1
|
Escárcega-González CE, Hernández-Cuellar E, Ruiz Esparza-Juárez FD, Chávez-Reyes J. Molecular mechanisms associated with embryotoxic effects of heavy metals in the Sea Urchin. Reprod Toxicol 2025; 134:108898. [PMID: 40118295 DOI: 10.1016/j.reprotox.2025.108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/24/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
The sea urchin embryo model has become a classic model for studying the harmful effects of heavy metals and the molecular responses associated with exposure to these pollutants. In this context, several biochemical pathways have been associated with exposure to heavy metals in sea urchin embryos, such as autophagy, apoptosis, oxidative stress, activation of heat shock proteins, and induction of metallothioneins. These biochemical pathways are activated or altered in embryos after exposure to heavy metals; therefore, this review provides a comprehensive literature exploration, summarizing the main biochemical changes observed in sea urchin embryos following exposure to certain heavy metals, such as cadmium, gadolinium, arsenic, manganese, zinc, mercury, copper, nickel, and lead.
Collapse
Affiliation(s)
- Carlos E Escárcega-González
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av., Universidad s/n, CD, Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - Eduardo Hernández-Cuellar
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria 940, Aguascalientes 20100, Mexico
| | - Fabián D Ruiz Esparza-Juárez
- Departamento de Medicina, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Ciudad Universitaria 940, Aguascalientes 20100, Mexico
| | - Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria 940, Aguascalientes 20100, Mexico.
| |
Collapse
|
2
|
Yahiaoui Bouiba S, Bendimerad MEA, Rouane-Hacene O, Boualga A, Richir J. Metallic trace element dynamics in Paracentrotus lividus from Algeria: Environmental large-scale survey and human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169492. [PMID: 38142987 DOI: 10.1016/j.scitotenv.2023.169492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
This paper evaluates the dynamics of Metallic Trace Elements (MTEs; Cd, Pb, Fe, Cu, Zn, Ni and Co) in the gonads of the sea urchin Paracentrotus lividus collected in five sites: four contaminated and one reference, along the Western coast of Algeria, recontextualizes this contamination within a wider geographical distribution area throughout 83 sites among the Mediterranean Sea and Atlantic and focuses on the potential risk of their consumption on human health for the first time in Algeria. The trace element pollution index places Algeria, and generally the North African coasts, as the region most contaminated by MTEs. The geographical variability in metal contamination levels is greater in the Mediterranean Sea than in the Atlantic. The health risk assessment indicates that Pb exceeds the maximum limit set by the Commission Regulation (EC) No 1881/2006 at two of the four Algerian contaminated sites.
Collapse
Affiliation(s)
- Samira Yahiaoui Bouiba
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, Laboratory of Valorization of Human Actions for the Protection of the Environment and Application in Public Health, Abou Bekr Belkaid University, Tlemcen, Algeria.
| | - Mohammed El Amine Bendimerad
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, Laboratory of Valorization of Human Actions for the Protection of the Environment and Application in Public Health, Abou Bekr Belkaid University, Tlemcen, Algeria
| | - Omar Rouane-Hacene
- University of Oran 1 Ahmed Ben Bella, Department of Biology, El M'naouer, Oran, Algeria
| | - Ahmed Boualga
- Laboratory of Clinical and Metabolic Nutrition, Faculty of Natural and Life Sciences, University of Oran 1 Ahmed Ben Bella, Oran, Algeria.
| | - Jonathan Richir
- SciSca SRL, 5330 Maillen, Belgium; Station de Recherches Sous-marines et Océanographiques, Punta Revellata, BP33, 20260 Calvi, France
| |
Collapse
|
3
|
El Idrissi O, Ternengo S, Monnier B, Lepoint G, Aiello A, Bastien R, Lourkisti R, Bonnin M, Santini J, Pasqualini V, Gobert S. Assessment of trace element contamination and effects on Paracentrotus lividus using several approaches: Pollution indices, accumulation factors and biochemical tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161686. [PMID: 36690107 DOI: 10.1016/j.scitotenv.2023.161686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Among the most common contaminants in marine ecosystems, trace elements are recognized as serious pollutants. In Corsica (NW Mediterranean Sea), near the old asbestos mine at Canari, trace elements from the leaching of mine residues have been discharged into the sea for several decades. The aim of this study was to assess the levels of contamination in this area and the potential effects on Paracentrotus lividus (Lamarck, 1816) using pollution indices, accumulation factors and biochemical tools. For this purpose, the concentration of 24 trace elements was measured in sea urchins (gonads and gut content), macroalgae, seawater column and sediment collected at 12 stations nearby the old asbestos mine and at a reference site. The bioaccumulation of trace elements occurs as follows: macroalgae > gut > gonads. TEPI contribute to highlight contamination gradients which are mainly due to the dominant marine currents allowing the migration of mining waste along the coastline. This hypothesis was supported by TESVI, which identified characteristic trace elements in the southern area of the mine. High hydrogen peroxide content, associated with elevated catalase and glutathione-S-transferase enzyme activities, were also identified at these sites and at the reference site. Trace elements contamination as well as several abiotic factors could explain these results (e.g. microbiological contamination, hydrodynamic events, etc.). The results obtained in this study suggest that oxidative stress induced by contamination does not affect the health of Paracentrotus lividus. This work has provided a useful dataset allowing better use of sea urchins and various tools for assessing trace element contamination in coastal ecosystems.
Collapse
Affiliation(s)
- O El Idrissi
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France; Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium.
| | - S Ternengo
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - B Monnier
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - G Lepoint
- Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium
| | - A Aiello
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - R Bastien
- Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - R Lourkisti
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - M Bonnin
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - J Santini
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - V Pasqualini
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - S Gobert
- Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium; STAtion de REcherche Sous-marines et Océanographiques (STARESO), 20260 Calvi, France
| |
Collapse
|
4
|
Bouiba S, Bendimerad MEA, Rouane-Hacene O, Boualga A, Richir J. Metallic trace element dynamics in Paracentrotus lividus from Algeria: Environmental and human health risk assessment. MARINE POLLUTION BULLETIN 2023; 187:114485. [PMID: 36584435 DOI: 10.1016/j.marpolbul.2022.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
This paper evaluates the dynamic of Metallic Trace Elements (MTEs; Cd, Pb, Fe, Cu, Zn, Ni and Co) in the sea urchin Paracentrotus lividus collected in five sites: four contaminated and one reference, along the western coast of Algeria, recontextualizes this contamination within a wider geographical distribution area throughout 84 sites among the Mediterranean Sea and Atlantic and focuses on the potential risk on human health for the first time in Algeria. The Trace Element Pollution Index places Algeria, and generally the North African coasts, as the region most contaminated by MTEs. The Trace Element Spatial Variation Index ranks Pb as a MTE of key environmental concern according to global spatial variability. The health risk assessment indicates that Cd and Pb exceed the maximum limits set by the Commission Regulation (EC) No 1881/2006 on three of the four contaminated sites.
Collapse
Affiliation(s)
- Samira Bouiba
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, Laboratory of Valorization of Human Actions for the Protection of the Environment and Application in Public Health, Abou Bekr Belkaid University, Tlemcen, Algeria.
| | - Mohammed El Amine Bendimerad
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, Laboratory of Valorization of Human Actions for the Protection of the Environment and Application in Public Health, Abou Bekr Belkaid University, Tlemcen, Algeria
| | - Omar Rouane-Hacene
- University of Oran 1 Ahmed Ben Bella, Department of Biology, El M'naouer, Oran, Algeria
| | - Ahmed Boualga
- Laboratory of Clinical and Metabolic Nutrition, Faculty of Natural and Life Sciences, University of Oran 1 Ahmed Ben Bella, Oran, Algeria.
| | | |
Collapse
|
5
|
Vanadium Modulates Proteolytic Activities and MMP-14-Like Levels during Paracentrotus lividus Embryogenesis. Int J Mol Sci 2022; 23:ijms232214238. [PMID: 36430713 PMCID: PMC9697301 DOI: 10.3390/ijms232214238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The increasing industrial use of vanadium (V), as well as its recent medical use in various pathologies has intensified its environmental release, making it an emerging pollutant. The sea urchin embryo has long been used to study the effects induced by metals, including V. In this study we used an integrated approach that correlates the biological effects on embryo development with proteolytic activities of gelatinases that could better reflect any metal-induced imbalances. V-exposure caused morphological/morphometric aberrations, mainly concerning the correct distribution of embryonic cells, the development of the skeleton, and the embryo volume. Moreover, V induced a concentration change in all the gelatinases expressed during embryo development and a reduction in their total proteolytic activity. The presence of three MMP-like gelatinases (MMP-2, -9, and -14) was also demonstrated and their levels depended on V-concentration. In particular, the MMP-14-like protein modified its expression level during embryo development in a time- and dose-dependent manner. This enzyme also showed a specific localization on filopodia, suggesting that primary mesenchyme cells (PMCs) could be responsible for its synthesis. In conclusion, these results indicate that an integrated study among morphology/morphometry, proteolytic activity, and MMP-14 expression constitutes an important response profile to V-action.
Collapse
|
6
|
El Idrissi O, Santini J, Bonnin M, Demolliens M, Aiello A, Gobert S, Pasqualini V, Ternengo S. Stress response to trace elements mixture of different embryo-larval stages of Paracentrotus lividus. MARINE POLLUTION BULLETIN 2022; 183:114092. [PMID: 36084613 DOI: 10.1016/j.marpolbul.2022.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
This study investigated for the first time the oxidative biomarkers responses in all larval stages of sea urchin. The contamination effects were reproduced by using contaminated seawater to concentrations measured in the area adjacent to an old asbestos mine at factors of 5 and 10. The results suggested that the concentrations were not sufficiently high to induce a major oxidative stress. The biometric differences make this method a more sensitive approach for assessing the effects on sea urchin larvae. Measurements of specific activities of antioxidant enzymes at each stage suggested a high capacity of the larvae to respond to oxidative stress. This normal activity of the organism must be considered in future research. This work also highlighted the importance of spawners provenance in ecotoxicological studies. These data are essential to better understand the stress responses of sea urchin larvae and provide baseline information for later environmental assessment research.
Collapse
Affiliation(s)
- O El Idrissi
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France; Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart-Tilman, B6c, 4000 Liège, Belgium.
| | - J Santini
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - M Bonnin
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - M Demolliens
- Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - A Aiello
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - S Gobert
- Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart-Tilman, B6c, 4000 Liège, Belgium; STAtion de REcherche Sous-marines et Océanographiques (STARESO), 20260 Calvi, France
| | - V Pasqualini
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - S Ternengo
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| |
Collapse
|
7
|
Bonura A, Giacomarra M, Montana G. The Keap1 signaling in the regulation of HSP90 pathway. Cell Stress Chaperones 2022; 27:197-204. [PMID: 35362892 PMCID: PMC9106781 DOI: 10.1007/s12192-022-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 11/03/2022] Open
Abstract
The Keap1 protein is the master modulator of Nrf2 pathway; moreover, it is the hub of such important processes as cancer, cell stress, inflammation, and chemio- and radio-resistance. That is why Keap1 has become an intriguing pharmacological target. Many recent data show that Keap1 interacts with HSP90 protein. In this study, we use ferulic acid (FA) as antioxidant and anti-inflammatory agent, able to relieve inflammatory response. It is known that treatment with 100 μg of FA can significantly decrease the oxidative stress, so it turns to be useful to study the antioxidant regulation. The RAW 264.7 cells transfected with si-Keap1 and LPS treated are the in vitro model used to study the effects of Keap1 silencing on HSP90 activities and the FA antioxidant modulation. Immunoblot data and qPCR analysis show that Keap1 is involved in HSP90 modulation and on anti-oxidative response. Keap1 silencing affects negatively COX2 activation; in fact western blot and qPCR analysis conducted on RAW 264.7 cells Keap1silenced highlight that LPS treatment does not induce COX2 activation. In addition, the FA anti-oxidative and modulatory effect is abolished in COX2 pathway. The same results are point out using human A549 cell line with an allelic mutation on Keap1 gene, and the protein results are partially inactive. This preliminary study points out that Keap1protein is involved in HSP90 and anti-oxidative pathway regulation.
Collapse
Affiliation(s)
- Angela Bonura
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca e Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Farmacologia Traslazionale, 00133, Roma, Italy
| | - Miriam Giacomarra
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca e Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Giovanna Montana
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca e Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy.
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Farmacologia Traslazionale, 00133, Roma, Italy.
| |
Collapse
|
8
|
Botté A, Seguin C, Nahrgang J, Zaidi M, Guery J, Leignel V. Lead in the marine environment: concentrations and effects on invertebrates. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:194-207. [PMID: 35037181 DOI: 10.1007/s10646-021-02504-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Lead (Pb) is a non-essential metal naturally present in the environment and often complexed with other elements (e.g., copper, selenium, zinc). This metal has been used since ancient Egypt and its extraction has grown in the last centuries. It has been used until recently as a fuel additive and is currently used in the production of vehicle batteries, paint, and plumbing. Marine ecosystems are sinks of terrestrial contaminations; consequently, lead is detected in oceans and seas. Furthermore, lead is not biodegradable. It remains in soil, atmosphere, and water inducing multiple negative impacts on marine invertebrates (key species in trophic chain) disturbing ecological ecosystems. This review established our knowledge on lead accumulation and its effects on marine invertebrates (Annelida, Cnidaria, Crustacea, Echinodermata, and Mollusca). Lead may affect different stages of development from fertilization to larval development and can also lead to disturbance in reproduction and mortality. Furthermore, we discussed changes in the seawater chemistry due to Ocean Acidification, which can affect the solubility, speciation, and distribution of the lead, increasing potentially its toxicity to marine invertebrates.
Collapse
Affiliation(s)
- A Botté
- Laboratoire Biologie des organismes, Stress, Santé, Environnement (BIOSSE), Le Mans Université, Le Mans, France
| | - C Seguin
- Laboratoire Biologie des organismes, Stress, Santé, Environnement (BIOSSE), Le Mans Université, Le Mans, France
| | - J Nahrgang
- UiT, University Arctic of Norway, Department of Marine Biology, Tromsø, Norway
| | - M Zaidi
- Laboratoire Biologie des organismes, Stress, Santé, Environnement (BIOSSE), Le Mans Université, Le Mans, France
| | - J Guery
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 5283, Le Mans Université, Le Mans, France
| | - V Leignel
- Laboratoire Biologie des organismes, Stress, Santé, Environnement (BIOSSE), Le Mans Université, Le Mans, France.
| |
Collapse
|
9
|
Vanadium Toxicity Monitored by Fertilization Outcomes and Metal Related Proteolytic Activities in Paracentrotus lividus Embryos. TOXICS 2022; 10:toxics10020083. [PMID: 35202269 PMCID: PMC8878891 DOI: 10.3390/toxics10020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023]
Abstract
Metal pharmaceutical residues often represent emerging toxic pollutants of the aquatic environment, as wastewater treatment plants do not sufficiently remove these compounds. Recently, vanadium (V) derivatives have been considered as potential therapeutic factors in several diseases, however, only limited information is available about their impact on aquatic environments. This study used sea urchin embryos (Paracentrotus lividus) to test V toxicity, as it is known they are sensitive to V doses from environmentally relevant to very cytotoxic levels (50 nM; 100 nM; 500 nM; 1 µM; 50 µM; 100 µM; 500 µM; and 1 mM). We used two approaches: The fertilization test (FT) and a protease detection assay after 36 h of exposure. V affected the fertilization percentage and increased morphological abnormalities of both egg and fertilization envelope, in a dose-dependent manner. Moreover, a total of nine gelatinases (with apparent molecular masses ranging from 309 to 22 kDa) were detected, and their proteolytic activity depended on the V concentration. Biochemical characterization shows that some of them could be aspartate proteases, whereas substrate specificity and the Ca2+/Zn2+ requirement suggest that others are similar to mammalian matrix metalloproteinases (MMPs).
Collapse
|
10
|
Albarano L, Zupo V, Guida M, Libralato G, Caramiello D, Ruocco N, Costantini M. PAHs and PCBs Affect Functionally Intercorrelated Genes in the Sea Urchin Paracentrotus lividus Embryos. Int J Mol Sci 2021; 22:ijms222212498. [PMID: 34830379 PMCID: PMC8619768 DOI: 10.3390/ijms222212498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) represent the most common pollutants in the marine sediments. Previous investigations demonstrated short-term sublethal effects of sediments polluted with both contaminants on the sea urchin Paracentrotus lividus after 2 months of exposure in mesocosms. In particular, morphological malformations observed in P. lividus embryos deriving from adults exposed to PAHs and PCBs were explained at molecular levels by de novo transcriptome assembly and real-time qPCR, leading to the identification of several differentially expressed genes involved in key physiological processes. Here, we extensively explored the genes involved in the response of the sea urchin P. lividus to PAHs and PCBs. Firstly, 25 new genes were identified and interactomic analysis revealed that they were functionally connected among them and to several genes previously defined as molecular targets of response to the two pollutants under analysis. The expression levels of these 25 genes were followed by Real Time qPCR, showing that almost all genes analyzed were affected by PAHs and PCBs. These findings represent an important further step in defining the impacts of slight concentrations of such contaminants on sea urchins and, more in general, on marine biota, increasing our knowledge of molecular targets involved in responses to environmental stressors.
Collapse
Affiliation(s)
- Luisa Albarano
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Villa Comunale, 80121 Naples, Italy;
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, C. da Torre Spaccata, 87071 Amendolara, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Correspondence:
| |
Collapse
|
11
|
Chaouhan HS, Jha RR, Patel DK, Kar Chowdhuri D. Cr(VI)-induced DNA damage is lessened by the modulation of hsp70 via increased GSH de novo synthesis in Drosophila melanogaster. J Biochem Mol Toxicol 2021; 35:e22819. [PMID: 34056787 DOI: 10.1002/jbt.22819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/16/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a genotoxic chemical, and in the chemical-exposed organism, oxidative stress is one of the leading causative mechanisms of genotoxicity. Heat shock protein-70 (Hsp70) is reported to be modulated in environmental chemical exposed organisms. Inadequate information on the protective role of Hsp70 in chemical-induced DNA lesions prompted us to investigate this possibility in a well-studied genetically tractable in vivo model Drosophila melanogaster. In the midgut cells of Cr(VI)-exposed hsp70-knockout (KO), -knockdown (KD), and -overexpression Drosophila strains, no significant change in double-strand breaks generation was observed in comparison to similarly exposed w 1118 and the respective genetic control strain after 48 h. Therefore, the role of hsp70 was investigated on oxidative DNA damage induction in the exposed organisms after 24 h. Oxidized DNA lesions (particularly oxidized purine-based lesions), 8-oxo-dG level, and oxidative stress endpoints were found to be significantly elevated in hsp70-KO and -KD strains in comparison to similarly exposed w 1118 and respective genetic control strain. On the contrary, in ubiquitous hsp70-overexpression strain exposed to Cr(VI), these endpoints were significantly lowered concurrently with increased GSH level through elevated gclc, and gclm expression, Gclc level, and GCL activity. The study suggests that as a consequence of hsp70 overexpression, the augmented GSH level in cells vis-a-vis GSH de novo synthesis can counteract Cr(VI)-induced oxidized DNA lesions.
Collapse
Affiliation(s)
- Hitesh S Chaouhan
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| | - Rakesh R Jha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India.,Environmental Monitoring Laboratory, Regulatory Toxicology Group, Environmental Toxicology Group, CSIR Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Devendra K Patel
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India.,Environmental Monitoring Laboratory, Regulatory Toxicology Group, Environmental Toxicology Group, CSIR Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
12
|
Cuccaro A, De Marchi L, Oliva M, Sanches MV, Freitas R, Casu V, Monni G, Miragliotta V, Pretti C. Sperm quality assessment in Ficopomatus enigmaticus (Fauvel, 1923): Effects of selected organic and inorganic chemicals across salinity levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111219. [PMID: 32931966 DOI: 10.1016/j.ecoenv.2020.111219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/26/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Contamination by organic and inorganic compounds remains one of the most complex problems in both brackish and marine environments, causing potential implications for the reproductive success and survival of several broadcast spawners. Ficopomatus enigmaticus is a tubeworm polychaete that has previously been used as a model organism for ecotoxicological analysis, due to its sensitivity and ecological relevance. In the present study, the effects of five trace elements (zinc, copper, cadmium, arsenic and lead), one surfactant (sodium dodecyl sulfate, SDS) and one polycyclic aromatic hydrocarbon (benzo(a)pyrene, B(a)P) on the sperm quality of F. enigmaticus were investigated. Sperm suspensions were exposed in vitro to different concentrations of each selected contaminant under four salinity conditions (10, 20, 30, 35). Possible adverse effects on sperm function were assessed by measuring oxidative stress, membrane integrity, viability and DNA damage. Sperm quality impairments induced by organic contaminants were more evident than those induced by inorganic compounds. SDS exerted the largest effect on sperm. In addition, F. enigmaticus sperm showed high tolerance to salinity variation, supporting the wide use of this species as a promising model organism for ecotoxicological assays. Easy and rapid methods on polychaete spermatozoids were shown to be effective as integrated sperm quality parameters or as an alternative analysis for early assessment of marine and brackish water pollution.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Matilde Vieira Sanches
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Casu
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy.
| |
Collapse
|
13
|
La Torre GL, Cicero N, Bartolomeo G, Rando R, Vadalà R, Santini A, Durazzo A, Lucarini M, Dugo G, Salvo A. Assessment and Monitoring of Fish Quality from a Coastal Ecosystem under High Anthropic Pressure: A Case Study in Southern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093285. [PMID: 32397269 PMCID: PMC7246799 DOI: 10.3390/ijerph17093285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
Fish is a nutrient-rich food but, at the same time, consumption of fish is a possible source of exposure to heavy metals. Since many coastal Mediterranean areas suffer from great anthropomorphic pressure, the aim of this study was to assess the level of potentially toxic inorganic elements in different fish samples from the coastal zone of Southern Italy (Gela) where there is a high mortality rate linked to cancer disease and congenital malformations. The presence of mercury, cadmium, lead, nickel, arsenic, vanadium, and chromium was measured by inductively coupled plasma-mass spectrometry (ICP-MS). The risk assessment was evaluated in terms of estimated daily intake by calculating the amount of potentially toxic elements that an average individual adult weighing 60 kg would ingest. Moreover the non-carcinogenic risk was estimated by target hazard quotient (THQ). The study evidenced significant contamination by inorganic elements, especially cadmium, which can be linked to industrial pollution. The THQ indexes, as indicators of human health, suggest that the consumption of fish from the study area is not free of risk.
Collapse
Affiliation(s)
- Giovanna Loredana La Torre
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (G.B.); (R.R.); (R.V.); (G.D.)
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (G.B.); (R.R.); (R.V.); (G.D.)
- Science4Life, Spin Off Company, University of Messina, V.le Leonardo Sciascia Coop Fede Pal. B, 98168 Messina, Italy
- Correspondence: ; Tel.: +39-090-6766285
| | - Giovanni Bartolomeo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (G.B.); (R.R.); (R.V.); (G.D.)
| | - Rossana Rando
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (G.B.); (R.R.); (R.V.); (G.D.)
| | - Rossella Vadalà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (G.B.); (R.R.); (R.V.); (G.D.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Giacomo Dugo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (G.B.); (R.R.); (R.V.); (G.D.)
- Science4Life, Spin Off Company, University of Messina, V.le Leonardo Sciascia Coop Fede Pal. B, 98168 Messina, Italy
| | - Andrea Salvo
- Dipartimento di Chimica e Tecnologie del Farmaco, Università La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy;
| |
Collapse
|
14
|
Expression of HSPA8 in Nucleus Pulposus of Lumbar Intervertebral Disc and Its Effect on Degree of Degeneration. Adv Ther 2020; 37:390-401. [PMID: 31755037 DOI: 10.1007/s12325-019-01136-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION This study aimed to investigate the expression of a 70-kDa heat shock protein [heat shock 70-kDa protein 8 (HSPA8)/heat shock protein 70 (Hsc70)] in human degenerative lumbar intervertebral discs and its relationship with the degree of degeneration of human intervertebral discs. METHODS A total of 72 cases of lumbar intervertebral disc nucleus pulposus tissues were collected. Among these, 18 cases of nucleus pulposus tissue were assigned to the control group, while 54 cases of nucleus pulposus tissues were assigned to the experimental group. According to the preoperative MRI, cases in the experimental group were further divided into three groups: protrusion group (n = 18), extrusion group (n = 18), and sequestration group (n = 18). Western blot was performed to determine the relative expression of HSPA8 in the nucleus pulposus in each group. Hematoxylin and eosin staining was performed to determine the number of nucleus pulposus cells, morphological differences, and cell densities of the degenerated intervertebral discs and normal intervertebral discs. Immunohistochemistry was performed to determine the expression of HSPA8 in nucleus pulposus tissues in each group. RESULTS Hematoxylin and eosin staining results: There were significant differences in cell morphology and number between the control group and the experimental group. Furthermore, there were significant differences in cell density (F = 936.80, P < 0.01). Immunohistochemistry results: HSPA8 was expressed in lumbar intervertebral disc nucleus pulposus tissues, and its expression of gradually decreased with the severity of the disease, and the differences were significant (F = 2110.43, P < 0.01). Western blot results: The expression of HSPA8 in human degenerative nucleus pulposus tissues gradually decreased, and the differences were significant (F = 1841.72, P < 0.01). CONCLUSION HSPA8 is stably expressed in human intervertebral disc nucleus pulposus tissues, and its expression is associated with the degree of intervertebral disc degeneration.
Collapse
|
15
|
Klein RD, Nogueira LS, Domingos-Moreira FXV, Gomes Costa P, Bianchini A, Wood CM. Effects of sublethal Cd, Zn, and mixture exposures on antioxidant defense and oxidative stress parameters in early life stages of the purple sea urchin Strongylocentrotus purpuratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105338. [PMID: 31711008 DOI: 10.1016/j.aquatox.2019.105338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Oxidative stress parameters were evaluated during the first 72 h of embryonic development of purple sea urchin Strongylocentrotus purpuratus continuously exposed to control conditions, to cadmium alone (Cd, 30 μg/L), to zinc alone (Zn, 9 μg/L) or to a Cd (28 μg/L) plus Zn (9 μg/L) mixture. These sublethal concentrations represent ∼ 10% of the acute EC50. Bioaccumulation, antioxidant capacity against peroxyl radicals (ACAP), total glutathione (GSH) level, glutathione-S-transferase (GST), glucose-6-phosphate dehydrogenase (G6PDH) and superoxide dismutase (SOD) activity, and lipid peroxidation (LPO) were analyzed at 24 h (blastula), 48 h (gastrula), and 72 h (pluteus) stages of development. Zinc (an essential metal) was well-regulated, whereas Cd (non-essential) bioaccumulated and whole-body [Cd] increased from blastula to pluteus stage in sea urchin larvae. In controls, ACAP progressively declined from 24 h to 72 h, while LPO reciprocally increased, but other parameters did not change. Cd alone was more potent than Zn alone as a pro-oxidant, with the major effects being decreases in SOD activity and parallel increases in LPO throughout development; GST activity also increased at 24 h. Zn alone caused only biphasic disturbances of ACAP. In all cases, the simultaneous presence of the other metal prevented the effects, and there was no instance where the oxidative stress response in the presence of the Cd/Zn mixture was greater than in the presence of either Cd or Zn alone. Therefore the sublethal effects of joint exposures were always less than additive or even protective, in agreement with classical toxicity data. Furthermore, our results indicate that SOD and Zn can play important roles in protecting sea urchin embryos against Cd-induced lipid peroxidation.
Collapse
Affiliation(s)
- Roberta Daniele Klein
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil; Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada.
| | - Lygia S Nogueira
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil; University of British Columbia, Department of Zoology, Vancouver, British Columbia, 12, V6T 1Z4, Canada
| | - Fabíola Xochilt Valdez Domingos-Moreira
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecotoxicologia Aquática na Amazônia, Manaus, Amazonas, 69067-375, Brazil; University of British Columbia, Department of Zoology, Vancouver, British Columbia, 12, V6T 1Z4, Canada
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil; Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada
| | - Chris M Wood
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; University of British Columbia, Department of Zoology, Vancouver, British Columbia, 12, V6T 1Z4, Canada; McMaster University Dept. of Biology, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
16
|
Søndergaard J, Hansson SV, Mosbech A, Bach L. Green sea urchins (Strongylocentrotus droebachiensis) as potential biomonitors of metal pollution near a former lead-zinc mine in West Greenland. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:538. [PMID: 31377862 DOI: 10.1007/s10661-019-7637-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, metal accumulation in green sea urchins (Strongylocentrotus droebachiensis) was investigated near the former Black Angel lead-zinc mine in Maarmorilik, West Greenland. Sea urchins (n = 9-11; 31-59 mm in diameter) were collected from three stations located at < 1 km, 5 km, and 12 km (reference site) away from the former mine site, respectively. After collection, tissue of the sea urchins was divided into gonads and remaining soft parts (viscera) before subjected to chemical analyses. Focus was on eight elements found in elevated concentrations in the mine waste (iron, copper, zinc, arsenic, silver, cadmium, mercury and lead). Sea urchins at the mine site contained significantly more copper, mercury and lead compared with the reference site for both the gonads and viscera, while the latter also contained significantly more iron, zinc and silver. Arsenic and cadmium were not significantly elevated in sea urchins at the mine site. Most elements were found in higher concentrations in the viscera compared with the gonads. For comprehensive monitoring of metal pollution at mine sites, a diverse selection of monitoring organisms is necessary. The study shows that green sea urchins accumulate selected metals and can be used as a monitoring organism for mining pollution, at least for iron, copper, zinc, silver, mercury and lead. However, the results also show that green sea urchins are less likely to reflect small environmental changes in loading of most metals (except iron, copper and silver) and for arsenic compared to suspension feeders such as blue mussels.
Collapse
Affiliation(s)
- Jens Søndergaard
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark.
| | - Sophia V Hansson
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Anders Mosbech
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Lis Bach
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| |
Collapse
|
17
|
Johnstone J, Nash S, Hernandez E, Rahman MS. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata. MARINE ENVIRONMENTAL RESEARCH 2019; 149:40-49. [PMID: 31150926 DOI: 10.1016/j.marenvres.2019.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Increasing seawater temperature affects growth, reproduction and development in marine organisms. In this study, we examined the effects of elevated temperatures on reproductive functions, heat shock protein 70 (HSP70) and nitrotyrosine protein (NTP, an indicator of reactive nitrogen species) expressions, protein carbonyl (PC, an indicator of oxidative stress) contents, cellular apoptosis, and coelomic fluid (CF) conditions in Atlantic sea urchin. Sea urchins were housed in six aquaria with control (24 °C) and elevated temperatures (28 °C and 32 °C) for a 7-day period. After exposure, sea urchins exhibited decreased percentages of gametes (eggs/sperm), as well as increased HSP70 and NTP expressions in eggs and spermatogenic cells, increased gonadal apoptosis, and decreased CF pH compared to controls. PC contents were also significantly increased in gonadal tissues at higher temperatures. These results suggest that elevated temperature acidifies CF, increases oxidative stress and gonadal apoptosis, and results in impairment of reproductive functions in sea urchins.
Collapse
Affiliation(s)
- Jackson Johnstone
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Sarah Nash
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Eleazar Hernandez
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA.
| |
Collapse
|
18
|
Chiarelli R, Martino C, Roccheri MC. Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress Chaperones 2019; 24:675-687. [PMID: 31165437 PMCID: PMC6629738 DOI: 10.1007/s12192-019-01010-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
In recent years, researches about the defense strategies induced by cadmium stress have greatly increased, invading several fields of scientific research. Mechanisms of cadmium-induced toxicity continue to be of interest for researchers given its ubiquitous nature and environmental distribution, where it often plays the role of pollutant for numerous organisms. The presence in the environment of this heavy metal has been constantly increasing because of its large employment in several industrial and agricultural activities. Cadmium does not have any biological role and, since it cannot be degraded by living organisms, it is irreversibly accumulated into cells, interacting with cellular components and molecular targets. Cadmium is one of the most studied heavy metal inductors of stress and a potent modulator of several processes such as apoptosis, autophagy, reactive oxygen species, protein kinase and phosphatase, mitochondrial function, metallothioneins, and heat-shock proteins. Sea urchins (adults, gametes, embryos, and larvae) offer an optimal opportunity to investigate the possible adaptive response of cells exposed to cadmium, since these cells are known to accumulate contaminants. In this review, we will examine several responses to stress induced by cadmium in different sea urchin species, with a focus on Paracentrotus lividus embryos. The sea urchin embryo represents a suitable system, as it is not subjected to legislation on animal welfare and can be easily used for toxicological studies and as a bioindicator of environmental pollution. Recently, it has been included into the guidelines for the use and interpretation of assays to monitor autophagy.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
19
|
Xu XH, Meng X, Gan HT, Liu TH, Yao HY, Zhu XY, Xu GC, Xu JT. Immune response, MT and HSP70 gene expression, and bioaccumulation induced by lead exposure of the marine crab, Charybdis japonica. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:98-105. [PMID: 30840922 DOI: 10.1016/j.aquatox.2019.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
In order to understand the mechanisms of the toxicity of lead (Pb) on invertebrates, the immunotoxic effects of Pb in the marine crab, Charybdis japonica, were evaluated in the present study. The crabs were exposed to 0.066, 0.132, 1.318, 2.636, 6.590, and 13.181 μM of lead acetate and a control over 30 days, and the hemolymph was sampled terminally for testing the immunity-related indices, including total hemocyte count (THC), hemocyanin content, the activities of the phenoloxidase (PO) and lysozyme (LSZ). In addition, tissue samples were collected from the hepatopancreas, gill, muscle and ovary after 30 days of exposure for detecting the Pb accumulation in the major organs. The gene expression profiles of metallothionein (MT) and heat shock protein 70 (HSP70) in the hepatopancreas of C. japonica upon exposure to lead acetate over 96 h were also analyzed. The results showed a decline in the majority of the immunity-related parameters after an initial rise, and their levels were significantly lower in the treatment groups compared with those in the control, except in the group exposed to 0.066 μM of lead acetate for 30 days. Furthermore, a significant negative correlation was observed between the lead acetate concentration and the hemocyanin content, the activities of PO and LSZ (P<0.01). The expression levels of MT and HSP70 genes were rapidly induced, reaching a peak level after 12 and 24 h of exposure, respectively, and remained at a significantly higher level than the control after 96 h of exposure. It was also observed that the distribution pattern of Pb in the tissues of exposed crabs was in the order of gill > hepatopancreas > ovary and muscle, and exhibited a concentration-dependent response. Taken together, the results revealed that Pb exposure induced the immunosuppression of C. japonica and resulted in bioaccumulation, which could subsequently increase the disease susceptibility and threaten the food safety.
Collapse
Affiliation(s)
- Xing H Xu
- Jiangsu Institute of Marine Resources, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China.
| | - Xiao Meng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Hong T Gan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Tong H Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Hai Y Yao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Xiao Y Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Guo C Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Jia T Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| |
Collapse
|
20
|
da Silva Cantinha R, Borrely SI, Oguiura N, de Bragança Pereira CA, Rigolon MM, Nakano E. HSP70 expression in Biomphalaria glabrata snails exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:18-23. [PMID: 28231501 DOI: 10.1016/j.ecoenv.2017.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
In this study, the effects of the heavy metal cadmium on the stress protein HSP70 are investigated in freshwater mollusks Biomphalaria glabrata. Adult snails were exposed for 96h to CdCl2 at concentrations ranging from 0.09 to 0.7mgL-1 (LC50/96h=0.34 (0.30-0.37). Time and concentration-dependent increases in the expression of HSP70 were observed at sub-lethal levels in the immunoblotting assay. Further, an increased survival to a lethal heat shock was observed in animals pre-exposed to a nonlethal concentration of cadmium, evidencing the induction of acquired tolerance. The present study demonstrated the inducibility of B. glabrata HSP70 by cadmium, a relevant environmental contaminant, at non-lethal levels, providing evidences that the assessment of HSP70 in B. glabrata can be regarded as a suitable biomarker for ecotoxicological studies.
Collapse
Affiliation(s)
- Rebeca da Silva Cantinha
- Instituto Butantan, Laboratório de Parasitologia, Avenida Vital Brasil, 1500, Butantã, São Paulo, SP CEP 05503-900, Brazil; Instituto de Pesquisas Energéticas e Nucleares, Avenida Professor Lineu Prestes, 2242, Cidade Universitária, São Paulo, SP CEP 05508-000, Brazil.
| | - Sueli Ivone Borrely
- Instituto de Pesquisas Energéticas e Nucleares, Avenida Professor Lineu Prestes, 2242, Cidade Universitária, São Paulo, SP CEP 05508-000, Brazil.
| | - Nancy Oguiura
- Instituto Butantan, Laboratório de Parasitologia, Avenida Vital Brasil, 1500, Butantã, São Paulo, SP CEP 05503-900, Brazil.
| | - Carlos Alberto de Bragança Pereira
- Departamento de Estatística, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, Cidade Universitária, São Paulo, SP CEP 05008-090, Brazil.
| | - Marcela M Rigolon
- Instituto Butantan, Laboratório de Parasitologia, Avenida Vital Brasil, 1500, Butantã, São Paulo, SP CEP 05503-900, Brazil.
| | - Eliana Nakano
- Instituto Butantan, Laboratório de Parasitologia, Avenida Vital Brasil, 1500, Butantã, São Paulo, SP CEP 05503-900, Brazil.
| |
Collapse
|
21
|
Motta CM, Cerciello R, De Bonis S, Mazzella V, Cirino P, Panzuto R, Ciaravolo M, Simoniello P, Toscanesi M, Trifuoggi M, Avallone B. Potential toxicity of improperly discarded exhausted photovoltaic cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:786-792. [PMID: 27376992 DOI: 10.1016/j.envpol.2016.06.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Low tech photovoltaic panels (PVPs) installed in the early '80s are now coming to the end of their life cycle and this raises the problem of their proper disposal. As panels contain potentially toxic elements, unconventional, complex and costly procedures are required to avoid environmental health risks and in countries where environmental awareness and economic resources are limited this may be especially problematic. This work was designed to investigate potential risks from improper disposal of these panels. To accomplish this aim an exhausted panel was broken into pieces and these were placed in water for 30 days. The resulting leached solution was analyzed to determine chemical release or used in toto, to determine its potential toxicity in established tests. The end points were seed germination (on Cucumis sativus and Lens culinaris) and effects on early development in three larval models: two crustaceans, Daphnia magna and Artemia salina, and the sea urchin Paracentrotus lividus. Our results show that the panels release small amounts of electrolytes (Na, Ca and Mg) into solution, along with antimony and manganese, with a concentration under the accepted maximum contaminant level, and nickel at a potentially toxic concentration. Developmental defects are seen in the plant and animal test organisms after experimental exposure to the whole solution leached from the broken panel. The toxic effects revealed in in vitro tests are sufficient to attract attention considering that they are exerted on both plants and aquatic animals and that the number of old PVPs in disposal sites will be very high.
Collapse
Affiliation(s)
- C M Motta
- Dept of Biology, University of Naples Federico II, Naples, Italy
| | - R Cerciello
- Dept of Biology, University of Naples Federico II, Naples, Italy
| | - S De Bonis
- Dept of Biology, University of Naples Federico II, Naples, Italy
| | - V Mazzella
- Dept of Biology, University of Naples Federico II, Naples, Italy
| | - P Cirino
- Stazione Zoologica Anthon Dohrn, Napoli, Italy
| | - R Panzuto
- Dept of Biology, University of Naples Federico II, Naples, Italy
| | - M Ciaravolo
- Dept of Biology, University of Naples Federico II, Naples, Italy
| | - P Simoniello
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, 64291, Germany; Department of Science and Technology, Parthenope University of Naples, Italy
| | - M Toscanesi
- Dept of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - M Trifuoggi
- Dept of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - B Avallone
- Dept of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
22
|
Riba I, Gabrielyan B, Khosrovyan A, Luque A, Del Valls TA. The influence of ph and waterborne metals on egg fertilization of the blue mussel (Mytilus edulis), the oyster (Crassostrea gigas) and the sea urchin (Paracentrotus lividus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14580-14588. [PMID: 27068916 DOI: 10.1007/s11356-016-6611-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
This study evaluated the combined effect of pH and metals on the egg fertilization process of two estuarine species, the blue mussel (Mytilus edulis), the oyster (Crassostrea gigas) and a marine species, the sea urchin (Paracentrotus lividus). The success of egg fertilization was examined after exposure of gametes to sediment extracts of various degrees of contamination at pH 6.0, 6.5, 7.0, 7.5 and 8.0. At the pH levels from 6.5 to 8.0, the egg fertilization of the different species demonstrated different sensitivity to metal and/or acidic exposure. In all species, the results revealed that egg fertilization was almost completely inhibited at pH 6.0. The egg fertilization of the blue mussel M. edulis was the least sensitive to the exposure while that of the sea urchin P. lividus demonstrated a concentration-dependent response to the pH levels from 6.5 to 8.0. The results of this study revealed that acidity increased the concentration of several metal ions (Cr, Ni, Cu, Zn, Cd, and Pb) but reduced its availability to the organisms, probably related to the reactivity of the ions with most non-metals or to the competition among metals and other waterborne constituents.
Collapse
Affiliation(s)
- Inmaculada Riba
- UNESCO/UNITWIN WiCop, Department of Physical Chemistry, University of Cadiz, Poligono Río San Pedro, s/n, 11510, Puerto Real, Cádiz, Spain
| | - Bardukh Gabrielyan
- Scientific Center of Zoology and Hydrobiology, 7 Paruir Sevak, Yerevan, 0014, Armenia
| | - Alla Khosrovyan
- UNESCO/UNITWIN WiCop, Department of Physical Chemistry, University of Cadiz, Poligono Río San Pedro, s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Angel Luque
- Department of Biology, University of Las Palmas de Gran Canaria, Tafira, Las Palmas, Spain
| | - T Angel Del Valls
- UNESCO/UNITWIN WiCop, Department of Physical Chemistry, University of Cadiz, Poligono Río San Pedro, s/n, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
23
|
Ruocco N, Varrella S, Romano G, Ianora A, Bentley MG, Somma D, Leonardi A, Mellone S, Zuppa A, Costantini M. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:128-140. [PMID: 27130972 DOI: 10.1016/j.aquatox.2016.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Stefano Varrella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Matt G Bentley
- Faculty of Science and Technology, C227 Christchurch House, Bournemouth University, Talbot Campus, Poole, UK
| | - Domenico Somma
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Napoli, Italy
| | - Antonio Zuppa
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
24
|
Shan N, Zhou W, Zhang S, Zhang Y. Identification of HSPA8 as a candidate biomarker for endometrial carcinoma by using iTRAQ-based proteomic analysis. Onco Targets Ther 2016; 9:2169-79. [PMID: 27110132 PMCID: PMC4835145 DOI: 10.2147/ott.s97983] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although there are advances in diagnostic, predictive, and therapeutic strategies, discovering protein biomarker for early detection is required for improving the survival rate of the patients with endometrial carcinoma. In this study, we identify proteins that are differentially expressed between the Stage I endometrial carcinoma and the normal pericarcinous tissues by using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. Totally, we screened 1,266 proteins. Among them, 103 proteins were significantly overexpressed, and 30 were significantly downexpressed in endometrial carcinoma. Using the bioinformatics analysis, we identified a list of proteins that might be closely associated with endometrial carcinoma, including CCT7, HSPA8, PCBP2, LONP1, PFN1, and EEF2. We validated the gene overexpression of these molecules in the endometrial carcinoma tissues and found that HSPA8 was most significantly upregulated. We further validated the overexpression of HSPA8 by using immunoblot analysis. Then, HSPA8 siRNA was transferred into the endometrial cancer cells RL-95-2 and HEC-1B. The depletion of HSPA8 siRNAs significantly reduced cell proliferation, promoted cell apoptosis, and suppressed cell growth in both cell lines. Taken together, HSPA8 plays a vital role in the development of endometrial carcinoma. HSPA8 is a candidate biomarker for early diagnosis and therapy of Stage I endometrial carcinoma.
Collapse
Affiliation(s)
- Nianchun Shan
- Department of Obstetric and Gynecology, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Zhou
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shufen Zhang
- Department of Obstetric and Gynecology, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu Zhang
- Department of Obstetric and Gynecology, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
25
|
Pinsino A, Matranga V. Sea urchin immune cells as sentinels of environmental stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:198-205. [PMID: 25463510 DOI: 10.1016/j.dci.2014.11.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
Echinoderms, an ancient and very successful phylum of marine invertebrates, play a central role in the maintenance of ecosystem integrity and are constantly exposed to environmental pressure, including: predation, changes in temperature and pH, hypoxia, pathogens, UV radiation, metals, toxicants, and emerging pollutants like nanomaterials. The annotation of the sea urchin genome, so closely related to humans and other vertebrate genomes, revealed an unusually complex immune system, which may be the basis for why sea urchins can adapt to different marine environments and survive even in hazardous conditions. In this review, we give a brief overview of the morphological features and recognized functions of echinoderm immune cells with a focus on studies correlating stress and immunity in the sea urchin. Immune cells from adult Paracentrotus lividus, which have been introduced in the last fifteen years as sentinels of environmental stress, are valid tools to uncover basic molecular and regulatory mechanisms of immune responses, supporting their use in immunological research. Here we summarize laboratory and field studies that reveal the amenability of sea urchin immune cells for toxicological testing.
Collapse
Affiliation(s)
- Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
26
|
Salvo A, Potortì AG, Cicero N, Bruno M, Turco VL, Bella GD, Dugo G. Statistical characterisation of heavy metal contents inParacentrotus lividusfrom Mediterranean Sea. Nat Prod Res 2014; 28:718-26. [DOI: 10.1080/14786419.2013.878937] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Chiarelli R, Roccheri MC. Marine Invertebrates as Bioindicators of Heavy Metal Pollution. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojmetal.2014.44011] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Fu W, Zhang F, Liao M, Liu M, Zheng B, Yang H, Zhong M. Molecular cloning and expression analysis of a cytosolic heat shock protein 70 gene from mud crab Scylla serrata. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1306-1314. [PMID: 23481212 DOI: 10.1016/j.fsi.2013.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 02/16/2013] [Accepted: 02/20/2013] [Indexed: 06/01/2023]
Abstract
Heat shock protein 70s (Hsp70s) play important roles in resisting environmental stresses and stimulating innate immune system. To understand the immune defense mechanisms of Scylla serrata, a full-length cytosolic Hsp70 cDNA of S. serrata (designated as SSHsp70) was obtained by reverse transcriptase-polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends (RACE). The full-length of SSHsp70 cDNA was 2235 bp, with a 5' untranslated region of 105 bp, a 3' untranslated region of 174 bp, and an open reading frame of 1956 bp encoding a polypeptide of 651 amino acids with an estimated molecular mass of 71.3 kDa and an estimated isoelectric point of 5.55. The cloned SSHsp70 belonged to a cytosolic Hsp70 family. Three typical Hsp70 signature motifs were detected in SSHsp70 by InterPro analysis. Quantitative PCR (qPCR) was used to detect tissue distribution and mRNA expression levels of SSHsp70 under different stress conditions. The obviously high levels of SSHsp70 transcript were in hemocyte, heart, hepatopancreas and gill, whereas low levels were detected in muscle, eyestalk, stomach, and gut. In different temperature treatments, the expression levels of SSHsp70 in low or high temperatures were higher than those in temperate temperature. In pathogen challenge treatments, the mRNA expression level of SSHsp70 reached a maximum level after 18 h and then dropped progressively. In different salt concentration treatments, the mRNA expression level of SSHsp70 had a minimum level at 25‰ salt concentration and high expression levels at high or low salt concentration. In different nitrite concentration treatments, the mRNA expression level of SSHsp70 increased progressively with the increase of nitrite concentration. The results confirmed Hsp70 could be used as a tool for evolution and phylogenetic analysis, a kind of potential biomarker, and a disease resistance factor used in application.
Collapse
Affiliation(s)
- Wandong Fu
- Zhejiang Marine Development Research Institute, Zhoushan 316100, PR China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Ragusa MA, Costa S, Gianguzza M, Roccheri MC, Gianguzza F. Effects of cadmium exposure on sea urchin development assessed by SSH and RT-qPCR: metallothionein genes and their differential induction. Mol Biol Rep 2012; 40:2157-67. [DOI: 10.1007/s11033-012-2275-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
|
30
|
Ryu TK, Lee G, Rhee Y, Park HS, Chang M, Lee S, Lee J, Lee TK. Identification of nickel response genes in abnormal early developments of sea urchin by differential display polymerase chain reaction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:18-24. [PMID: 22809708 DOI: 10.1016/j.ecoenv.2012.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 06/01/2023]
Abstract
Bioassays and biomarkers have been previously developed to assess the effects of heavy metal contaminants on the early life stages of the sea urchin. In this study, malformation in the early developmental processes was observed in sea urchin (Strongylocentrotus intermedius) larvae exposed to 10 ppm Ni for over 30 h. The most critical stage at which the triggering of nickel effects takes place is thought to be the blastula stage, which occurs after fertilization in larval development. To investigate the molecular-level responses of sea urchin exposed to heavy metal stress and to explore the differentially expressed genes that are induced or repressed by nickel, differential display polymerase chain reaction (DD-PCR) was used with sea urchin mRNAs. The malformation-related genes expressed in the early life stages of the sea urchin were cloned from larvae exposed to 10 ppm of nickel for 15 h, and accessed via DD-PCR. Sequence analysis results revealed that each of the genes evidenced high homology with EGF2, PCSK9, serine/threonine protein kinase, apolipophorin precursor protein, and MGC80921 protein/transcript variant 2. This result may prove useful in the development of novel biomarkers for the assessment of heavy metal stresses on sea urchin embryos.
Collapse
Affiliation(s)
- Tae Kwon Ryu
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
32
|
Marrone V, Piscopo M, Romano G, Ianora A, Palumbo A, Costantini M. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 2012; 7:e31750. [PMID: 22363721 PMCID: PMC3282763 DOI: 10.1371/journal.pone.0031750] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/12/2012] [Indexed: 12/30/2022] Open
Abstract
Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.
Collapse
Affiliation(s)
- Vincenzo Marrone
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marina Piscopo
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy
| | - Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Adrianna Ianora
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
- * E-mail:
| |
Collapse
|
33
|
Bonaventura R, Zito F, Costa C, Giarrusso S, Celi F, Matranga V. Stress response gene activation protects sea urchin embryos exposed to X-rays. Cell Stress Chaperones 2011; 16:681-7. [PMID: 21720812 PMCID: PMC3220391 DOI: 10.1007/s12192-011-0277-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022] Open
Abstract
We used Paracentrotus lividus sea urchin embryos, a well-established model in developmental biology and ecotoxicology, for investigation on stress/anti-apoptotic protein expression elicited in response to harmful ionizing radiation, such as X-rays. We evaluated the acute effects of a high-dose exposure (5 Gy) on P. lividus analyzing by Western blotting the accumulation levels of HSP60, HSP70, BAG3 and a putative p63 at 24 and 48 h after irradiation. We found an increase in the HSP70, BAG3, and p63 protein levels only 48 h after irradiation, whereas no HSP60 increase was detected either at 24 or 48 h. Levels of the mRNA coding for HSP70 and p63 were also investigated by relative RT-PCR and were found to increase 24 h after irradiation, returning to their initial levels at 48 h. Results demonstrate the presence of an adaptive regulatory mechanism operating at the transcriptional level at 24 h, followed by a translational activation at 48 h post-irradiation. In conclusion, our findings confirm the sea urchin embryo as a sensible bioindicator of cell damage and we propose this model for studies on the protective pathways activated in response to X-rays. The novel result of the involvement of BAG3 and p63 in the response to X-rays, never tested so far in any other embryonic system, opens the way for their use as biomarkers of X-ray hazards.
Collapse
Affiliation(s)
- Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Salvatore Giarrusso
- INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Filippo Celi
- INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
34
|
Pinsino A, Turturici G, Sconzo G, Geraci F. Rapid changes in heat-shock cognate 70 levels, heat-shock cognate phosphorylation state, heat-shock transcription factor, and metal transcription factor activity levels in response to heavy metal exposure during sea urchin embryonic development. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:246-254. [PMID: 21082241 DOI: 10.1007/s10646-010-0576-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
The aim of the present study was to analyze and compare the effects of several metals on the embryos of the sea urchin Paracentrotus lividus, a key species within the Mediterranean Sea ecosystem. Embryos were continuously exposed from fertilization to the following metals: 0.6 mg/l copper, 3 mg/l lead, and 6 mg/l nickel. The embryos were then monitored for metal responses at the gastrula stage, which occurred 24 h after exposure. A biochemical multi-experimental approach was taken and involved the investigation of the levels of HSC70 expression and the involvement of heat shock factor (HSF) and/or metal transcription factor (MTF) in the response. Immunoblotting assays and electrophoretic mobility shift assays (EMSA) were used to detect stress protein levels and to study the interaction between DNA and specific transcription factors, respectively. In the 1 h during exposure to heavy metals, changes in HSC70 levels and HSC70 a phosphorylation state were observed. Rapid changes in HSF and MTF DNA-binding activity also occurred during the early stages of heavy metal exposure. In contrast, few developmental abnormalities were observed at the gastrula stage but more abnormalities were observed 48 h after metal exposure. These data demonstrate that changes in HSC70 levels and phosphorylation state as well as in HSF and MTF binding activities may be used to rapidly detect responses to heavy metal exposure. Detection of biochemical and molecular changes in response to metal exposure before manifestation of morpho-pathological effects are important for the prediction of morbidity, and these markers will be useful for determining the response to exposure as part of a toxicological exposure-response experiment and for determining responses for an impact assessment.
Collapse
Affiliation(s)
- Annalisa Pinsino
- Department of Cellular and Developmental Biology, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | | | | | | |
Collapse
|
35
|
Pinsino A, Matranga V, Trinchella F, Roccheri MC. Sea urchin embryos as an in vivo model for the assessment of manganese toxicity: developmental and stress response effects. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:555-562. [PMID: 19882348 DOI: 10.1007/s10646-009-0432-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/21/2009] [Indexed: 05/28/2023]
Abstract
In the marine environment increasing concentrations of bio-available compounds often result from anthropogenic activities. Among metal ions, manganese represents a new emergent factor in environmental contamination. Here, we studied the effects of manganese on Paracentrotus lividus sea urchin embryos using biological and biochemical approaches for the analysis of impact on development, tissue accumulation and stress markers. Embryos were continuously exposed from fertilization to manganese at concentrations ranging from 1.0 to 61.6 mg l(-1), monitored for developmental abnormalities at 48 h after fertilization, and used for atomic spectrometric analysis at various times from 6 to 72 h. We found that concentration- and time-dependent increases in morphological abnormalities were directly correlated to manganese accumulation, with major defects in skeleton formation at 48 h. Concurrently, we found an upregulation of the hsc70 and hsc60 stress proteins detected by immunoblotting, whereas no induction of apoptosis or ROS production was observed by TUNEL and live tests, respectively. Taken together, our findings demonstrate that the observed manganese embryo-toxicity is related to both its intracellular accumulation and misregulated homeostasis, and confirm the importance of stress proteins as protective agents in the acquisition of tolerance and resistance to apoptosis.
Collapse
Affiliation(s)
- Annalisa Pinsino
- Dipartimento di Biologia Cellulare e dello Sviluppo "A. Monroy", Università di Palermo, Italy
| | | | | | | |
Collapse
|
36
|
Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK. Heat shock proteins in toxicology: How close and how far? Life Sci 2010; 86:377-84. [DOI: 10.1016/j.lfs.2009.12.015] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 12/22/2009] [Accepted: 12/31/2009] [Indexed: 01/03/2023]
|
37
|
Fu W, Yao J, Wang X, Liu F, Fu G, Duan D. Molecular cloning and expression analysis of a cytosolic Hsp70 gene from Laminaria japonica (Laminariaceae, Phaeophyta). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:738-47. [PMID: 19259734 DOI: 10.1007/s10126-009-9188-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Accepted: 02/05/2009] [Indexed: 05/26/2023]
Abstract
In this study, a full-length cytosolic heat shock protein 70 complementary DNA (cDNA) of Laminaria japonica (designated as LJHsp70) was obtained by reverse transcriptase-polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends. The full length of LJHsp70 cDNA was 2,918 bp, with a 5' untranslated region of 248 bp, a 3' untranslated region of 696 bp, and an open reading frame of 1,974 bp encoding a polypeptide of 657 amino acids with an estimated molecular mass of 72.03 kDa and an estimated isoelectric point of 4.97. There was highly repeated sequence of CAA in 5' untranslated region of LJHsp70. The result of phylogenetic tree of Hsp70s, the BLAST program, analysis and cytosolic Hsp70-specific motif of LJHsp70 verified that the cloned LJHsp70 belonged to cytosolic Hsp70 family. Three typical Hsp70 signature motifs were detected in LJHsp70 by InterPro analysis. Under different stress conditions, messenger RNA (mRNA) expression levels of LJHsp70 were quantified by quantitative RT-PCR. To L. japonica sporophytes kept in different temperatures for 1 h, the expression level of LJHsp70 at 30 degrees C was highest and twofold higher than that at 10 degrees C. To L. japonica sporophytes kept at 25 degrees C for different times, the mRNA expression level of LJHsp70 reached a maximum level after 7 h and then dropped progressively. The expression level of LJHsp70 at 0 or 5 per thousand salt concentration for 2 h was twofold higher than that at 30 per thousand salt concentration for 2 h. The results showed that LJHsp70 may be a kind of potential biomarker used to monitor environment conditions.
Collapse
Affiliation(s)
- Wandong Fu
- Institute of Oceanology, The Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Ahn IY, Ji J, Park H. Metal accumulation in sea urchins and their kelp diet in an Arctic fjord (Kongsfjorden, Svalbard). MARINE POLLUTION BULLETIN 2009; 58:1571-7. [PMID: 19682712 DOI: 10.1016/j.marpolbul.2009.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/18/2009] [Accepted: 07/13/2009] [Indexed: 05/28/2023]
Affiliation(s)
- In-Young Ahn
- Korea Polar Research Institute of Korea Ocean Research and Development Institute, Songdo Technopark, 7-50 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea.
| | | | | |
Collapse
|
39
|
Wu R, Sun Y, Lei LM, Xie ST. Molecular identification and expression of heat shock cognate 70 (HSC70) in the pacific white shrimp Litopenaeus vannamei. Mol Biol 2008. [DOI: 10.1134/s002689330802009x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Pinsino A, Della Torre C, Sammarini V, Bonaventura R, Amato E, Matranga V. Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Southern Adriatic Sea, Italy. Cell Biol Toxicol 2008; 24:541-52. [DOI: 10.1007/s10565-008-9055-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 01/02/2008] [Indexed: 01/23/2023]
|
41
|
Roux MM, Radeke MJ, Goel M, Mushegian A, Foltz KR. 2DE identification of proteins exhibiting turnover and phosphorylation dynamics during sea urchin egg activation. Dev Biol 2008; 313:630-47. [DOI: 10.1016/j.ydbio.2007.10.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
42
|
Park H, Ahn IY, Lee HE. Expression of heat shock protein 70 in the thermally stressed antarctic clam Laternula elliptica. Cell Stress Chaperones 2007; 12:275-82. [PMID: 17915560 PMCID: PMC1971231 DOI: 10.1379/csc-271.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heat shock protein 70 (designated Laternula elliptica Hsp70 (LEHsp70)) expression was investigated in an Antarctic mud clam to see whether or not the inducible heat shock response has been conserved throughout over 25 million years of adaptation to constant low environmental temperatures. LEHsp70 cDNA was cloned and sequenced from the Antarctic clam Laternula elliptica. We used degenerated primers designed in the highly conserved regions of Hsp to amplify the corresponding mRNA, and full-length cDNA was obtained by rapid amplification of cDNA ends (RACE). The full length of LEHsp70 cDNA was 2470 bp, with a 5' untranslated region (UTR) of 92 bp, a 3' UTR of 416 bp, and an open reading frame (ORF) of 1962 bp encoding a polypeptide of 653 amino acids with an estimated molecular mass of 71.266 kDa and an estimated isoelectric point of 5.20. LEHsp70 contained highly conserved functional motifs of the cytosolic Hsp70 family. Expression of the LEHsp70 gene was quantified by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) of digestive gland and gill tissues. Heat shock (10 degrees C for different time periods) caused rapid induction of LEHsp70. A significant 4.6 +/- 0.14-fold increase in the LEHsp70/beta-Actin mRNA ratio occurred in the gill at 12 hours, which returned to baseline after 48 hours. In contrast, the maximum expression in the digestive gland (3.6 +/- 0.36) was reached at 24 hours and was still significant after 48 hours (1.89 +/- 0.21). This indicates that LEHsp70 may play an important role in mediating thermal stress and tolerance in this clam.
Collapse
Affiliation(s)
- Hyun Park
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Songdo-dong 7-50, Yeonsu-gu, Incheon 406-840, South Korea.
| | | | | |
Collapse
|
43
|
Browne CL, Swan JB, Rankin EE, Calvert H, Griffiths S, Tytell M. Extracellular heat shock protein 70 has novel functional effects on sea urchin eggs and coelomocytes. ACTA ACUST UNITED AC 2007; 210:1275-87. [PMID: 17371926 DOI: 10.1242/jeb.02743] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous reports document that the 70 kDa heat shock proteins are not only intracellular proteins but are also present in blood and other extracellular compartments. How they affect cell function from the extracellular space remains unclear. Using two well-characterized cell types from the sea urchin, we show that extracellular mixtures of the constitutive and inducible forms of the 70 kDa heat shock proteins (Hsc70 and Hsp70, respectively) have dramatic effects on initiation of cell division in fertilized eggs and on the clotting reaction of hypotonically stressed coelomocytes. In suspensions of fertilized eggs to which Hsc70 or a 2:3 mixture of Hsc and Hsp70 was added, progression to the first mitotic division was accelerated. Evidence is provided that the extracellular Hsc70 passes into the egg cells in an unconventional manner, being distributed through the cytoplasm, and that it may alter the intracellular signaling cascade initiated by sperm penetration. In coelomocytes that were stimulated by hypotonic shock to mimic injury, the spreading reaction of the clotting response was significantly inhibited when either Hsp70 or Hsc70 was in the medium. These results suggest that the presence of Hsc and/or Hsp70 in the extracellular fluid may promote mitosis of dividing cells and suppress the reactivity of immune system cells.
Collapse
Affiliation(s)
- Carole L Browne
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Deane EE, Woo NYS. Impact of heavy metals and organochlorines on hsp70 and hsc70 gene expression in black sea bream fibroblasts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 79:9-15. [PMID: 16780970 DOI: 10.1016/j.aquatox.2006.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/07/2006] [Accepted: 04/11/2006] [Indexed: 05/10/2023]
Abstract
The aim of the present study was to investigate the effects of environmentally important heavy metals and organochlorines on the transcriptional profiles of genes coding for heat shock cognate 70 (hsc70) and inducible heat shock protein 70 (hsp70) in a black sea bream fibroblast cell line. Using the nucleotide sequence information, from the cloned genes, specific reverse transcriptase-polymerase chain reaction (RT-PCR) methods were devised to test the effects of heavy metals (Cd2+, Cu2+ and Ni2+) and organochlorines (aroclor 1254, hexachlorobenzene and 2-4-dichloroaniline) on the cell stress response. Hsp70 was induced in fibroblasts upon heavy metal exposure concentrations as low as 0.01 microM whereas hsc70 expression was induced upon organochlorine exposure concentrations as low as 0.001 microM. Overall, our findings demonstrate that gene members of the HSP70 family are responsive to environmentally important chemicals.
Collapse
Affiliation(s)
- Eddie E Deane
- Department of Biology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | |
Collapse
|
45
|
Franzellitti S, Fabbri E. Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochem Biophys Res Commun 2005; 336:1157-63. [PMID: 16168387 DOI: 10.1016/j.bbrc.2005.08.244] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 08/31/2005] [Indexed: 11/24/2022]
Abstract
HSP70 gene expression was studied by quantitative RT-PCR after cloning and sequencing of two different HSP70 gene fragments from the digestive gland of Mytilus galloprovincialis, called MgHSP70 and MgHSC70. Heat shock (1h at 35 degrees C) caused rapid induction of MgHSP70, while no change was observed for MgHSC70. Hg(2+) (150 microg/L for different time periods) significantly induced MgHSP70 expression that reached maximum levels after 24h, decreasing thereafter. MgHSC70 expression was inhibited after 1 day and induced after a 6-day exposure to Hg(2+). A 1-week exposure to Cr(6+) (1, 10, and 50 ng/L) induced and inhibited MgHSC70 and MgHSP70 transcript levels, respectively. MgHSC70 and MgHSP70 appear to play different roles in cell protection; the former is induced after acute stress and/or during the earlier phase of the response while the latter is induced by chronic stress. The present results provide new insights into mechanisms used by mussels to adapt to stressful environments.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Interdepartment Centre for Environmental Science Research, University of Bologna, Ravenna, Italy
| | | |
Collapse
|
46
|
Matranga V, Pinsino A, Celi M, Natoli A, Bonaventura R, Schröder HC, Müller WEG. Monitoring chemical and physical stress using sea urchin immune cells. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 39:85-110. [PMID: 17152695 DOI: 10.1007/3-540-27683-1_5] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Coelomocytes are the cells freely circulating in the body fluid contained in echinoderm coelom and constitute the defence system, which, in response to injuries, host invasion, and adverse conditions, is capable of chemotaxis, phagocytosis, and production of cytotoxic metabolites. Red and colourless amoebocytes, petaloid and philopodial phagocytes, and vibratile cells are the cell types that, in different proportions, constitute the mixed coelomocyte cell population found in sea urchins. Advances in cellular and molecular biology have made it possible to identify a number of specific proteins expressed in coelomocytes under resting conditions or when activated by experimentally induced stress. Only recently, coelomocytes have been used for pollution studies with the aim of introducing a new biosensor for detection of stress at both cellular and molecular levels, as sentinel of sea health. In this chapter, we briefly review the important features of these valuable cells and describe studies on their use in the laboratory and in the field for the assessment of chemical and physical pollution of the sea.
Collapse
Affiliation(s)
- V Matranga
- Istituto di Biomedicina e Immunologia Molecolare (IBIM) Alberto Monroy, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Bonaventura R, Poma V, Costa C, Matranga V. UVB radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos. Biochem Biophys Res Commun 2005; 328:150-7. [PMID: 15670763 DOI: 10.1016/j.bbrc.2004.12.161] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Indexed: 12/27/2022]
Abstract
Ozone depletion results in an increased flux of biologically damaging radiations reaching the earth. Although ultraviolet (UV) penetration is attenuated by the seawater, harmful effects can be still observed at low depths where sea urchin embryos are living. We have used Paracentrotus lividus embryos to study the impacts of UV radiation on their development. Blastula cultures were exposed to different doses of UVB (312 nm) radiations and the resulting endpoint effects were evaluated in terms of embryonic morphological abnormalities, variations in specific gene expression, and changes in the levels of stress proteins. We found that embryos were moderately sensitive to 50 J/m2 UVB radiation; an increase in the number of developmentally delayed and malformed embryos was detected when increasing doses, up to 1000 J/m2, were used. Major developmental defects, observed 24 and 48 h after exposure, consisted in the failure of skeleton elongation and patterning. Accordingly, we found a reduction in the number of primary mesenchyme cells that expressed Pl-SM30, a gene coding for one of the specific matrix proteins of the skeleton. The morphological effects observed 1, 24, and 48 h after exposure were correlated with a dose-dependent increase in the level and in the activation of two recognized stress markers, namely hsp70 and p38 MAPk, respectively, consistent with their role in mediating cellular response to stress and suggesting a function in embryo survival.
Collapse
Affiliation(s)
- Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Sezione Biologia dello Sviluppo, Palermo, Italy
| | | | | | | |
Collapse
|