecular level to regulate gene expression.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of General and Molecular Pathology, University of Tartu, Tartu 5O411, Estonia.
| | | | | |
Collapse
|
10
|
Meager A, Peterson P, Willcox N. Hypothetical review: thymic aberrations and type-I interferons; attempts to deduce autoimmunizing mechanisms from unexpected clues in monogenic and paraneoplastic syndromes. Clin Exp Immunol 2008; 154:141-51. [PMID: 18727623 DOI: 10.1111/j.1365-2249.2008.03739.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In sporadic autoimmune disorders, dendritic cells are increasingly being incriminated as agents provocateurs. However, the mechanisms and any 'danger signals' that induce them to autoimmunize remain enigmatic. Here, we focus on unexpected clues from two prototypic/ highly informative autoimmune syndromes, acquired thymoma-associated myasthenia gravis and the monogenic autoimmune polyendocrine syndrome type-1 (APS1), caused by mutations in the AutoImmune Regulator (AIRE). Both involve the thymus, and in both we find early, persistent, highly prevalent and high-titre neutralizing autoantibodies against type-I interferons, regardless of the exact AIRE genotype or the characteristically variable clinical phenotype in APS1. Thus these key innate<-->adaptive immune intermediaries are now implicated in APS1 and paraneoplastic myasthenia as well as in systemic lupus erythematosus and other sporadic autoimmune disorders. The currently accepted notion that autoimmunization proceeds automatically (by 'default') does not explain how, when or where autoimmune responses are initiated against which targets in APS1, or whether exogenous or internal danger signals are involved, or predict whether the primary auto-immunogenic targets are AIRE-dependent. As the parallels between these syndromes must hold novel clues to these puzzles, they demand explanations. To unify these and other findings, we propose that autoimmunization occurs centrally in aberrant thymic environments rendered 'dangerous' by AIRE-deficiency (possibly by excess undegraded nucleic acids/dead cell debris). The ensuing autoreactivity focuses early on the locally abundant type I interferons and then on other peripheral tissue autoantigens that are still expressed despite the absence of AIRE. These ideas raise numerous questions that others may already have the materials to address.
Collapse
Affiliation(s)
- A Meager
- Biotherapeutics, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potter's Bar, Herts, UK
| | | | | |
Collapse
|
11
|
Perniola R, Congedo M, Rizzo A, Damiani AS, Faneschi ML, Pizzolante M, Lobreglio G. Innate and adaptive immunity in patients with autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. Mycoses 2008; 51:228-35. [DOI: 10.1111/j.1439-0507.2007.01475.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Meager A, Visvalingam K, Peterson P, Möll K, Murumägi A, Krohn K, Eskelin P, Perheentupa J, Husebye E, Kadota Y, Willcox N. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med 2006; 3:e289. [PMID: 16784312 PMCID: PMC1475653 DOI: 10.1371/journal.pmed.0030289] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 02/24/2006] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The autoimmune regulator (AIRE) gene influences thymic self-tolerance induction. In autoimmune polyendocrinopathy syndrome type 1 (APS1; OMIM 240300), recessive AIRE mutations lead to autoimmunity targetting endocrine and other epithelial tissues, although chronic candidiasis usually appears first. Autoimmunity and chronic candidiasis can associate with thymomas as well. Patients with these tumours frequently also have high titre immunoglobulin G autoantibodies neutralising type I interferon (IFN)-alpha and IFN-omega, which are secreted signalling proteins of the cytokine superfamily involved in both innate and adaptive immunity. METHODS AND FINDINGS We tested for serum autoantibodies to type I IFNs and other immunoregulatory cytokines using specific binding and neutralisation assays. Unexpectedly, in 60/60 Finnish and 16/16 Norwegian APS1 patients with both AIRE alleles mutated, we found high titre neutralising immunoglobulin G autoantibodies to most IFN-alpha subtypes and especially IFN-omega (60% homologous to IFN-alpha)-mostly in the earliest samples. We found lower titres against IFN-beta (30% homologous to IFN-alpha) in 23% of patients; two-thirds of these (from Finland only) also had low titres against the distantly related "type III IFN" (IFN-lambda1; alias interleukin-29). However, autoantibodies to the unrelated type II IFN, IFN-gamma, and other immunoregulatory cytokines, such as interleukin-10 and interleukin-12, were much rarer and did not neutralise. Neutralising titres against type I IFNs averaged even higher in patients with APS1 than in patients with thymomas. Anti-type I IFN autoantibodies preceded overt candidiasis (and several of the autoimmune disorders) in the informative patients, and persisted for decades thereafter. They were undetectable in unaffected heterozygous relatives of APS1 probands (except for low titres against IFN-lambda1), in APS2 patients, and in isolated cases of the endocrine diseases most typical of APS1, so they appear to be APS1-specific. Looking for potentially autoimmunising cell types, we found numerous IFN-alpha(+) antigen-presenting cells-plus strong evidence of local IFN secretion-in the normal thymic medulla (where AIRE expression is strongest), and also in normal germinal centres, where it could perpetuate these autoantibody responses once initiated. IFN-alpha2 and IFN-alpha8 transcripts were also more abundant in antigen-presenting cells cultured from an APS1 patient's blood than from age-matched healthy controls. CONCLUSIONS These apparently spontaneous autoantibody responses to IFNs, particularly IFN-alpha and IFN-omega, segregate like a recessive trait; their high "penetrance" is especially remarkable for such a variable condition. Their apparent restriction to APS1 patients implies practical value in the clinic, e.g., in diagnosing unusual or prodromal AIRE-mutant patients with only single components of APS1, and possibly in prognosis if they prove to predict its onset. These autoantibody responses also raise numerous questions, e.g., about the rarity of other infections in APS1. Moreover, there must also be clues to autoimmunising mechanisms/cell types in the hierarchy of preferences for IFN-omega, IFN-alpha8, IFN-alpha2, and IFN-beta and IFN-lambda1.
Collapse
Affiliation(s)
- Anthony Meager
- Biotherapeutics, National Institute for Biological Standards and Control, South Mimms, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Martínez López MM, González Casado I, Alvarez Doforno R, Delgado Cerviño E, Gracia Bouthelier R. [AIRE gene mutation in polyglandular syndrome type 1]. An Pediatr (Barc) 2006; 64:583-7. [PMID: 16792967 DOI: 10.1157/13089925] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Autoimmune polyglandular syndrome type 1 (APS-1) is an autosomal recessive disorder characterized by chronic mucocutaneous candidiasis, autoimmune hypoparathyroidism, and primary adrenal insufficiency. It has recently been associated with mutations of a single gene found on chromosome 21, designated AutoImmune Regulator (AIRE). We report two patients with APS-1 referred to our hospital for evaluation. The first patient was an 11-year-old girl with hypoparathyroidism, infectious or immunological malabsorption, and autoimmune hepatitis. Hypoparathyroidism associated with other processes with a probable autoimmune origin suggested APS-1. Genetic study was performed revealing deletion of 13 base pairs in exon 8 of the AIRE gene. The second patient was a 17-year-old girl with autoimmune hepatitis, hypoparathyroidism, mucocutaneous candidiasis, nail dystrophy, and obliterating bronchiolitis with a probable autoimmune origin. We suspected APS-1 and genetic study was performed. The only finding was an AIRE gene polymorphism. In conclusion, the presence of a single disease criterion is sufficient to suspect APS-1 and to indicate genetic study. Further studies are required to confirm the involvement of other genes in the development of this disease.
Collapse
Affiliation(s)
- Ma M Martínez López
- Servicio de Endocrinología Pediátrica, Hospital Universitario La Paz, Melchior Fernández Almagro 16, 11B, 28029 Madrid, Spain.
| | | | | | | | | |
Collapse
|
14
|
Ramsey C, Hässler S, Marits P, Kämpe O, Surh CD, Peltonen L, Winqvist O. Increased antigen presenting cell-mediated T cell activation in mice and patients without the autoimmune regulator. Eur J Immunol 2006; 36:305-17. [PMID: 16421949 DOI: 10.1002/eji.200535240] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with autoimmune polyendocrine syndrome type I (APS I)suffer from endocrine and non-endocrine disorders due to mutations in the autoimmune regulator gene (AIRE). Mouse Aire is expressed both in thymic medullary epithelial cells and in peripheral antigen-presenting cells, suggesting a role in both central and peripheral tolerance. We here report that Aire(-/-) dendritic cells (DC) activate naive T cells more efficiently than do Aire(+/+) DC. Expression array analyses of Aire(-/-) DC revealed differential regulation of 68 transcripts, among which, the vascular cell adhesion molecule-1 (VCAM-1) transcript was up-regulated in Aire(-/-) DC. Concurrently, the expression of the VCAM-1 protein was up-regulated on both Aire(-/-) DC and monocytes from APS I patients. Blocking the interaction of VCAM-1 prevented enhanced Aire(-/-) DC stimulation of T cell hybridomas. We determined an increased number of DC in spleen and lymph nodes and of monocytes in the blood from Aire(-/-) mice, and an increased number of blood monocytes in APS I patients. Our findings imply a role for Aire in peripheral DC regulation of T cell activation, and suggest that Aire participates in peripheral tolerance.
Collapse
Affiliation(s)
- Chris Ramsey
- Department of Immunology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ulinski T, Perrin L, Morris M, Houang M, Cabrol S, Grapin C, Chabbert-Buffet N, Bensman A, Deschênes G, Giurgea I. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome with renal failure: impact of posttransplant immunosuppression on disease activity. J Clin Endocrinol Metab 2006; 91:192-5. [PMID: 16263818 DOI: 10.1210/jc.2005-1538] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive disorder caused by mutations in the gene AIRE (autoimmune regulator). APECED affects mainly endocrine organs resulting in hypoparathyroidism, adrenocortical failure, diabetes mellitus, hypogonadism, and hypothyroidism. Nonendocrine organ manifestations are autoimmune hepatitis, vitiligo, pernicious anemia, exocrine pancreatic insufficiency, and alopecia. APECED's first manifestation generally is mucocutaneous candidiasis presumably related to T cell dysfunction. PATIENT A 5-yr-old Iranian girl presented first with pernicious anemia, exocrine pancreatic insufficiency, and nail candidiasis. She had renal dysfunction due to chronic interstitial nephritis (CIN), which progressed to end-stage renal failure. She was transplanted 1 yr later. Common causes of CIN were excluded. APECED was suspected first because she developed progressively hypoparathyroidism, adrenocortical failure, glucose intolerance, and hypothyroidism. RESULTS Genetic analysis revealed a large homozygous deletion (g.424_2157del1734), spanning exons 2-4, in the AIRE gene. The predicted protein, if it is produced, has only 44 amino acids (exon 1) in common with the wild-type protein. Immunosuppression after the first renal transplant included prednisone, azathioprine, and cyclosporine A. Multiple acute rejection episodes occurred. Chronic rejection resulted in lost graft and she was retransplanted 2 yr later. Surprisingly, all APECED-related symptoms including candidiasis and autoantibody levels decreased, presumably due to the reinforced immunosuppression (tacrolimus, mycophenolate mofetil, prednisone). CONCLUSIONS This is the first report of an APECED patient with CIN resulting in end-stage renal failure. Clinical and biological improvement was observed under posttransplant multidrug immunosuppression including tacrolimus and mycophenolate mofetil.
Collapse
Affiliation(s)
- Tim Ulinski
- Department of Pediatric Nephrology, Hôpital Trousseau, 75571 Paris Cedex 12, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pereira LE, Bostik P, Ansari AA. The development of mouse APECED models provides new insight into the role of AIRE in immune regulation. Clin Dev Immunol 2005; 12:211-6. [PMID: 16295527 PMCID: PMC2275420 DOI: 10.1080/17402520500212589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy is a rare recessive autoimmune disorder caused by a defect in a single gene called AIRE (autoimmune regulator). Characteristics of this disease include a variable combination of autoimmune endocrine tissue destruction, mucocutaneous candidiasis and ectodermal dystrophies. The development of Aire-knockout mice has provided an invaluable model for the study of this disease. The aim of this review is to briefly highlight the strides made in APECED research using these transgenic murine models, with a focus on known roles of Aire in autoimmunity. The findings thus far are compelling and prompt additional areas of study which are discussed.
Collapse
Affiliation(s)
- Lara E Pereira
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
17
|
Johnnidis JB, Venanzi ES, Taxman DJ, Ting JPY, Benoist CO, Mathis DJ. Chromosomal clustering of genes controlled by the aire transcription factor. Proc Natl Acad Sci U S A 2005; 102:7233-8. [PMID: 15883360 PMCID: PMC1129145 DOI: 10.1073/pnas.0502670102] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Autoimmune regulator (aire) is a transcription factor that controls the self-reactivity of the T cell repertoire. Although previous results indicate that it exerts this function in part by promoting ectopic expression of a battery of peripheral-tissue antigens in epithelial cells of the thymic medulla, recent data argue for additional roles in negative selection of thymocytes by medullary cells. As one approach to exploring such roles, we performed computational analyses of microarray data on medullary RNA transcripts from aire-deficient versus wild-type mice, focusing on the genomic localization of aire-controlled genes. Our results highlight this molecule's transcriptional activating and silencing roles and reveal a significant degree of clustering of its target genes. On a local scale, aire-regulated clusters appeared punctate, with aire-controlled and aire-independent genes often being interspersed. This pattern suggests that aire's action may not be a simple reflection of the wide action of a chromatin remodeling enzyme. Analysis of the identity of certain of the clustered genes was evocative of aire's potential roles in antigen presentation and the coordination of intrathymic cell migration: for example, major histocompatibility complex class I and class II gene products and certain chemokine genes are targets of aire-regulated transcription.
Collapse
|
18
|
Liston A, Lesage S, Gray DHD, Boyd RL, Goodnow CC. Genetic lesions in T-cell tolerance and thresholds for autoimmunity. Immunol Rev 2005; 204:87-101. [PMID: 15790352 DOI: 10.1111/j.0105-2896.2005.00253.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cause of common organ-specific autoimmune diseases is poorly understood because of genetic and cellular complexity in humans and animals. Recent advances in the understanding of the mechanisms of the defects underlying autoimmune disease in autoimmune polyendocrinopathy syndrome type 1 and non-obese diabetic mice suggest that failures in central tolerance play a key role in predisposition towards organ-specific autoimmunity. The lessons from such rare monogenic autoimmune disorders and well-characterized polygenic traits demonstrate how subtle quantitative trait loci can result in large changes in the susceptibility to autoimmunity. These data allow us to propose a model relating efficiency of thymic deletion to T-cell tolerance and susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Adrian Liston
- John Curtin School of Medical Research and The Australian Phenomics Facility, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | |
Collapse
|