1
|
Crosstalk between Melanin Concentrating Hormone and Endocrine Factors: Implications for Obesity. Int J Mol Sci 2022; 23:ijms23052436. [PMID: 35269579 PMCID: PMC8910548 DOI: 10.3390/ijms23052436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 01/03/2023] Open
Abstract
Melanin-concentrating hormone (MCH) is a 19aa cyclic peptide exclusively expressed in the lateral hypothalamic area, which is an area of the brain involved in a large number of physiological functions and vital processes such as nutrient sensing, food intake, sleep-wake arousal, memory formation, and reproduction. However, the role of the lateral hypothalamic area in metabolic regulation stands out as the most relevant function. MCH regulates energy balance and glucose homeostasis by controlling food intake and peripheral lipid metabolism, energy expenditure, locomotor activity and brown adipose tissue thermogenesis. However, the MCH control of energy balance is a complex mechanism that involves the interaction of several neuroendocrine systems. The aim of the present work is to describe the current knowledge of the crosstalk of MCH with different endocrine factors. We also provide our view about the possible use of melanin-concentrating hormone receptor antagonists for the treatment of metabolic complications. In light of the data provided here and based on its actions and function, we believe that the MCH system emerges as an important target for the treatment of obesity and its comorbidities.
Collapse
|
2
|
Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2020; 229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The lateral hypothalamic area (LHA) is a heterogeneous brain structure extensively studied for its potent role in regulating energy balance. The anatomical and molecular diversity of the LHA permits the orchestration of responses to energy sensing cues from the brain and periphery. Two of the primary cell populations within the LHA associated with integration of this information are Orexin (ORX) and Melanin Concentrating Hormone (MCH). While both of these non-overlapping populations exhibit orexigenic properties, the activities of these two systems support feeding behavior through contrasting mechanisms. We describe the anatomical and functional properties as well as interaction with other neuropeptides and brain reward and hedonic systems. Specific outputs relating to arousal, food seeking, feeding, and metabolism are coordinated through these mechanisms. We then discuss how both the ORX and MCH systems harmonize in a divergent yet overall cooperative manner to orchestrate feeding behavior through transitions between various appetitive states, and thus offer novel insights into LHA allostatic control of appetite.
Collapse
Affiliation(s)
| | | | - Alexander W Johnson
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing.
| |
Collapse
|
3
|
Stevanovic D, Trajkovic V, Müller-Lühlhoff S, Brandt E, Abplanalp W, Bumke-Vogt C, Liehl B, Wiedmer P, Janjetovic K, Starcevic V, Pfeiffer AFH, Al-Hasani H, Tschöp MH, Castañeda TR. Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Mol Cell Endocrinol 2013; 381:280-90. [PMID: 23994018 DOI: 10.1016/j.mce.2013.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/25/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Signaling through the mammalian target of rapamycin complex 1 (mTORC1) and its effectors the S6-kinases (S6K) in the hypothalamus is thought to be involved in nutrient sensing and control of food intake. Given the anatomical proximity of this pathway to circuits for the hormone ghrelin, we investigated the potential role of the mTORC1/S6K pathway in mediating the metabolic effects of ghrelin. We found that ghrelin promoted phosphorylation of S6K1 in the mouse hypothalamic cell line N-41 and in the rat hypothalamus after intracerebroventricular administration. Rapamycin, an inhibitor of mTORC1, suppressed ghrelin-induced phosphorylation of hypothalamic S6K1 and increased food intake and insulin in rats. Chronic peripheral administration of ghrelin induced a significant increase in body weight, fat mass and food efficiency in wild-type and S6K2-knockout but not in S6K1-knockout mice. We therefore propose that ghrelin-induced hyperphagia, adiposity and insulin secretion are controlled by a central nervous system involving the mTORC1/S6K1 pathway.
Collapse
Affiliation(s)
- Darko Stevanovic
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam Rehbrücke, Germany; Institute of Physiology, School of Medicine, University of Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Bjursell M, Wedin M, Admyre T, Hermansson M, Böttcher G, Göransson M, Lindén D, Bamberg K, Oscarsson J, Bohlooly-Y M. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH. PLoS One 2013; 8:e64721. [PMID: 23700488 PMCID: PMC3659114 DOI: 10.1371/journal.pone.0064721] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/17/2013] [Indexed: 12/17/2022] Open
Abstract
Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR) is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH) and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.
Collapse
|
5
|
Skibicka KP, Dickson SL. Ghrelin and food reward: the story of potential underlying substrates. Peptides 2011; 32:2265-73. [PMID: 21621573 DOI: 10.1016/j.peptides.2011.05.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
The incidence of obesity is increasing at an alarming rate and this worldwide epidemic represents a significant decrease in life span and quality of life of a large part of the affected population. Therefore an understanding of mechanisms underlying food overconsumption and obesity development is urgent and essential to find potential treatments. Research investigating mechanisms underlying obesity and the control of food intake has recently experienced a major shift in focus, from the brain's hypothalamus to additional important neural circuits controlling emotion, cognition and motivated behavior. Among them, the mesolimbic system, and the changes in reward and motivated behavior for food, emerge as new promising treatment targets. Furthermore, there is also growing appreciation of the impact of peripheral hormones that signal nutrition status to the mesolimbic areas, and especially the only known circulating orexigenic hormone, ghrelin. This review article provides a synthesis of recent evidence concerning the impact of manipulation of ghrelin and its receptor on models of food reward/food motivation behavior and the mesolimbic circuitry. Particular attention is given to the potential neurocircuitry and neurotransmitter systems downstream of ghrelin's effects on food reward.
Collapse
Affiliation(s)
- Karolina P Skibicka
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, SE-405 30 Gothenburg, Sweden.
| | | |
Collapse
|
6
|
Bjursell M, Admyre T, Göransson M, Marley AE, Smith DM, Oscarsson J, Bohlooly-Y M. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2011; 300:E211-20. [PMID: 20959533 DOI: 10.1152/ajpendo.00229.2010] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Free fatty acid receptor 2 (Ffar2), also known as GPR43, is activated by short-chain fatty acids (SCFA) and expressed in intestine, adipocytes, and immune cells, suggesting involvement in lipid and immune regulation. In the present study, Ffar2-deficient mice (Ffar2-KO) were given a high-fat diet (HFD) or chow diet and studied with respect to lipid and energy metabolism. On a HFD, Ffar2-KO mice had lower body fat mass and increased lean body mass. The changed body composition was accompanied by improved glucose control and lower HOMA index, indicating improved insulin sensitivity in Ffar2-KO mice. Moreover, the Ffar2-KO mice had higher energy expenditure accompanied by higher core body temperature and increased food intake. The liver weight and content of triglycerides as well as plasma levels of cholesterol were lower in the Ffar2-KO mice fed a HFD. A histological examination unveiled decreased lipid interspersed in brown adipose tissue of the Ffar2-KO mice. Interestingly, no significant differences in white adipose tissue (WAT) cell size were observed, but significantly lower macrophage content was detected in WAT from HFD-fed Ffar2-KO compared with wild-type mice. In conclusion, Ffar2 deficiency protects from HFD-induced obesity and dyslipidemia at least partly via increased energy expenditure.
Collapse
|
7
|
López M, Nogueiras R, Tena-Sempere M, Diéguez C. Orexins (hypocretins) actions on the GHRH/somatostatin-GH axis. Acta Physiol (Oxf) 2010; 198:325-34. [PMID: 19769635 DOI: 10.1111/j.1748-1716.2009.02042.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The secretion of growth hormone (GH) is regulated through a complex neuroendocrine control system that includes two major hypothalamic regulators, namely GH-releasing hormone (GHRH) and somatostatin (SST) that stimulate and inhibit, respectively, GH release. Classical experiments involving damage and electrical stimulation suggested that the lateral hypothalamic area (LHA) modulated the somatotropic axis, but the responsible molecular mechanisms were unclear. Evidence obtained during the last decade has demonstrated that orexins/hypocretins, a family of peptides expressed in the LHA controlling feeding and sleep, play an important regulatory role on GH, by inhibiting its secretion modulating GHRH and SST neurones. Considering that GH release is closely linked to the sleep-wake cycle and feeding state, understanding orexin/hypocretin physiology could open new therapeutic possibilities in the treatment of sleep, energy homeostasis and GH-related pathologies, such as GH deficiency.
Collapse
Affiliation(s)
- M López
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
8
|
Glick M, Segal-Lieberman G, Cohen R, Kronfeld-Schor N. Chronic MCH infusion causes a decrease in energy expenditure and body temperature, and an increase in serum IGF-1 levels in mice. Endocrine 2009; 36:479-85. [PMID: 19859841 DOI: 10.1007/s12020-009-9252-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Melanin concentrating hormone (MCH) is an orexigenic peptide secreted from the lateral hypothalamus. Various observations suggest a role for MCH in energy expenditure in transgenic mice; however, the influence of MCH on energy expenditure and body temperature in WT mice was inadequately studied. Therefore, our first goal was to characterize the influence of chronic intracerebroventrical MCH infusion on energy homeostasis in mice. Our second goal was to explore the effect of MCH on the GH-insulin like growth factor 1 (IGF-1) axis in vivo. We have recently published that MCH directly increased GH-secretion from pituitary cells in vitro, suggesting that MCH may exert part of its effects on energy balance via direct pituitary hormone regulation. Mice were centrally infused with MCH for 14 days, resulting in a significant increase in food intake, body weight, fat mass and plasma IGF-1 levels, while decreasing body temperature and energy expenditure. Our data emphasize the role of MCH as a key regulator of energy homeostasis by means of appetite regulation, regulation of energy expenditure, and an integrator of energy balance with the neuroendocrine system regulating pituitary hormone secretion. They also support the notion that MCH may have a physiologic role in GH regulation that may, in turn, contribute to its effect on body weight.
Collapse
Affiliation(s)
- Moran Glick
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
9
|
Bjursell M, Gerdin AK, Lelliott CJ, Egecioglu E, Elmgren A, Törnell J, Oscarsson J, Bohlooly-Y M. Acutely reduced locomotor activity is a major contributor to Western diet-induced obesity in mice. Am J Physiol Endocrinol Metab 2008; 294:E251-60. [PMID: 18029443 DOI: 10.1152/ajpendo.00401.2007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of the present study was to investigate the short- and long-term effects of a high-fat Western diet (WD) on intake, storage, expenditure, and fecal loss of energy as well as effects on locomotor activity and thermogenesis. WD for only 24 h resulted in a marked physiological shift in energy homeostasis, including increased body weight gain, body fat, and energy expenditure (EE) but an acutely lowered locomotor activity. The acute reduction in locomotor activity was observed after only 3-5 h on WD. The energy intake and energy absorption were increased during the first 24 h, lower after 72 h, and normalized between 7 and 14 days on WD compared with mice given chow diet. Core body temperature and EE was increased between 48 and 72 h but normalized after 21 days on WD. These changes paralleled plasma T(3) levels and uncoupling protein-1 expression in brown adipose tissue. After 21 days of WD, energy intake and absorption, EE, and body temperature were normalized. In contrast, the locomotor activity was reduced and body weight gain was increased over the entire 21-day study period on WD. Calculations based on the correlation between locomotor activity and EE in 2-h intervals at days 21-23 indicated that a large portion of the higher body weight gain in the WD group could be attributed to the reduced locomotor activity. In summary, an acute and persisting decrease in locomotor activity is most important for the effect of WD on body weight gain and obesity in mice.
Collapse
|
10
|
Solomon A, De Fanti BA, Martínez JA. Peripheral ghrelin interacts with orexin neurons in glucostatic signalling. ACTA ACUST UNITED AC 2007; 144:17-24. [PMID: 17619061 DOI: 10.1016/j.regpep.2007.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ghrelin interactions with glycemia in appetite control as well as the potential mechanisms involving the orexin and melanin-concentrating hormone (MCH) neurons in the orexigenic ghrelin signals were investigated by using a specific anti-ghrelin antibody (AGA). Our results confirm that peripheral ghrelin is an important signal in meal initiation and appetite. Employing immunohistochemistry techniques, we found that c-fos positive neurons in the lateral hypothalamus (LH) and perifornical area (PFA) increased after insulin or 2-deoxyglucose administration. Moreover, we have also demonstrated that peripheral ghrelin blockade by the AGA, reduces the orexigenic signal induced by insulin and 2-DG administration probably partly producing a decrease of c-fos immunoreactivity in the LH and PFA as well as a lower activation of orexin neurons. In contrast, the c-fos positive MCH neurons were not apparently affected. In summary, our findings suggest that peripheral ghrelin plays an important role in regulatory "glucostatic" feeding mechanisms by means of its role as a "hunger" signal affecting the LH and PFA areas, which may contribute to energy homeostasis through orexin neurons.
Collapse
Affiliation(s)
- Andrew Solomon
- Department of Physiology and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | | | | |
Collapse
|
11
|
Bjursell M, Lennerås M, Göransson M, Elmgren A, Bohlooly-Y M. GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem Biophys Res Commun 2007; 363:633-8. [PMID: 17904108 DOI: 10.1016/j.bbrc.2007.09.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 09/08/2007] [Indexed: 11/26/2022]
Abstract
In this study, mice carrying a disrupted gene encoding GPR10 (GPR10 KO) were studied to elucidate the function and importance of this receptor regarding metabolism. Female and male GPR10 KO mice had higher body weight after 11 and 15 weeks of age, respectively. The increased body weight was a result of increased fat mass. The obesity was much more pronounced in female mice, which also had a significant decrease in energy expenditure. In correlation to obesity, higher plasma levels of leptin, total cholesterol, and fractions of LDL and HDL were found in GPR10 KO compared to WT mice. Interestingly, GPR10 KO female mice had decreased relative food intake in correlation to higher hypothalamic expression levels of the anorexic signals CRH and POMC. In conclusion, female mice deficient of the gene encoding GPR10 develop higher body weight and obesity due to lower energy expenditure.
Collapse
|
12
|
Egecioglu E, Stenström B, Pinnock SB, Tung LYC, Dornonville de la Cour C, Lindqvist A, Håkanson R, Syversen U, Chen D, Dickson SL. Hypothalamic gene expression following ghrelin therapy to gastrectomized rodents. ACTA ACUST UNITED AC 2007; 146:176-82. [PMID: 17936372 DOI: 10.1016/j.regpep.2007.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 08/30/2007] [Accepted: 09/05/2007] [Indexed: 12/13/2022]
Abstract
We investigated whether ghrelin depletion (by gastrectomy surgery) and/or treatment/replacement with the gastric hormone ghrelin alters the expression of key hypothalamic genes involved in energy balance, in a manner consistent with ghrelin's pro-obesity effects. At 2 weeks after surgery mice were treated with ghrelin (12 nmol/mouse/day, sc) or vehicle for 8 weeks. Gastrectomy had little effect on the expression of these genes, with the exception of NPY mRNA in the arcuate nucleus that was increased. Ghrelin treatment (to gastrectomized and sham mice) increased the mRNA expression of orexigenic peptides NPY and AgRP while decreasing mRNA expression of the anorexigenic peptide POMC. Two weeks gavage treatment with the ghrelin mimetic, MK-0677, to rats increased NPY and POMC mRNA in the arcuate nucleus and MCH mRNA in the lateral hypothalamus. Thus, while predicted pro-obesity ghrelin signalling pathways were activated by ghrelin and ghrelin mimetics, these were largely unaffected by gastrectomy.
Collapse
Affiliation(s)
- Emil Egecioglu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Göteborg University, P.O. Box 434, SE-405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol 2007; 12:6-16. [PMID: 17407492 DOI: 10.1111/j.1369-1600.2006.00041.x] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ghrelin stimulates appetite, increases food intake and causes adiposity by mechanisms that include direct actions on the brain. Previously, we showed that intracerebroventricular administration of ghrelin has stimulatory and dopamine-enhancing properties. These effects of ghrelin are mediated via central nicotine receptors, suggesting that ghrelin can activate the acetylcholine-dopamine reward link. This reward link consists of cholinergic input from the laterodorsal tegmental area (LDTg) to the mesolimbic dopamine system that originates in the ventral tegmental area (VTA) and projects to the nucleus accumbens. Given that growth hormone secretagogue receptors (GHSR-1A) are expressed in the VTA and LDTg, brain areas involved in reward, the present series of experiments were undertaken to examine the hypothesis that these regions may mediate the stimulatory and dopamine-enhancing effects of ghrelin, by means of locomotor activity and in vivo microdialysis in freely moving mice. We found that local administration of ghrelin into the VTA (1 microg in 1 microl) induced an increase in locomotor activity and in the extracellular concentration of accumbal dopamine. In addition, local administration of ghrelin into the LDTg (1 microg in 1 microl) caused a locomotor stimulation and an increase in the extracellular levels of accumbal dopamine. Taken together, this indicates that ghrelin might, via activation of GHSR-1A in the VTA and LDTg, stimulate the acetylcholine-dopamine reward link, implicating that ghrelin is a part of the neurochemical overlap between the reward systems and those that regulate energy balance.
Collapse
Affiliation(s)
- Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Bjursell M, Gerdin AK, Jönsson M, Surve VV, Svensson L, Huang XF, Törnell J, Bohlooly-Y M. G protein-coupled receptor 12 deficiency results in dyslipidemia and obesity in mice. Biochem Biophys Res Commun 2006; 348:359-66. [PMID: 16887097 DOI: 10.1016/j.bbrc.2006.07.090] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 07/04/2006] [Indexed: 10/24/2022]
Abstract
Obesity has been proposed to be a result of an imbalance in the physiological system that controls and maintains the body energy homeostasis. Several G-protein coupled receptors (GPCRs) are involved in the regulation of energy homeostasis. To investigate the importance of GPCR12, mice deficient of this receptor (GPCR12 KO) were studied regarding metabolism. Expression of GPCR12 was found primarily in the limbic and sensory systems, indicating its possible involvement in motivation, emotion together with various autonomic functions, and sensory information processing. GPCR12 KO mice were found to have higher body weight, body fat mass, lower respiratory exchange ratio (RER), hepatic steatosis, and were dyslipidemic. Neither food intake nor energy in faeces was affected in the GPCR12 KO mice. However, lower energy expenditure was found in the GPCR12 KO mice, which may explain the obesity. In conclusion, GPCR12 is considered important for the energy balance since GPCR12 KO mice develop obesity and have lower energy expenditure. This may be important for future drugs that target this receptor.
Collapse
Affiliation(s)
- Mikael Bjursell
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Göteborg University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Laferrère B, Hart AB, Bowers CY. Obese subjects respond to the stimulatory effect of the ghrelin agonist growth hormone-releasing peptide-2 on food intake. Obesity (Silver Spring) 2006; 14:1056-63. [PMID: 16861611 PMCID: PMC2824649 DOI: 10.1038/oby.2006.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The administration of the growth hormone (GH) secretagogue GH-releasing peptide (GHRP)-2, like ghrelin, increases food intake (FI) in lean healthy men. The aim of this study was to investigate whether this effect occurs in obese subjects and whether it is dose-dependent. RESEARCH METHODS AND PROCEDURES Nineteen subjects (10 lean and nine obese), all healthy and weight stable, received a double-blind randomized subcutaneous infusion of GHRP-2 at high dose (HD; 1 mug/kg per hour), low dose (0.1 microg/kg per hour), or placebo for 270 minutes over three study visits. Blood for hormone assays was collected through an intravenous forearm catheter. Hunger and fullness were rated on visual analog scales before and after a fixed breakfast (320 kcal at 120 minutes) and a buffet lunch at 240 minutes. Before lunch, subjects received taped instructions to eat as much as they wanted. RESULTS GHRP-2 infusion significantly increased ad libitum FI in a dose-dependent manner by 10.2 +/- 3.9% at low dose (p = 0.011) and by 33.5 +/- 5.8% at HD (p = 0.000) compared with placebo. Obesity status did not influence the effect of GHRP-2 on FI. All subjects had greater ratings of appetite before but similar levels of fullness after the meal with the HD GHRP-2. Serum GH levels increased dose dependently in all subjects. DISCUSSION The dual stimulatory effect of GHRP-2 on FI and human GH is dose dependent. Obese individuals retain their ability to respond to GHRP-2 both in terms of FI and human GH.
Collapse
Affiliation(s)
- Blandine Laferrère
- Obesity Research Center, St. Luke's Roosevelt Hospital Center, New York, NY 10025, USA.
| | | | | |
Collapse
|
16
|
Segal-Lieberman G, Rubinfeld H, Glick M, Kronfeld-Schor N, Shimon I. Melanin-concentrating hormone stimulates human growth hormone secretion: a novel effect of MCH on the hypothalamic-pituitary axis. Am J Physiol Endocrinol Metab 2006; 290:E982-8. [PMID: 16603725 DOI: 10.1152/ajpendo.00138.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanin-concentrating hormone (MCH), a 19-amino acid orexigenic (appetite-stimulating) hypothalamic peptide, is an important regulator of energy homeostasis. It is cleaved from its precursor prepro-MCH (ppMCH) along with several other neuropeptides whose roles are not fully defined. Because pituitary hormones such as growth hormone (GH), ACTH, and thyroid-stimulating hormone affect body weight and composition, appetite, insulin sensitivity, and lipoprotein metabolism, we investigated whether MCH exerts direct effects on the human pituitary to regulate energy balance using dispersed human fetal pituitaries (21-22 wk gestation) and cultured GH-secreting adenomas. We found that MCH receptor-1 (MCH-R1), but not MCH receptor-2, is expressed in both normal (fetal and adult) human pituitary tissues and in GH cell adenomas. MCH (10 nM) stimulated GH release from human fetal pituitary cultures by up to 62% during a 4-h incubation (P < 0.05). Interestingly, neuropeptide EI (10 nM), which is also cleaved from ppMCH, increased human GH secretion by up to 124% in fetal pituitaries. A milder, albeit significant, induction of GH secretion by MCH (20%) was seen in cultured GH-secreting pituitary adenomas. A comparable stimulation of GH secretion was seen when cultured mouse pituitary cells were treated with MCH. Treatment of cultured GH adenoma cells with MCH (100 nM) induced extracellular signal-regulated kinases 1 and 2 phosphorylation, suggesting activation of MCH-R1. In aggregate, these data suggest that MCH may regulate pituitary GH secretion and imply a potential cross-talk mechanism between appetite-regulating neuropeptides and pituitary hormones.
Collapse
|
17
|
Hervieu GJ. Further insights into the neurobiology of melanin-concentrating hormone in energy and mood balances. Expert Opin Ther Targets 2006; 10:211-29. [PMID: 16548771 DOI: 10.1517/14728222.10.2.211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Melanin-concentrating hormone (MCH) is a critical hypothalamic anabolic neuropeptide, with key central and peripheral actions on energy balance regulation. The actions of MCH are, so far, known to be transduced through two seven-transmembrane-like receptor paralogues, named MCH1R and MCH2R. MCH2R is not functional in rodents. MCH1R is an important receptor involved in mediating feeding behaviour modulation by MCH in rodents. Pharmacological antagonism at MCH1R in rodents diminishes food intake and results in significant and sustained weight loss in fat tissues, particularly in obese animals. Additionally, MCH1R antagonists have been shown to have anxiolytic and antidepressant properties. The purpose of this review is to highlight the recent numerous pieces of evidence showing that pharmacological blockade at MCH1R could be a potential treatment for obesity and its related metabolic syndrome, as well as for various psychiatric disorders.
Collapse
Affiliation(s)
- Guillaume J Hervieu
- GlaxoSmithKline R&D, Neurology Centre of Excellence for Drug Discovery, NFSP-North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
18
|
Bjursell M, Gerdin AK, Ploj K, Svensson D, Svensson L, Oscarsson J, Snaith M, Törnell J, Bohlooly-Y M. Melanin-concentrating hormone receptor 1 deficiency increases insulin sensitivity in obese leptin-deficient mice without affecting body weight. Diabetes 2006; 55:725-33. [PMID: 16505236 DOI: 10.2337/diabetes.55.03.06.db05-1302] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The hypothalamic peptide melanin-concentrating hormone (MCH) plays important roles in energy homeostasis. Animals overexpressing MCH develop hyperphagia, obesity, and insulin resistance. In this study, mice lacking both the MCH receptor-1 (MCHr1 knockout) and leptin (ob/ob) double-null mice (MCHr1 knockout ob/ob) were generated to investigate whether the obesity and/or the insulin resistance linked to the obese phenotype of ob/ob mice was attenuated by ablation of the MCHr1 gene. In MCHr1 knockout ob/ob mice an oral glucose load resulted in a lower blood glucose response and markedly lower insulin levels compared with the ob/ob mice despite no differences in body weight, food intake, or energy expenditure. In addition, MCHr1 knockout ob/ob mice had higher locomotor activity and lean body mass, lower body fat mass, and altered body temperature regulation compared with ob/ob mice. In conclusion, MCHr1 is important for insulin sensitivity and/or secretion via a mechanism not dependent on decreased body weight.
Collapse
Affiliation(s)
- Mikael Bjursell
- Department of Physiology and Pharmacology, Gothenburg University, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L, Engel JA. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol 2006; 11:45-54. [PMID: 16759336 DOI: 10.1111/j.1369-1600.2006.00002.x] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is becoming increasingly apparent that there is a degree of neurochemical overlap between the reward systems and those regulating energy balance. We therefore investigated whether ghrelin, a stomach-derived and centrally derived orexigenic peptide, might act on the reward systems. Central ghrelin administration (1 microg/microL, to the third ventricle) induced an acute increase in locomotor activity as well as dopamine-overflow in the nucleus accumbens, suggesting that ghrelin can activate the mesoaccumbal dopamine system originating in the ventral tegmental area, a system associated with reward and motivated behaviour. The cholinergic afferents to the ventral tegmental area have been implicated in natural reward and in regulating mesoaccumbal dopamine neurons. The possibility that nicotinic receptors are involved in mediating the stimulatory and dopamine-enhancing effects of ghrelin is supported by the findings that peripheral injection of the unselective nicotinic antagonist mecamylamine (2.0 mg/kg) blocked these ghrelin-induced effects. Tentatively, ghrelin may, via activation of the acetylcholine-dopamine reward link, increase the incentive values of signals associated with motivated behaviours of importance for survival such as feeding behaviour. It will be important to discover whether this has therapeutic implications for compulsive addictive behaviours, such as eating behaviour disorders and drug dependence.
Collapse
Affiliation(s)
- Elisabet Jerlhag
- Institute of Pharmacology and Physiology, Department of Pharmacology, Göteborg University, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Egecioglu E, Bjursell M, Ljungberg A, Dickson SL, Kopchick JJ, Bergström G, Svensson L, Oscarsson J, Törnell J, Bohlooly-Y M. Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice. Am J Physiol Endocrinol Metab 2006; 290:E317-25. [PMID: 16174655 DOI: 10.1152/ajpendo.00181.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that growth hormone (GH) overexpression in the brain increased food intake, accompanied with increased hypothalamic agouti-related protein (AgRP) expression. Ghrelin, which stimulates both appetite and GH secretion, was injected intracerebroventricularly to GHR-/- and littermate control (+/+) mice to determine whether ghrelin's acute effects on appetite are dependent on GHR signaling. GHR-/- mice were also analyzed with respect to serum levels of lipoproteins, apolipoprotein (apo)B, leptin, glucose, and insulin as well as body composition. Central injection of ghrelin into the third dorsal ventricle increased food consumption in +/+ mice, whereas no change was observed in GHR-/- mice. After ghrelin injection, AgRP mRNA expression in the hypothalamus was higher in +/+ littermates than in GHR-/- mice, indicating a possible importance of AgRP in the GHR-mediated effect of ghrelin. Compared with controls, GHR-/- mice had increased food intake, leptin levels, and total and intra-abdominal fat mass per body weight and deceased lean mass. Moreover, serum levels of triglycerides, LDL and HDL cholesterol, and apoB, as well as glucose and insulin levels were lower in the GHR-/- mice. In summary, ghrelin's acute central action to increase food intake requires functionally intact GHR signaling. Long-term GHR deficiency in mice is associated with high plasma leptin levels, obesity, and increased food intake but a marked decrease in all lipoprotein fractions.
Collapse
Affiliation(s)
- Emil Egecioglu
- Dept. of Physiology, Göteborg University, PO Box 434, 405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sun JY, Jing MY, Wang JF, Zi NT, Fu LJ, Lu MQ, Pan L. Effect of zinc on biochemical parameters and changes in related gene expression assessed by cDNA microarrays in pituitary of growing rats. Nutrition 2006; 22:187-96. [PMID: 16413754 DOI: 10.1016/j.nut.2005.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/25/2005] [Accepted: 07/23/2005] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The present study simultaneously investigated the effects of different zinc (Zn) levels on the growth performance and relative biochemical parameters in growing rats and analyzed the molecular mechanism of zinc influencing food intake. METHODS Three diets with different Zn levels--Zn adequate (ZA; 35.94 mg/kg, control), Zn deficient (ZD; 3.15 mg/kg), and Zn overdose (ZO; 347.50 mg/kg)--were fed to rats for 6 wk. Dietary Zn was supplemented with ZnSO4. The relation between zinc and food intake was studied by pituitary cDNA microarrays. RESULTS Compared with ZA group, rats fed the ZD diet showed decreases in body weight (P < 0.01), food intake (P < 0.05), tissue zinc concentrations (P < 0.01), and specific activities of alkaline phosphatase (P < 0.01) and copper/Zn superoxide dismutase (P < 0.05), whereas the ZO diet had positive effects on body weight (P < 0.05), zinc concentrations (P < 0.01), and alkaline phosphatase activity (P < 0.05). The villi of the jejunum became shorter (P < 0.01), shriveled, and flattened. This change in morphology decreased absorption surface area, and there was a substantial decrease (P < 0.01) in villi number per unit area in ZD rats. Metallothionein concentration was increased in livers of rats fed ZD (P < 0.01) and ZO (P < 0.05) diets. Moreover, ZD and ZO influenced normal growth and development of organs. The results from pituitary cDNA arrays indicated that different Zn levels affect gene expression of appetite-related peptides, including neuropeptide-Y, melanin-concentrating hormone, ghrelin, calcitonin gene-related product, and serotonin. CONCLUSION The present results showed that zinc deficiency has a negative effect on the growth performance and biochemical parameters of rats. The ZO diet increased body weight (P < 0.05) but had no effect (P > 0.05) on food intake, copper/Zn superoxide dismutase activity, and intestinal morphology. The ZD diet decreased rat food intake by regulating appetite-related gene expression in the pituitary gland.
Collapse
Affiliation(s)
- Jian-Yi Sun
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education and Institute of Feed Science, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | | | |
Collapse
|