1
|
Yu S, Jiang C, Yang Y, Cheng F, Liu F, Liu C, Gong X. Purine-rich element binding protein alpha: a DNA/RNA binding protein with multiple roles in cancers. Mol Med 2025; 31:20. [PMID: 39844051 PMCID: PMC11755881 DOI: 10.1186/s10020-025-01087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Proteins that bind to DNA/RNA are typically evolutionarily conserved with multiple regulatory functions in transcription initiation, mRNA translation, stability of RNAs, and RNA splicing. Therefore, dysregulation of DNA/RNA binding proteins such as purine-rich element binding protein alpha (PURα) disrupts signaling transduction and often leads to human diseases including cancer. PURα was initially recognized as a tumor suppressor in acute myeloid leukemia (AML) and prostate cancer (PC). Most recently, several studies have revealed that PURα is dysregulated in multiple cancers, such as breast cancer (BC) and esophageal squamous cell carcinoma (ESCC). The oncogenic or tumor-suppressive functions of PURα are realized via regulating RNA/protein interaction, mRNA translation, formation of stress granules (SGs), and transcriptional regulation of several oncogenes and tumor suppressors. Although DNA/RNA binding proteins are hardly targeted, novel strategies have been applied to identify compounds targeting PURα and have demonstrated promising anti-tumor efficacy in the preclinical study. The present review summarizes the most recently discovered critical roles of PURα in various cancer types, providing an overview of the biomarker and therapeutic target potential of PURα for patients with cancer.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengyang Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yawen Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fei Cheng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fangchen Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chang Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xue Gong
- Nanjing Women and Children's Healthcare Hospital, Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, 123 Tianfei Alley, Mochou Road, Nanjing, China.
| |
Collapse
|
2
|
Molitor L, Bacher S, Burczyk S, Niessing D. The Molecular Function of PURA and Its Implications in Neurological Diseases. Front Genet 2021; 12:638217. [PMID: 33777106 PMCID: PMC7990775 DOI: 10.3389/fgene.2021.638217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, genome-wide analyses of patients have resulted in the identification of a number of neurodevelopmental disorders. Several of them are caused by mutations in genes that encode for RNA-binding proteins. One of these genes is PURA, for which in 2014 mutations have been shown to cause the neurodevelopmental disorder PURA syndrome. Besides intellectual disability (ID), patients develop a variety of symptoms, including hypotonia, metabolic abnormalities as well as epileptic seizures. This review aims to provide a comprehensive assessment of research of the last 30 years on PURA and its recently discovered involvement in neuropathological abnormalities. Being a DNA- and RNA-binding protein, PURA has been implicated in transcriptional control as well as in cytoplasmic RNA localization. Molecular interactions are described and rated according to their validation state as physiological targets. This information will be put into perspective with available structural and biophysical insights on PURA’s molecular functions. Two different knock-out mouse models have been reported with partially contradicting observations. They are compared and put into context with cell biological observations and patient-derived information. In addition to PURA syndrome, the PURA protein has been found in pathological, RNA-containing foci of patients with the RNA-repeat expansion diseases such as fragile X-associated tremor ataxia syndrome (FXTAS) and amyotrophic lateral sclerosis (ALS)/fronto-temporal dementia (FTD) spectrum disorder. We discuss the potential role of PURA in these neurodegenerative disorders and existing evidence that PURA might act as a neuroprotective factor. In summary, this review aims at informing researchers as well as clinicians on our current knowledge of PURA’s molecular and cellular functions as well as its implications in very different neuronal disorders.
Collapse
Affiliation(s)
- Lena Molitor
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabrina Bacher
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| |
Collapse
|
3
|
Wortman MJ, Dagdanova AV, Clark AM, Godfrey EW, Pascal SM, Johnson EM, Daniel DC. A synthetic Pur-based peptide binds and alters G-quadruplex secondary structure present in the expanded RNA repeat of C9orf72 ALS/FTD. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118674. [PMID: 32035967 DOI: 10.1016/j.bbamcr.2020.118674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/20/2019] [Accepted: 02/02/2020] [Indexed: 12/26/2022]
Abstract
Increased Pur-alpha (Pura) protein levels in animal models alleviate certain cellular symptoms of the disease spectrum amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). Pura is a member of the Pur family of evolutionarily conserved guanine-rich polynucleotide binding proteins containing a repeated signature PUR domain of 60-80 amino acids. Here we have employed a synthetic peptide, TZIP, similar to a Pur domain, but with sequence alterations based on a consensus of evolutionarily conserved Pur family binding domains and having an added transporter sequence. A major familial form of ALS/FTD, C9orf72 (C9), is due to a hexanucleotide repeat expansion (HRE) of (GGGGCC), a Pur binding element. We show by circular dichroism that RNA oligonucleotides containing this purine-rich sequence consist largely of parallel G-quadruplexes. TZIP peptide binds this repeat sequence in both DNA and RNA. It binds the RNA element, including the G-quadruplexes, with a high degree of specificity versus a random oligonucleotide. In addition, TZIP binds both linear and G-quadruplex repeat RNA to form higher order G-quadruplex secondary structures. This change in conformational form by Pur-based peptide represents a new mechanism for regulating G quadruplex secondary structure within the C9 repeat. TZIP modulation of C9 RNA structural configuration may alter interaction of the complex with other proteins. This Pur-based mechanism provides new targets for therapy, and it may help to explain Pura alleviation of certain cellular pathological aspects of ALS/FTD.
Collapse
Affiliation(s)
- Margaret J Wortman
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ayuna V Dagdanova
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Andrea M Clark
- Old Dominion University, Department of Chemistry and Biochemistry, Norfolk, VA 23529, USA
| | - Earl W Godfrey
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Steven M Pascal
- Old Dominion University, Department of Chemistry and Biochemistry, Norfolk, VA 23529, USA
| | - Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Dianne C Daniel
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
4
|
Zaytseva O, Quinn LM. DNA Conformation Regulates Gene Expression: The MYC Promoter and Beyond. Bioessays 2018; 40:e1700235. [PMID: 29504137 DOI: 10.1002/bies.201700235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/29/2018] [Indexed: 01/07/2023]
Abstract
Emerging evidence suggests that DNA topology plays an instructive role in cell fate control through regulation of gene expression. Transcription produces torsional stress, and the resultant supercoiling of the DNA molecule generates an array of secondary structures. In turn, local DNA architecture is harnessed by the cell, acting within sensory feedback mechanisms to mediate transcriptional output. MYC is a potent oncogene, which is upregulated in the majority of cancers; thus numerous studies have focused on detailed understanding of its regulation. Dissection of regulatory regions within the MYC promoter provided the first hint that intimate feedback between DNA topology and associated DNA remodeling proteins is critical for moderating transcription. As evidence of such regulation is also found in the context of many other genes, here we expand on the prototypical example of the MYC promoter, and also explore DNA architecture in a genome-wide context as a global mechanism of transcriptional control.
Collapse
Affiliation(s)
- Olga Zaytseva
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT 2600, Canberra City, Australia.,School of Biomedical Sciences, University of Melbourne, 3010, Parkville, Australia
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT 2600, Canberra City, Australia.,School of Biomedical Sciences, University of Melbourne, 3010, Parkville, Australia
| |
Collapse
|
5
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
6
|
Daniel DC, Johnson EM. PURA, the gene encoding Pur-alpha, member of an ancient nucleic acid-binding protein family with mammalian neurological functions. Gene 2017; 643:133-143. [PMID: 29221753 DOI: 10.1016/j.gene.2017.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
The PURA gene encodes Pur-alpha, a 322 amino acid protein with repeated nucleic acid binding domains that are highly conserved from bacteria through humans. PUR genes with a single copy of this domain have been detected so far in spirochetes and bacteroides. Lower eukaryotes possess one copy of the PUR gene, whereas chordates possess 1 to 4 PUR family members. Human PUR genes encode Pur-alpha (Pura), Pur-beta (Purb) and two forms of Pur-gamma (Purg). Pur-alpha is a protein that binds specific DNA and RNA sequence elements. Human PURA, located at chromosome band 5q31, is under complex control of three promoters. The entire protein coding sequence of PURA is contiguous within a single exon. Several studies have found that overexpression or microinjection of Pura inhibits anchorage-independent growth of oncogenically transformed cells and blocks proliferation at either G1-S or G2-M checkpoints. Effects on the cell cycle may be mediated by interaction of Pura with cellular proteins including Cyclin/Cdk complexes and the Rb tumor suppressor protein. PURA knockout mice die shortly after birth with effects on brain and hematopoietic development. In humans environmentally induced heterozygous deletions of PURA have been implicated in forms of myelodysplastic syndrome and progression to acute myelogenous leukemia. Pura plays a role in AIDS through association with the HIV-1 protein, Tat. In the brain Tat and Pura association in glial cells activates transcription and replication of JC polyomavirus, the agent causing the demyelination disease, progressive multifocal leukoencephalopathy. Tat and Pura also act to stimulate replication of the HIV-1 RNA genome. In neurons Pura accompanies mRNA transcripts to sites of translation in dendrites. Microdeletions in the PURA locus have been implicated in several neurological disorders. De novo PURA mutations have been related to a spectrum of phenotypes indicating a potential PURA syndrome. The nucleic acid, G-rich Pura binding element is amplified as expanded polynucleotide repeats in several brain diseases including fragile X syndrome and a familial form of amyotrophic lateral sclerosis/fronto-temporal dementia. Throughout evolution the Pura protein plays a critical role in survival, based on conservation of its nucleic acid binding properties. These Pura properties have been adapted in higher organisms to the as yet unfathomable development of the human brain.
Collapse
Affiliation(s)
- Dianne C Daniel
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
7
|
Kelm RJ, Lamba GS, Levis JE, Holmes CE. Characterization of purine-rich element binding protein B as a novel biomarker in acute myelogenous leukemia prognostication. J Cell Biochem 2017; 119:2073-2083. [PMID: 28834593 DOI: 10.1002/jcb.26369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022]
Abstract
Acute myelogenous leukemia (AML) is an aggressive hematologic cancer characterized by infiltration of proliferative, clonal, abnormally differentiated cells of myeloid lineage in the bone marrow and blood. Malignant cells in AML often exhibit chromosomal and other genetic or epigenetic abnormalities that are useful in prognostic risk assessment. In this study, the relative expression and novel single-stranded DNA (ssDNA) binding function of purine-rich element binding proteins A and B (Purα and Purβ) were systematically evaluated in established leukemia cell lines and in lineage committed myeloid cells isolated from patients diagnosed with a hematologic malignancy. Western blotting revealed that Purα and Purβ are markedly elevated in CD33+ /CD66b+ cells from AML patients compared to healthy subjects and to patients with other types of myeloid cell disorders. Results of in silico database analysis of PURA and PURB mRNA expression during hematopoiesis in conjunction with the quantitative immunoassay of the ssDNA-binding activities of Purα and Purβ in transformed leukocyte cell lines pointed to Purβ as the more distinguishing biomarker of myeloid cell differentiation status. Purβ ssDNA-binding activity was significantly increased in myeloid cells from AML patients but not from individuals with other myeloid-related diseases. The highest levels of Purβ activity were detected in myeloid cells from primary AML patients and from AML patients displaying other risk factors forecasting a poor prognosis. Collectively, these findings suggest that the enhanced ssDNA-binding activity of Purβ in transformed myeloid cells may serve as a unique and measurable phenotypic trait for improving prognostic risk stratification in AML.
Collapse
Affiliation(s)
- Robert J Kelm
- Division of Cardiovascular Medicine, Department of Medicine, University of Vermont, Robert Larner, M. D. College of Medicine, Burlington, Vermont
| | - Gurpreet S Lamba
- Division of Hematology/Oncology, Department of Medicine, University of Vermont, Robert Larner, M. D. College of Medicine, Burlington, Vermont
| | - Jamie E Levis
- Translational Research Laboratory, University of Vermont Cancer Center, Burlington, Vermont
| | - Chris E Holmes
- Division of Hematology/Oncology, Department of Medicine, University of Vermont, Robert Larner, M. D. College of Medicine, Burlington, Vermont
| |
Collapse
|
8
|
Rumora AE, Wang SX, Ferris LA, Everse SJ, Kelm RJ. Structural basis of multisite single-stranded DNA recognition and ACTA2 repression by purine-rich element binding protein B (Purβ). Biochemistry 2013; 52:4439-50. [PMID: 23724822 DOI: 10.1021/bi400283r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A hallmark of dysfunctional fibroblast to myofibroblast differentiation associated with fibrotic disorders is persistent expression of ACTA2, the gene encoding the cyto-contractile protein smooth muscle α-actin. In this study, a PURB-specific gene knockdown approach was used in conjunction with biochemical analyses of protein subdomain structure and function to reveal the mechanism by which purine-rich element binding protein B (Purβ) restricts ACTA2 expression in mouse embryo fibroblasts (MEFs). Consistent with the hypothesized role of Purβ as a suppressor of myofibroblast differentiation, stable short hairpin RNA-mediated knockdown of Purβ in cultured MEFs promoted changes in cell morphology, actin isoform expression, and cell migration indicative of conversion to a myofibroblast-like phenotype. Promoter-reporter assays in transfected Purβ knockdown MEFs confirmed that these changes were attributable, in part, to derepression of ACTA2 transcription. To map the domains in Purβ responsible for ACTA2 repression, several recombinant truncation mutants were generated and analyzed based on hypothetical, computationally derived models of the tertiary and quaternary structure of Purβ. Discrete subdomains mediating sequence- and strand-specific cis-element binding, protein-protein interaction, and inhibition of a composite ACTA2 enhancer were identified using a combination of biochemical, biophysical, and cell-based assays. Our results indicate that the Purβ homodimer possesses three separate but unequal single-stranded DNA-binding modules formed by subdomain-specific inter- and intramolecular interactions. This structural arrangement suggests that the cooperative assembly of the dimeric Purβ repressor on the sense strand of the ACTA2 enhancer is dictated by the association of each subdomain with distinct purine-rich binding sites within the enhancer.
Collapse
Affiliation(s)
- Amy E Rumora
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
9
|
Johnson EM, Daniel DC, Gordon J. The pur protein family: genetic and structural features in development and disease. J Cell Physiol 2013; 228:930-7. [PMID: 23018800 PMCID: PMC3747735 DOI: 10.1002/jcp.24237] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/21/2012] [Indexed: 12/19/2022]
Abstract
The Pur proteins are an ancient family of sequence-specific single-stranded nucleic acid-binding proteins. They bind a G-rich element in either single- or double-stranded nucleic acids and are capable of displacing the complementary C-rich strand. Recently several reports have described Pur family member knockouts, mutations, and disease aberrations. Together with a recent crystal structure of Purα, these data reveal conserved structural features of these proteins that have been adapted to serve functions unique to higher eukaryotes. In humans Pur proteins are critical for myeloid cell development, muscle development, and brain development, including trafficking of mRNA to neuronal dendrites. Pur family members have been implicated in diseases as diverse as cancer, premature aging, and fragile-X mental retardation syndrome.
Collapse
Affiliation(s)
- Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507-1696, USA.
| | | | | |
Collapse
|
10
|
Hokkanen S, Feldmann HM, Ding H, Jung CKE, Bojarski L, Renner-Müller I, Schüller U, Kretzschmar H, Wolf E, Herms J. Lack of Pur-alpha alters postnatal brain development and causes megalencephaly. Hum Mol Genet 2011; 21:473-84. [PMID: 22010047 DOI: 10.1093/hmg/ddr476] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pur-alpha (Purα) plays an important role in a variety of cellular processes including transcriptional regulation, cell proliferation and oncogenic transformation. To better understand the role of Purα in the developing and mature brain, we generated Purα-deficient mice, which we were able to raise to the age of six months. Purα(-/-) mice were born with no obvious pathological condition. We obtained convincing evidence that lack of Purα prolongs the postnatal proliferation of neuronal precursor cells both in the hippocampus and in the cerebellum, however, without affecting the overall number of postmitotic neurons. Independent of these findings, we observed alterations in the expression and distribution of the dendritic protein MAP2, the translation of which has been proposed previously to be Purα-dependent. At the age of 2 weeks, Purα(-/-) mice generated a continuous tremor which persisted throughout lifetime. Finally, adult Purα(-/-) mice displayed a megalencephaly and histopathological findings including axonal swellings and hyperphosphorylation of neurofilaments. Our studies underline the importance of Purα in the proliferation of neuronal precursor cells during postnatal brain development and suggest a role for Purα in the regulation of the expression and cellular distribution of dendritic and axonal proteins. Since recent studies implicate a link between Purα and the fragile X tremor/ataxia syndrome, our Purα(-/-) mouse model will provide new opportunities for understanding the mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Suvi Hokkanen
- Center of Neuropathology and Prion Research, Ludwig-Maximilians-Universität and German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wortman MJ, Hanson LK, Martínez-Sobrido L, Campbell AE, Nance JA, García-Sastre A, Johnson EM. Regulation of PURA gene transcription by three promoters generating distinctly spliced 5-prime leaders: a novel means of fine control over tissue specificity and viral signals. BMC Mol Biol 2010; 11:81. [PMID: 21062477 PMCID: PMC2992531 DOI: 10.1186/1471-2199-11-81] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/09/2010] [Indexed: 12/17/2022] Open
Abstract
Background Purα is an evolutionarily conserved cellular protein participating in processes of DNA replication, transcription, and RNA transport; all involving binding to nucleic acids and altering conformation and physical positioning. The distinct but related roles of Purα suggest a need for expression regulated differently depending on intracellular and external signals. Results Here we report that human PURA (hPURA) transcription is regulated from three distinct and widely-separated transcription start sites (TSS). Each of these TSS is strongly homologous to a similar site in mouse chromosomal DNA. Transcripts from TSS I and II are characterized by the presence of large and overlapping 5'-UTR introns terminated at the same splice receptor site. Transfection of lung carcinoma cells with wild-type or mutated hPURA 5' upstream sequences identifies different regulatory elements. TSS III, located within 80 bp of the translational start codon, is upregulated by E2F1, CAAT and NF-Y binding elements. Transcription at TSS II is downregulated through the presence of adjacent consensus binding elements for interferon regulatory factors (IRFs). Chromatin immunoprecipitation reveals that IRF-3 protein binds hPURA promoter sequences at TSS II in vivo. By co-transfecting hPURA reporter plasmids with expression plasmids for IRF proteins we demonstrate that several IRFs, including IRF-3, down-regulate PURA transcription. Infection of NIH 3T3 cells with mouse cytomegalovirus results in a rapid decrease in levels of mPURA mRNA and Purα protein. The viral infection alters the degree of splicing of the 5'-UTR introns of TSS II transcripts. Conclusions Results provide evidence for a novel mechanism of transcriptional control by multiple promoters used differently in various tissues and cells. Viral infection alters not only the use of PURA promoters but also the generation of different non-coding RNAs from 5'-UTRs of the resulting transcripts.
Collapse
Affiliation(s)
- Margaret J Wortman
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 W, Olney Road, Norfolk, VA 23507, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Gazzana G, Borlak J. An update on the mouse liver proteome. Proteome Sci 2009; 7:35. [PMID: 19737410 PMCID: PMC2752743 DOI: 10.1186/1477-5956-7-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/08/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing.This methodology was now applied to develop a mouse liver protein database. RESULTS Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 DE at two different pH ranges, notably 5-8 and 7-10. Based on 9600 in gel digests a total of 643 mouse liver proteins with high sequence coverage (> 20 peptides per protein) could be identified by MALDI-TOF-MS peptide mass finger printing. Notably, 255 proteins are novel and have not been reported so far by conventional two-dimensional electrophoresis proteome mapping. Additionally, the results of the present findings for mouse liver were compared to published data of the rat proteome to compile as many proteins as possible in a rodent liver database. CONCLUSION Based on 2-DE MALDI-TOF-MS a significantly improved proteome map of mouse liver was obtained. We discuss some prominent members of newly identified proteins for a better understanding of liver biology.
Collapse
Affiliation(s)
- Giuseppe Gazzana
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany.
| | | |
Collapse
|
13
|
Stettner MR, Nance JA, Wright CA, Kinoshita Y, Kim WK, Morgello S, Rappaport J, Khalili K, Gordon J, Johnson EM. SMAD proteins of oligodendroglial cells regulate transcription of JC virus early and late genes coordinately with the Tat protein of human immunodeficiency virus type 1. J Gen Virol 2009; 90:2005-2014. [PMID: 19420158 DOI: 10.1099/vir.0.011072-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
JC virus (JCV) is the aetiological agent of progressive multifocal leukoencephalopathy (PML), a fatal, demyelinating disease of the brain affecting people with AIDS. Although immunosuppression is involved in infection of the brain by JCV, a direct influence of human immunodeficiency virus type 1 (HIV-1) has also been established. The Tat protein of HIV-1 has been implicated in activation of the cytokine transforming growth factor (TGF)-beta in HIV-1-infected cells and in stimulating JCV gene transcription and DNA replication in oligodendroglia, the primary central nervous system cell type infected by JCV in PML. This study demonstrated that Tat can cooperate with SMAD proteins, the intracellular effectors of TGF-beta, at the JCV DNA control region (CR) to stimulate JCV gene transcription. Tat stimulated JCV early gene transcription in KG-1 oligodendroglial cells when expressed via transfection or added exogenously. Using chromatin immunoprecipitation, it was shown that exogenous Tat enhanced binding of SMAD2, -3 and -4 and their binding partner Fast1 to the JCV CR in living cells. When SMAD2, -3 and -4 were expressed together, Tat, expressed from plasmid pTat, stimulated transcription from both early and late gene promoters, with the early promoter exhibiting stimulation of >100-fold. Tat, SMAD4 and JCV large T-antigen were all visualized in oligodendroglial cells at the border of an active PML lesion in the cerebral frontal lobe. These results revealed a positive reinforcement system in which the SMAD mediators of the TGF-beta system act cooperatively with Tat to stimulate JCV gene transcription.
Collapse
Affiliation(s)
- Michelle R Stettner
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23501, USA
| | - Jonas A Nance
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23501, USA
| | - Clayton A Wright
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23501, USA
| | - Yayoi Kinoshita
- Departments of Pathology and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23501, USA
| | - Susan Morgello
- Departments of Pathology and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jay Rappaport
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | - Kamel Khalili
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | - Jennifer Gordon
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | - Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23501, USA
| |
Collapse
|
14
|
White MK, Johnson EM, Khalili K. Multiple roles for Puralpha in cellular and viral regulation. Cell Cycle 2009; 8:1-7. [PMID: 19182532 DOI: 10.4161/cc.8.3.7585] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pur-alpha is a ubiquitous multifunctional protein that is strongly conserved throughout evolution, binds to both DNA and RNA and functions in the initiation of DNA replication, control of transcription and mRNA translation. In addition, it binds to several cellular regulatory proteins including the retinoblastoma protein, E2F-1, Sp1, YB-1, cyclin T1/Cdk9 and cyclin A/Cdk2. These observations and functional studies provide evidence that Puralpha is a major player in the regulation of the cell cycle and oncogenic transformation. Puralpha also binds to viral proteins such as the large T-antigen of JC virus (JCV) and the Tat protein of human immunodeficiency virus-1 (HIV-1) and plays a role in the cross-communication of these viruses in the opportunistic polyomavirus JC (JCV) brain infection, progressive multifocal leukoencephalopathy (PML). The creation of transgenic mice with inactivation of the PURA gene that encodes Puralpha has revealed that Puralpha is critical for postnatal brain development and has unraveled an essential role of Puralpha in the transport of specific mRNAs to the dendrites and the establishment of the postsynaptic compartment in the developing neurons. Finally, the availability of cell cultures from the PURA knockout mice has allowed studies that have unraveled a role for Puralpha in DNA repair.
Collapse
Affiliation(s)
- Martyn K White
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
15
|
Inoue T, Leman ES, Yeater DB, Getzenberg RH. The potential role of purine-rich element binding protein (PUR) alpha as a novel treatment target for hormone-refractory prostate cancer. Prostate 2008; 68:1048-56. [PMID: 18386260 DOI: 10.1002/pros.20764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hormonal therapy for advanced prostate cancer is typically effective at first, but almost all men suffer refractory disease which often is life threatening. The nuclear matrix comprises not only of the structural elements of the nucleus, but is associated with many components of the molecular machinery. Our aim is to find novel targets for the treatment of hormone-refractory prostate cancer (HRPC) by focusing on the composition of the nuclear matrix proteins (NMPs). METHODS LN96 cells were established at our Institution after long-term culturing of LNCaP cells under androgen deprived conditions. The composition of NMPs of LNCaP cells and LN96 cells were analyzed by two-dimensional (2D) electrophoresis and spots differentially expressed were investigated by mass spectrometry for identification. Among the spots identified, we analyzed the potential functional role of the identified proteins in prostate cancer cells by establishing stable overexpressed cells. RESULTS We found that purine-rich element binding protein (PUR)alpha was significantly repressed not only in NMPs but also in total protein and mRNA levels of LN96 cells in comparison to LNCaP cells under the same steroid deprived conditions. Moreover, PURalpha was decreased in its expression both at the protein and mRNA levels in the androgen-independent prostate cancer cell lines, PC3 and DU145 in comparison to LNCaP cells. Stably overexpressing PURalpha in PC3 and DU145 cells negatively regulates cell proliferation, resulting in decreases in PCNA expression. CONCLUSION Further dissection of the role of PURalpha in cell growth regulation may reveal a novel target for HRPC.
Collapse
Affiliation(s)
- Takahiro Inoue
- James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
16
|
Wang LG, Johnson EM, Kinoshita Y, Babb JS, Buckley MT, Liebes LF, Melamed J, Liu XM, Kurek R, Ossowski L, Ferrari AC. Androgen receptor overexpression in prostate cancer linked to Pur alpha loss from a novel repressor complex. Cancer Res 2008; 68:2678-88. [PMID: 18413735 DOI: 10.1158/0008-5472.can-07-6017] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased androgen receptor (AR) expression and activity are pivotal for androgen-independent (AI) prostate cancer (PC) progression and resistance to androgen-deprivation therapy. We show that a novel transcriptional repressor complex that binds a specific sequence (repressor element) in the AR gene 5'-untranslated region contains Pur alpha and hnRNP-K. Pur alpha expression, its nuclear localization, and its AR promoter association, as determined by chromatin immunoprecipitation analysis, were found to be significantly diminished in AI-LNCaP cells and in hormone-refractory human PCs. Transfection of AI cells with a plasmid that restored Pur alpha expression reduced AR at the transcription and protein levels. Pur alpha knockdown in androgen-dependent cells yielded higher AR and reduced p21, a gene previously shown to be under negative control of AR. These changes were linked to increased proliferation in androgen-depleted conditions. Treatment of AI cells with histone deacetylase and DNA methylation inhibitors restored Pur alpha protein and binding to the AR repressor element. This correlated with decreased AR mRNA and protein levels and inhibition of cell growth. Pur alpha is therefore a key repressor of AR transcription and its loss from the transcriptional repressor complex is a determinant of AR overexpression and AI progression of PC. The success in restoring Pur alpha and the repressor complex function by pharmacologic intervention opens a promising new therapeutic approach for advanced PC.
Collapse
Affiliation(s)
- Longgui G Wang
- New York University Cancer Institute, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kinoshita Y, Johnson EM, Gordon RE, Negri-Bell H, Evans MT, Coolbaugh J, Rosario-Peralta Y, Samet J, Slusser E, Birkenbach MP, Daniel DC. Colocalization of MCM8 and MCM7 with proteins involved in distinct aspects of DNA replication. Microsc Res Tech 2008; 71:288-97. [DOI: 10.1002/jemt.20553] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Knapp AM, Ramsey JE, Wang SX, Strauch AR, Kelm RJ. Structure-function analysis of mouse Pur beta II. Conformation altering mutations disrupt single-stranded DNA and protein interactions crucial to smooth muscle alpha-actin gene repression. J Biol Chem 2007; 282:35899-909. [PMID: 17906292 DOI: 10.1074/jbc.m706617200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies from our laboratories have implicated two members of the Pur family of single-stranded DNA/RNA-binding proteins, Pur alpha and Pur beta, in transcriptional repression of the smooth muscle alpha-actin gene in vascular cell types. Although Pur alpha and Pur beta share substantial sequence homology and nucleic acid binding properties, genomic promoter and cis-element occupancy studies reported herein suggest that Pur beta is the dominant factor in gene regulation. To dissect the molecular basis of Pur beta repressor activity, site-directed mutagenesis was used to map amino acids critical to the physical and functional interaction of Pur beta with the smooth muscle alpha-actin promoter. Of all the various acidic, basic, and aromatic residues studied, mutation of positionally conserved arginines in the class I or class II repeat modules significantly attenuated Pur beta repressor activity in transfected vascular smooth muscle cells and fibroblasts. DNA binding and protein-protein interaction assays were conducted with purified recombinant Pur beta and selected mutants to reveal the physical basis for loss-of-function. Mutants R57E, R57E/R96E, and R57A/R96A each exhibited reduced single-stranded DNA binding affinity for an essential promoter element and diminished interaction with corepressor YB-1/MSY1. Structural analyses of the R57A/R96A and R57E/R96E double mutants in comparison to the wild-type Pur beta homodimer revealed aberrant self-association into higher order oligomeric complexes, which correlated with decreased alpha-helical content and defective DNA and protein binding in vitro. These findings point to a previously unrecognized structural role for certain core arginine residues in forming a conformationally stable Pur beta protein capable of physical interactions necessary for smooth muscle alpha-actin gene repression.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Amino Acid Substitution
- Animals
- Cell Line
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Silencing
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Mutagenesis, Site-Directed
- Mutation, Missense
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Protein Binding/genetics
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Rats
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Response Elements/physiology
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Anna M Knapp
- Departments of Biochemistry and Medicine, Cardiovascular Research Institute, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
19
|
Ramsey JE, Daugherty MA, Kelm RJ. Hydrodynamic studies on the quaternary structure of recombinant mouse Purbeta. J Biol Chem 2006; 282:1552-60. [PMID: 17121857 DOI: 10.1074/jbc.m609356200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purbeta is a gene regulatory factor belonging to a family of highly conserved nucleic acid-binding proteins related by their ability to preferentially bind single-stranded DNA or RNA sequences rich in purine nucleotides. In conjunction with Puralpha, Purbeta has been implicated in transcriptional and translational repression of genes encoding contractile proteins found in the heart and vasculature. Although several models of sequence-specific DNA recognition, strand separation, and activator inhibition by oligomeric Puralpha and Purbeta have been proposed, it is currently unclear whether protein-protein interaction is a prerequisite to, or a consequence of nucleic acid binding. In this study, a recombinant protein purification scheme was devised to yield homogenous mouse Purbeta devoid of nucleic acid. Recombinant Purbeta was then subjected to light scattering and analytical ultracentrifugation analyses to assess the size, shape, and oligomeric state of the purified protein in solution. Results of laser light scattering and sedimentation velocity experiments indicated that Purbeta reversibly self-associates in the absence of nucleic acid. Both approaches independently showed that the hydrodynamic shape of the Purbeta homodimer is markedly asymmetric and non-spherical. Sedimentation velocity analyses indicated that dimeric Purbeta has a sedimentation coefficient of 3.96 Svedberg, a frictional coefficient ratio (f/f(0)) of 1.60, and a hydrodynamic radius of 4.43 nm. These values were consistent with those determined by independent dynamic light scattering studies. Sedimentation equilibrium analyses confirmed that Purbeta self-associates in a reversible monomer-dimer equilibrium characterized by a K(d) = 1.13 +/- 0.27 microm.
Collapse
Affiliation(s)
- Jon E Ramsey
- Department of Biochemistry and Medicine, Cardiovascular Research Institute, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
20
|
Johnson EM, Kinoshita Y, Weinreb DB, Wortman MJ, Simon R, Khalili K, Winckler B, Gordon J. Role of Purα in targeting mRNA to sites of translation in hippocampal neuronal dendrites. J Neurosci Res 2006; 83:929-43. [PMID: 16511857 DOI: 10.1002/jnr.20806] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using genetic inactivation in the mouse, PURA, encoding Pur alpha, is demonstrated to be essential for developmentally-timed dendrite formation in the cerebellum and hippocampus. Comparison of RNA species bound by Pur alpha prompts the hypothesis that Pur alpha functions with non-coding RNA in transport of certain mRNA molecules to sites of translation in dendrites. Pur alpha binds to human BC200 RNA, implicated in dendritic targeting, and this has homologies to 7SL RNA, implicated in compartmentalized translation. Results using hippocampal rat neurons in situ show that Pur alpha binds to BC1 RNA, implicated in dendritic targeting as a mouse counterpart of BC200, and to mRNA molecules translated in dendrites; Pur alpha is specifically located in dendrites, where it is colocalized with Map2, but not in axons, where it fails to colocalize with Ankyrin G. Pur alpha and Staufen are colocalized at dendritic sites of mRNA translation. Microtubule disruptors inhibit Pur alpha dendritic targeting and allow its mislocalization to axons. Using mouse brain, double-RNA immunoprecipitation places Pur alpha together with Staufen or FMRP on BC1 RNA and specific mRNA species in vivo. These results help define a mechanism by which Pur alpha targets specific mRNA molecules to sites of dendritic translation.
Collapse
Affiliation(s)
- Edward M Johnson
- Department of Pathology, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Knapp AM, Ramsey JE, Wang SX, Godburn KE, Strauch AR, Kelm RJ. Nucleoprotein interactions governing cell type-dependent repression of the mouse smooth muscle alpha-actin promoter by single-stranded DNA-binding proteins Pur alpha and Pur beta. J Biol Chem 2006; 281:7907-18. [PMID: 16436378 DOI: 10.1074/jbc.m509682200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pur alpha and Pur beta are structurally related single-stranded DNA/RNA-binding proteins implicated in the control of cell growth and differentiation. The goal of this study was to determine whether Pur alpha and Pur beta function in a redundant, distinct, or collaborative manner to suppress smooth muscle alpha-actin gene expression in cell types relevant to wound repair and vascular remodeling. RNA interference-mediated loss-of-function analyses revealed that, although Pur beta was the dominant repressor, the combined action of endogenous Pur alpha and Pur beta was necessary to fully repress the full-length smooth muscle alpha-actin promoter in cultured fibroblasts but to a lesser extent in vascular smooth muscle cells. The activity of a minimal core enhancer containing a truncated 5' Pur repressor binding site was unaffected by knockdown of Pur alpha and/or Pur beta in fibroblasts. Conversely, gain-of-function studies indicated that Pur alpha or Pur beta could each independently repress core smooth muscle alpha-actin enhancer activity albeit in a cell type-dependent fashion. Biochemical analyses indicated that purified recombinant Pur alpha and Pur beta were essentially identical in terms of their binding affinity and specificity for GGN repeat-containing strands of several cis-elements comprising the core enhancer. However, Pur alpha and Pur beta exhibited more distinctive protein interaction profiles when evaluated for binding to enhancer-associated transcription factors in extracts from fibroblasts and vascular smooth muscle cells. These findings support the hypothesis that Pur alpha and Pur beta repress smooth muscle alpha-actin gene transcription by means of DNA strand-selective cis-element binding and cell type-dependent protein-protein interactions.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Binding, Competitive
- Biotinylation
- Blotting, Western
- DNA/chemistry
- DNA, Single-Stranded/chemistry
- DNA-Binding Proteins/chemistry
- Dose-Response Relationship, Drug
- Enhancer Elements, Genetic
- Enzyme-Linked Immunosorbent Assay
- Epitopes/chemistry
- Fibroblasts/metabolism
- Genes, Reporter
- Genetic Vectors
- Mice
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Nerve Tissue Proteins/chemistry
- Nucleoproteins/chemistry
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- RNA/chemistry
- RNA Interference
- Transcription Factors/chemistry
- Transcription, Genetic
- Transgenes
Collapse
Affiliation(s)
- Anna M Knapp
- Department of Biochemistry, Cardiovascular Research Institute, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
22
|
Shimotai Y, Minami H, Saitoh Y, Onodera Y, Mishima Y, Kelm RJ, Tsutsumi KI. A binding site for Pur alpha and Pur beta is structurally unstable and is required for replication in vivo from the rat aldolase B origin. Biochem Biophys Res Commun 2005; 340:517-25. [PMID: 16376299 DOI: 10.1016/j.bbrc.2005.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/06/2005] [Indexed: 11/27/2022]
Abstract
The rat aldolase B promoter acts as a replication origin in vivo, as well as an autonomously replicating sequence (ARS). Here, we examined roles of a polypurine stretch (site PPu) in this origin, which is indispensable to the ARS activity. Purification of site PPu-binding protein revealed that site PPu binds Puralpha and Purbeta, i.e., single-stranded DNA-binding proteins whose roles in replication have been implicated, but less clear. Biochemical analyses showed that site PPu even in a longer DNA fragment is unstable in terms of double-helix, implying that Puralpha/beta may stabilize single-stranded state. Deletion of site PPu from the origin DNA, which was ectopically positioned in the mouse chromosome, significantly reduced replicator activity. Chromatin immunoprecipitation experiments showed that deletion of site PPu abolishes binding of the Puralpha/beta proteins to the origin. These observations suggest functional roles of site PPu and Puralpha/beta proteins in replication initiation.
Collapse
Affiliation(s)
- Yoshitaka Shimotai
- Laboratory of Functional Genomics, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | | | | | | | | | | | | |
Collapse
|