1
|
Bellanger T, da Silva Barreira D, Wien F, Delarue P, Senet P, Rieu A, Neiers F, Varela PF, Combet S, Weidmann S. Significant influence of four highly conserved amino-acids in lipochaperon-active sHsps on the structure and functions of the Lo18 protein. Sci Rep 2023; 13:19036. [PMID: 37923897 PMCID: PMC10624808 DOI: 10.1038/s41598-023-46306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
To cope with environmental stresses, bacteria have developed different strategies, including the production of small heat shock proteins (sHSP). All sHSPs are described for their role as molecular chaperones. Some of them, like the Lo18 protein synthesized by Oenococcus oeni, also have the particularity of acting as a lipochaperon to maintain membrane fluidity in its optimal state following cellular stresses. Lipochaperon activity is poorly characterized and very little information is available on the domains or amino-acids key to this activity. The aim in this paper is to investigate the importance at the protein structure and function level of four highly conserved residues in sHSP exhibiting lipochaperon activity. Thus, by combining in silico, in vitro and in vivo approaches the importance of three amino-acids present in the core of the protein was shown to maintain both the structure of Lo18 and its functions.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - David da Silva Barreira
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France
| | - Patrice Delarue
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université de Bourgogne Franche-Comté, 21078, Dijon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université de Bourgogne Franche-Comté, 21078, Dijon, France
| | - Aurélie Rieu
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Fabrice Neiers
- Laboratory: Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Paloma Fernández Varela
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette CEDEX, France
| | - Stéphanie Weidmann
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France.
| |
Collapse
|
2
|
Bellanger T, Weidmann S. Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence? Cell Stress Chaperones 2023; 28:21-33. [PMID: 36367671 PMCID: PMC9877275 DOI: 10.1007/s12192-022-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies have been put in place by organisms to adapt to their environment. One of these strategies is the production of stress proteins such as sHSPs, which have been widely described over the last 30 years for their role as molecular chaperones. Some sHSPs have, in addition, the particularity to exert a lipochaperone role by interacting with membrane lipids to maintain an optimal membrane fluidity. However, the mechanisms involved in this sHSP-lipid interaction remain poorly understood and described rather sporadically in the literature. This review gathers the information concerning the structure and function of these proteins available in the literature in order to highlight the mechanism involved in this interaction. In addition, analysis of primary sequence data of sHSPs available in database shows that sHSPs can interact with lipids via certain amino acid residues present on some β sheets of these proteins. These residues could have a key role in the structure and/or oligomerization dynamics of sHPSs, which is certainly essential for interaction with membrane lipids and consequently for maintaining optimal cell membrane fluidity.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Stéphanie Weidmann
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
3
|
Rocchetti MT, Bellanger T, Trecca MI, Weidmann S, Scrima R, Spano G, Russo P, Capozzi V, Fiocco D. Molecular chaperone function of three small heat-shock proteins from a model probiotic species. Cell Stress Chaperones 2023; 28:79-89. [PMID: 36417097 PMCID: PMC9877261 DOI: 10.1007/s12192-022-01309-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Small heat-shock proteins (sHSP) are ubiquitous ATP-independent chaperones that prevent irreversible aggregation of heat-damaged denaturing proteins. Lactiplantibacillus plantarum is a widespread Gram-positive bacterium with probiotic claims and vast potential for agro-food, biotechnological and biomedical applications. L. plantarum possesses a family of three sHSP, which were previously demonstrated to be involved in its stress tolerance mechanisms. Here, the three L. plantarum sHSP were heterologously expressed, purified and shown to have a chaperone activity in vitro, measuring their capacity to suppress protein aggregation, as assayed spectrophotometrically by light scattering. Their anti-aggregative capacity was found to be differently influenced by pH. Differences were also found relative to their holdase function and their capacity to modulate liposome membrane fluidity, suggesting interplays between them and indicating diversified activities. This is the first study assessing the chaperone action of sHSP from a probiotic model. The different roles of the three sHSP can increase L. plantarum's capabilities to survive the various types of stress characterising the diverse habitats of this highly adaptable species. Reported evidence supports the interest in L. plantarum as one of the model species for bacteria that have three different sHSP-encoding genes in their genomes.
Collapse
Affiliation(s)
- Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Tiffany Bellanger
- Univ. Bourgogne, Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Maria Incoronata Trecca
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Stephanie Weidmann
- Univ. Bourgogne, Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133, Milano, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Via Michele Protano, 71122, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
4
|
Kurre D, Suguna K. Network of Entamoeba histolytica HSP18.5 dimers formed by two overlapping [IV]-X-[IV] motifs. Proteins 2021; 89:1039-1054. [PMID: 33792100 DOI: 10.1002/prot.26081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 11/11/2022]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent molecular chaperones with low molecular weight that prevent the aggregation of proteins during stress conditions and maintain protein homeostasis in the cell. sHSPs exist in dynamic equilibrium as a mixture of oligomers of various sizes with a constant exchange of subunits between them. Many sHSPs form cage-like assemblies that may dissociate into smaller oligomers during stress conditions. We carried out the functional and structural characterization of a small heat shock protein, HSP18.5, from Entamoeba histolytica (EhHSP18.5). It showed a pH-dependent change in its oligomeric state, which varied from a tetramer to larger than 48-mer. EhHSP18.5 protected Nde I and lysozyme substrates from temperature and chemical stresses, respectively. The crystal structure of EhHSP18.5 was determined at a resolution of 3.28 Å in C2221 cell with four subunits in the asymmetric unit forming two non-metazoan sHSP-type dimers. Unlike the reported cage-like structures, EhHSP18.5 formed a network of linear chains of molecules in the crystal. Instead of a single [IV]-X-[IV] motif, EhHSP18.5 has two overlapping I/V-X-I/V sequences at the C-terminus giving rise to novel interactions between the dimers. Negative staining Electron Microscopy images of EhHSP18.5 showed the presence of multiple oligomers: closed structures of various sizes and long tube-like structures.
Collapse
Affiliation(s)
- Devanshu Kurre
- Molecular Biophysics unit, Indian Institute of Science, Bangalore, India
| | - Kaza Suguna
- Molecular Biophysics unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Obuchowski I, Liberek K. Small but mighty: a functional look at bacterial sHSPs. Cell Stress Chaperones 2020; 25:593-600. [PMID: 32301005 PMCID: PMC7332594 DOI: 10.1007/s12192-020-01094-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/02/2023] Open
Abstract
Small heat shock proteins (sHSPs) are widespread in every kingdom of life, being indispensable for protein quality control networks. Alongside canonical chaperone functions, sHSPs seem to have been a very plastic scaffold for acquiring multiple related functions across evolution. This review aims to summarize what is known about sHSPs functioning in the Bacteria Kingdom.
Collapse
Affiliation(s)
- Igor Obuchowski
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| |
Collapse
|
6
|
Roy M, Gupta S, Patranabis S, Ghosh A. The oligomeric plasticity of Hsp20 of Sulfolobus acidocaldarius protects environment-induced protein aggregation and membrane destabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2549-2565. [PMID: 30293966 DOI: 10.1016/j.bbamem.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022]
Abstract
Small heat shock proteins (sHsps) are a ubiquitous family of molecular chaperones that rescue misfolded proteins from irreversible aggregation during cellular stress. Many such sHsps exist as large polydisperse species in solution, and a rapid dynamic subunit exchange between oligomeric and dissociated forms modulates their function under a variety of stress conditions. Here, we investigated the structural and functional properties of Hsp20 from thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. To provide a framework for investigating the structure-function relationship of Hsp20 and understanding its dynamic nature, we employed several biophysical and biochemical techniques. Our data suggested the existence of a ~24-mer of Hsp20 at room temperature (25 °C) and a higher oligomeric form at higher temperature (50 °C-70 °C) and lower pH (3.0-5.0). To our surprise, we identified a dimeric form of protein as the functional conformation in the presence of aggregating substrate proteins. The hydrophobic microenvironment mainly regulates the oligomeric plasticity of Hsp20, and it plays a key role in the protection of stress-induced protein aggregation. In Sulfolobus sp., Hsp20, despite being a non-secreted protein, has been reported to be present in secretory vesicles and it is still unclear whether it stabilizes substrate proteins or membrane lipids within the secreted vesicles. To address such an issue, we tested the ability of Hsp20 to interact with membrane lipids along with its ability to modulate membrane fluidity. Our data revealed that Hsp20 interacts with membrane lipids via a hydrophobic interaction and it lowers the propensity of in vitro phase transition of bacterial and archaeal lipids.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India
| | - Sayandeep Gupta
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India
| | - Somi Patranabis
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India.
| |
Collapse
|
7
|
Weidmann S, Maitre M, Laurent J, Coucheney F, Rieu A, Guzzo J. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance. Int J Food Microbiol 2017; 247:18-23. [DOI: 10.1016/j.ijfoodmicro.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/30/2016] [Accepted: 06/05/2016] [Indexed: 11/17/2022]
|
8
|
Bourrelle-Langlois M, Morrow G, Finet S, Tanguay RM. In Vitro Structural and Functional Characterization of the Small Heat Shock Proteins (sHSP) of the Cyanophage S-ShM2 and Its Host, Synechococcus sp. WH7803. PLoS One 2016; 11:e0162233. [PMID: 27643500 PMCID: PMC5028025 DOI: 10.1371/journal.pone.0162233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/21/2016] [Indexed: 11/22/2022] Open
Abstract
We previously reported the in silico characterization of Synechococcus sp. phage 18 kDa small heat shock protein (HspSP-ShM2). This small heat shock protein (sHSP) contains a highly conserved core alpha crystalline domain of 92 amino acids and relatively short N- and C-terminal arms, the later containing the classical C-terminal anchoring module motif (L-X-I/L/V). Here we establish the oligomeric profile of HspSP-ShM2 and its structural dynamics under in vitro experimental conditions using size exclusion chromatography (SEC/FPLC), gradient native gels electrophoresis and dynamic light scattering (DLS). Under native conditions, HspSP-ShM2 displays the ability to form large oligomers and shows a polydisperse profile. At higher temperatures, it shows extensive structural dynamics and undergoes conformational changes through an increased of subunit rearrangement and formation of sub-oligomeric species. We also demonstrate its capacity to prevent the aggregation of citrate synthase, malate dehydrogenase and luciferase under heat shock conditions through the formation of stable and soluble hetero-oligomeric complexes (sHSP:substrate). In contrast, the host cyanobacteria Synechococcus sp. WH7803 15 kDa sHSP (HspS-WH7803) aggregates when in the same conditions as HspSP-ShM2. However, its solubility can be maintained in the presence of non-ionic detergent Triton™X-100 and forms an oligomeric structure estimated to be between dimer and tetramer but exhibits no apparent inducible structural dynamics neither chaperon-like activity in all the assays and molar ratios tested. SEC/FPLC and thermal aggregation prevention assays results indicate no formation of hetero-oligomeric complex or functional interactions between both sHSPs. Taken together these in vitro results portray the phage HspSP-ShM2 as a classical sHSP and suggest that it may be functional at the in vivo level while behaving differently than its host amphitropic sHSP.
Collapse
Affiliation(s)
- Maxime Bourrelle-Langlois
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut de Biologie Intégrative et des Systémes (IBIS) and PROTEO, Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Québec, Canada
| | - Geneviève Morrow
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut de Biologie Intégrative et des Systémes (IBIS) and PROTEO, Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Québec, Canada
| | - Stéphanie Finet
- IMPMC UMR7590, CNRS/Sorbonne-Universités, UPMC/IRD/MNHN Paris 6, Paris, France
| | - Robert M. Tanguay
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut de Biologie Intégrative et des Systémes (IBIS) and PROTEO, Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Québec, Canada
- * E-mail:
| |
Collapse
|
9
|
Glatz A, Pilbat AM, Németh GL, Vince-Kontár K, Jósvay K, Hunya Á, Udvardy A, Gombos I, Péter M, Balogh G, Horváth I, Vígh L, Török Z. Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. Cell Stress Chaperones 2016; 21:327-38. [PMID: 26631139 PMCID: PMC4786532 DOI: 10.1007/s12192-015-0662-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022] Open
Abstract
Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both α-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Δ) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast.
Collapse
Affiliation(s)
- Attila Glatz
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ana-Maria Pilbat
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gergely L Németh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | | | - Katalin Jósvay
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ákos Hunya
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Andor Udvardy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
10
|
Morrow G, Tanguay RM. Drosophila melanogaster Hsp22: a mitochondrial small heat shock protein influencing the aging process. Front Genet 2015; 6:1026. [PMID: 25852752 PMCID: PMC4360758 DOI: 10.3389/fgene.2015.00103] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/27/2015] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are involved in many key cellular processes and therefore need to rely on good protein quality control (PQC). Three types of mechanisms are in place to insure mitochondrial protein integrity: reactive oxygen species scavenging by anti-oxidant enzymes, protein folding/degradation by molecular chaperones and proteases and clearance of defective mitochondria by mitophagy. Drosophila melanogaster Hsp22 is part of the molecular chaperone axis of the PQC and is characterized by its intra-mitochondrial localization and preferential expression during aging. As a stress biomarker, the level of its expression during aging has been shown to partially predict the remaining lifespan of flies. Since over-expression of this small heat shock protein increases lifespan and resistance to stress, Hsp22 most likely has a positive effect on mitochondrial integrity. Accordingly, Hsp22 has recently been implicated in the mitochondrial unfolding protein response of flies. This review will summarize the key findings on D. melanogaster Hsp22 and emphasis on its links with the aging process.
Collapse
Affiliation(s)
- Geneviève Morrow
- Laboratoire de Génétique Cellulaire et Développementale, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Institut de Biologie Intégrative et des Systémes and PROTEO, Université Laval Québec, QC, Canada
| | - Robert M Tanguay
- Laboratoire de Génétique Cellulaire et Développementale, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Institut de Biologie Intégrative et des Systémes and PROTEO, Université Laval Québec, QC, Canada
| |
Collapse
|
11
|
Chang Z. Understanding What Small Heat Shock Proteins Do for Bacterial Cells. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
A small heat shock protein enables Escherichia coli to grow at a lethal temperature of 50°C conceivably by maintaining cell envelope integrity. J Bacteriol 2014; 196:2004-11. [PMID: 24659772 DOI: 10.1128/jb.01473-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is essential for organisms to adapt to fluctuating growth temperatures. Escherichia coli, a model bacterium commonly used in research and industry, has been reported to grow at a temperature lower than 46.5°C. Here we report that the heterologous expression of the 17-kDa small heat shock protein from the nematode Caenorhabditis elegans, CeHSP17, enables E. coli cells to grow at 50°C, which is their highest growth temperature ever reported. Strikingly, CeHSP17 also rescues the thermal lethality of an E. coli mutant deficient in degP, which encodes a protein quality control factor localized in the periplasmic space. Mechanistically, we show that CeHSP17 is partially localized in the periplasmic space and associated with the inner membrane of E. coli, and it helps to maintain the cell envelope integrity of the E. coli cells at the lethal temperatures. Together, our data indicate that maintaining the cell envelope integrity is crucial for the E. coli cells to grow at high temperatures and also shed new light on the development of thermophilic bacteria for industrial application.
Collapse
|
13
|
Adaptation of the wine bacterium Oenococcus oeni to ethanol stress: role of the small heat shock protein Lo18 in membrane integrity. Appl Environ Microbiol 2014; 80:2973-80. [PMID: 24584255 DOI: 10.1128/aem.04178-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malolactic fermentation in wine is often carried out by Oenococcus oeni. Wine is a stressful environment for bacteria because ethanol is a toxic compound that impairs the integrity of bacterial membranes. The small heat shock protein (sHsp) Lo18 is an essential actor of the stress response in O. oeni. Lo18 prevents the thermal aggregation of proteins and plays a crucial role in membrane quality control. Here, we investigated the interaction between Lo18 and four types of liposomes: one was prepared from O. oeni grown under optimal growth conditions (here, control liposomes), one was prepared from O. oeni grown in the presence of 8% ethanol (here, ethanol liposomes), one was prepared from synthetic phospholipids, and one was prepared from phospholipids from Bacillus subtilis or Lactococcus lactis. We observed the strongest interaction between Lo18 and control liposomes. The lipid binding activity of Lo18 required the dissociation of oligomeric structures into dimers. Protein protection experiments carried out in the presence of the liposomes from O. oeni suggested that Lo18 had a higher affinity for control liposomes than for a model protein. In anisotropy experiments, we mimicked ethanol action by temperature-dependent fluidization of the liposomes. Results suggest that the principal determinant of Lo18-membrane interaction is lipid bilayer phase behavior rather than phospholipid composition. We suggest a model to describe the ethanol adaptation of O. oeni. This model highlights the dual role of Lo18 in the protection of proteins from aggregation and membrane stabilization and suggests how modifications of phospholipid content may be a key factor determining the balance between these two functions.
Collapse
|
14
|
The oligomer plasticity of the small heat-shock protein Lo18 from Oenococcus oeni influences its role in both membrane stabilization and protein protection. Biochem J 2012; 444:97-104. [PMID: 22360742 DOI: 10.1042/bj20120066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability of the small Hsp (heat-shock protein) Lo18 from Oenococcus oeni to modulate the membrane fluidity of liposomes or to reduce the thermal aggregation of proteins was studied as a function of the pH in the range 5-9. We have determined by size-exclusion chromatography and analytical ultracentrifugation that Lo18 assembles essentially as a 16-mer at acidic pH. Its quaternary structure evolves to a mixture of lower molecular mass oligomers probably in dynamic equilibrium when the pH increases. The best Lo18 activities are observed at pH 7 when the particle distribution contains a major proportion of dodecamers. At basic pH, particles corresponding to a dimer prevail and are thought to be the building blocks leading to oligomerization of Lo18. At acidic pH, the dimers are organized in a double-ring of stacked octamers to form the 16-mer as shown by the low-resolution structure determined by electron microscopy. Experiments performed with a modified protein (A123S) shown to preferentially form dimers confirm these results. The α-crystallin domain of Methanococcus jannaschii Hsp16.5, taken as a model of the Lo18 counterpart, fits with the electron microscopy envelope of Lo18.
Collapse
|
15
|
Guzzo J. Biotechnical applications of small heat shock proteins from bacteria. Int J Biochem Cell Biol 2012; 44:1698-705. [PMID: 22706478 DOI: 10.1016/j.biocel.2012.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 01/05/2023]
Abstract
The stress responses of most bacteria are thought to involve the upregulation of small heat shock proteins. We describe here some of the most pertinent aspects of small heat shock proteins, to highlight their potential for use in various applications. Bacterial species have between one and 13 genes encoding small heat shock proteins, the precise number depending on the species considered. Major efforts have recently been made to characterize the protein protection and membrane stabilization mechanisms involving small heat shock proteins in bacteria. These proteins seem to be involved in the acquisition of cellular heat tolerance. They could therefore potentially be used to maintain cell viability under unfavorable conditions, such as heat shock or chemical treatments. This review highlights the potential roles of applications of small heat shock proteins in stabilizing overproduced heterologous proteins in Escherichia coli, purified bacterial small heat shock proteins in protein biochip technology, proteomic analysis and food technology and the potential impact of these proteins on some diseases. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Jean Guzzo
- UMR A PAM Université de Bourgogne/Agrosup Dijon Equipe Valmis Institut Jules Guyot, 1 Rue Claude Ladrey, BP27877, 21078 Dijon, France.
| |
Collapse
|
16
|
Horváth I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L. Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 2012; 51:208-20. [PMID: 22484828 DOI: 10.1016/j.plipres.2012.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/29/2022]
Abstract
The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as a trigger for HSP induction. However, increasing evidence has shown that many stress events cause HSP induction without commensurate protein denaturation. This has led to the membrane sensor hypothesis where the membrane's physical and structural properties play an initiating role in the heat shock response. In this review, we discuss heat-induced modulation of the membrane's physical state and changes to these properties which can be brought about by interaction with HSPs. Heat stress also leads to changes in lipid-based signaling cascades and alterations in calcium transport and availability. Such observations emphasize the importance of membranes and their lipids in the heat shock response and provide a new perspective for guiding further studies into the mechanisms that mediate cellular and organismal responses to heat stress.
Collapse
Affiliation(s)
- Ibolya Horváth
- Institute of Biochemistry, Biol. Res. Centre, Hungarian Acad. Sci., Temesvári krt. 62, H-6734 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Capozzi V, Fiocco D, Weidmann S, Guzzo J, Spano G. Increasing membrane protection in Lactobacillus plantarum cells overproducing small heat shock proteins. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0285-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Pidot SJ, Porter JL, Tobias NJ, Anderson J, Catmull D, Seemann T, Kidd S, Davies JK, Reynolds E, Dashper S, Stinear TP. Regulation of the 18 kDa heat shock protein in Mycobacterium ulcerans: an alpha-crystallin orthologue that promotes biofilm formation. Mol Microbiol 2010; 78:1216-31. [PMID: 21091506 DOI: 10.1111/j.1365-2958.2010.07401.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mycobacterium ulcerans is the causative agent of the debilitating skin disease Buruli ulcer, which is most prevalent in Western and Central Africa. M. ulcerans shares >98% DNA sequence identity with Mycobacterium marinum, however, M. marinum produces granulomatous, but not ulcerative, lesions in humans and animals. Here we report the differential expression of a small heat shock protein (Hsp18) between strains of M. ulcerans (Hsp18(+) ) and M. marinum (Hsp18(-) ) and describe the molecular basis for this difference. We show by gene deletion and GFP reporter assays in M. marinum that a divergently transcribed gene called hspR_2, immediately upstream of hsp18, encodes a MerR-like regulatory protein that represses hsp18 transcription while promoting its own expression. Naturally occurring mutations within a 70 bp segment of the 144 bp hspR_2-hsp18 intergenic region among M. ulcerans strains inhibit hspR_2 transcription and explain the Hsp18(+) phenotype. We also propose a biological role for Hsp18, as we show that this protein significantly enhances bacterial attachment or aggregation during biofilm formation. This study has uncovered a new member of the MerR family of transcriptional regulators and suggests that upregulation of hsp18 expression was an important pathoadaptive response in the evolution of M. ulcerans from a M. marinum-like ancestor.
Collapse
Affiliation(s)
- Sacha J Pidot
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Horváth I, Multhoff G, Sonnleitner A, Vígh L. Membrane-associated stress proteins: more than simply chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1653-64. [PMID: 18371297 DOI: 10.1016/j.bbamem.2008.02.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 01/13/2023]
Abstract
The protein- and/or lipid-mediated association of chaperone proteins to membranes is a widespread phenomenon and implicated in a number of physiological and pathological events that were earlier partially or completely overlooked. A temporary association of certain HSPs with membranes can re-establish the fluidity and bilayer stability and thereby restore the membrane functionality during stress conditions. The fluidity and microdomain organization of membranes are decisive factors in the perception and transduction of stresses into signals that trigger the activation of specific HS genes. Conversely, the membrane association of HSPs may result in the inactivation of membrane-perturbing signals, thereby switch off the heat shock response. Interactions between certain HSPs and specific lipid microdomains ("rafts") might be a previously unrecognized means for the compartmentalization of HSPs to specific signaling platforms, where key signaling proteins are known to be concentrated. Any modulations of the membranes, especially the raft-lipid composition of the cells can alter the extracellular release and thus the immuno-stimulatory activity of certain HSPs. Reliable techniques, allowing mapping of the composition and dynamics of lipid microdomains and simultaneously the spatio-temporal localization of HSPs in and near the plasma membrane can provide suitable means with which to address fundamental questions, such as how HSPs are transported to and translocated through the plasma membrane. The possession of such information is critical if we are to target the membrane association principles of HSPs for successful drug development in most various diseases.
Collapse
Affiliation(s)
- Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, Hungary
| | | | | | | |
Collapse
|
20
|
Feng Y, Jiao W, Fu X, Chang Z. Stepwise disassembly and apparent nonstepwise reassembly for the oligomeric RbsD protein. Protein Sci 2006; 15:1441-8. [PMID: 16731978 PMCID: PMC2242537 DOI: 10.1110/ps.062175806] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Many cellular proteins exist as homo-oligomers. The mechanism of the assembly process of such proteins is still poorly understood. We have previously observed that Hsp16.3, a protein exhibiting chaperone-like activity, undergoes stepwise disassembly and nonstepwise reassembly. Here, the disassembly and reassembly of a nonchaperone protein RbsD, from Escherichia coli, was studied in vitro. The protein was found to mainly exist as decamers with a small portion of apparently larger oligomeric forms, both of which are able to refold/reassemble effectively in a spontaneous way after being completely unfolded. Disassembly RbsD intermediates including pentamers, tetramers, trimers, dimers, and monomers were detected by using urea-containing pore gradient polyacrylamide gel electrophoresis, while only pentamers were detected for its reassembly. The observation of stepwise disassembly and apparent nonstepwise reassembly for both a chaperone protein (Hsp16.3) and a nonchaperone protein (RbsD) strongly suggests that such a feature is most likely general for homo-oligomeric proteins.
Collapse
Affiliation(s)
- Yongjun Feng
- National Laboratory of Protein Engineering and Plant Genetics, Peking University, Beijing 100871, PR China
| | | | | | | |
Collapse
|
21
|
Villeneuve TS, Ma X, Sun Y, Oulton MM, Oliver AE, MacRae TH. Inhibition of apoptosis by p26: implications for small heat shock protein function during Artemia development. Cell Stress Chaperones 2006; 11:71-80. [PMID: 16572731 PMCID: PMC1400614 DOI: 10.1379/csc-154r.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/12/2005] [Accepted: 10/26/2005] [Indexed: 11/24/2022] Open
Abstract
p26, an abundantly expressed small heat shock protein, is thought to establish stress resistance in oviparously developing embryos of the crustacean Artemia franciscana by preventing irreversible protein denaturation, but it might also promote survival by inhibiting apoptosis. To test this possibility, stably transfected mammalian cells producing p26 were generated and their ability to resist apoptosis induction determined. Examination of immunofluorescently stained transfected 293H cells by confocal microscopy demonstrated p26 is diffusely distributed in the cytoplasm with a minor amount of the protein in nuclei. As shown by immunoprobing of Western blots, p26 constituted approximately 0.6% of soluble cell protein. p26 localization and quantity were unchanged during prolonged culture, and the protein had no apparent ill effects on transfected cells. Molecular sieve chromatography in Sepharose 6B revealed p26 oligomers of about 20 monomers, with a second fraction occurring as larger aggregates. A similar pattern was observed in sucrose gradients, but overall oligomer size was smaller. Mammalian cells containing p26 were more thermotolerant than cells transfected with the expression vector only, and as measured by annexin V labeling, Hoescht 33342 nuclear staining and procaspase-3 activation, transfected cells effectively resisted apoptosis induction by heat and staurosporine. The ability to confer thermotolerance and limit heat-induced apoptosis is important because Artemia embryos are frequently exposed to high temperature in their natural habitat. p26 also blocked apoptosis in transfected cells during drying and rehydration, findings with direct relevance to Artemia life history characteristics because desiccation terminates cyst diapause. Thus, in addition to functioning as a molecular chaperone, p26 inhibits apoptosis, an activity shared by other small heat shock proteins and with the potential to play an important role during Artemia embryo development.
Collapse
|
22
|
Sun Y, MacRae TH. Characterization of novel sequence motifs within N- and C-terminal extensions of p26, a small heat shock protein from Artemia franciscana. FEBS J 2005; 272:5230-43. [PMID: 16218954 DOI: 10.1111/j.1742-4658.2005.04920.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The small heat shock proteins function as molecular chaperones, an activity often requiring reversible oligomerization and which protects against irreversible protein denaturation. An abundantly produced small heat shock protein termed p26 is thought to contribute to the remarkable stress resistance exhibited by encysted embryos of the crustacean, Artemia franciscana. Three novel sequence motifs termed G, R and TS were individually deleted from p26 by site-directed mutagenesis. G encompasses residues G8-G29, a glycine-enriched region, and R includes residues R36-R45, an arginine-enhanced sequence, both in the amino terminus. TS, composed of residues T169-T186, resides in the carboxy-extension and is augmented in threonine and serine. Deletion of R had more influence than removal of G on p26 oligomerization and chaperoning, the latter determined by thermotolerance induction in Escherichia coli, protection of insulin and citrate synthase from dithiothreitol- and heat-induced aggregation, respectively, and preservation of citrate synthase activity upon heating. Oligomerization of the TS and R variants was similar, but the TS deletion was slightly more effective than R as a chaperone. The extent of p26 structural perturbation introduced by internal deletions, including modification of intrinsic fluorescence, 1-anilino-8-naphthalene-sulphonate binding and secondary structure, paralleled reductions in oligomerization and chaperoning. Three-dimensional modeling of p26 based on wheat Hsp16.9 crystal structure indicated many similarities between the two proteins, including peptide loops associated with secondary structure elements. Loop 1 of p26 was deleted in the G variant with minimal effect on oligomerization and chaperoning, whereas loop 3, containing beta-strand 6 was smaller than the corresponding loop in Hsp16.9, which may influence p26 function.
Collapse
Affiliation(s)
- Yu Sun
- Department of Biology, Dalhousie University, Halifax, Canada
| | | |
Collapse
|