1
|
Verhaeg MAT, van der Pijl EM, van de Vijver D, Winter CLTD, Stan TL, van Uffelen A, Censoni L, van Putten M. The behavioural consequences of dystrophinopathy. Dis Model Mech 2025; 18:DMM052047. [PMID: 39885828 PMCID: PMC11911635 DOI: 10.1242/dmm.052047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
Duchenne muscular dystrophy is a severe neuromuscular disorder, caused by mutations in the DMD gene. Normally, the DMD gene gives rise to many dystrophin isoforms, of which multiple are expressed in the brain. The location of the mutation determines the number of dystrophin isoforms affected, and the absence thereof leads to behavioral and cognitive impairments. Even though behavioral studies have thoroughly investigated the effects of the loss of Dp427, and to a lesser extent of Dp140, in mice, direct comparisons between models lacking multiple dystrophin isoforms are sparse. Furthermore, a behavioral characterization of the DMD-null mouse, which lacks all dystrophin isoforms, has never been undertaken. Using a wide variety of behavioral tests, we directly compared impairments between mdx5cv, mdx52 and DMD-null mice. We confirmed the role of Dp427 in emotional reactivity. We did not find any added effects of loss of Dp140 on fear, but showed the involvement of Dp140 in spontaneous behavior, specifically in habituation and activity changes due to light/dark switches. Lastly, our results indicate that Dp71/Dp40 play an important role in many behavioral domains, including anxiety and spontaneous behavior.
Collapse
Affiliation(s)
- Minou A. T. Verhaeg
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Davy van de Vijver
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Tiberiu L. Stan
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Angel van Uffelen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Luciano Censoni
- The Group for Integrative Neurophysiology, Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
2
|
Hiramuki Y, Hosokawa M, Osawa K, Shirakawa T, Watanabe Y, Hanajima R, Kugoh H, Awano H, Matsuo M, Kazuki Y. Titin fragment is a sensitive biomarker in Duchenne muscular dystrophy model mice carrying full-length human dystrophin gene on human artificial chromosome. Sci Rep 2025; 15:1778. [PMID: 39805937 PMCID: PMC11730604 DOI: 10.1038/s41598-025-85369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations of the dystrophin gene, which spans 2.4 Mb on the X chromosome. Creatine kinase (CK) activity in blood and titin fragment levels in urine have been identified as biomarkers in DMD to monitor disease progression and evaluate therapeutic intervention. However, the difference in the sensitivity of these biomarkers in DMD remains unclear. Previously, we generated transchromosomic mice carrying the full-length human dystrophin gene on a human artificial chromosome (DYS-HAC1) vector. The human dystrophin derived from DYS-HAC1 improved pathological phenotypes observed in DMD-null mice, which lack the entire 2.4 Mb of the dystrophin gene. In this study, we compared the values of plasma CK activity and urine/plasma titin fragment levels in wild-type (WT), DYS-HAC1, DMD-null, and DYS-HAC1; DMD-null mice. Plasma CK activity and urine/plasma titin fragment levels in DMD-null mice were significantly higher than those in WT mice. Although plasma CK activity showed no significant difference between WT and DYS-HAC1; DMD-null mice, urine/plasma titin fragment levels in DYS-HAC1; DMD-null mice were higher than those in WT mice. Human dystrophin in DYS-HAC1; DMD-null mice drastically improved muscular dystrophy phenotypes seen in DMD-null mice; however, the proportion of myofibers with central nuclei in DYS-HAC1; DMD-null mice had a tendency to be slightly higher than that in WT mice. These results suggest that urine/plasma titin fragment levels could be a more sensitive biomarker than plasma CK activity.
Collapse
Affiliation(s)
- Yosuke Hiramuki
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
| | - Miwa Hosokawa
- Department of Chromosome Biomedical Engineering, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
| | - Kayo Osawa
- Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata, Kobe, 653-0838, Japan
| | - Taku Shirakawa
- Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata, Kobe, 653-0838, Japan
| | - Yasuhiro Watanabe
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
| | - Hiroyuki Kugoh
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
- Department of Chromosome Biomedical Engineering, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
| | - Hiroyuki Awano
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Masafumi Matsuo
- Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata, Kobe, 653-0838, Japan
- Graduate School of Science and Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| | - Yasuhiro Kazuki
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.
- Department of Chromosome Biomedical Engineering, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 444-8787, Okazaki, Aichi, Japan.
| |
Collapse
|
3
|
Goutal S, Lancien M, Rivier F, Tournier N, Vaillend C. Brain glucose metabolism as a neuronal substrate of the abnormal behavioral response to stress in the mdx mouse, a model of Duchenne muscular dystrophy. Neurobiol Dis 2025; 204:106771. [PMID: 39701189 DOI: 10.1016/j.nbd.2024.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is associated with a range of cognitive and behavioral problems. Brain-related comorbidities show clinical heterogeneity depending on the position of the mutation within the multi-promoter dystrophin (DMD) gene, likely due to the differential impact of mutations on the expression of distinct brain dystrophins. A deficiency of the full-length brain dystrophin, Dp427, has been associated with enhanced stress reactivity, characterized by abnormal fear responses in both patients and mdx mouse model. However, the neural substrates of this phenotype are still unknown. Here, we undertook the first functional imaging study of the mdx mouse brain, following expression of the typical unconditioned fear response expressed by mdx mice after a short scruff restraint and one week later after recovery from stress. We compared the brain glucose metabolism in 12 brain structures of mdx and WT littermate male mice using [18F]FDG PET imaging. Restraint-stress induced a global decrease in [18F]FDG uptake in mdx mice, while no difference was found between genotypes when mice were tested one week later under non-stressful conditions. A subset of brain structures were particularly affected by stress in mdx mice, and we identified abnormal correlations between fear responses and metabolism in specific structures, and altered co-activation of the hypothalamus with several subcortical structures. Our data support the hypothesis that enhanced stress reactivity due to loss of brain Dp427 relies on abnormal activation of the brain fear circuit and deregulation of a hypothalamus-dependent pathway.
Collapse
Affiliation(s)
- Sébastien Goutal
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Marion Lancien
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France; PhyMedExp, CNRS UMR 9214, INSERM U1046, University of Montpellier, CHU de Montpellier, France.
| | - François Rivier
- PhyMedExp, CNRS UMR 9214, INSERM U1046, University of Montpellier, CHU de Montpellier, France.
| | - Nicolas Tournier
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France.
| |
Collapse
|
4
|
Baikova IP, Ilchuk LA, Safonova PD, Varlamova EA, Okulova YD, Kubekina MV, Tvorogova AV, Dolmatova DM, Bakaeva ZV, Kislukhina EN, Lizunova NV, Bruter AV, Silaeva YY. Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity. Int J Mol Sci 2024; 26:158. [PMID: 39796016 PMCID: PMC11719507 DOI: 10.3390/ijms26010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients. Here, we report the generation of two genetically modified mouse lines, named "insT" and "insG", with distinct mutations at the same position in exon 51 that lead to a frameshift, presumably causing protein truncation. Hemizygous males of both lines exhibit classical signs of muscular dystrophy in all muscle tissues except for the cardiac tissue. However, pathological changes are more pronounced in one of the lines. Membrane localization of the protein is reduced to the point of absence in one of the lines. Moreover, an increase in full-length isoform mRNA was detected in diaphragms of insG line mice. Although further work is needed to qualify these mutations as sole origins of dissimilarity, both genetically modified mouse lines are suitable models of DMD and can be used to test gene therapy based on alternative splicing.
Collapse
Affiliation(s)
- Iuliia P. Baikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
| | - Leonid A. Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Polina D. Safonova
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Ekaterina A. Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia D. Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Marina V. Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Anna V. Tvorogova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
| | - Daria M. Dolmatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Zanda V. Bakaeva
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (Z.V.B.); (E.N.K.)
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Evgenia N. Kislukhina
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (Z.V.B.); (E.N.K.)
| | - Natalia V. Lizunova
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (Z.V.B.); (E.N.K.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia Yu. Silaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
5
|
Bourgeois Yoshioka CK, Takenaka-Ninagawa N, Goto M, Miki M, Watanabe D, Yamamoto M, Aoyama T, Sakurai H. Cell transplantation-mediated dystrophin supplementation efficacy in Duchenne muscular dystrophy mouse motor function improvement demonstrated by enhanced skeletal muscle fatigue tolerance. Stem Cell Res Ther 2024; 15:313. [PMID: 39300595 PMCID: PMC11414159 DOI: 10.1186/s13287-024-03922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an incurable neuromuscular disease leading to progressive skeletal muscle weakness and fatigue. Cell transplantation in murine models has shown promise in supplementing the lack of the dystrophin protein in DMD muscles. However, the establishment of novel, long-term, relevant methods is needed to assess its efficiency on the DMD motor function. By applying newly developed methods, this study aimed to evaluate the functional and molecular effects of cell therapy-mediated dystrophin supplementation on DMD muscles. METHODS Dystrophin was supplemented in the gastrocnemius of a 5-week-old immunodeficient DMD mouse model (Dmd-null/NSG) by intramuscular xenotransplantation of healthy human immortalized myoblasts (Hu5/KD3). A long-term time-course comparative study was conducted between wild-type, untreated DMD, and dystrophin supplemented-DMD mouse muscle functions and histology. A novel GO-ATeam2 transgenic DMD mouse model was also generated to assess in vivo real-time ATP levels in gastrocnemius muscles during repeated contractions. RESULTS We found that 10.6% dystrophin supplementation in DMD muscles was sufficient to prevent low values of gastrocnemius maximal isometric contraction torque (MCT) at rest, while muscle fatigue tolerance, assessed by MCT decline after treadmill running, was fully ameliorated in 21-week-old transplanted mice. None of the dystrophin-supplemented fibers were positive for muscle damage markers after treadmill running, with 85.4% demonstrating the utilization of oxidative metabolism. Furthermore, ATP levels in response to repeated muscle contractions tended to improve, and mitochondrial activity was significantly enhanced in dystrophin supplemented-fibers. CONCLUSIONS Cell therapy-mediated dystrophin supplementation efficiently improved DMD muscle functions, as evaluated using newly developed evaluation methods. The enhanced muscle fatigue tolerance in 21-week-old mice was associated with the preferential regeneration of damage-resistant and oxidative fibers, highlighting increased mitochondrial activity, after cell transplantation. These findings significantly contribute to a more in-depth understanding of DMD pathogenesis.
Collapse
Affiliation(s)
- Clémence Kiho Bourgeois Yoshioka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Advanced Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Rehabilitation Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Megumi Goto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mayuho Miki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Advanced Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Daiki Watanabe
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, 1-1 Asashirodai, Kumatori-cho, Sennan-gun, Osaka, 590-0496, Japan
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Tomoki Aoyama
- Department of Advanced Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
Tominari T, Takatoya M, Matsubara T, Matsunobe M, Arai D, Matsumoto C, Hirata M, Yoshinouchi S, Miyaura C, Itoh Y, Komaki H, Takeda S, Aoki Y, Inada M. Establishment of a Triple Quadrupole HPLC-MS Quantitation Method for Dystrophin Protein in Mouse and Human Skeletal Muscle. Int J Mol Sci 2023; 25:303. [PMID: 38203473 PMCID: PMC10779312 DOI: 10.3390/ijms25010303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common type of neuromuscular disease caused by mutations in the DMD gene encoding dystrophin protein. To quantitively assess human dystrophin protein in muscle biopsy samples, it is imperative to consistently detect as low as 0.003% of the dystrophin protein relative to the total muscle protein content. The quantitation of dystrophin protein has traditionally been conducted using semiquantitative immunoblotting or immunohistochemistry; however, there is a growing need to establish a more precise quantitative method by employing liquid chromatography-mass spectrometry (LC-MS) to measure dystrophin protein. In this study, a novel quantification method was established using a mouse experiment platform applied to the clinical quantification of human dystrophin protein. The method using a spike-in approach with a triple quadrupole LC-MS quantitated the amount of dystrophin in wild-type and human DMD transgenic mice but not in DMD-null mice. In conclusion, we established a quantitating method of dystrophin using HPLC-LC-MS with a novel spike-in approach. These results indicate that our methodology could be applied to several LC-MS devices to enable the accurate measurement of dystrophin protein in patients with DMD.
Collapse
Affiliation(s)
- Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masaru Takatoya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Toshiya Matsubara
- Life Science Research Center, Shimadzu Corporation, Nakagyo, Kyoto 604-8511, Japan
| | - Michio Matsunobe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Daichi Arai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Shosei Yoshinouchi
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yoshifumi Itoh
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Hirofumi Komaki
- Translational Medical Center, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Shin’ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
7
|
Doisy M, Vacca O, Fergus C, Gileadi T, Verhaeg M, Saoudi A, Tensorer T, Garcia L, Kelly VP, Montanaro F, Morgan JE, van Putten M, Aartsma-Rus A, Vaillend C, Muntoni F, Goyenvalle A. Networking to Optimize Dmd exon 53 Skipping in the Brain of mdx52 Mouse Model. Biomedicines 2023; 11:3243. [PMID: 38137463 PMCID: PMC10741439 DOI: 10.3390/biomedicines11123243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene that disrupt the open reading frame and thus prevent production of functional dystrophin proteins. Recent advances in DMD treatment, notably exon skipping and AAV gene therapy, have achieved some success aimed at alleviating the symptoms related to progressive muscle damage. However, they do not address the brain comorbidities associated with DMD, which remains a critical aspect of the disease. The mdx52 mouse model recapitulates one of the most frequent genetic pathogenic variants associated with brain involvement in DMD. Deletion of exon 52 impedes expression of two brain dystrophins, Dp427 and Dp140, expressed from distinct promoters. Interestingly, this mutation is eligible for exon skipping strategies aimed at excluding exon 51 or 53 from dystrophin mRNA. We previously showed that exon 51 skipping can restore partial expression of internally deleted yet functional Dp427 in the brain following intracerebroventricular (ICV) injection of antisense oligonucleotides (ASO). This was associated with a partial improvement of anxiety traits, unconditioned fear response, and Pavlovian fear learning and memory in the mdx52 mouse model. In the present study, we investigated in the same mouse model the skipping of exon 53 in order to restore expression of both Dp427 and Dp140. However, in contrast to exon 51, we found that exon 53 skipping was particularly difficult in mdx52 mice and a combination of multiple ASOs had to be used simultaneously to reach substantial levels of exon 53 skipping, regardless of their chemistry (tcDNA, PMO, or 2'MOE). Following ICV injection of a combination of ASO sequences, we measured up to 25% of exon 53 skipping in the hippocampus of treated mdx52 mice, but this did not elicit significant protein restoration. These findings indicate that skipping mouse dystrophin exon 53 is challenging. As such, it has not yet been possible to answer the pertinent question whether rescuing both Dp427 and Dp140 in the brain is imperative to more optimal treatment of neurological aspects of dystrophinopathy.
Collapse
Affiliation(s)
- Mathilde Doisy
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.D.); (O.V.); (A.S.)
| | - Ophélie Vacca
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.D.); (O.V.); (A.S.)
| | - Claire Fergus
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (C.F.)
| | - Talia Gileadi
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; (T.G.); (F.M.); (J.E.M.); (F.M.)
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Minou Verhaeg
- Department of Human Genetics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (M.V.); (M.v.P.); (A.A.-R.)
| | - Amel Saoudi
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.D.); (O.V.); (A.S.)
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France;
| | - Thomas Tensorer
- SQY Therapeutics-Synthena, UVSQ, 78180 Montigny le Bretonneux, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.D.); (O.V.); (A.S.)
| | - Vincent P. Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (C.F.)
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; (T.G.); (F.M.); (J.E.M.); (F.M.)
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Jennifer E. Morgan
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; (T.G.); (F.M.); (J.E.M.); (F.M.)
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (M.V.); (M.v.P.); (A.A.-R.)
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (M.V.); (M.v.P.); (A.A.-R.)
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France;
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; (T.G.); (F.M.); (J.E.M.); (F.M.)
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.D.); (O.V.); (A.S.)
| |
Collapse
|
8
|
Lemos JP, Tenório LPG, Mouly V, Butler-Browne G, Mendes-da-Cruz DA, Savino W, Smeriglio P. T cell biology in neuromuscular disorders: a focus on Duchenne Muscular Dystrophy and Amyotrophic Lateral Sclerosis. Front Immunol 2023; 14:1202834. [PMID: 37920473 PMCID: PMC10619758 DOI: 10.3389/fimmu.2023.1202834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Growing evidence demonstrates a continuous interaction between the immune system, the nerve and the muscle in neuromuscular disorders of different pathogenetic origins, such as Duchenne Muscular Dystrophy (DMD) and Amyotrophic Lateral Sclerosis (ALS), the focus of this review. Herein we highlight the complexity of the cellular and molecular interactions involving the immune system in neuromuscular disorders, as exemplified by DMD and ALS. We describe the distinct types of cell-mediated interactions, such as cytokine/chemokine production as well as cell-matrix and cell-cell interactions between T lymphocytes and other immune cells, which target cells of the muscular or nervous tissues. Most of these interactions occur independently of exogenous pathogens, through ligand-receptor binding and subsequent signal transduction cascades, at distinct levels of specificity. Although this issue reveals the complexity of the system, it can also be envisioned as a window of opportunity to design therapeutic strategies (including synthetic moieties, cell and gene therapy, as well as immunotherapy) by acting upon one or more targets. In this respect, we discuss ongoing clinical trials using VLA-4 inhibition in DMD, and in ALS, with a focus on regulatory T cells, both revealing promising results.
Collapse
Affiliation(s)
- Julia Pereira Lemos
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Liliane Patrícia Gonçalves Tenório
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Alagoas, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vincent Mouly
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
9
|
Kita Y, Okuzaki Y, Naoe Y, Lee J, Bang U, Okawa N, Ichiki A, Jonouchi T, Sakurai H, Kojima Y, Hotta A. Dual CRISPR-Cas3 system for inducing multi-exon skipping in DMD patient-derived iPSCs. Stem Cell Reports 2023; 18:1753-1765. [PMID: 37625413 PMCID: PMC10545483 DOI: 10.1016/j.stemcr.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
To restore dystrophin protein in various mutation patterns of Duchenne muscular dystrophy (DMD), the multi-exon skipping (MES) approach has been investigated. However, only limited techniques are available to induce a large deletion to cover the target exons spread over several hundred kilobases. Here, we utilized the CRISPR-Cas3 system for MES induction and showed that dual crRNAs could induce a large deletion at the dystrophin exon 45-55 region (∼340 kb), which can be applied to various types of DMD patients. We developed a two-color SSA-based reporter system for Cas3 to enrich the genome-edited cell population and demonstrated that MES induction restored dystrophin protein in DMD-iPSCs with three distinct mutations. Whole-genome sequencing and distance analysis detected no significant off-target deletion near the putative crRNA binding sites. Altogether, dual CRISPR-Cas3 is a promising tool to induce a gigantic genomic deletion and restore dystrophin protein via MES induction.
Collapse
Affiliation(s)
- Yuto Kita
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuya Okuzaki
- Nagoya University Graduate School of Bioagricultural Sciences, Avian Bioscience Research Center, Furo-cho, Chikusa-ku, Nagoya, Aishi 464-8601, Japan
| | - Youichi Naoe
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Joseph Lee
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Uikyu Bang
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Natsumi Okawa
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akane Ichiki
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuya Jonouchi
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yusuke Kojima
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
10
|
Hiramuki Y, Abe S, Uno N, Kazuki K, Takata S, Miyamoto H, Takayama H, Morimoto K, Takehara S, Osaki M, Tanihata J, Takeda S, Tomizuka K, Oshimura M, Kazuki Y. Full-length human dystrophin on human artificial chromosome compensates for mouse dystrophin deficiency in a Duchenne muscular dystrophy mouse model. Sci Rep 2023; 13:4360. [PMID: 36928364 PMCID: PMC10020543 DOI: 10.1038/s41598-023-31481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Dystrophin maintains membrane integrity as a sarcolemmal protein. Dystrophin mutations lead to Duchenne muscular dystrophy, an X-linked recessive disorder. Since dystrophin is one of the largest genes consisting of 79 exons in the human genome, delivering a full-length dystrophin using virus vectors is challenging for gene therapy. Human artificial chromosome is a vector that can load megabase-sized genome without any interference from the host chromosome. Chimeric mice carrying a 2.4-Mb human dystrophin gene-loaded human artificial chromosome (DYS-HAC) was previously generated, and dystrophin expression from DYS-HAC was confirmed in skeletal muscles. Here we investigated whether human dystrophin expression from DYS-HAC rescues the muscle phenotypes seen in dystrophin-deficient mice. Human dystrophin was normally expressed in the sarcolemma of skeletal muscle and heart at expected molecular weights, and it ameliorated histological and functional alterations in dystrophin-deficient mice. These results indicate that the 2.4-Mb gene is enough for dystrophin to be correctly transcribed and translated, improving muscular dystrophy. Therefore, this technique using HAC gives insight into developing new treatments and novel humanized Duchenne muscular dystrophy mouse models with human dystrophin gene mutations.
Collapse
Affiliation(s)
- Yosuke Hiramuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Narumi Uno
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Shuta Takata
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hitomaru Miyamoto
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Haruka Takayama
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kayoko Morimoto
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Shoko Takehara
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Division of Experimental Pathology, Department of Functional Morphology, Faculty of Medicine, Tottori University, Yonago, Tottori, 683‑8503, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Mitsuo Oshimura
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
11
|
Chey YCJ, Arudkumar J, Aartsma-Rus A, Adikusuma F, Thomas PQ. CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies. WIREs Mech Dis 2023; 15:e1580. [PMID: 35909075 PMCID: PMC10078488 DOI: 10.1002/wsbm.1580] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
CRISPR gene-editing technology creates precise and permanent modifications to DNA. It has significantly advanced our ability to generate animal disease models for use in biomedical research and also has potential to revolutionize the treatment of genetic disorders. Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disease that could potentially benefit from the development of CRISPR therapy. It is commonly associated with mutations that disrupt the reading frame of the DMD gene that encodes dystrophin, an essential scaffolding protein that stabilizes striated muscles and protects them from contractile-induced damage. CRISPR enables the rapid generation of various animal models harboring mutations that closely simulates the wide variety of mutations observed in DMD patients. These models provide a platform for the testing of sequence-specific interventions like CRISPR therapy that aim to reframe or skip DMD mutations to restore functional dystrophin expression. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Yu C J Chey
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jayshen Arudkumar
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Fatwa Adikusuma
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, Australia
| | - Paul Q Thomas
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,South Australian Genome Editing (SAGE), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Barboni MTS, Joachimsthaler A, Roux MJ, Nagy ZZ, Ventura DF, Rendon A, Kremers J, Vaillend C. Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Prog Retin Eye Res 2022:101137. [DOI: 10.1016/j.preteyeres.2022.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
13
|
Ashida Y, Himori K, Tokuda N, Naito A, Yamauchi N, Takenaka-Ninagawa N, Aoki Y, Sakurai H, Yamada T. Dissociation of SH3 and cysteine rich domain 3 and junctophilin 1 from dihydropyridine receptor in dystrophin-deficient muscles. Am J Physiol Cell Physiol 2022; 323:C885-C895. [PMID: 35912995 DOI: 10.1152/ajpcell.00163.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The disruption of excitation-contraction (EC) coupling and subsequent reduction in Ca2+ release from the sarcoplasmic reticulum (SR) have been shown to account for muscle weakness seen in patients with Duchenne muscular dystrophy (DMD). Here, we examined the mechanisms underlying EC uncoupling in skeletal muscles from mdx52 and DMD-null/NSG mice, animal models for DMD, focusing on the SH3 and cysteine rich domain 3 (STAC3) and junctophilin 1 (JP1), which link the dihydropyridine receptor (DHPR) in the transverse tubule and the ryanodine receptor 1 in the SR. The isometric plantarflexion torque normalized to muscle weight of whole plantar flexor muscles was depressed in mdx52 and DMD-null/NSG mice compared to their control mice. This was accompanied by increased autolysis of calpain-1, decreased levels of STAC3 and JP1 content, and dissociation of STAC3 and JP1 from DHPR-α1s in gastrocnemius muscles. Moreover, in vitro mechanistic experiments demonstrated that STAC3 and JP1 underwent Ca2+-dependent proteolysis which was less pronounced in dystrophin-deficient muscles where calpastatin, the endogenous calpain inhibitor, was upregulated. Eccentric contractions further enhanced autolysis of calpain-1 and proteolysis of STAC3 and JP1 that were associated with severe torque depression in gastrocnemius muscles from DMD-null/NSG mice. These data suggest that Ca2+-dependent proteolysis of STAC3 and JP1 may be an essential factor causing muscle weakness due to EC coupling failure in dystrophin-deficient muscles.
Collapse
Affiliation(s)
- Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
14
|
Schultz TI, Raucci FJ, Salloum FN. Cardiovascular Disease in Duchenne Muscular Dystrophy. JACC Basic Transl Sci 2022; 7:608-625. [PMID: 35818510 PMCID: PMC9270569 DOI: 10.1016/j.jacbts.2021.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Cardiomyopathy is the leading cause of death in patients with DMD. DMD has no cure, and there is no current consensus for treatment of DMD cardiomyopathy. This review discusses therapeutic strategies to potentially reduce or prevent cardiac dysfunction in DMD patients. Additional studies are needed to firmly establish optimal treatment modalities for DMD cardiomyopathy.
Duchenne muscular dystrophy (DMD) is a devastating disease affecting approximately 1 in every 3,500 male births worldwide. Multiple mutations in the dystrophin gene have been implicated as underlying causes of DMD. However, there remains no cure for patients with DMD, and cardiomyopathy has become the most common cause of death in the affected population. Extensive research is under way investigating molecular mechanisms that highlight potential therapeutic targets for the development of pharmacotherapy for DMD cardiomyopathy. In this paper, the authors perform a literature review reporting on recent ongoing efforts to identify novel therapeutic strategies to reduce, prevent, or reverse progression of cardiac dysfunction in DMD.
Collapse
|
15
|
Chesshyre M, Ridout D, Hashimoto Y, Ookubo Y, Torelli S, Maresh K, Ricotti V, Abbott L, Gupta VA, Main M, Ferrari G, Kowala A, Lin YY, Tedesco FS, Scoto M, Baranello G, Manzur A, Aoki Y, Muntoni F. Investigating the role of dystrophin isoform deficiency in motor function in Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2022; 13:1360-1372. [PMID: 35083887 PMCID: PMC8977977 DOI: 10.1002/jcsm.12914] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is caused by DMD mutations leading to dystrophin loss. Full-length Dp427 is the primary dystrophin isoform expressed in muscle and is also expressed in the central nervous system (CNS). Two shorter isoforms, Dp140 and Dp71, are highly expressed in the CNS. While a role for Dp140 and Dp71 on DMD CNS comorbidities is well known, relationships between mutations expected to disrupt Dp140 and Dp71 and motor outcomes are not. METHODS Functional outcome data from 387 DMD boys aged 4-15 years were subdivided by DMD mutation expected effects on dystrophin isoform expression; Group 1 (Dp427 absent, Dp140/Dp71 present, n = 201); Group 2 (Dp427/Dp140 absent, Dp71 present, n = 152); and Group 3 (Dp427/Dp140/Dp71 absent, n = 34). Relationships between isoform group and North Star ambulatory assessment (NSAA) scores, 10 m walk/run velocities and rise time velocities were explored using regression analysis. Western blot analysis was used to study Dp427, Dp140 and Dp71 production in myogenic cells (control and DMD human), control skeletal muscle, DMD skeletal muscle from the three isoform groups and cerebral cortex from mice (wild-type and DMD models). Grip strength and rotarod running test were studied in wild-type mice and DMD mouse models. DMD mouse models were mdx (Dp427 absent, Dp140/Dp71 present), mdx52 (Dp427/Dp140 absent, Dp71 present) and DMD-null (lacking all isoforms). RESULTS In DMD boys, mean NSAA scores at 5 years of age were 6.1 points lower in Group 3 than Group 1 (P < 0.01) and 4.9 points lower in Group 3 than Group 2 (P = 0.05). Mean peak NSAA scores were 4.0 points lower in Group 3 than Group 1 (P < 0.01) and 1.6 points lower in Group 2 than Group 1 (P = 0.04). Mean four-limb grip strength was 1.5 g/g lower in mdx52 than mdx mice (P = 0.003) and 1.5 g/g lower in DMD-null than mdx mice (P = 0.002). Dp71 was produced in myogenic cells (control and DMD human) and skeletal muscle from humans in Groups 1 and 2 and mdx mice, but not skeletal muscle from human controls, myogenic cells and skeletal muscle from humans in Group 3 or skeletal muscle from wild-type, mdx52 or DMD-null mice. CONCLUSIONS Our results highlight the importance of considering expected effects of DMD mutations on dystrophin isoform production when considering patterns of DMD motor impairment and the implications for clinical practice and clinical trials. Our results suggest a complex relationship between dystrophin isoforms expressed in the brain and DMD motor function.
Collapse
Affiliation(s)
- Mary Chesshyre
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Deborah Ridout
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Yasumasa Hashimoto
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Yoko Ookubo
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Silvia Torelli
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kate Maresh
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Valeria Ricotti
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lianne Abbott
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Vandana Ayyar Gupta
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Marion Main
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Anna Kowala
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yung-Yao Lin
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francesco Saverio Tedesco
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK
| | - Mariacristina Scoto
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Giovanni Baranello
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
16
|
Development of DG9 peptide-conjugated single- and multi-exon skipping therapies for the treatment of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2022; 119:2112546119. [PMID: 35193974 PMCID: PMC8892351 DOI: 10.1073/pnas.2112546119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal disorder of progressive body-wide muscle weakness, considered the most common muscular dystrophy worldwide. Most patients have out-of-frame deletions in the DMD gene, leading to dystrophin absence in muscle. There is no cure for DMD, but exon skipping is emerging as a potential therapy that uses antisense oligonucleotides to convert out-of-frame to in-frame mutations, enabling the production of truncated, partially functional dystrophin. Currently approved exon skipping therapies, however, have limited applicability and efficacy. Here, we developed a more economical approach to skip DMD exons 45 to 55 (a strategy that could treat nearly half of all DMD patients) and identified DG9 peptide conjugation as a powerful way to improve exon skipping efficiencies in vivo. Duchenne muscular dystrophy (DMD) is primarily caused by out-of-frame deletions in the dystrophin gene. Exon skipping using phosphorodiamidate morpholino oligomers (PMOs) converts out-of-frame to in-frame mutations, producing partially functional dystrophin. Four single-exon skipping PMOs are approved for DMD but treat only 8 to 14% of patients each, and some exhibit poor efficacy. Alternatively, exons 45 to 55 skipping could treat 40 to 47% of all patients and is associated with improved clinical outcomes. Here, we report the development of peptide-conjugated PMOs for exons 45 to 55 skipping. Experiments with immortalized patient myotubes revealed that exons 45 to 55 could be skipped by targeting as few as five exons. We also found that conjugating DG9, a cell-penetrating peptide, to PMOs improved single-exon 51 skipping, dystrophin restoration, and muscle function in hDMDdel52;mdx mice. Local administration of a minimized exons 45 to 55–skipping DG9-PMO mixture restored dystrophin production. This study provides proof of concept toward the development of a more economical and effective exons 45 to 55–skipping DMD therapy.
Collapse
|
17
|
Marine T, Marielle S, Graziella M, Fabio RMV. Macrophages in Skeletal Muscle Dystrophies, An Entangled Partner. J Neuromuscul Dis 2021; 9:1-23. [PMID: 34542080 PMCID: PMC8842758 DOI: 10.3233/jnd-210737] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While skeletal muscle remodeling happens throughout life, diseases that result in its dysfunction are accountable for many deaths. Indeed, skeletal muscle is exceptionally capable to respond to stimuli modifying its homeostasis, such as in atrophy, hypertrophy, regeneration and repair. In particular conditions such as genetic diseases (muscular dystrophies), skeletal muscle’s capacity to remodel is strongly affected and undergoes continuous cycles of chronic damage. This induces scarring, fatty infiltration, as well as loss of contractibility and of the ability to generate force. In this context, inflammation, primarily mediated by macrophages, plays a central pathogenic role. Macrophages contribute as the primary regulators of inflammation during skeletal muscle regeneration, affecting tissue-resident cells such as myogenic cells and endothelial cells, but also fibro-adipogenic progenitors, which are the main source of the fibro fatty scar. During skeletal muscle regeneration their function is tightly orchestrated, while in dystrophies their fate is strongly disturbed, resulting in chronic inflammation. In this review, we will discuss the latest findings on the role of macrophages in skeletal muscle diseases, and how they are regulated.
Collapse
Affiliation(s)
- Theret Marine
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
| | - Saclier Marielle
- Department of Biosciences, University of Milan, via Celoria, Milan, Italy
| | - Messina Graziella
- Department of Biosciences, University of Milan, via Celoria, Milan, Italy
| | - Rossi M V Fabio
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
18
|
Maruyama R, Yokota T. Antisense Oligonucleotide Treatment in a Humanized Mouse Model of Duchenne Muscular Dystrophy and Highly Sensitive Detection of Dystrophin Using Western Blotting. Methods Mol Biol 2021; 2224:203-214. [PMID: 33606217 DOI: 10.1007/978-1-0716-1008-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disorder affecting many children. The disease is caused by the lack of dystrophin production and characterized by muscle wasting. The most common causes of death are respiratory failure and heart failure. Antisense oligonucleotide-mediated exon skipping using a phosphorodiamidate morpholino oligomer (PMO) is a promising therapeutic approach for the treatment of DMD. In preclinical studies, dystrophic mouse models are commonly used for the development of therapeutic oligos. We employ a humanized model carrying the full-length human DMD transgene along with the complete knockout of the mouse Dmd gene. In this model, the effects of human-targeting AOs can be tested without cross-reaction between mouse sequences and human sequences (note that mdx, a conventional dystrophic mouse model, carries a nonsense point mutation in exon 23 and express the full-length mouse Dmd mRNA, which is a significant complicating factor). To determine if dystrophin expression is restored, the Western blotting analysis is commonly performed; however, due to the extremely large protein size of dystrophin (427 kDa), detection and accurate quantification of full-length dystrophin can be a challenge. Here, we present methodologies to systemically inject PMOs into humanized DMD model mice and determine levels of dystrophin restoration via Western blotting. Using a tris-acetate gradient SDS gel and semi-dry transfer with three buffers, including the Concentrated Anode Buffer, Anode Buffer, and Cathode Buffer, less than 1% normal levels of dystrophin expression are easily detectable. This method is fast, easy, and sensitive enough for the detection of dystrophin from both cultured muscle cells and muscle biopsy samples.
Collapse
Affiliation(s)
- Rika Maruyama
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Sztretye M, Szabó L, Dobrosi N, Fodor J, Szentesi P, Almássy J, Magyar ZÉ, Dienes B, Csernoch L. From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. Int J Mol Sci 2020; 21:ijms21238935. [PMID: 33255644 PMCID: PMC7728138 DOI: 10.3390/ijms21238935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects. There are no known cures for congenital myopathies; however, recent advances in gene therapy are promising tools in providing treatment. This review gives an overview of the mouse models used to investigate the most common muscular dystrophies and congenital myopathies with emphasis on their potentials and limitations in respect to human applications.
Collapse
|
20
|
Zhao M, Tazumi A, Takayama S, Takenaka-Ninagawa N, Nalbandian M, Nagai M, Nakamura Y, Nakasa M, Watanabe A, Ikeya M, Hotta A, Ito Y, Sato T, Sakurai H. Induced Fetal Human Muscle Stem Cells with High Therapeutic Potential in a Mouse Muscular Dystrophy Model. Stem Cell Reports 2020; 15:80-94. [PMID: 32619494 PMCID: PMC7363940 DOI: 10.1016/j.stemcr.2020.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive and fatal muscle-wasting disease caused by DYSTROPHIN deficiency. Cell therapy using muscle stem cells (MuSCs) is a potential cure. Here, we report a differentiation method to generate fetal MuSCs from human induced pluripotent stem cells (iPSCs) by monitoring MYF5 expression. Gene expression profiling indicated that MYF5-positive cells in the late stage of differentiation have fetal MuSC characteristics, while MYF5-positive cells in the early stage of differentiation have early myogenic progenitor characteristics. Moreover, late-stage MYF5-positive cells demonstrated good muscle regeneration potential and produced DYSTROPHIN in vivo after transplantation into DMD model mice, resulting in muscle function recovery. The engrafted cells also generated PAX7-positive MuSC-like cells under the basal lamina of DYSTROPHIN-positive fibers. These findings suggest that MYF5-positive fetal MuSCs induced in the late stage of iPSC differentiation have cell therapy potential for DMD. Wnt agonists at high dose and long term induces dermomyotome cells effectively MYF5+ cell characteristics vary between early- and late-stage differentiation Late-stage MYF5+ cells acquire characteristics resembling fetal muscle stem cells MYF5+ cells recover dystrophin and improves muscular function
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Atsutoshi Tazumi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Asahi Kasei Co., Ltd., 1-105 Jinbo-cho, Kanda, Chiyoda-ku, Tokyo, Japan
| | - Satoru Takayama
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Asahi Kasei Co., Ltd., 1-105 Jinbo-cho, Kanda, Chiyoda-ku, Tokyo, Japan
| | - Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Minas Nalbandian
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Miki Nagai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yumi Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masanori Nakasa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuta Ito
- Faculty of Rehabilitation Science, Nagoya Gakuin University, 1350 Kamishinano-cho, Seto City, Aichi 480-1298, Japan
| | - Takahiko Sato
- Department of Anatomy, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
21
|
Wasala NB, Chen SJ, Duan D. Duchenne muscular dystrophy animal models for high-throughput drug discovery and precision medicine. Expert Opin Drug Discov 2020; 15:443-456. [PMID: 32000537 PMCID: PMC7065965 DOI: 10.1080/17460441.2020.1718100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Duchenne muscular dystrophy (DMD) is an X-linked handicapping disease due to the loss of an essential muscle protein dystrophin. Dystrophin-null animals have been extensively used to study disease mechanisms and to develop experimental therapeutics. Despite decades of research, however, treatment options for DMD remain very limited.Areas covered: High-throughput high-content screening and precision medicine offer exciting new opportunities. Here, the authors review animal models that are suitable for these studies.Expert opinion: Nonmammalian models (worm, fruit fly, and zebrafish) are particularly attractive for cost-effective large-scale drug screening. Several promising lead compounds have been discovered using these models. Precision medicine for DMD aims at developing mutation-specific therapies such as exon-skipping and genome editing. To meet these needs, models with patient-like mutations have been established in different species. Models that harbor hotspot mutations are very attractive because the drugs developed in these models can bring mutation-specific therapies to a large population of patients. Humanized hDMD mice carry the entire human dystrophin gene in the mouse genome. Reagents developed in the hDMD mouse-based models are directly translatable to human patients.
Collapse
Affiliation(s)
- Nalinda B. Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212
| | - Shi-jie Chen
- Department of Physics, The University of Missouri, Columbia, MO 65211
- Department of Biochemistry, The University of Missouri, Columbia, MO 65211
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO 65212
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO 65212
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO 65212
| |
Collapse
|
22
|
van Putten M, Lloyd EM, de Greef JC, Raz V, Willmann R, Grounds MD. Mouse models for muscular dystrophies: an overview. Dis Model Mech 2020; 13:dmm043562. [PMID: 32224495 PMCID: PMC7044454 DOI: 10.1242/dmm.043562] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Muscular dystrophies (MDs) encompass a wide variety of inherited disorders that are characterized by loss of muscle tissue associated with a progressive reduction in muscle function. With a cure lacking for MDs, preclinical developments of therapeutic approaches depend on well-characterized animal models that recapitulate the specific pathology in patients. The mouse is the most widely and extensively used model for MDs, and it has played a key role in our understanding of the molecular mechanisms underlying MD pathogenesis. This has enabled the development of therapeutic strategies. Owing to advancements in genetic engineering, a wide variety of mouse models are available for the majority of MDs. Here, we summarize the characteristics of the most commonly used mouse models for a subset of highly studied MDs, collated into a table. Together with references to key publications describing these models, this brief but detailed overview would be useful for those interested in, or working with, mouse models of MD.
Collapse
Affiliation(s)
- Maaike van Putten
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | - Erin M Lloyd
- The University of Western Australia, School of Human Sciences, Perth 6009, Australia
| | - Jessica C de Greef
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | - Vered Raz
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | | | - Miranda D Grounds
- The University of Western Australia, School of Human Sciences, Perth 6009, Australia
| |
Collapse
|
23
|
Young CN, Gosselin MR, Rumney R, Oksiejuk A, Chira N, Bozycki L, Matryba P, Łukasiewicz K, Kao AP, Dunlop J, Robson SC, Zabłocki K, Górecki DC. Total Absence of Dystrophin Expression Exacerbates Ectopic Myofiber Calcification and Fibrosis and Alters Macrophage Infiltration Patterns. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:190-205. [DOI: 10.1016/j.ajpath.2019.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
|
24
|
Echigoya Y, Lim KRQ, Melo D, Bao B, Trieu N, Mizobe Y, Maruyama R, Mamchaoui K, Tanihata J, Aoki Y, Takeda S, Mouly V, Duddy W, Yokota T. Exons 45-55 Skipping Using Mutation-Tailored Cocktails of Antisense Morpholinos in the DMD Gene. Mol Ther 2019; 27:2005-2017. [PMID: 31416775 DOI: 10.1016/j.ymthe.2019.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
Mutations in the dystrophin (DMD) gene and consequent loss of dystrophin cause Duchenne muscular dystrophy (DMD). A promising therapy for DMD, single-exon skipping using antisense phosphorodiamidate morpholino oligomers (PMOs), currently confronts major issues in that an antisense drug induces the production of functionally undefined dystrophin and may not be similarly efficacious among patients with different mutations. Accordingly, the applicability of this approach is limited to out-of-frame mutations. Here, using an exon-skipping efficiency predictive tool, we designed three different PMO cocktail sets for exons 45-55 skipping aiming to produce a dystrophin variant with preserved functionality as seen in milder or asymptomatic individuals with an in-frame exons 45-55 deletion. Of them, the most effective set was composed of select PMOs that each efficiently skips an assigned exon in cell-based screening. These combinational PMOs fitted to different deletions of immortalized DMD patient muscle cells significantly induced exons 45-55 skipping with removing 3, 8, or 10 exons and dystrophin restoration as represented by western blotting. In vivo skipping of the maximum 11 human DMD exons was confirmed in humanized mice. The finding indicates that our PMO set can be used to create mutation-tailored cocktails for exons 45-55 skipping and treat over 65% of DMD patients carrying out-of-frame or in-frame deletions.
Collapse
Affiliation(s)
- Yusuke Echigoya
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Dyanna Melo
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Bo Bao
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Nhu Trieu
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Yoshitaka Mizobe
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kamel Mamchaoui
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan; Department of Cell Physiology, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Vincent Mouly
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry BT47 6SB, UK
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Muscular Dystrophy Canada Research Chair, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
25
|
Hori S, Hiramuki Y, Nishimura D, Sato F, Sehara-Fujisawa A. PDH‐mediated metabolic flow is critical for skeletal muscle stem cell differentiation and myotube formation during regeneration in mice. FASEB J 2019; 33:8094-8109. [DOI: 10.1096/fj.201802479r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shimpei Hori
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Yosuke Hiramuki
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
- Human Biology DivisionFred Hutchinson Cancer Research Center Seattle Washington USA
| | - Daigo Nishimura
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Fuminori Sato
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| |
Collapse
|
26
|
Melo D, Maruyama R, Yokota T. Systemic Injection of Peptide-PMOs into Humanized DMD Mice and Evaluation by RT-PCR and ELISA. Methods Mol Biol 2019; 1828:263-273. [PMID: 30171547 DOI: 10.1007/978-1-4939-8651-4_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder due to the lack of dystrophin production. The disease is characterized by muscle wasting, with the most common causes of death being respiratory failure or heart failure. Recently, exon skipping using a phosphorodiamidate morpholino oligomer (PMO) is used as an FDA approved treatment for DMD. Peptide-conjugated PMOs (PPMOs) are used to increase exon skipping efficacy in the heart and are a promising therapy for DMD. Researchers have previously relied on high-performance liquid chromatography (HPLC) or liquid chromatography-mass spectrometry (LC/MS) methods for detecting PPMO uptake, but an enzyme-linked immunosorbent assay (ELISA) has been shown to have greater sensitivity. Here, we present methodologies to determine the uptake efficiency of a PPMO into the heart and efficacy of exon 51 skipping by a PPMO injected retro-orbitally into a humanized DMD mouse model via ELISA and RT-PCR, respectively.
Collapse
Affiliation(s)
- Dyanna Melo
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Rika Maruyama
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Abstract
The ability to efficiently modify the genome using CRISPR technology has rapidly revolutionized biology and genetics and will soon transform medicine. Duchenne muscular dystrophy (DMD) represents one of the first monogenic disorders that has been investigated with respect to CRISPR-mediated correction of causal genetic mutations. DMD results from mutations in the gene encoding dystrophin, a scaffolding protein that maintains the integrity of striated muscles. Thousands of different dystrophin mutations have been identified in DMD patients, who suffer from a loss of ambulation followed by respiratory insufficiency, heart failure, and death by the third decade of life. Using CRISPR to bypass DMD mutations, dystrophin expression has been efficiently restored in human cells and mouse models of DMD. Here, we review recent progress toward the development of possible CRISPR therapies for DMD and highlight opportunities and potential obstacles in attaining this goal.
Collapse
Affiliation(s)
- Yi-Li Min
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
28
|
Exon Skipping Therapy Using Phosphorodiamidate Morpholino Oligomers in the mdx52 Mouse Model of Duchenne Muscular Dystrophy. Methods Mol Biol 2018; 1687:123-141. [PMID: 29067660 DOI: 10.1007/978-1-4939-7374-3_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Exon skipping therapy using synthetic DNA-like molecules called antisense oligonucleotides (ASOs) is a promising therapeutic candidate for overcoming the dystrophin mutation that causes Duchenne muscular dystrophy (DMD). This treatment involves splicing out the frame-disrupting segment of the dystrophin mRNA, which restores the reading frame and produces a truncated yet functional dystrophin protein. Phosphorodiamidate morpholino oligomer (PMO) is the safest ASO for patients among ASOs and has recently been approved under the accelerated approval pathway by the U.S. Food and Drug Administration (FDA) as the first drug for DMD. Here, we describe the methodology and protocol of PMO transfection and evaluation of the exon skipping efficacy in the mdx52 mouse, an exon 52 deletion model of DMD produced by gene targeting. The mdx52 mouse model offers advantages over the mdx mouse, a spontaneous DMD model with a nonsense mutation in exon 23, in terms of the deletion in a hotspot of deletion mutations in DMD patients, the analysis of caveolae and also Dp140 and Dp260, shorter dystrophin isoforms.
Collapse
|
29
|
Rodrigues M, Echigoya Y, Fukada SI, Yokota T. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 3:29-48. [PMID: 27854202 PMCID: PMC5271422 DOI: 10.3233/jnd-150113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models.
Collapse
Affiliation(s)
- Merryl Rodrigues
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada.,Muscular Dystrophy Canada Research Chair, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Humanizing the mdx mouse model of DMD: the long and the short of it. NPJ Regen Med 2018; 3:4. [PMID: 29479480 PMCID: PMC5816599 DOI: 10.1038/s41536-018-0045-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common fatal heritable myopathy, with cardiorespiratory failure occurring by the third decade of life. There is no specific treatment for DMD cardiomyopathy, in large part due to a lack of understanding of the mechanisms underlying the cardiac failure. Mdx mice, which have the same dystrophin mutation as human patients, are of limited use, as they do not develop early dilated cardiomyopathy as seen in patients. Here we summarize the usefulness of the various commonly used DMD mouse models, highlight a model with shortened telomeres like humans, and identify directions that warrant further investigation.
Collapse
|
31
|
Echigoya Y, Lim KRQ, Trieu N, Bao B, Miskew Nichols B, Vila MC, Novak JS, Hara Y, Lee J, Touznik A, Mamchaoui K, Aoki Y, Takeda S, Nagaraju K, Mouly V, Maruyama R, Duddy W, Yokota T. Quantitative Antisense Screening and Optimization for Exon 51 Skipping in Duchenne Muscular Dystrophy. Mol Ther 2017; 25:2561-2572. [PMID: 28865998 DOI: 10.1016/j.ymthe.2017.07.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder, is caused by mutations in the dystrophin (DMD) gene. Exon skipping is a therapeutic approach that uses antisense oligonucleotides (AOs) to modulate splicing and restore the reading frame, leading to truncated, yet functional protein expression. In 2016, the US Food and Drug Administration (FDA) conditionally approved the first phosphorodiamidate morpholino oligomer (morpholino)-based AO drug, eteplirsen, developed for DMD exon 51 skipping. Eteplirsen remains controversial with insufficient evidence of its therapeutic effect in patients. We recently developed an in silico tool to design antisense morpholino sequences for exon skipping. Here, we designed morpholino AOs targeting DMD exon 51 using the in silico tool and quantitatively evaluated the effects in immortalized DMD muscle cells in vitro. To our surprise, most of the newly designed morpholinos induced exon 51 skipping more efficiently compared with the eteplirsen sequence. The efficacy of exon 51 skipping and rescue of dystrophin protein expression were increased by up to more than 12-fold and 7-fold, respectively, compared with the eteplirsen sequence. Significant in vivo efficacy of the most effective morpholino, determined in vitro, was confirmed in mice carrying the human DMD gene. These findings underscore the importance of AO sequence optimization for exon skipping.
Collapse
Affiliation(s)
- Yusuke Echigoya
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Nhu Trieu
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Bo Bao
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Bailey Miskew Nichols
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Maria Candida Vila
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - James S Novak
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Yuko Hara
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Joshua Lee
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Aleksander Touznik
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kamel Mamchaoui
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY-Binghamton University, Binghamton, NY 13902-6000, USA
| | - Vincent Mouly
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry BT47 6SB, UK
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Muscular Dystrophy Canada Research Chair, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
32
|
Abstract
Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease.
Collapse
Affiliation(s)
- Joshua T Selsby
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Jason W Ross
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Dan Nonneman
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Katrin Hollinger
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| |
Collapse
|
33
|
Hu YC, Namekawa SH. Functional significance of the sex chromosomes during spermatogenesis. Reproduction 2016; 149:R265-77. [PMID: 25948089 DOI: 10.1530/rep-14-0613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mammalian sex chromosomes arose from an ordinary pair of autosomes. Over hundreds of millions of years, they have evolved into highly divergent X and Y chromosomes and have become increasingly specialized for male reproduction. Both sex chromosomes have acquired and amplified testis-specific genes, suggestive of roles in spermatogenesis. To understand how the sex chromosome genes participate in the regulation of spermatogenesis, we review genes, including single-copy, multi-copy, and ampliconic genes, whose spermatogenic functions have been demonstrated in mouse genetic studies. Sex chromosomes are subject to chromosome-wide transcriptional silencing in meiotic and postmeiotic stages of spermatogenesis. We also discuss particular sex-linked genes that escape postmeiotic silencing and their evolutionary implications. The unique gene contents and genomic structures of the sex chromosomes reflect their strategies to express genes at various stages of spermatogenesis and reveal the driving forces that shape their evolution.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC1.Free Japanese abstract: A Japanese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC2.
Collapse
Affiliation(s)
- Yueh-Chiang Hu
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Satoshi H Namekawa
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
34
|
Abstract
Neuromuscular diseases can affect the survival of peripheral neurons, their axons extending to peripheral targets, their synaptic connections onto those targets, or the targets themselves. Examples include motor neuron diseases such as Amyotrophic Lateral Sclerosis, peripheral neuropathies such as Charcot-Marie-Tooth diseases, myasthenias, and muscular dystrophies. Characterizing these phenotypes in mouse models requires an integrated approach, examining both the nerve and muscle histologically, anatomically, and functionally by electrophysiology. Defects observed at these levels can be related back to onset, severity, and progression, as assessed by "Quality of life measures" including tests of gross motor performance such as gait or grip strength. This chapter describes methods for assessing neuromuscular disease models in mice, and how interpretation of these tests can be complicated by the inter-relatedness of the phenotypes.
Collapse
Affiliation(s)
- Robert W Burgess
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Gregory A Cox
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Kevin L Seburn
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| |
Collapse
|
35
|
Nalbandian A, Llewellyn KJ, Nguyen C, Monuki ES, Kimonis VE. Targeted excision of VCP R155H mutation by Cre-LoxP technology as a promising therapeutic strategy for valosin-containing protein disease. Hum Gene Ther Methods 2015; 26:13-24. [PMID: 25545721 DOI: 10.1089/hgtb.2014.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia is attributed to mutations in the valosin-containing protein (VCP) gene, mapped to chromosomal region 9p13.3-12. Affected individuals exhibit scapular winging and die from progressive muscle weakness and cardiac and respiratory failure in their 40s to 50s. Mutations in the VCP gene have also been associated with amyotrophic lateral sclerosis in 10-15% of individuals with hereditary inclusion body myopathy and 2-3% of isolated familial amyotrophic lateral sclerosis. Currently, there are no effective treatments for VCP-related myopathy or dementia. To determine the effects of targeted excision of the most common R155H mutation in VCP disease, we generated the Cre-ER™-VCPR155H/+ tamoxifen-inducible model. We administered tamoxifen (0.12 mg/g body weight) or corn oil (vehicle) to the pregnant dams by oral gavage and monitored survival and muscle strength measurements of the pups until 18 months of age. We confirmed efficient removal of exons 4 and 5 and recombination of the mutant/floxed VCP copies by Q-PCR analyses. The activity and specificity of Cre recombinase was confirmed by immunostaining. Herein, we report that Cre-ER™-VCPR155H/+ mice demonstrated improved muscle strength and quadriceps fibers architecture, autophagy signaling pathway, reduced brain neuropathology, decreased apoptosis, and less severe Paget-like bone changes. The Cre-ER™-VCPR155H/+ mouse model provides proof of principle by demonstrating that removal of the mutated exons could be beneficial to patients with VCP-related neurodegenerative diseases, and serves as an excellent platform in understanding the underlying pathophysiological mechanism(s) in the hopes of a promising therapeutic approach.
Collapse
Affiliation(s)
- Angèle Nalbandian
- 1 Division of Genetics and Genomics Medicine, Department of Pediatrics, University of California-Irvine , Irvine, CA 92697
| | | | | | | | | |
Collapse
|
36
|
Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration. PLoS One 2015; 10:e0130436. [PMID: 26098312 PMCID: PMC4476715 DOI: 10.1371/journal.pone.0130436] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.
Collapse
|
37
|
Nishimura D, Sakai H, Sato T, Sato F, Nishimura S, Toyama-Sorimachi N, Bartsch JW, Sehara-Fujisawa A. Roles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration. Mech Dev 2014; 135:58-67. [PMID: 25511460 DOI: 10.1016/j.mod.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 11/15/2022]
Abstract
Skeletal muscle regeneration requires processes different from developmental myogenesis. One important difference is a requirement of inflammatory reactions prior to regenerative myogenesis, by which injured muscle fibers must be eliminated to make new myotubes. In this study, we show that efficient elimination of injured muscle fibers during regeneration requires ADAM8, a member of a disintegrin and metalloprotease (ADAM) family. Skeletal muscle of dystrophin-null mice, an animal model for Duchenne Muscular Dystrophy, deteriorates by the lack of ADAM8, which is characterized by increased area of muscle degeneration and increased number of necrotic and calcified muscle fibers. Adam8 is highly expressed in neutrophils. Upon cardiotoxin-induced skeletal muscle injury, neutrophils invade into muscle fibers through the basement membrane and form large clusters in wild type, but not in ADAM8-deficient mice, although neutrophils of the latter infiltrate into interstitial tissues similarly to those of wild type mice. Neutrophils lose their adhesiveness to blood vessels after infiltration, which includes an ectodomain shedding of P-Selectin Glycoprotein Ligand-1 (PSGL-1) on their surface. Expression of PSGL-1 on the surface of neutrophils remains higher in ADAM8-deficient than in wild type mice. These results suggest that ADAM8 mediates an enhanced invasiveness of neutrophils into injured muscle fibers by the removal of their adhesiveness to blood vessels after infiltration into interstitial tissues.
Collapse
Affiliation(s)
- Daigo Nishimura
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho 53, Shogo-in, Kyoto 606-8507, Japan
| | - Hiroshi Sakai
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho 53, Shogo-in, Kyoto 606-8507, Japan
| | - Takahiko Sato
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho 53, Shogo-in, Kyoto 606-8507, Japan
| | - Fuminori Sato
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho 53, Shogo-in, Kyoto 606-8507, Japan
| | - Satoshi Nishimura
- Department of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Noriko Toyama-Sorimachi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Jörg W Bartsch
- Department of Neurosurgery/Lab, Philipps University Marburg, Baldingerstr., 35033 Marburg, Germany
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho 53, Shogo-in, Kyoto 606-8507, Japan.
| |
Collapse
|
38
|
Whitmore C, Morgan J. What do mouse models of muscular dystrophy tell us about the DAPC and its components? Int J Exp Pathol 2014; 95:365-77. [PMID: 25270874 PMCID: PMC4285463 DOI: 10.1111/iep.12095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/16/2014] [Indexed: 12/17/2022] Open
Abstract
There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated.
Collapse
Affiliation(s)
- Charlotte Whitmore
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, Institute of Child Health, University College LondonLondon, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, Institute of Child Health, University College LondonLondon, UK
| |
Collapse
|
39
|
miR-195/497 induce postnatal quiescence of skeletal muscle stem cells. Nat Commun 2014; 5:4597. [PMID: 25119651 DOI: 10.1038/ncomms5597] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 07/04/2014] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle stem cells (MuSCs), the major source for skeletal muscle regeneration in vertebrates, are in a state of cell cycle arrest in adult skeletal muscles. Prior evidence suggests that embryonic muscle progenitors proliferate and differentiate to form myofibres and also self-renew, implying that MuSCs, derived from these cells, acquire quiescence later during development. Depletion of Dicer in adult MuSCs promoted their exit from quiescence, suggesting microRNAs are involved in the maintenance of quiescence. Here we identified miR-195 and miR-497 that induce cell cycle arrest by targeting cell cycle genes, Cdc25 and Ccnd. Reduced expression of MyoD in juvenile MuSCs, as a result of overexpressed miR-195/497 or attenuated Cdc25/Ccnd, revealed an intimate link between quiescence and suppression of myogenesis in MuSCs. Transplantation of cultured MuSCs treated with miR-195/497 contributed more efficiently to regenerating muscles of dystrophin-deficient mice, indicating the potential utility of miR-195/497 for stem cell therapies.
Collapse
|
40
|
Masubuchi N, Shidoh Y, Kondo S, Takatoh J, Hanaoka K. Subcellular localization of dystrophin isoforms in cardiomyocytes and phenotypic analysis of dystrophin-deficient mice reveal cardiac myopathy is predominantly caused by a deficiency in full-length dystrophin. Exp Anim 2014; 62:211-7. [PMID: 23903056 PMCID: PMC4160940 DOI: 10.1538/expanim.62.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive muscle
degenerative disorder that causes dilated cardiomyopathy in the second decade of life in
affected males. Dystrophin, the gene responsible for DMD, encodes
full-length dystrophin and various short dystrophin isoforms. In the mouse heart,
full-length dystrophin Dp427 and a short dystrophin isoform, Dp71, are expressed. In this
study, we intended to clarify the functions of these dystrophin isoforms in DMD-related
cardiomyopathy. We used two strains of mice: mdx mice, in which Dp427 was
absent but Dp71 was present, and DMD-null mice, in which both were
absent. By immunohistochemical staining and density-gradient centrifugation, we found that
Dp427 was located in the cardiac sarcolemma and also at the T-tubules, whereas Dp71 was
specifically located at the T-tubules. In order to determine whether T tubule-associated
Dp71 was involved in DMD-related cardiac disruption, we compared the cardiac phenotypes
between DMD-null mice and mdx mice. Both
DMD-null mice and mdx mice exhibited severe necrosis,
which was followed by fibrosis in cardiac muscle. However, we could not detect a
significant difference in myocardial fibrosis between mdx mice and
DMD-null mice. Based on the present results, we have shown that cardiac
myopathy is caused predominantly by a deficiency of full-length dystrophin Dp427.
Collapse
Affiliation(s)
- Nami Masubuchi
- Laboratory of Molecular Embryology, Department of Bioscience, Kitasato University School of Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0373, Japan
| | | | | | | | | |
Collapse
|
41
|
Sakai H, Sato T, Sakurai H, Yamamoto T, Hanaoka K, Montarras D, Sehara-Fujisawa A. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice. PLoS One 2013; 8:e63016. [PMID: 23671652 PMCID: PMC3650009 DOI: 10.1371/journal.pone.0063016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/27/2013] [Indexed: 12/13/2022] Open
Abstract
Muscle satellite cells (SCs) are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs) isolated from Pax3GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dystrophin/deficiency
- Dystrophin/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunohistochemistry
- Injections, Intramuscular
- Mice
- Mice, Knockout
- Mice, Transgenic
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Animal/surgery
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/surgery
- MyoD Protein/genetics
- MyoD Protein/metabolism
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/transplantation
- Myofibrils/genetics
- Myofibrils/physiology
- Myogenin/genetics
- Myogenin/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Regeneration/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Satellite Cells, Skeletal Muscle/transplantation
- Stem Cell Transplantation/methods
- Transcriptome
Collapse
Affiliation(s)
- Hiroshi Sakai
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takahiko Sato
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- * E-mail: (TS); (AS-F)
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kazunori Hanaoka
- Laboratory of Molecular Embryology, Department of Bioscience, Kitasato University School of Science, Kanagawa, Japan
| | - Didier Montarras
- Molecular Genetics of Development, Institut Pasteur, Paris, France
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- * E-mail: (TS); (AS-F)
| |
Collapse
|
42
|
Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro. PLoS One 2013; 8:e61540. [PMID: 23626698 PMCID: PMC3633995 DOI: 10.1371/journal.pone.0061540] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/11/2013] [Indexed: 12/12/2022] Open
Abstract
The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs.
Collapse
|
43
|
Sakurai H, Sakaguchi Y, Shoji E, Nishino T, Maki I, Sakai H, Hanaoka K, Kakizuka A, Sehara-Fujisawa A. In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS One 2012; 7:e47078. [PMID: 23115636 PMCID: PMC3480377 DOI: 10.1371/journal.pone.0047078] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are generated from adult somatic cells by transduction of defined factors. Given their unlimited proliferation and differentiation potential, iPS cells represent promising sources for cell therapy and tools for research and drug discovery. However, systems for the directional differentiation of iPS cells toward paraxial mesodermal lineages have not been reported. In the present study, we established a protocol for the differentiation of mouse iPS cells into paraxial mesodermal lineages in serum-free culture. The protocol was dependent on Activin signaling in addition to BMP and Wnt signaling which were previously shown to be effective for mouse ES cell differentiation. Independently of the cell origin, the number of transgenes, or the type of vectors used to generate iPS cells, the use of serum-free monolayer culture stimulated with a combination of BMP4, Activin A, and LiCl enabled preferential promotion of mouse iPS cells to a PDGFR-α+/Flk-1− population, which represents a paraxial mesodermal lineage. The mouse iPS cell-derived paraxial mesodermal cells exhibited differentiation potential into osteogenic, chondrogenic, and myogenic cells both in vitro and in vivo and contributed to muscle regeneration. Moreover, purification of the PDGFR-α+/KDR− population after differentiation allowed enrichment of human iPS cell populations with paraxial mesodermal characteristics. The resultant PDGFR-α+/KDR− population derived from human iPS cells specifically exhibited osteogenic, chondrogenic, and myogenic differentiation potential in vitro, implying generation of paraxial mesodermal progenitors similar to mouse iPS cell-derived progenitors. These findings highlight the potential of protocols based on the serum-free, stepwise induction and purification of paraxial mesodermal cell lineages for use in stem cell therapies to treat diseased bone, cartilage, and muscle.
Collapse
Affiliation(s)
- Hidetoshi Sakurai
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ng R, Banks GB, Hall JK, Muir LA, Ramos JN, Wicki J, Odom GL, Konieczny P, Seto J, Chamberlain JR, Chamberlain JS. Animal models of muscular dystrophy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:83-111. [PMID: 22137430 DOI: 10.1016/b978-0-12-394596-9.00004-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 2002). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 2003). In many cases, invaluable insights into disease mechanisms, structure and function of gene products, and approaches for therapeutic interventions have benefited from the study of animal models of the different MDs (Arnett et al., 2009). The large number of genes that are associated with MD and the tremendous number of animal models that have been developed preclude a complete discussion of each in the context of this review. However, we summarize here a number of the more commonly used models together with a mixture of different types of gene and MD, which serves to give a general overview of the value of animal models of MD for research and therapeutic development.
Collapse
Affiliation(s)
- Rainer Ng
- Division of Medical Genetics, Department of Neurology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dystrophin Dp71: The Smallest but Multifunctional Product of the Duchenne Muscular Dystrophy Gene. Mol Neurobiol 2011; 45:43-60. [DOI: 10.1007/s12035-011-8218-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/02/2011] [Indexed: 01/06/2023]
|
46
|
Watanabe S, Matsushita S, Hayasaka M, Hanaoka K. Generation of a conditional null allele of Lbx1. Genesis 2011; 49:803-10. [PMID: 21956886 DOI: 10.1002/dvg.20739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 11/07/2022]
Abstract
The homeobox gene Lbx1 not only plays critical roles in myogenesis and neurogenesis during embryonic development but is also expressed in activated satellite cells of adult mice. To address the potential postnatal functions of Lbx1, we generated conditional Lbx1-null mice using the Cre-loxP system. We generated a mouse in which Exon 2 of Lbx1 was floxed (Lbx1flox/flox), followed by cross-breeding between the Lbx1flox/flox mouse and either a transgenic mouse where a tamoxifen-inducible Cre-recombinase (Cre) was ubiquitously expressed, or a Myf5Cre mouse where Cre was inserted into the Myf5 locus. In both Lbx1-null mouse lines generated, Pax3-expressing limb muscle precursor cells were seriously reduced during embryonic development and eventually the limb extensor muscles were lost after birth. Since the conditional Lbx1-null mice generated were viable for a prolonged time, they will be useful in the investigation of Lbx1 function throughout the lifespan of the mouse.
Collapse
Affiliation(s)
- Shuichi Watanabe
- Division of Molecular Embryology, Department of Biosciences, School of Science, Kitasato University, Kanagawa 228-8555, Japan
| | | | | | | |
Collapse
|
47
|
Hérault Y, Duchon A, Maréchal D, Raveau M, Pereira PL, Dalloneau E, Brault V. Controlled somatic and germline copy number variation in the mouse model. Curr Genomics 2011; 11:470-80. [PMID: 21358991 PMCID: PMC3018727 DOI: 10.2174/138920210793176038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 05/24/2010] [Accepted: 05/27/2010] [Indexed: 12/20/2022] Open
Abstract
Changes in the number of chromosomes, but also variations in the copy number of chromosomal regions have been described in various pathological conditions, such as cancer and aneuploidy, but also in normal physiological condition. Our classical view of DNA replication and mitotic preservation of the chromosomal integrity is now challenged as new technologies allow us to observe such mosaic somatic changes in copy number affecting regions of chromosomes with various sizes. In order to go further in the understanding of copy number influence in normal condition we could take advantage of the novel strategy called Targeted Asymmetric Sister Chromatin Event of Recombination (TASCER) to induce recombination during the G2 phase so that we can generate deletions and duplications of regions of interest prior to mitosis. Using this approach in the mouse we could address the effects of copy number variation and segmental aneuploidy in daughter cells and allow us to explore somatic mosaics for large region of interest in the mouse.
Collapse
Affiliation(s)
- Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Neuromuscular diseases can affect the survival of peripheral neurons, their axons extending to peripheral targets, their synaptic connections onto those targets, or the targets themselves. Examples include motor neuron diseases such as amyotrophic lateral sclerosis, peripheral neuropathies, such as Charcot-Marie-Tooth diseases, myasthenias, and muscular dystrophies. Characterizing these phenotypes in mouse models requires an integrated approach, examining both the nerve and the muscle histologically, anatomically, and functionally by electrophysiology. Defects observed at these levels can be related back to onset, severity, and progression, as assessed by "quality-of-life measures" including tests of gross motor performance such as gait or grip strength. This chapter describes methods for assessing neuromuscular disease models in mice, and how interpretation of these tests can be complicated by the inter-relatedness of the phenotypes.
Collapse
|
49
|
Shibasaki Y, Etoh N, Hayasaka M, Takahashi MO, Kakitani M, Yamashita T, Tomizuka K, Hanaoka K. Targeted deletion of the tybe IIb Na(+)-dependent Pi-co-transporter, NaPi-IIb, results in early embryonic lethality. Biochem Biophys Res Commun 2009; 381:482-6. [PMID: 19233126 DOI: 10.1016/j.bbrc.2009.02.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/17/2009] [Indexed: 11/25/2022]
Abstract
NaPi-IIb encodes a Na(+)-dependent Pi co-transporter, which is expressed in various adult tissues and mediates transport of extracellular Pi ions coupling with Na(+) ion. To define the role of NaPi-IIbin vivo, NaPi-IIb gene deficient mice were generated utilizing targeted mutagenesis, yielding viable, heterozygous NaPi-IIb mice. In contrast, homozygous NaPi-IIb mice died in utero soon after implantation, indicating that NaPi-IIb was essential for early embryonic development. In situ hybridization revealed NaPi-IIb mRNA expression in the parietal endoderm, followed by the visceral endoderm, at a time point prior to establishment of a functioning chorio-allantoic placenta. At the time point of functional placenta development, the main site of NaPi-IIb production resided in the labyrinthine zone, where embryonic and maternal circulations were in closest contact. Expression patterns of NaPi-IIb suggest that NaPi-IIb plays an important role in Pi absorption from maternal circulation.
Collapse
Affiliation(s)
- Yuri Shibasaki
- Department of Bioscience, Kitasato University School of Science, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Takatoh J, Kudoh H, Kondo S, Hanaoka K. Loss of short dystrophin isoform Dp71 in olfactory ensheathing cells causes vomeronasal nerve defasciculation in mouse olfactory system. Exp Neurol 2008; 213:36-47. [PMID: 18586242 DOI: 10.1016/j.expneurol.2008.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 04/14/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
The Duchenne muscular dystrophy (DMD) gene encodes dystrophin, which is a protein defective in DMD patients, as well as a number of shorter isoforms, which have been shown to be expressed in various non-muscle, primarily neural, tissues. As of yet, the physiological function of the various dystrophin isoforms is not fully understood. In the present study, we investigated the neurological phenotype that arises in the DMD-null mice, where expression of all dystrophin isoforms had been disrupted. We demonstrate that vomeronasal axons in the DMD-null mice are defasciculated, and some of the defasciculated vomeronasal axons aberrantly entered into the main olfactory bulb, which indicates that the product(s) of the DMD gene plays an important role in vomeronasal nerve organization. Through western blot and immunofluorescence analyses, we determined that the dystrophin isoform Dp71 was exclusively expressed in the mouse olfactory system: mainly in the olfactory ensheathing cells (OECs), an olfactory system-specific glia cell that ensheaths fascicles of the olfactory nerve. In the OECs, Dp71 was co-localized with beta-dystroglycan, utrophin, laminin, and perlecan. Since beta-dystroglycan and perlecan expression was decreased in the OECs of DMD-null mice, we hypothesize that Dp71 expressed in the OECs participates in fasciculation of the vomeronasal nerve, most likely through interactions with extracellular matrix.
Collapse
Affiliation(s)
- Jun Takatoh
- Laboratory of Molecular Embryology, Department of Bioscience, Kitasato University School of Science, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | |
Collapse
|