1
|
Luo Y, Zhang J, Guo H. Alpha-lipoic acid on intermediate disease markers in overweight or obese adults: a systematic review and meta-analysis. BMJ Open 2025; 15:e088363. [PMID: 40180416 PMCID: PMC11969596 DOI: 10.1136/bmjopen-2024-088363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
OBJECTIVES To evaluate the associations between alpha-lipoic acid (ALA) intake and intermediate disease markers in overweight or obese adults. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, EMBASE, Medline, APA PsycINFO, SocINDEX, CINAHL, SSRN, SocArXiv, PsyArXiv, medRxiv, and Google Scholar (from inception to October 2024). ELIGIBILITY CRITERIA This study included English-language randomised controlled trials (RCTs) on adults (body mass index ≥25 kg/m²) to assess the impact of ALA on intermediate disease markers. Studies lacking outcome data, duplicates or inaccessible full texts were excluded. DATA EXTRACTION AND SYNTHESIS Paired reviewers independently extracted the data. We used frequentist meta-analysis to summarise the evidence, employing the DerSimonian and Laird estimator to account for heterogeneity across study designs, settings and measurement methods. Heterogeneity was assessed via the I² statistic with CIs and τ² values. The risk of bias was independently assessed by two reviewers according to the Cochrane Handbook, covering domains such as randomisation, blinding and data completeness. Publication bias was assessed using Begg's test, while funnel plots and Egger's test were applied to outcomes with 10 or more studies. RESULTS This meta-analysis included 11 RCTs from an initial screening of 431 studies, encompassing a total of 704 adults. The meta-analysis results revealed no significant associations were detected between ALA supplementation and changes in intermediate disease markers, including triglyceride (TG) (standardised mean difference (SMD): -0.08, 95% CI: -0.24 to 0.09, p=0.36, I²=0.00%, τ²=0.00), total cholesterol (TC) (SMD: 0.08, 95% CI: -0.55 to 0.71, p=0.80, I²=87.50%, τ²=0.52), high-density lipoprotein cholesterol (HDL-C) (SMD: -0.05, 95% CI: -0.22 to 0.11, p=0.52, I²=0.00%, τ²=0.00), low-density lipoprotein cholesterol (LDL-C) (SMD: -0.13, 95% CI: -0.40 to 0.15, p=0.37, I²=0.00%, τ²=0.00), homeostasis model assessment of insulin resistance (HOMA-IR) (SMD: -0.23, 95% CI: -0.60 to 0.15, p=0.23, I²=26.20%, τ²=0.05) and fasting blood glucose (FBS) (SMD: 0.13, 95% CI: -0.16 to 0.41, p=0.39, I²=29.40%, τ²=0.04). According to the Grading of Recommendations Assessment, Development and Evaluation bias assessment approach, eight studies were rated as having low bias (grade A), and three studies were rated as having moderate bias (grade B). Begg's test indicated no evidence of publication bias. CONCLUSIONS No significant associations were detected between ALA intake and intermediate disease markers, including TG, TC, HDL-C, LDL-C, HOMA-IR and FBS levels, in overweight or obese adults. Further research is needed to explore the potential associations of ALA, especially in high-risk populations with metabolic disorders, by employing longer intervention durations, higher dosages and optimised formulations. PROSPERO REGISTRATION NUMBER CRD42023450239.
Collapse
Affiliation(s)
- Yao Luo
- Department of Nursing, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Jizhen Zhang
- Department of Nursing, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Hongxia Guo
- Department of Nursing, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Le TT, Andreani GA, Mahmood S, Patel MS, Rideout TC. Influence of Maternal Alpha-Lipoic Acid Supplementation on Postpartum Body Weight and Metabolic Health in Rats with Obesity. J Diet Suppl 2025; 22:417-432. [PMID: 40150966 PMCID: PMC12018130 DOI: 10.1080/19390211.2025.2483267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
We examined the influence of dietary α-lipoic acid (LA; R enantiomer) supplementation in obese-complicated pregnancies on maternal postpartum body weight and metabolic health. Forty-eight female Sprague-Dawley rats were randomized into three dietary groups throughout pre-pregnancy, gestation, and lactation: (i) a low-calorie control diet (CON); (ii) a high calorie obesity-inducing diet (HC); or (iii) the HC diet with 0.25% LA (HC+LA). Following offspring weaning, all mothers were switched to the CON diet for a postpartum period of 140 days to assess maternal body weight and markers of metabolic health. HC-fed mothers showed excessive (p < 0.05) gestational weight gain (GWG), higher (p < 0.05) postpartum body weight, reduced (p < 0.05) glycemic control (lower glucose:insulin ratio) and higher (p = 0.06) hepatic cholesterol concentration versus CON mothers. In contrast, HC+LA mothers demonstrated lower (p < 0.05) body weight throughout the experimental period compared with HC mothers, primarily due to a marked reduction in GWG. Although LA did not protect (p > 0.05) against reduced glycemic control, it did alter several aspects of lipid metabolism including reduced serum HDL-C and a lower concentration of hepatic cholesterol which was mediated partly through a reduction in low-density lipoprotein receptor expression. We conclude that maternal obesity during pregnancy leads to a longer-term detrimental impact on weight gain and glycemic control, even after switching to a low-calorie postpartum diet. Maternal LA supplementation may be able to partially offset these effects, likely by protecting against excessive GWG during pregnancy. However, further work is required to determine the consequences of reduced serum HDL-C in LA-supplemented mothers.
Collapse
Affiliation(s)
- Truc T.K. Le
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA 14214
| | - Gabriella A. Andreani
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA 14214
| | - Saleh Mahmood
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA 14214
| | - Mulchand S. Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA 14214
| | - Todd C. Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA 14214
| |
Collapse
|
3
|
Shanaida M, Lysiuk R, Mykhailenko O, Hudz N, Abdulsalam A, Gontova T, Oleshchuk O, Ivankiv Y, Shanaida V, Lytkin D, Bjørklund G. Alpha-lipoic Acid: An Antioxidant with Anti-aging Properties for Disease Therapy. Curr Med Chem 2025; 32:23-54. [PMID: 38644711 DOI: 10.2174/0109298673300496240416114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
The anti-aging effects of alpha-lipoic acid (αLA), a natural antioxidant synthesized in human tissues, have attracted a growing interest in recent years. αLA is a short- -chain sulfur-containing fatty acid occurring in the mitochondria of all kinds of eukaryotic cells. Both the oxidized disulfide of αLA and its reduced form (dihydrolipoic acid, DHLA) exhibit prominent antioxidant function. The amount of αLA inside the human body gradually decreases with age resulting in various health disorders. Its lack can be compensated by supplying from external sources such as dietary supplements or medicinal dosage forms. The primary objectives of this study were the analysis of updated information on the latest two-decade research regarding the use of αLA from an anti-aging perspective. The information was collected from PubMed, Wiley Online Library, Scopus, ScienceDirect, SpringerLink, Google Scholar, and clinicaltrials.gov. Numerous in silico, in vitro, in vivo, and clinical studies revealed that αLA shows a protective role in biological systems by direct or indirect reactive oxygen/nitrogen species quenching. αLA demonstrated beneficial properties in the prevention and treatment of many age-related disorders such as neurodegeneration, metabolic disorders, different cancers, nephropathy, infertility, and skin senescence. Its preventive effects in case of Alzheimer's and Parkinson's diseases are of particular interest. Further mechanistic and clinical studies are highly recommended to evaluate the wide spectrum of αLA therapeutic potential that could optimize its dietary intake for prevention and alleviation disorders related to aging.
Collapse
Affiliation(s)
- Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Olha Mykhailenko
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy; 29-39 Brunswick Square, WC1N 1AX, London, United Kingdom
- CONEM Ukraine Bromatology and Medicinal Chemistry Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Nataliia Hudz
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052, Opole, Poland
| | | | - Tetiana Gontova
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | | | - Yana Ivankiv
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Department of Research Ternopil Ivan Puluj National Technical University, Ternopil, 46001, Ukraine
| | - Dmytro Lytkin
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | - Geir Bjørklund
- Department of Research Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
4
|
Liu Y, Yang Z, Wang S, Miao R, Chang CWM, Zhang J, Zhang X, Hung MC, Hou J. Nuclear PD-L1 compartmentalization suppresses tumorigenesis and overcomes immunocheckpoint therapy resistance in mice via histone macroH2A1. J Clin Invest 2024; 134:e181314. [PMID: 39545415 PMCID: PMC11563670 DOI: 10.1172/jci181314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024] Open
Abstract
Canonically PD-L1 functions as the inhibitory immune checkpoint on cell surface. Recent studies have observed PD-L1 expression in the nucleus of cancer cells. But the biological function of nuclear PD-L1 (nPD-L1) in tumor growth and antitumor immunity is unclear. Here we enforced nPD-L1 expression and established stable cells. nPD-L1 suppressed tumorigenesis and aggressiveness in vitro and in vivo. Compared with PD-L1 deletion, nPD-L1 expression repressed tumor growth and improved survival more markedly in immunocompetent mice. Phosphorylated AMPKα (p-AMPKα) facilitated nuclear PD-L1 compartmentalization and then cooperated with it to directly phosphorylate S146 of histone variant macroH2A1 (mH2A1) to epigenetically activate expression of genes of cellular senescence, JAK/STAT, and Hippo signaling pathways. Lipoic acid (LA) that induced nuclear PD-L1 translocation suppressed tumorigenesis and boosted antitumor immunity. Importantly, LA treatment synergized with PD-1 antibody and overcame immune checkpoint blockade (ICB) resistance, which likely resulted from nPD-L1-increased MHC-I expression and sensitivity of tumor cells to interferon-γ. These findings offer a conceptual advance for PD-L1 function and suggest LA as a promising therapeutic option for overcoming ICB resistance.
Collapse
Affiliation(s)
- Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders
| | - Zhi Yang
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglian Wang
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Miao
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | | | - Jingyu Zhang
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology and
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Junwei Hou
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Dugbartey GJ, Atule S, Alornyo KK, Adams I. Hepatoprotective potential of alpha-lipoic acid against gliclazide-induced liver injury in high-glucose-exposed human liver cells and experimental type 2 diabetic rats. Biochem Pharmacol 2024; 227:116447. [PMID: 39038553 DOI: 10.1016/j.bcp.2024.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Growing clinical evidence shows that sulfonylurea therapy for patients with type 2 diabetic mellitus (T2DM) contributes to progressive worsening of their liver. The present study presents hepatotoxicity induced by gliclazide, a second-generation sulfonylurea, and alpha-lipoic acid (ALA) as a novel and promising drug for T2DM treatment. Normal human liver cells (HL-7702) were incubated with high-glucose DMEM in the presence or absence of gliclazide and ALA for 72 h, and cell viability and death were measured by flow cytometry. Next, Sprague-Dawley rats were subjected to 12 h of fasting, and fasting blood glucose was measured. The rats were randomized into four groups: HC (healthy control; n = 7), T2DM (diabetic rats without treatment; n = 9), GLC (diabetic rats with 15 mg/kg gliclazide treatment; n = 7) and GLC+ALA (diabetic rats with gliclazide and 60 mg/kg ALA treatment; n = 7). T2DM was induced by a bolus administration of 110 mg/kg nicotinamide and 55 mg/kg streptozotocin intraperitoneally. The experimental protocol lasted for 6 weeks after which the animals were sacrificed and pancreas, liver and blood samples were collected for biochemical, histological and molecular analyses. Compared to healthy control (HC) group, exposure of HL-7702 cells to high glucose induced significant cell death by 19 % (p < 0.001), which was exacerbated with gliclazide treatment by 29 % (p < 0.0001) but markedly reduced by 6 % to near HC value following ALA treatment. In vivo, GLC-treated rats had severe liver damage characterized by increased hepatocellular vacuolation, and significant expression of ED-1, iNOS and caspase-3 as well as markedly high levels of liver enzymes (aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase compared to T2DM rats. Interestingly, ALA administration prevented these pathological changes and protected the diabetic liver to levels comparable to HC rats. ALA showed hepatoprotective effect against gliclazide-induced hepatotoxicity by suppressing inflammation and apoptosis while activating antioxidant pathway in the diabetic liver. Abbreviations: ALA, Alpha-lipoic acid; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase; AMPK, Adenosine monophosphate-activated protein kinase; AST, Aspartate aminotransferase; ATP, Adenosine triphosphate; DMEM, Dulbecco's Modified Eagle Medium; EDTA, ethylenediaminetetraacetic acid; FBG, Fasting blood glucose; FBS, Fetal bovine serum; GLC, Gliclazide; GLUT4, Glucose transporter type 4; GSH, Glutathione; H&E, Hematoxylin/Eosin; HbA1c, Glycosylated haemoglobin A1c; HC, Healthy control; HG, Hyperglycemic group; HOMA-β, Homeostasis model assessment of β-cell function; IL-1β, Interleukin-1β; IL-6, Interleukin-6; iNOS, Inducible nitric oxide synthase; KATP, ATP-dependent potassium channels; MDA, Malondialdehyde; MPTP, Mitochondrial permeability transition pore; NO, Nitric oxide; P/S, Penicillin/streptomycin; PAS, Periodic acid-Schiff; RIA, Radioimmunoassay; ROS, Reactive oxygen species; SOD, Superoxide dismutase; T2DM, Type 2 diabetes mellitus; TBARS, Thiobarbituric acid reactive substances; TNF-α, Tumor necrosis factor-alpha.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Physiology & Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana.
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Medical Pharmacology, University of Ghana Medical School, Korle-Bu, Accra, Ghana
| |
Collapse
|
6
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
7
|
Huang SY, Chung MT, Kung CW, Chen SY, Chen YW, Pan T, Cheng PY, Shen HH, Lee YM. Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro. J Obes Metab Syndr 2024; 33:177-188. [PMID: 38699871 PMCID: PMC11224925 DOI: 10.7570/jomes23048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 05/05/2024] Open
Abstract
Background AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms. Methods Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study. Results Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects. Conclusion ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
Collapse
Affiliation(s)
- Shieh-Yang Huang
- Department of Pharmacy, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Ting Chung
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ching-Wen Kung
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Shu-Ying Chen
- Department of Nursing, Hung Kuang University, Taichung, Taiwan
| | - Yi-Wen Chen
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Tong Pan
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Hsueh Shen
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Mei Lee
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Sebastian SA, Co EL, Kanagala SG, Padda I, Sethi Y, Johal G. Metabolic surgery in improving arterial health in obese individuals. Curr Probl Cardiol 2024; 49:102359. [PMID: 38128633 DOI: 10.1016/j.cpcardiol.2023.102359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Arterial stiffness has gained recognition as a stand-alone risk factor for cardiovascular disease (CVD). Obesity is intricately linked to elevated arterial stiffness, the development of left ventricular (LV) hypertrophy, and the emergence of diastolic dysfunction, all of which collectively contribute substantially to an unfavorable prognosis. Weight loss has become a standard recommendation for all patients with CVD concurrent with morbid obesity; however, randomized evidence to support this recommendation was limited earlier. The latest scientific studies revealed dynamic changes in aortic stiffness after substantial weight loss by bariatric surgery, also known as metabolic surgery, in patients with obesity. There is also a favorable evolution in LV hypertrophy and a significant impact on arterial hypertension and other promising cardiovascular outcomes in obese people after bariatric surgery. METHODS/RESULTS We aimed to examine the cardiovascular effects of various metabolic surgeries in morbidly obese individuals, especially their role in improving arterial health, the potential impact on surrogate markers of atherosclerotic vascular disease, and consequently reducing the likelihood of cardiovascular events. CONCLUSION In conclusion, metabolic surgery is associated with a significant decrease in the occurrence of major adverse cardiovascular events (MACE) and all-cause mortality among obese individuals, alongside remarkable enhancement of arterial health. These findings underscore the critical importance of implementing strategies to combat obesity and reduce adiposity within the general population.
Collapse
Affiliation(s)
| | - Edzel Lorraine Co
- Department of Internal Medicine, University of Santo Tomas Faculty of Medicine and Surgery, Manila, Philippines
| | - Sai Gautham Kanagala
- Department of Internal Medicine, Metropolitan Hospital Center, New York, United States
| | - Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, New York, United States
| | - Yashendra Sethi
- Department of Internal Medicine, Government Doon Medical College, HNB Uttarakhand Medical Education University, Dehradun, India
| | - Gurpreet Johal
- Department of Cardiology, University of Washington, Valley Medical Center, Seattle, United States
| |
Collapse
|
9
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
10
|
Bir A, Ghosh A, Müller WE, Ganguly A. Mitochondrial dysfunction and metabolic syndrome. METABOLIC SYNDROME 2024:157-172. [DOI: 10.1016/b978-0-323-85732-1.00043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Guarano A, Capozzi A, Cristodoro M, Di Simone N, Lello S. Alpha Lipoic Acid Efficacy in PCOS Treatment: What Is the Truth? Nutrients 2023; 15:3209. [PMID: 37513627 PMCID: PMC10386153 DOI: 10.3390/nu15143209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is among the most common female endocrinopathies, affecting about 4-25% of women of reproductive age. Women affected by PCOS have an increased risk of developing metabolic syndrome, type 2 diabetes mellitus, cardiovascular diseases, and endometrial cancer. Given the pivotal role of insulin resistance (IR) in the pathogenesis of PCOS, in the last years, many insulin-sensitizing factors have been proposed for PCOS treatment. The first insulin sensitizer recommended by evidence-based guidelines for the assessment and treatment of PCOS was metformin, but the burden of side effects is responsible for treatment discontinuation in many patients. Inositols have insulin-mimetic properties and contribute to decreasing postprandial blood glucose, acting by different pathways. ALA is a natural amphipathic compound with a very strong anti-inflammatory and antioxidant effect and a very noteworthy role in the improvement of insulin metabolic pathway. Given the multiple effects of ALA, a therapeutic strategy based on the synergy between inositols and ALA has been recently proposed by many groups with the aim of improving insulin resistance, reducing androgen levels, and ameliorating reproductive outcomes in PCOS patients. The purpose of this study is to review the existing literature and to evaluate the existing data showing the efficacy and the limitation of a treatment strategy based on this promising molecule. ALA is a valid therapeutic strategy applicable in the treatment of PCOS patients: Its multiple actions, including antinflammatory, antioxidant, and insulin-sensitizing, may be of utmost importance in the treatment of a very complex syndrome. Specifically, the combination of MYO plus ALA creates a synergistic effect that improves insulin resistance in PCOS patients, especially in obese/overweight patients with T2DM familiarity. Moreover, ALA treatment also exerts beneficial effects on endocrine patterns, especially if combined with MYO, improving menstrual regularity and ovulation rhythm. The purpose of our study is to review the existing literature and to evaluate the data showing the efficacy and the limitations of a treatment strategy based on this promising molecule.
Collapse
Affiliation(s)
- Alice Guarano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Humanitas San Pio X, Via Francesco Nava 31, 20159 Milan, Italy
| | - Anna Capozzi
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Martina Cristodoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Stefano Lello
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
12
|
Genazzani AD, Genazzani AR. Polycystic Ovary Syndrome as Metabolic Disease: New Insights on Insulin Resistance. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:71-77. [PMID: 37313240 PMCID: PMC10258623 DOI: 10.17925/ee.2023.19.1.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 06/15/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a very frequent disease that affects reproductive ability and menstrual regularity. Other than the criteria established at the Rotterdam consensus, in these last few years a new issue, insulin resistance, has been found frequently, and at a very high grade, in patients with PCOS. Insulin resistance occurs for several factors, such as overweight and obesity, but it is now clear that it occurs in patients with PCOS with normal weight, thus supporting the hypothesis that insulin resistance is independent of body weight. Evidence shows that a complex pathophysiological situation occurs that impairs post-receptor insulin signalling, especially in patients with PCOS and familial diabetes. In addition, patients with PCOS have a high incidence of non-alcoholic fatty liver disease related to the hyperinsulinaemia. This narrative review focuses on the recent new insights about insulin resistance in patients with PCOS, to better understand the metabolic impairment accounting for most of the clinical signs/symptoms of PCOS.
Collapse
Affiliation(s)
- Alessandro D Genazzani
- Gynaecological Endocrinology Center, Department of Obstetrics and Gynaecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea R Genazzani
- Department of Obstetrics and Gynaecology, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Yu Z, Zhao D, Liu X. Nutritional supplements improve cardiovascular risk factors in overweight and obese patients: A Bayesian network meta-analysis. Front Nutr 2023; 10:1140019. [PMID: 37063314 PMCID: PMC10098366 DOI: 10.3389/fnut.2023.1140019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Background Overweight and obesity are considered as one of the major risk factors for cardiovascular diseases (CVD). At present, many studies have proved that multiple nutritional supplements play an active role in metabolic diseases. However, the comparative efficacy of different nutritional supplements in improving indicators of cardiometabolic risk in obese and overweight patients is uncertain. Methods Cochrane Library, PubMed, Embase, and Web of Science were searched for the period from January 1990 to March 2022. A random-effect model was built in the Bayesian network meta-analysis. The surface under the cumulative ranking analysis (SUCRA) and clustering rank analysis was performed for ranking the effects. Results The study included 65 RCTs with 4,241 patients. In terms of glucose control, probiotic was more conductive to improve FBG (MD: -0.90; 95%CrI: -1.41 to -0.38), FINS (MD: -2.05; 95%CrI: -4.27 to -0.02), HOMA-IR (MD: -2.59; 95%CI -3.42 to -1.76). Probiotic (MD: -11.15, 95%CrI -22.16 to -1.26), omega-3 (MD: -9.45; 95%CrI: -20.69 to -0.93), VD (MD: -17.86; 95%CrI: -35.53 to -0.27), and probiotic +omega-3 (MD: 5.24; 95%CrI: 0.78 to 9.63) were beneficial to the improvement of TGs, TC and HDL-C, respectively. The SUCRA revealed that probiotic might be the best intervention to reduce FBG, FINS, HOMA-IR; Simultaneously, α-lipoic acid, VD, and probiotic + omega-3 might be the best intervention to improve TGs, TC, and HDL-C, respectively. Cluster-rank results revealed probiotic had the best comprehensive improvement effect on glucose metabolism, and probiotic + omega-3 may have a better comprehensive improvement effect on lipid metabolism (cluster-rank value for FBG and FINS: 3290.50 and for TGs and HDL-C: 2117.61). Conclusion Nutritional supplementation is effective on CVD risk factors in overweight and obese patients. Probiotic supplementation might be the best intervention for blood glucose control; VD, probiotic + omega-3 have a better impact on improving lipid metabolism. Further studies are required to verify the current findings.
Collapse
|
14
|
Capece U, Moffa S, Improta I, Di Giuseppe G, Nista EC, Cefalo CMA, Cinti F, Pontecorvi A, Gasbarrini A, Giaccari A, Mezza T. Alpha-Lipoic Acid and Glucose Metabolism: A Comprehensive Update on Biochemical and Therapeutic Features. Nutrients 2022; 15:nu15010018. [PMID: 36615676 PMCID: PMC9824456 DOI: 10.3390/nu15010018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Alpha-lipoic acid (ALA) is a natural compound with antioxidant and pro-oxidant properties which has effects on the regulation of insulin sensitivity and insulin secretion. ALA is widely prescribed in patients with diabetic polyneuropathy due to its positive effects on nerve conduction and alleviation of symptoms. It is, moreover, also prescribed in other insulin resistance conditions such as metabolic syndrome (SM), polycystic ovary syndrome (PCOS) and obesity. However, several cases of Insulin Autoimmune Syndrome (IAS) have been reported in subjects taking ALA. The aim of the present review is to describe the main chemical and biological functions of ALA in glucose metabolism, focusing on its antioxidant activity, its role in modulating insulin sensitivity and secretion and in symptomatic peripheral diabetic polyneuropathy. We also provide a potential explanation for increased risk for the development of IAS.
Collapse
Affiliation(s)
- Umberto Capece
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Simona Moffa
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ilaria Improta
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Enrico Celestino Nista
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Chiara M. A. Cefalo
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Cinti
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Giaccari
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| | - Teresa Mezza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
15
|
Dugbartey GJ, Alornyo KK, Adams I, Atule S, Obeng-Kyeremeh R, Amoah D, Adjei S. Targeting hepatic sulfane sulfur/hydrogen sulfide signaling pathway with α-lipoic acid to prevent diabetes-induced liver injury via upregulating hepatic CSE/3-MST expression. Diabetol Metab Syndr 2022; 14:148. [PMID: 36229864 PMCID: PMC9558364 DOI: 10.1186/s13098-022-00921-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Diabetes-induced liver injury is a complication of diabetes mellitus of which there are no approved drugs for effective treatment or prevention. This study investigates possible hepatoprotective effect of alpha-lipoic acid (ALA), and sulfane sulfur/hydrogen sulfide pathway as a novel protective mechanism in a rat model of type 2 diabetes-induced liver injury. METHODS Thirty Sprague-Dawley rats underwent fasting for 12 h after which fasting blood glucose was measured and rats were randomly assigned to diabetic and non-diabetic groups. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). Diabetic rats were treated daily with ALA (60 mg/kg/day p.o.) or 40 mg/kg/day DL-propargylglycine (PPG, an inhibitor of endogenous hydrogen sulfide production) for 6 weeks and then sacrificed. Liver, pancreas and blood samples were collected for analysis. Untreated T2DM rats received distilled water. RESULTS Hypoinsulinemia, hyperglycemia, hepatomegaly and reduced hepatic glycogen content were observed in untreated T2DM rats compared to healthy control group (p < 0.001). Also, the pancreas of untreated T2DM rats showed severely damaged pancreatic islets while liver damage was characterized by markedly increased hepatocellular vacuolation, sinusoidal enlargement, abnormal intrahepatic lipid accumulation, severe transaminitis, hyperbilirubinemia, and impaired hepatic antioxidant status and inflammation compared to healthy control rats (p < 0.01). While pharmacological inhibition of hepatic sulfane sulfur/hydrogen sulfide with PPG administration aggravated these pathological changes (p < 0.05), ALA strongly prevented these changes. ALA also significantly increased hepatic expression of hydrogen sulfide-producing enzymes (cystathionine γ-lyase and 3-mecaptopyruvate sulfurtransferase) as well as hepatic sulfane sulfur and hydrogen sulfide levels compared to all groups (p < 0.01). CONCLUSIONS To the best of our knowledge, this is the first experimental evidence showing that ALA prevents diabetes-induced liver injury by activating hepatic sulfane sulfur/hydrogen sulfide pathway via upregulation of hepatic cystathionine γ-lyase and 3-mecaptopyruvate sulfurtransferase expressions. Therefore, ALA could serve as a novel pharmacological agent for the treatment and prevention of diabetes-induced liver injury, with hepatic sulfane sulfur/hydrogen sulfide as a novel therapeutic target.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Medical Pharmacology, University of Ghana Medical School, Korle-Bu, Accra, Ghana
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Richard Obeng-Kyeremeh
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Daniel Amoah
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
16
|
Jibril AT, Jayedi A, Shab-Bidar S. Efficacy and safety of oral alpha-lipoic acid supplementation for type 2 diabetes management: a systematic review and dose-response meta-analysis of randomized trials. Endocr Connect 2022; 11:e220322. [PMID: 36006850 PMCID: PMC9578061 DOI: 10.1530/ec-22-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To examine the dose-dependent influence of oral alpha-lipoic acid (ALA) supplementation on cardiometabolic risk factors in patients with type 2 diabetes (T2D). DESIGN We followed the instructions outlined in the Cochrane Handbook for Systematic Reviews of Interventions and the Grading of Recommendations, Assessment, Development, and Evaluation Handbook to conduct our systematic review. The protocol of the study was registered in PROSPERO (CRD42021260587). METHOD We searched PubMed, Scopus, and Web of Science to May 2021 for trials of oral ALA supplementation in adults with T2D. The primary outcomes were HbA1c, weight loss, and LDL cholesterol (LDL-C). Secondary outcomes included fasting plasma glucose (FPG), triglyceride (TG), C-reactive protein (CRP), and blood pressure. We conducted a random-effects dose-response meta-analysis to calculate the mean difference (MD) and 95% CI for each 500 mg/day oral ALA supplementation. We performed a nonlinear dose-response meta-analysis using a restricted cubic spline. RESULTS We included 16 trials with 1035 patients. Each 500 mg/day increase in oral ALA supplementation significantly reduced HbA1c, body weight, CRP, FPG, and TG. Dose-response meta-analyses indicated a linear decrement in body weight at ALA supplementation of more than 600 mg/day (MD600 mg/day: -0.30 kg, 95% CI: -0.04, -0.57). A relatively J-shaped effect was seen for HbA1c (MD: -0.32%, 95% CI: -0.45, -0.18). Levels of FPG and LDL-C decreased up to 600 mg/day ALA intake. The point estimates were below minimal clinically important difference thresholds for all outcomes. CONCLUSION Despite significant improvements, the effects of oral ALA supplementation on cardiometabolic risk factors in patients with T2D were not clinically important.
Collapse
Affiliation(s)
- Aliyu Tijani Jibril
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Penugurti V, Mishra YG, Manavathi B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188785. [PMID: 36031088 DOI: 10.1016/j.bbcan.2022.188785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is a unique but complex biochemical adaptation that allows solid tumors to tolerate various stresses that challenge cancer cells for survival. Under conditions of metabolic stress, mammalian cells employ adenosine monophosphate (AMP)-activated protein kinase (AMPK) to regulate energy homeostasis by controlling cellular metabolism. AMPK has been described as a cellular energy sensor that communicates with various metabolic pathways and networks to maintain energy balance. Earlier studies characterized AMPK as a tumor suppressor in the context of cancer. Later, a paradigm shift occurred in support of the oncogenic nature of AMPK, considering it a contextual oncogene. In support of this, various cellular and mouse models of tumorigenesis and clinicopathological studies demonstrated increased AMPK activity in various cancers. This review will describe AMPK's pro-tumorigenic activity in various malignancies and explain the rationale and context for using AMPK inhibitors in combination with anti-metabolite drugs to treat AMPK-driven cancers.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yasaswi Gayatri Mishra
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
18
|
Luo Y, Ju N, Chang J, Ge R, Zhao Y, Zhang G. Dietary α-lipoic acid supplementation improves postmortem color stability of the lamb muscles through changing muscle fiber types and antioxidative status. Meat Sci 2022; 193:108945. [PMID: 35986989 DOI: 10.1016/j.meatsci.2022.108945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 01/08/2023]
Abstract
This study investigated the effect of dietary α-lipoic acid (600 mg/kg) supplementation on the postmortem color stability of the biceps femoris from lambs. The results showed that dietary α-lipoic acid supplementation increased a* and decreased b* and metmyoglobin (MMb) percentage of the biceps femoris with the time of storage (P < 0.05). The content of malondialdehyde (MDA) reduced with the time of storage after treatment with α-lipoic acid (P < 0.05). α-lipoic acid increased the myoglobin (Mb) content, and myosin heavy chain I (MyHC I) gene expression but decreased glycogen content, lactate dehydrogenase (LDH) activity, and MyHC IIb gene expression (P < 0.05). The T-AOC value, catalase (CAT) activity, and expression of SOD and CAT gene expression increased after α-lipoic acid treatment (P < 0.05). Therefore, dietary α-lipoic acid supplementation improved the meat color by regulating muscle fiber types and inhibited glycolysis. Moreover, α-lipoic acid maintained meat color stability by effectively inhibiting muscle oxidation via enhancing the antioxidant capacity.
Collapse
Affiliation(s)
- Yulong Luo
- School of Food & Wine, Ningxia University, Yinchuan 750021, PR China
| | - Ning Ju
- School of Food & Wine, Ningxia University, Yinchuan 750021, PR China
| | - Jiang Chang
- School of Food & Wine, Ningxia University, Yinchuan 750021, PR China
| | - Ruixuan Ge
- School of Food & Wine, Ningxia University, Yinchuan 750021, PR China
| | - Yaya Zhao
- School of Food & Wine, Ningxia University, Yinchuan 750021, PR China
| | - Guijie Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, PR China.
| |
Collapse
|
19
|
Petrillo T, Semprini E, Tomatis V, Arnesano M, Ambrosetti F, Battipaglia C, Sponzilli A, Ricciardiello F, Genazzani AR, Genazzani AD. Putative Complementary Compounds to Counteract Insulin-Resistance in PCOS Patients. Biomedicines 2022; 10:biomedicines10081924. [PMID: 36009471 PMCID: PMC9406066 DOI: 10.3390/biomedicines10081924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most frequent endocrine-metabolic disorder among women at reproductive age. The diagnosis is based on the presence of at least two out of three criteria of the Rotterdam criteria (2003). In the last decades, the dysmetabolic aspect of insulin resistance and compensatory hyperinsulinemia have been taken into account as the additional key features in the etiopathology of PCOS, and they have been widely studied. Since PCOS is a complex and multifactorial syndrome with different clinical manifestations, it is difficult to find the gold standard treatment. Therefore, a great variety of integrative treatments have been reported to counteract insulin resistance. PCOS patients need a tailored therapeutic strategy, according to the patient’s BMI, the presence or absence of familiar predisposition to diabetes, and the patient’s desire to achieve pregnancy or not. The present review analyzes and discloses the main clinical insight of such complementary substances.
Collapse
Affiliation(s)
- Tabatha Petrillo
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elisa Semprini
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Veronica Tomatis
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Melania Arnesano
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Fedora Ambrosetti
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Christian Battipaglia
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Alessandra Sponzilli
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Francesco Ricciardiello
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea R. Genazzani
- Department of Obstetrics and Gynecology, University of Pisa, 56126 Pisa, Italy
| | - Alessandro D. Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Correspondence:
| |
Collapse
|
20
|
Dugbartey GJ, Wonje QL, Alornyo KK, Adams I, Diaba DE. Alpha-lipoic acid treatment improves adverse cardiac remodelling in the diabetic heart - The role of cardiac hydrogen sulfide-synthesizing enzymes. Biochem Pharmacol 2022; 203:115179. [PMID: 35853498 DOI: 10.1016/j.bcp.2022.115179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Alpha-lipoic acid (ALA) is a licensed drug for the treatment of diabetic neuropathy. We recently reported that it also improves diabetic cardiomyopathy (DCM) in type 2 diabetes mellitus (T2DM). In this study, we present evidence supporting our hypothesis that the cardioprotective effect of ALA is via upregulation of cardiac hydrogen sulfide (H2S)-synthesizing enzymes. METHODS Following 12 h of overnight fasting, T2DM was induced in 23 out of 30 male Sprague-Dawley rats by intraperitoneal administration of nicotinamide (110 mg/kg) followed by streptozotocin (55 mg/kg) while the rest served as healthy control (HC). T2DM rats then received either oral administration of ALA (60 mg/kg/day; n = 7) or 40 mg/kg/day DL-propargylglycine (PAG, an endogenous H2S inhibitor; n = 7) intraperitoneally for 6 weeks after which all rats were sacrificed and samples collected for analysis. Untreated T2DM rats served as diabetic control (DCM; n = 9). RESULTS T2DM resulted in weight loss, islet destruction, reduced pancreatic β-cell function and hyperglycemia. Histologically, DCM rats showed significant myocardial damage evidenced by myocardial degeneration, cardiomyocyte vacuolation and apoptosis, cardiac fibrosis and inflammation, which positively correlated with elevated levels of cardiac damage markers compared to HC rats (p < 0.001). These pathological alterations worsened significantly in PAG-treated rats (p < 0.05). However, ALA treatment restored normoinsulemia, normoglycemia, prevented DCM, and improved lipid and antioxidant status. Mechanistically, ALA significantly upregulated the expression of cardiac H2S-synthesizing enzymes and increased plasma H2S concentration compared to DCM rats (p < 0.001). CONCLUSION ALA preserves myocardial integrity in T2DM likely by maintaining the expression of cardiac H2S-synthezing enzymes and increasing plasma H2S level.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Quinsker L Wonje
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Deborah E Diaba
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
21
|
Dugbartey GJ, Alornyo KK, Diaba DE, Adams I. Activation of renal CSE/H 2S pathway by alpha-lipoic acid protects against histological and functional changes in the diabetic kidney. Biomed Pharmacother 2022; 153:113386. [PMID: 35834985 DOI: 10.1016/j.biopha.2022.113386] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION We previously reported that alpha-lipoic acid (ALA) supplementation protects against progression of diabetic kidney disease (DKD). In this study, we aim to investigate whether the mechanism of renal protection by ALA involves renal cystathionine γ-lyase/hydrogen sulfide (CSE/H2S) system in type 2 diabetes mellitus (T2DM). METHODS Thirty-seven male Sprague-Dawley rats underwent 12 h of overnight fasting. To induce T2DM, 30 of these rats received intraperitoneal administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). T2DM rats then received either oral administration of ALA (60 mg/kg/day) or intraperitoneal administration of 40 mg/kg/day DL-propargylglycine (PAG, a CSE inhibitor) or both for 6 weeks after which rats were sacrificed and samples collected for analysis. Untreated diabetic and non-diabetic rats served as diabetic and healthy controls respectively. RESULTS T2DM was characterized by reduced pancreatic β-cell function and hyperglycemia. Histologically, untreated diabetic rats showed significantly damaged pancreatic islets, glomerular and tubular injury, with elevated levels of renal function markers compared to healthy control rats (p < 0.001). These pathological changes worsened significantly following PAG administration (p < 0.05). While some renal protection was observed in ALA+PAG rats, ALA administration in untreated diabetic rats provided superior protection comparable to healthy control rats, with improved antioxidant status, lipid profile and reduced inflammation. Mechanistically, ALA significantly activated renal CSE/H2S system in diabetic rats, which was markedly suppressed in PAG-treated rats (p < 0.001). CONCLUSION Our data suggest that ALA protects against DKD development and progression by activating renal CSE/H2S pathway. Hence, CSE/H2S pathway may represent a therapeutic target in the treatment or prevention of DKD in diabetic patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Deborah E Diaba
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
22
|
Wołosowicz M, Dajnowicz-Brzezik P, Łukaszuk B, Żebrowska E, Maciejczyk M, Zalewska A, Kasacka I, Chabowski A. Diverse impact of N-acetylcysteine or alpha-lipoic acid supplementation during high-fat diet regime on fatty acid transporters in visceral and subcutaneous adipose tissue. Adv Med Sci 2022; 67:216-228. [PMID: 35594763 DOI: 10.1016/j.advms.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE Adipose tissue's (AT) structural changes accompanying obesity may alter lipid transport protein expression and, thus, the fatty acids (FAs) transport and lipid balance of the body. Metabolic abnormalities within AT contribute to the elevated production of reactive oxygen species and increased oxidative/nitrosative stress. Although compounds such as N-acetylcysteine (NAC) and α-lipoic acid (ALA), which restore redox homeostasis, may improve lipid metabolism in AT, the mechanism of action of these antioxidants on lipid metabolism in AT is still unknown. This study aimed to examine the impact of NAC and ALA on the level and FA composition of the lipid fractions, and the expression of FA transporters in the visceral and subcutaneous AT of high-fat diet-fed rats. MATERIALS AND METHODS Male Wistar rats were randomly divided into four groups. The mRNA levels and protein expression of FA transporters were assessed using real-time PCR and Western Blot analyses. The collected samples were subjected to histological evaluation. The level of lipids (FFA, DAG, and TAG) was measured using gas-liquid chromatography. RESULTS We found that antioxidants affect FA transporter expressions at both the transcript and protein levels, and, therefore, they promote changes in AT's lipid pools. One of the most remarkable findings of our research is that different antioxidant molecules may have a varying impact on AT phenotype. CONCLUSION NAC and ALA exert different influences on AT, which is reflected in histopathological images, FA transport proteins expression patterns, or even the lipid storage capacity of adipocytes.
Collapse
Affiliation(s)
- Marta Wołosowicz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | | | - Bartłomiej Łukaszuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
23
|
Dugbartey GJ, Alornyo KK, N'guessan BB, Atule S, Mensah SD, Adjei S. Supplementation of conventional anti-diabetic therapy with alpha-lipoic acid prevents early development and progression of diabetic nephropathy. Biomed Pharmacother 2022; 149:112818. [PMID: 35286963 DOI: 10.1016/j.biopha.2022.112818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Current pharmacological interventions only retard DN progression. Alpha-lipoic acid (ALA) is a potent antioxidant with beneficial effect in other diabetic complications. This study investigates whether ALA supplementation prevents early development and progression of DN. METHOD Fifty-eight male Sprague-Dawley rats were randomly assigned to healthy control and diabetic groups and subjected to overnight fasting. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by intraperitoneal administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). On day 3 after T2DM induction, diabetic rats received oral daily administration of ALA (60 mg/kg), gliclazide (15 mg/kg), ramipril (10 mg/kg) or drug combinations for 6 weeks. Untreated diabetic rats served as diabetic control. Blood, kidneys and pancreas were harvested for biochemical and histological analyses. RESULT Induction of T2DM resulted in hypoinsulinemia, hyperglycemia and renal pathology. ALA supplementation maintained β-cell function, normoinsulinemia and normoglycemia in diabetic rats, and prevented renal pathology (PAS, KIM-1, plasma creatinine, total protein, blood urea nitrogen, uric acid and urine albumin/creatinine ratio) and triglycerides level compared to diabetic control (p < 0.001). Additionally, ALA supplementation significantly prevented elevated serum and tissue malondialdehyde, collagen deposition, α-SMA expression, apoptosis and serum IL-1β and IL-6 levels while it markedly increased renal glutathione content and plasma HDL-C compared to diabetic control group (p < 0.001). CONCLUSION ALA supplementation prevents early development and progression of DN by exerting anti-hyperglycemic, antioxidant, anti-inflammatory, anti-fibrotic and anti-apoptotic effects. Our findings provide additional option for clinical treatment of DN in T2DM patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Benoit B N'guessan
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel D Mensah
- Department of Pathology, University of Ghana Dental School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
24
|
Kalia V, Niedzwiecki MM, Bradner JM, Lau FK, Anderson FL, Bucher ML, Manz KE, Schlotter AP, Fuentes ZC, Pennell KD, Picard M, Walker DI, Hu WT, Jones DP, Miller GW. Cross-species metabolomic analysis of tau- and DDT-related toxicity. PNAS NEXUS 2022; 1:pgac050. [PMID: 35707205 PMCID: PMC9186048 DOI: 10.1093/pnasnexus/pgac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/28/2022] [Indexed: 01/29/2023]
Abstract
Exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) has been associated with increased risk of Alzheimer's disease (AD), a disease also associated with hyperphosphorylated tau (p-tau) protein aggregation. We investigated whether exposure to DDT can exacerbate tau protein toxicity in Caenorhabditiselegans using a transgenic strain that expresses human tau protein prone to aggregation by measuring changes in size, swim behavior, respiration, lifespan, learning, and metabolism. In addition, we examined the association between cerebrospinal fluid (CSF) p-tau protein-as a marker of postmortem tau burden-and global metabolism in both a human population study and in C. elegans, using the same p-tau transgenic strain. From the human population study, plasma and CSF-derived metabolic features associated with p-tau levels were related to drug, amino acid, fatty acid, and mitochondrial metabolism pathways. A total of five metabolites overlapped between plasma and C. elegans, and four between CSF and C. elegans. DDT exacerbated the inhibitory effect of p-tau protein on growth and basal respiration. In the presence of p-tau protein, DDT induced more curling and was associated with reduced levels of amino acids but increased levels of uric acid and adenosylselenohomocysteine. Our findings in C. elegans indicate that DDT exposure and p-tau aggregation both inhibit mitochondrial function and DDT exposure can exacerbate the mitochondrial inhibitory effects of p-tau aggregation. Further, biological pathways associated with exposure to DDT and p-tau protein appear to be conserved between species.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Fion K Lau
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Faith L Anderson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Katherine E Manz
- School of Engineering, Brown University, Providence, RI, 02912 USA
| | - Alexa Puri Schlotter
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, 02912 USA
| | - Martin Picard
- Department of Neurology, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032 USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - William T Hu
- Department of Neurology, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, 08901 USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, 30322 USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| |
Collapse
|
25
|
Dugbartey GJ, Wonje QL, Alornyo KK, Robertson L, Adams I, Boima V, Mensah SD. Combination Therapy of Alpha-Lipoic Acid, Gliclazide and Ramipril Protects Against Development of Diabetic Cardiomyopathy via Inhibition of TGF-β/Smad Pathway. Front Pharmacol 2022; 13:850542. [PMID: 35401218 PMCID: PMC8988231 DOI: 10.3389/fphar.2022.850542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is a major long-term complication of diabetes mellitus, accounting for over 20% of annual mortality rate of diabetic patients globally. Although several existing anti-diabetic drugs have improved glycemic status in diabetic patients, prevalence of DCM is still high. This study investigates cardiac effect of alpha-lipoic acid (ALA) supplementation of anti-diabetic therapy in experimental DCM. Methods: Following 12 h of overnight fasting, 44 male Sprague Dawley rats were randomly assigned to two groups of healthy control (n = 7) and diabetic (n = 37) groups, and fasting blood glucose was measured. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by intraperitoneal (i.p.) administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). After confirmation of T2DM on day 3, diabetic rats received monotherapies with ALA (60 mg/kg; n = 7), gliclazide (15 mg/kg; n = 7), ramipril (10 mg/kg; n = 7) or combination of the three drugs (n = 7) for 6 weeks while untreated diabetic rats received distilled water and were used as diabetic control (n = 9). Rats were then sacrificed, and blood, pancreas and heart tissues were harvested for analyses using standard methods. Results: T2DM induction caused pancreatic islet destruction, hyperglycemia, weight loss, high relative heart weight, and development of DCM, which was characterized by myocardial degeneration and vacuolation, cardiac fibrosis, elevated cardiac damage markers (plasma and cardiac creatine kinase-myocardial band, brain natriuretic peptide and cardiac troponin I). Triple combination therapy of ALA, gliclazide and ramipril preserved islet structure, maintained body weight and blood glucose level, and prevented DCM development compared to diabetic control (p < 0.001). In addition, the combination therapy markedly reduced plasma levels of inflammatory markers (IL-1β, IL-6 and TNF-α), plasma and cardiac tissue malondialdehyde, triglycerides and total cholesterol while significantly increasing cardiac glutathione and superoxide dismutase activity and high-density lipoprotein-cholesterol compared to diabetic control (p < 0.001). Mechanistically, induction of T2DM upregulated cardiac expression of TGF-β1, phosphorylated Smad2 and Smad3 proteins, which were downregulated following triple combination therapy (p < 0.001). Conclusion: Triple combination therapy of ALA, gliclazide and ramipril prevented DCM development by inhibiting TGF-β1/Smad pathway. Our findings can be extrapolated to the human heart, which would provide effective additional pharmacological therapy against DCM in T2DM patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Quinsker L Wonje
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Louis Robertson
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Samuel D Mensah
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
26
|
Jeffrey S, Isaac Samraj P, Sundara Raj B. Therapeutic Benefits of Alpha-Lipoic Acid Supplementation in Diabetes Mellitus: A Narrative Review. J Diet Suppl 2021; 19:566-586. [PMID: 34939534 DOI: 10.1080/19390211.2021.2020387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Elevated oxidative stress is a common denominator between pathways implicated in the pathogenesis of diabetes mellitus and diabetes complications, prompting the use of antioxidant compounds in diabetes therapy. Alpha-lipoic acid (ALA), has been investigated for its role as a potent antioxidant in diabetes treatment and the results from clinical trials indicate improved glucose metabolism, reduced oxidative stress, improved endothelial dysfunction, a decline in platelet reactivity and moderate improvements to weight loss yet conflicting data regarding insulin metabolism. ALA inhibits nuclear factor kappa B (NFkB), chelates divalent transient metal ions and induces the expression of adenosine monophosphate-activated protein kinase (AMPK). This narrative review explores the results from clinical trials investigating the role of ALA in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Sarah Jeffrey
- Endeavour College of Natural Health, Perth, WA, Australia
| | | | - Behin Sundara Raj
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
27
|
Hashimoto Y, Yoshizawa K, Kaido Y, Takenouchi A, Terao K, Yasui H, Yoshikawa Y. Exercise Performance Upregulatory Effect of R-α-Lipoic Acid with γ-Cyclodextrin. Nutrients 2021; 14:nu14010021. [PMID: 35010896 PMCID: PMC8746793 DOI: 10.3390/nu14010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/25/2023] Open
Abstract
α-Lipoic acid (ALA) is a vitamin-like substance that is an indispensable supporting factor for a large number of enzymes. Due to its optical activity, ALA has optical isomers RALA and SALA. The major role of RALA is in energy metabolism. However, RALA cannot be used as a pharmaceutical or nutraceutical because it is sensitive to heat and acid conditions. Previous studies have shown that RALA complexed with γ-cyclodextrin (CD) has a higher antioxidant capacity than that of free RALA. The antioxidant enzyme system protects against intense exercise-induced oxidative damage and is related to the physical status of athletes. The aim of this study was to examine the effect of CD/RALA complex supplementation on antioxidant activity and performance during high-intensity exercise. Twenty-four male C3H/HeSlc mice were divided into four groups (n = 6): swimming+distilled water administration (C), swimming+CD/RALA supplementation (CD/RALA), swimming+RALA suplementation (RALA), and swimming+CD supplementation (CD). Blood ammonia elevation due to exercise stress was repressed by CD/RALA supplementation. The oxidative stress in the kidney increased after exercise and was reduced by CD/RALA supplementation. Our findings suggest that CD/RALA supplementation may be useful for improving the exercise performance in athletes.
Collapse
Affiliation(s)
- Yuki Hashimoto
- Department of Health Sports Nutrition, Faculty of Health and Welfare, Kobe Women’s University, Hyogo 650-0046, Japan; (Y.H.); (Y.K.)
| | - Katsuhiko Yoshizawa
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women’s University, Hyogo 663-8183, Japan; (K.Y.); (A.T.)
| | - Yuka Kaido
- Department of Health Sports Nutrition, Faculty of Health and Welfare, Kobe Women’s University, Hyogo 650-0046, Japan; (Y.H.); (Y.K.)
| | - Akiko Takenouchi
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women’s University, Hyogo 663-8183, Japan; (K.Y.); (A.T.)
| | - Keiji Terao
- CycloChem Company Limited, Hyogo 650-0047, Japan;
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Misasagi, Nakautityo, Yamashina-ku, Kyoto 607-8414, Japan;
| | - Yutaka Yoshikawa
- Department of Health Sports Nutrition, Faculty of Health and Welfare, Kobe Women’s University, Hyogo 650-0046, Japan; (Y.H.); (Y.K.)
- Correspondence: ; Tel.: +81-78-303-2586
| |
Collapse
|
28
|
PCOS and Assisted Reproduction Technique: Role and Relevance of Inositols. ENDOCRINES 2021. [DOI: 10.3390/endocrines2040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome is an endocrine disorder often characterized by insulin resistance and hyperinsulinemia, especially in overweight/obese women. Among insulin sensitizers, the positive role of inositols has been increasingly established in recent years. The action of inositols not only concerns the metabolic parameters of these patients, but also the hormonal profile, resulting in beneficial effects on ovarian function. For this reason, many studies have tried to recognize their role in PCOS infertile women who underwent in vitro fertilization (IVF) procedures.
Collapse
|
29
|
Dragomanova S, Miteva S, Nicoletti F, Mangano K, Fagone P, Pricoco S, Staykov H, Tancheva L. Therapeutic Potential of Alpha-Lipoic Acid in Viral Infections, including COVID-19. Antioxidants (Basel) 2021; 10:1294. [PMID: 34439542 PMCID: PMC8389191 DOI: 10.3390/antiox10081294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress (OS), resulting from a disrupted balance between reactive oxygen species (ROS) and protective antioxidants, is thought to play an important pathogenetic role in several diseases, including viral infections. Alpha-lipoic acid (LA) is one of the most-studied and used natural compounds, as it is endowed with a well-defined antioxidant and immunomodulatory profile. Owing to these properties, LA has been tested in several chronic immunoinflammatory conditions, such as diabetic neuropathy and metabolic syndrome. In addition, a pharmacological antiviral profile of LA is emerging, that has attracted attention on the possible use of this compound for the cotreatment of several viral infections. Here, we will review the emerging literature on the potential use of LA in viral infections, including COVID-19.
Collapse
Affiliation(s)
- Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, 9002 Varna, Bulgaria;
| | - Simona Miteva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.M.); (L.T.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Salvatore Pricoco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Hristian Staykov
- Department of Pharmacology and toxicology, Medical University, Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria;
| | - Lyubka Tancheva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.M.); (L.T.)
| |
Collapse
|
30
|
Chang M, Xu G, Xiong C, Yang X, Yan S, Tao Y, Li H, Li Y, Yao S, Zhao Y. Alpha-lipoic acid attenuates silica-induced pulmonary fibrosis by improving mitochondrial function via AMPK/PGC1α pathway activation in C57BL/6J mice. Toxicol Lett 2021; 350:121-132. [PMID: 34252510 DOI: 10.1016/j.toxlet.2021.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/22/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
Silicosis is characterized by pulmonary interstitial fibrosis that arises as a result of chronic exposure to silica. The few available treatments only delay its progression. As α-lipoic acid (ALA) has been shown to have various beneficial effects, including mitoprotective, antioxidant, and anti-inflammatory effects, we hypothesized that it may exhibit therapeutic effects in pulmonary fibrosis. Therefore, in the present study, we used a murine model of silicosis to investigate whether supplementation with exogenous ALA could attenuate silica-induced pulmonary fibrosis by improving mitochondrial function. ALA was administered to the model mice via continuous intragastric administration for 28 days, and then the antioxidant and mitoprotective effects of ALA were evaluated. The results showed that ALA decreased the production of reactive oxygen species, protected mitochondria from silica-induced dysfunction, and inhibited extracellular matrix deposition. ALA also decreased hyperglycemia and hyperlipidemia. Activation of the mitochondrial AMPK/PGC1α pathway might be responsible for these ALA-mediated anti-fibrotic effects. Exogenous ALA blocked oxidative stress by activating NRF2. Taken together, these findings demonstrate that exogenous ALA effectively prevents the progression of silicosis in a murine model, likely by stimulating mitochondrial biogenesis and endogenous antioxidant responses. Therefore, ALA can potentially delay the progression of silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Meiyu Chang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Cheng Xiong
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Xuesi Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Sensen Yan
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yuchun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China.
| |
Collapse
|
31
|
Di Tucci C, Galati G, Mattei G, Bonanni V, Capri O, D'Amelio R, Muzii L, Benedetti Panici P. The role of alpha lipoic acid in female and male infertility: a systematic review. Gynecol Endocrinol 2021; 37:497-505. [PMID: 33345661 DOI: 10.1080/09513590.2020.1843619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Infertility is an increasingly frequent health condition, which may depend on female or male factors. Oxidative stress (OS), resulting from a disrupted balance between reactive oxygen species (ROS) and protective antioxidants, affects the reproductive lifespan of men and women. In this review, we examine if alpha lipoic acid (ALA), among the oral supplements currently in use, has an evidence-based beneficial role in the context of female and male infertility. METHODS We performed a search from English literature using PubMed database with the following keywords: 'female infertility', 'male infertility', 'semen', 'sperm', 'sub-fertile man', 'alpha-lipoic acid', ' alpha lipoic acid', 'lipoid acid', 'endometriosis', 'chronic pelvic pain', 'follicular fluid' and 'oocytes'. We included clinical trials, multicentric studies and reviews. The total number of references found after automatically and manually excluding duplicates was 180. After primary and secondary screening, 28 articles were selected. RESULTS The available literature demonstrates the positive effects of ALA in multiple processes from oocyte maturation (0.87 ± 0.9% of oocyte in MII vs 0.81 ± 3.9%; p < .05) to fertilization, embryo development (57.7% vs 75.7% grade 1 embryo; p < .05) and reproductive outcomes. Its regular administration both in sub-fertile women and men shows to reduce pelvic pain in endometriosis (p < .05), regularize menstrual flow and metabolic disorders (p < .01) and improve sperm quality (p < .001). CONCLUSIONS ALA represents a promising new molecule in the field of couple infertility. More clinical studies are needed in order to enhance its use in clinical practice.
Collapse
Affiliation(s)
- Chiara Di Tucci
- Departments of Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Giulia Galati
- Departments of Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Giulia Mattei
- Departments of Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Bonanni
- Departments of Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Oriana Capri
- Departments of Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Renzo D'Amelio
- Departments of Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Ludovico Muzii
- Departments of Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | | |
Collapse
|
32
|
Ibrahim Fouad G, R Mousa M. The protective potential of alpha lipoic acid on amiodarone-induced pulmonary fibrosis and hepatic injury in rats. Mol Cell Biochem 2021; 476:3433-3448. [PMID: 33973131 DOI: 10.1007/s11010-021-04173-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
Amiodarone (AMD) is a widely used antiarrhythmic drug prescribed to treat cardiac tachyarrhythmias; however, AMD has been reported to provoke pulmonary fibrosis (PF) and hepatotoxicity. This study aimed to investigate the influence of alpha lipoic acid (ALA) on AMD-induced PF and hepatotoxicity in male Wistar rats. AMD administration resulted in elevated lung contents of hydroxyproline (Hyp), malondialdehyde (MDA), and increased serum levels of transforming growth factor beta-1 (TGF-β1), interferon-γ (IFN-γ), alanine amino transaminase (ALT), aspartate amino transaminase (AST), total cholesterol (TC), and glucose. On the other side, lung content of glutathione reduced (GSH) and serum levels of total anti-oxidant capacity (TAC) were significantly decreased. Histopathologically, AMD caused PF, produced a mild hepatic injury, and increased expression of alpha smooth muscle actin (α-SMA). Treatment with ALA produced a significant reversal of the oxidative stress, fibrosis, and inflammation parameters with reductions in α-SMA expressions, leading to amelioration of histopathological lesions. ALA might provide supportive therapy in AMD-receiving cardiovascular patients.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
33
|
Elbadawy AM, Abd Elmoniem RO, Elsayed AM. Alpha lipoic acid and diabetes mellitus: potential effects on peripheral neuropathy and different metabolic parameters. ALEXANDRIA JOURNAL OF MEDICINE 2021. [DOI: 10.1080/20905068.2021.1907961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
34
|
ATP reduces mitochondrial MECR protein in liver of diet-induced obese mice in mechanism of insulin resistance. Biosci Rep 2021; 40:224917. [PMID: 32440681 PMCID: PMC7273911 DOI: 10.1042/bsr20200665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/02/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial 2-enoyl-acyl-carrier protein reductase (MECR) is an enzyme in the mitochondrial fatty acid synthase (mtFAS) pathway. MECR activity remains unknown in the mechanism of insulin resistance in the pathogenesis of type 2 diabetes. In the present study, MECR activity was investigated in diet-induced obese (DIO) mice. Mecr mRNA was induced by insulin in cell culture, and was elevated in the liver of DIO mice in the presence hyperinsulinemia. However, MECR protein was decreased in the liver of DIO mice, and the reduction was blocked by treatment of the DIO mice with berberine (BBR). The mechanism of MECR protein regulation was investigated with a focus on ATP. The protein was decreased in the cell lysate and DIO liver by an increase in ATP levels. The ATP protein reduction was blocked in the liver of BBR-treated mice by suppression of ATP elevation. The MECR protein reduction was associated with insulin resistance and the protein restoration was associated with improvement of insulin sensitivity by BBR in the DIO mice. The data suggest that MECR protein is regulated in hepatocytes by ATP in association with insulin resistance. The study provides evidence for a relationship between MECR protein and insulin resistance.
Collapse
|
35
|
Cho S, Lee H, Han J, Lee H, Kattia RO, Nelson ZV, Choi S, Kim SY, Park HY, Jeong HG, Jeong TS. Viburnum stellato-tomentosum Extract Suppresses Obesity and Hyperglycemia through Regulation of Lipid Metabolism in High-Fat Diet-Fed Mice. Molecules 2021; 26:1052. [PMID: 33671428 PMCID: PMC7922011 DOI: 10.3390/molecules26041052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022] Open
Abstract
The potential biological activities of Viburnum stellato-tomentosum (VS), a plant mainly found in Costa Rica, have yet to be reported. Supplementation of VS extract for 17 weeks significantly decreased body weight gain, fat weight, fasting glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and triglyceride levels in high-fat diet (HFD)-fed C57BL/6J mice. The molecular mechanisms underlying the anti-obesity and glucose-lowering effects of VS extract were investigated. VS extract suppressed adipocyte hypertrophy by regulating lipogenesis-related CCAAT/enhancer-binding protein α (C/EBPα) and insulin sensitivity-related peroxisome proliferator-activated receptor γ (Pparg) expression in adipose tissue (AT) and hepatic steatosis by inhibiting C/EBPα and lipid transport-related fatty acid binding protein 4 (FABP4) expression. VS extract enhanced muscular fatty acid β-oxidation-related AMP-activated protein kinase (AMPK) and PPARα expression with increasing Pparg levels. Furthermore, VS extract contained a much higher content of amentoflavone (AMF) (29.4 mg/g extract) compared to that in other Viburnum species. AMF administration decreased Cebpa and Fabp4 levels in the AT and liver, as well as improved insulin signaling-related insulin receptor substrate 1 (Irs1) and glucose transporter 1 (Glut1) levels in the muscle of HFD-fed mice. This study elucidated the in vivo molecular mechanisms of AMF for the first time. Therefore, VS extract effectively diminished obesity and hyperglycemia by suppressing C/EBPα-mediated lipogenesis in the AT and liver, enhancing PPARα-mediated fatty acid β-oxidation in muscle, and PPARγ-mediated insulin sensitivity in AT and muscle.
Collapse
Affiliation(s)
- Seona Cho
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.C.); (H.L.); (J.H.); (H.L.); (H.-Y.P.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Hwa Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.C.); (H.L.); (J.H.); (H.L.); (H.-Y.P.)
| | - Jisu Han
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.C.); (H.L.); (J.H.); (H.L.); (H.-Y.P.)
| | - Haneul Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.C.); (H.L.); (J.H.); (H.L.); (H.-Y.P.)
| | - Rosales Ovares Kattia
- Instituto Nacional de Biodiversidad (INBio), Santo Domingo, Heredia, P.O. Box 22-3100, Costa Rica; (R.O.K.); (Z.V.N.)
| | - Zamora Villalobos Nelson
- Instituto Nacional de Biodiversidad (INBio), Santo Domingo, Heredia, P.O. Box 22-3100, Costa Rica; (R.O.K.); (Z.V.N.)
| | - Sangho Choi
- International Biological Material Research Center, KRIBB, Daejeon 34141, Korea; (S.C.); (S.-Y.K.)
| | - Soo-Yong Kim
- International Biological Material Research Center, KRIBB, Daejeon 34141, Korea; (S.C.); (S.-Y.K.)
| | - Ho-Yong Park
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.C.); (H.L.); (J.H.); (H.L.); (H.-Y.P.)
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Tae-Sook Jeong
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.C.); (H.L.); (J.H.); (H.L.); (H.-Y.P.)
| |
Collapse
|
36
|
Huang CC, Sun J, Ji H, Kaneko G, Xie XD, Chang ZG, Deng W. Systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish (Danio rerio): focusing on the transcriptional level. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1631-1644. [PMID: 32651854 DOI: 10.1007/s10695-020-00795-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Considering the excessive lipid accumulation status caused by the increased dietary lipid intake in farmed fish, this study aimed to investigate the systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish. A total of 540 male zebrafish (0.17 g) were fed with normal (CT) and high lipid level (HL) diets for 6 weeks, then fed on 1000 mg/kg α-lipoic acid supplementation diets for the second 6 weeks. HL diets did not affect whole fish protein content, but increased ASNS expression (P < 0.05). Dietary α-lipoic acid increased whole fish protein content, and decreased the expressions of protein catabolism-related genes in muscle of high lipid level groups (P < 0.05). Furthermore, HL diets increased the whole fish lipid content and the expressions of gluconeogenesis and lipogenesis-related genes (P < 0.05), and α-lipoic acid counteracted these effects and decreased the whole fish triglyceride and cholesterol contents and expressions of lipogenesis-related genes, with the enhanced expressions of lipolytic genes, especially in high lipid groups (P < 0.05). HL diets did not affect hepatocyte mitochondrial quantity or the mRNA expressions of mitochondrial biogenesis and electron transport chain-related genes; they were significantly increased by dietary α-lipoic acid (P < 0.05). These results indicated that high dietary lipid promotes lipid accumulation, while α-lipoic acid increases protein content in association of enhanced lipid catabolism. Thus, dietary α-lipoic acid supplementation could reduce lipid accumulation under high lipid, which provides a promising new approach in solving the problem of lipid accumulation in farmed fish.
Collapse
Affiliation(s)
- Chen-Cui Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Gen Kaneko
- School of Arts and Sciences, University of Houston-Victoria, 3007, North Ben Wilson, Victoria, TX, 77901, USA
| | - Xing-da Xie
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhi-Guang Chang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wei Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
37
|
Cai J, Chen J, Zeng Q, Liu J, Zhang Y, Cheng H, Yao S, Chen Q. Assessment of the efficacy of α-lipoic acid in treatment of diabetes mellitus patients with erectile dysfunction: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e22161. [PMID: 32899103 PMCID: PMC7478782 DOI: 10.1097/md.0000000000022161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Diabetes mellitus with erectile dysfunction (DMED) is one of the most common causes of disability in diabetic population, and its pathogenesis is related to a variety of factors. Because its pathogenesis is complex and the existing treatment methods have limitations, DMED is difficult to treat in clinical. Recently, some studies have shown that α-lipoic acid (ALA) is associated with DMED, but there is no systematic review and meta-analysis on the relationship between ALA and DMED. METHODS We will search each database from the built-in until July 2020. The English literature mainly searches Cochrane Library, PubMed, EMBASE, and Web of Science, while the Chinese literature comes from CNKI, CBM, VIP, and Wangfang database. Simultaneously we will retrieve clinical registration tests and grey literatures. This study only screen the clinical randomized controlled trials (RCTs) about ALA for DMED to assess its efficacy. The 2 researchers worked independently on literature selection, data extraction, and quality assessment. The dichotomous data is represented by relative risk (RR), and the continuous is expressed by mean difference (MD) or standard mean difference (SMD), eventually the data is synthesized using a fixed effect model (FEM) or a random effect model (REM) depending on whether or not heterogeneity exists. Erectile dysfunction (ED) will be diagnosed by the International Index of Erectile Function 5 (IIEF-5) score. Finally, meta-analysis was conducted by RevMan software version 5.3. RESULTS This study will synthesize and provide high quality to evaluate the effectiveness of ALA supplementation for the treatment of DMED. CONCLUSION This systematic review aims to provide new options for ALA supplementation treatment of DMED in terms of its efficacy and safety. PROSPERO REGISTRATION NUMBER INPLASY202070130.
Collapse
|
38
|
Yang J, Suo H, Song J. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Crit Rev Food Sci Nutr 2020; 61:3857-3875. [PMID: 32815398 DOI: 10.1080/10408398.2020.1809344] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria control various processes in cellular metabolic homeostasis, such as adenosine triphosphate production, generation and clearance of reactive oxygen species, control of intracellular Ca2+ and apoptosis, and are thus a critical therapeutic target for metabolic syndrome (MetS). The mitochondrial targeted antioxidant mitoquinone (MitoQ) reduces mitochondrial oxidative stress, prevents impaired mitochondrial dynamics, and increases mitochondrial turnover by promoting autophagy (mitophagy) and mitochondrial biogenesis, which ultimately contribute to the attenuation of MetS conditions, including obesity, insulin resistance, hypertension and cardiovascular disease. The regulatory effect of MitoQ on mitochondrial homeostasis is mediated through AMPK and its downstream signaling pathways, including MTOR, SIRT1, Nrf2 and NF-κB. However, there are few reviews focusing on the critical role of MitoQ as a therapeutic agent in the treatment of MetS. The purpose of this review is to summarize the mitochondrial role in the pathogenesis of MetS, especially in obesity and type 2 diabetes, and discuss the effect and underlying mechanism of MitoQ on mitochondrial homeostasis in MetS.
Collapse
Affiliation(s)
- Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China.,Graduate School, Chongqing Technology and Business University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
39
|
Chen B, Foo JL, Ling H, Chang MW. Mechanism-Driven Metabolic Engineering for Bio-Based Production of Free R-Lipoic Acid in Saccharomyces cerevisiae Mitochondria. Front Bioeng Biotechnol 2020; 8:965. [PMID: 32974306 PMCID: PMC7468506 DOI: 10.3389/fbioe.2020.00965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 01/28/2023] Open
Abstract
Lipoic acid is a valuable organosulfur compound used as an antioxidant for dietary supplementation, and potentially anti-diabetic and anti-cancer. Currently, lipoic acid is obtained mainly through chemical synthesis, which requires toxic reagents and organic solvents, thus causing environmental issues. Moreover, chemically synthesized lipoic acid is conventionally a racemic mixture. To obtain enantiomerically pure R-lipoic acid, which has superior bioactivity than the S form, chiral resolution and asymmetric synthesis methods require additional reagents and solvents, and often lead to wastage of S-lipoic acid or precursors with undesired chirality. Toward sustainable production of R-lipoic acid, we aim to develop a synthetic biology-based method using engineered yeast. Here, we deepened mechanistic understanding of lipoic acid biosynthesis and protein lipoylation in the model yeast Saccharomyces cerevisiae to facilitate metabolic engineering of the microbe for producing free R-lipoic acid. In brief, we studied the biosynthesis and confirmed the availability of protein-bound lipoate in yeast cells through LC-MS/MS. We then characterized in vitro the activity of a lipoamidase from Enterococcus faecalis for releasing free R-lipoic acid from lipoate-modified yeast proteins. Overexpression of the lipoamidase in yeast mitochondria enabled de novo free R-lipoic acid production in vivo. By overexpressing pathway enzymes and regenerating the cofactor, the production titer was increased ∼2.9-fold. This study represents the first report of free R-lipoic acid biosynthesis in S. cerevisiae. We envision that these results could provide insights into lipoic acid biosynthesis in eukaryotic cells and drive development of sustainable R-lipoic acid production.
Collapse
Affiliation(s)
- Binbin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Jee Loon Foo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Hua Ling
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
40
|
Vajdi M, Abbasalizad Farhangi M. Alpha-lipoic acid supplementation significantly reduces the risk of obesity in an updated systematic review and dose response meta-analysis of randomised placebo-controlled clinical trials. Int J Clin Pract 2020; 74:e13493. [PMID: 32091656 DOI: 10.1111/ijcp.13493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/01/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There are numerous trials reported the effect of alpha-lipoic acid (ALA) on obesity measurements; while no summarised dose-response meta-analysis is available to address the effects of dose and duration of ALA supplementation on obesity measurements. We aimed to summarise the results of studies evaluating the effects of ALA supplementation on obesity measurements in a systematic review and dose-response meta-analysis. METHODS AND MATERIALS In a systematic search from Scopus, PubMed, Embase, Proquest electronic databases up to January 2020 relevant studies were retrieved. Randomised, placebo-controlled trials investigating the effect of ALA supplementation on obesity measurements including weight, body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) and fat mass (FM) were included. Two class and dose-response meta-analysis were performed to data analysis. RESULTS Totally, 18, 21 and 8 studies were included for the meta-analysis of ALA-weight, ALA-BMI, ALA-WC, respectively. In the two-class meta-analysis, ALA treatment significantly reduced weight (WMD: -2.29 kg, 95% CI: -2.98, 1.60, P < .01) and BMI (WMD: -0.49 kg/m2 , 95% CI:-0.83,-0.15, P = .005) but no effect on WC (WMD: -2.57 cm, 95% CI: -8.91, 3.76; P = .426). While the dose-response meta-analysis revealed that the duration of ALA treatment is a significant factor affecting WC reduction (Pnon-linearity = .047). While no evidence of departure from linearity was observed for other variables; moreover, subgrouping also revealed that gender could be an important factor affecting the ALA impact on WC which was significant among women (WMD: -4.099; CI: -7.837, -0.361; P = .032). CONCLUSION According to our finding, ALA treatment significantly reduced BMI, weight in a two-class meta-analysis without evidence of departure from linearity in terms of dose or duration. While the association of ALA treatment on WC is dependent to the duration of the study. Although further trials evaluating the other obesity measurements specially central obesity will be helpful to infer a more reliable result.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
41
|
Street ME, Cirillo F, Catellani C, Dauriz M, Lazzeroni P, Sartori C, Moghetti P. Current treatment for polycystic ovary syndrome: focus on adolescence. Minerva Pediatr 2020; 72:288-311. [PMID: 32418411 DOI: 10.23736/s0026-4946.20.05861-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most frequent endocrine disorder in women and it is associated with an increased rate of infertility. Its etiology remains largely unknown, although both genetic and environmental factors play a role. PCOS is characterized by insulin resistance, metabolic disorders and low-grade chronic inflammation. To date, the treatment of PCOS is mainly symptomatic and aimed at reducing clinical signs of hyperandrogenism (hirsutism and acne), at improving menstrual cyclicity and at favoring ovulation. Since PCOS pathophysiology is still largely unknown, the therapeutic interventions currently in place are rarely cause-specific. In such cases, the therapy is mainly directed at improving hormonal and metabolic dysregulations typical of this condition. Diet and exercise represent the main environmental factors influencing PCOS. Thus, therapeutic lifestyle changes represent the first line of intervention, which, in combination with oral contraceptives, represent the customary treatment. Insulin resistance is becoming an increasingly studied target for therapy, most evidence stemming from the time-honored metformin use. Relatively novel strategies also include the use of thiazolidinediones and GLP1-receptor agonists. In recent years, a nutraceutical approach has been added to the therapeutic toolkit targeting insulin resistance. Indeed, emerging data support inositol and alpha-lipoic acid as alternative compounds, alone or in combination with the aforementioned strategies, with favorable effects on ovulation, insulin resistance and inflammation. Nevertheless, additional studies are required in adolescents, in order to assess the effectiveness of diet supplements in preventing negative impacts of PCOS on fertility in adult age. This review focuses on the main therapeutic options for PCOS to date.
Collapse
Affiliation(s)
- Maria E Street
- Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy -
| | - Francesca Cirillo
- Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Cecilia Catellani
- Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Dauriz
- Section of Endocrinology and Diabetes, Department of Internal Medicine, Bolzano General Hospital, Bolzano, Italy.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Pietro Lazzeroni
- Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Sartori
- Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Paolo Moghetti
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
42
|
Yano N, Zhang L, Wei D, Dubielecka PM, Wei L, Zhuang S, Zhu P, Qin G, Liu PY, Chin YE, Zhao TC. Irisin counteracts high glucose and fatty acid-induced cytotoxicity by preserving the AMPK-insulin receptor signaling axis in C2C12 myoblasts. Am J Physiol Endocrinol Metab 2020; 318:E791-E805. [PMID: 32182124 PMCID: PMC7272726 DOI: 10.1152/ajpendo.00219.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Irisin, a newly identified myokine, is critical to modulating body metabolism and biological homeostasis. However, whether irisin protects the skeletal muscles against metabolic stresses remains unknown. In this study, we determine the effect of irisin on high glucose and fatty acid-induced damages using irisin-overexpressed mouse C2C12 (irisin-C2C12) myoblasts and skeletal muscle from irisin-injected mice. Compared with empty vector-transfected control C2C12 cells, irisin overexpression resulted in a marked increase in cell viability and decrease in apoptosis under high-glucose stress. Progression of the cell cycle into the G2/M phase in the proliferative condition was also observed with irisin overexpression. Furthermore, glucose uptake, glycogen accumulation, and phosphorylation of AMPKα/insulin receptor (IR) β-subunit/Erk1/2 in response to insulin stimulation were enhanced by irisin overexpression. In irisin-C2C12 myoblasts, these responses of phosphorylation were preserved under palmitate treatment, which induced insulin resistance in the control cells. These effects of irisin were reversed by inhibiting AMPK with compound C. In addition, high glucose-induced suppression of the mitochondrial membrane potential was also prevented by irisin. Moreover, suppression of IR in irisin-C2C12 myoblasts by cotransfection of shRNA against IR also mitigated the effects of irisin while not affecting AMPKα phosphorylation. As an in vivo study, soleus muscles from irisin-injected mice showed elevated phosphorylation of AMPKα and Erk1/2 and glycogen contents. Our results indicate that irisin counteracts the stresses generated by high glucose and fatty acid levels and irisin overexpression serves as a novel approach to elicit cellular protection. Furthermore, AMPK activation is a crucial factor that regulates insulin action as a downstream target.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Ling Zhang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Dennis Wei
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Lei Wei
- Department of Orthopedics, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul Y Liu
- Plastic Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Y Eugene Chin
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting C Zhao
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| |
Collapse
|
43
|
Farhat D, Léon S, Ghayad SE, Gadot N, Icard P, Le Romancer M, Hussein N, Lincet H. Lipoic acid decreases breast cancer cell proliferation by inhibiting IGF-1R via furin downregulation. Br J Cancer 2020; 122:885-894. [PMID: 31988347 PMCID: PMC7078196 DOI: 10.1038/s41416-020-0729-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/23/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Breast cancer is the second most common cancer in the world. Despite advances in therapies, the mechanisms of resistance remain the underlying cause of morbidity and mortality. Lipoic acid (LA) is an antioxidant and essential cofactor in oxidative metabolism. Its potential therapeutic effects have been well documented, but its mechanisms of action (MOA) are not fully understood. METHODS The aim of this study is to validate the inhibitory LA effect on the proliferation of various breast cancer cell lines and to investigate the MOA that may be involved in this process. We tested LA effects by ex vivo studies on fresh human mammary tumour samples. RESULTS We demonstrate that LA inhibits the proliferation and Akt and ERK signalling pathways of several breast cancer cells. While searching for upstream dysregulations, we discovered the loss of expression of IGF-1R upon exposure to LA. This decrease is due to the downregulation of the convertase, furin, which is implicated in the maturation of IGF-1R. Moreover, ex vivo studies on human tumour samples showed that LA significantly decreases the expression of the proliferation marker Ki67. CONCLUSION LA exerts its anti-proliferative effect by inhibiting the maturation of IGF-1R via the downregulation of furin.
Collapse
Affiliation(s)
- Diana Farhat
- Université Lyon 1, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- Lebanese University, Faculty of Sciences, Cancer biology Stem Cells and Molecular Immunology, Hadath-Beirut, Lebanon
| | - Sophie Léon
- Plateforme Ex-Vivo, Département de Recherche Translationnelle et Innovation, SIRIC LYriCAN, INCa-DGOS-Inserm_12563, Centre Léon Bérard, Lyon, France
| | - Sandra E Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Fanar, Lebanon
| | - Nicolas Gadot
- Plateforme Anatomopathologie-Recherche, Département de Recherche Translationnelle et Innovation, Centre Léon Bérard, Lyon, France
| | - Philippe Icard
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U 119, 14000, Caen, France
- Service de chirurgie thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Muriel Le Romancer
- Université Lyon 1, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Nader Hussein
- Lebanese University, Faculty of Sciences, Cancer biology Stem Cells and Molecular Immunology, Hadath-Beirut, Lebanon
| | - Hubert Lincet
- Université Lyon 1, Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.
- ISPB, Faculté de Pharmacie, Lyon, France.
| |
Collapse
|
44
|
Haghighatdoost F, Gholami A, Hariri M. Alpha-lipoic acid effect on leptin and adiponectin concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Pharmacol 2020; 76:649-657. [PMID: 32040596 DOI: 10.1007/s00228-020-02844-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND New evidence suggests that dysregulation of adipocytokines caused by excess adiposity plays an important role in the pathogenesis of various obesity comorbidities. Our aim in this meta-analysis was to determine the effect of alpha-lipoic acid (ALA) supplementation on serum levels of leptin and adiponectin. METHODS We searched Scopus, PubMed, Google Scholar, and ISI Web of Science from inception up to July 2019. Mean difference for leptin and adiponectin were calculated by subtracting the change from baseline in each study group. Summary estimates for the overall effect of ALA on serum leptin and adiponectin concentrations were calculated using random effects model. Results were presented as weighted mean difference (WMD) and their 95% confidence intervals (CI). Between-study heterogeneity was examined using the I2 statistics. RESULT Eight studies were included in systematic review and seven studies in meta-analysis. The overall effect suggested a significant decrement in serum leptin concentrations (WMD = - 3.63; 95% CI, - 5.63, - 1.64 μg/ml; I2 = 80.7%) and a significant increase in serum levels of adiponectin (WMD = 1.98 μg/ml; 95% CI, 0.92, 3.04; I2 = 95.7%). Subgroup analyses based on age showed a significant reduction in leptin levels only in younger adults, and subgroup analysis based on duration indicated in studies with a duration of more than 8 weeks adiponectin levels increased significantly and leptin levels decreased significantly. CONCLUSION Our results revealed ALA decreased leptin and increased adiponectin especially in studies lasted more than 8 weeks. We still need more studies with different ALA dose, intervention duration, and separately on male and female.
Collapse
Affiliation(s)
- Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Gholami
- Department of Epidemiology & Biostatistics, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mitra Hariri
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
45
|
Fruzzetti F, Fidecicchi T, Palla G, Gambacciani M. Long-term treatment with α-lipoic acid and myo-inositol positively affects clinical and metabolic features of polycystic ovary syndrome. Gynecol Endocrinol 2020; 36:152-155. [PMID: 31317814 DOI: 10.1080/09513590.2019.1640673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of this retrospective study was to evaluate the effects of a long-term treatment with α-lipoic acid (ALA) combined with myo-inositol (MI) on clinical and metabolic features of women with polycystic ovary syndrome (PCOS). Fifty-seven women with PCOS and a history of oligoamenorrhea were treated with MI and ALA (800 mg + 2000 mg per day). Forty-four of them had complete clinical charts and were considered eligible for the study. Information about cycle length and body mass index (BMI) was checked after 6, 12, and 24 months. After 12 months ovarian volume, total testosterone plasma levels and changes in hirsutism were also evaluated. The metabolic parameters were evaluated in 16 women after 6 and 18 months of the treatment. Cycle length was significantly reduced at 6 (p < .001), 12, and 24 months of treatment (p < .01). BMI showed a reduction only at 6 months (p < .05), thereafter returning similar to the basal values. No changes of testosterone and ovarian volume were observed. HOMA-IR and fasting insulin were unchanged, but the insulin response to a 3 h OGTT was improved after 6 (p < .01) and 18 months (p < .05) of treatment. No individual suffered from any adverse event. In conclusion, the combination of ALA and MI showed to be useful as long-term therapy in PCOS women, providing a normalization of the menstrual cycle and an amelioration of insulin levels with a high tolerability.
Collapse
Affiliation(s)
- Franca Fruzzetti
- Department of Obstetrics and Gynecology, Pisa University Hospital, Pisa, Italy
| | - Tiziana Fidecicchi
- Department of Obstetrics and Gynecology, Pisa University Hospital, Pisa, Italy
| | - Giulia Palla
- Department of Obstetrics and Gynecology, Pisa University Hospital, Pisa, Italy
| | - Marco Gambacciani
- Department of Obstetrics and Gynecology, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
46
|
Fruzzetti F, Benelli E, Fidecicchi T, Tonacchera M. Clinical and Metabolic Effects of Alpha-Lipoic Acid Associated with Two Different Doses of Myo-Inositol in Women with Polycystic Ovary Syndrome. Int J Endocrinol 2020; 2020:2901393. [PMID: 32256570 PMCID: PMC7106925 DOI: 10.1155/2020/2901393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this retrospective study was to evaluate the effects of a treatment with α-lipoic acid (ALA) associated with two different doses of myo-inositol (MI) on clinical and metabolic features of women with polycystic ovary syndrome (PCOS). Eighty-eight women received the treatment, and 71 among them had complete clinical charts and were considered eligible for this study. All women were treated with 800 mg of ALA per day: 43 patients received 2000 mg of MI and 28 received 1000 mg of MI per day. Menstrual cyclicity, BMI, FSH, LH, estradiol, testosterone, androstenedione, fasting insulin, HOMA-IR, and insulin response to a 2 h OGTT were evaluated before and after 6 months of treatment. The presence of diabetic relatives (DRs) was investigated. Cycle regularity was improved in 71.2% of women. The improvement of menstrual cyclicity occurred regardless of the state of IR and the presence of DRs of the patients. Women with IR mainly showed a significant improvement of metabolic parameters, while those without IR had significant changes of reproductive hormones. Patients with DRs did not show significant changes after the treatment. 85.7% of women taking 2000 mg of MI reported a higher improvement of menstrual regularity than those taking 1000 mg of MI (50%; p < 0.01). In conclusion, ALA + MI positively affects the menstrual regularity of women with PCOS, regardless of their metabolic phenotype, with a more evident effect with a higher dose of MI. This effect seems to be insulin independent. The presence of IR seems to be a predictor of responsivity to the treatment in terms of an improvement of the metabolic profile.
Collapse
Affiliation(s)
- Franca Fruzzetti
- Department of Obstetrics and Gynecology, Pisa University Hospital, Pisa, Italy
| | - Elena Benelli
- Department of Endocrinology, Pisa University Hospital, Pisa, Italy
| | - Tiziana Fidecicchi
- Department of Obstetrics and Gynecology, Pisa University Hospital, Pisa, Italy
| | | |
Collapse
|
47
|
Banerjee M, Khursheed R, Yadav AK, Singh SK, Gulati M, Pandey DK, Prabhakar PK, Kumar R, Porwal O, Awasthi A, Kumari Y, Kaur G, Ayinkamiye C, Prashar R, Mankotia D, Pandey NK. A Systematic Review on Synthetic Drugs and Phytopharmaceuticals Used to Manage Diabetes. Curr Diabetes Rev 2020; 16:340-356. [PMID: 31438829 DOI: 10.2174/1573399815666190822165141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/15/2019] [Accepted: 08/04/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetes is a multifactorial disease and a major cause for many microvascular and macrovascular complications. The disease will ultimately lead to high rate mortality if it is not managed properly. Treatment of diabetes without any side effects has always remained a major challenge for health care practitioners. INTRODUCTION The current review discusses the various conventional drugs, herbal drugs, combination therapy and the use of nutraceuticals for the effective management of diabetes mellitus. The biotechnological aspects of various antidiabetic drugs are also discussed. METHODS Structured search of bibliographic databases for previously published peer-reviewed research papers was explored and data was sorted in terms of various approaches that are used for the treatment of diabetes. RESULTS More than 170 papers including both research and review articles, were included in this review in order to produce a comprehensive and easily understandable article. A series of herbal and synthetic drugs have been discussed along with their current status of treatment in terms of dose, mechanism of action and possible side effects. The article also focuses on combination therapies containing synthetic as well as herbal drugs to treat the disease. The role of pre and probiotics in the management of diabetes is also highlighted. CONCLUSION Oral antihyperglycemics which are used to treat diabetes can cause many adverse effects and if given in combination, can lead to drug-drug interactions. The combination of various phytochemicals with synthetic drugs can overcome the challenge faced by the synthetic drug treatment. Herbal and nutraceuticals therapy and the use of probiotics and prebiotics are a more holistic therapy due to their natural origin and traditional use.
Collapse
Affiliation(s)
- Mayukh Banerjee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Ankit Kumar Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara 144402, Punjab, India
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Omji Porwal
- Faculty of Pharmacy, Ishik University, Erbil, Iraq
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Yogita Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Gurmandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Clarisse Ayinkamiye
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Rahul Prashar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Diksha Mankotia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| |
Collapse
|
48
|
Genazzani AD, Prati A, Marchini F, Petrillo T, Napolitano A, Simoncini T. Differential insulin response to oral glucose tolerance test (OGTT) in overweight/obese polycystic ovary syndrome patients undergoing to myo-inositol (MYO), alpha lipoic acid (ALA), or combination of both. Gynecol Endocrinol 2019; 35:1088-1093. [PMID: 31304823 DOI: 10.1080/09513590.2019.1640200] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Polycystic ovary syndrome is characterized by several endocrine impairments, insulin resistance and hyperinsulinemia. We aimed to evaluate the effects of myo-inositol (MYO), alpha-lipoic acid (ALA) and a combination of both. Setting: retrospective study. Ninety overweight/obese patients were considered. Presence or absence of first grade diabetic relatives was checked. Patients were administered MYO (1 g/die per os), ALA (400 mg/die per os), MYO (1 gr/die) + ALA (400 mg/die) per os. Only 76 out of 90 patients completed the 12 weeks of treatment. Patients were evaluated before and after the treatment interval for LH, FSH, E2 (estradiol), A (androstenedione), T (testosterone) plasma levels, oral glucose tolerance test (OGTT). All treatments demonstrated specific positive effects: MYO modulated more hormonal profiles and OGTT in polycystic ovary syndrome (PCOS) with no familial diabetes, ALA improved insulin response to OGTT and metabolic parameters in all patients with no effects on reproductive hormones, MYO + ALA improved hormonal and metabolic aspects and insulin response to OGTT in all patients. Presence of familial diabetes is a relevant clinical aspect. MYO is less effective when familial diabetes is present, ALA improved only metabolic aspects while MYO + ALA was effective on all PCOS patients independently from familial diabetes.
Collapse
Affiliation(s)
- Alessandro D Genazzani
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Prati
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Marchini
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Tabatha Petrillo
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonella Napolitano
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Simoncini
- Department of Gynecology and Obstetrics, University of Pisa, Pisa, Italy
| |
Collapse
|
49
|
Farhat D, Lincet H. Lipoic acid a multi-level molecular inhibitor of tumorigenesis. Biochim Biophys Acta Rev Cancer 2019; 1873:188317. [PMID: 31669587 DOI: 10.1016/j.bbcan.2019.188317] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
Abstract
We discuss how lipoic acid (LA), a natural antioxidant, induces apoptosis and inhibits proliferation, EMT, metastasis and stemness of cancer cells. Furthermore, owing to its ability to reduce chemotherapy-induced side effects and chemoresistance, LA appears to be a promising compound for cancer treatment.
Collapse
Affiliation(s)
- D Farhat
- Université Lyon 1, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; Department of Chemistry-Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath- Beirut, Lebanon
| | - H Lincet
- Université Lyon 1, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; ISPB, Faculté de Pharmacie, Lyon, France.
| |
Collapse
|
50
|
Salehi B, Berkay Yılmaz Y, Antika G, Boyunegmez Tumer T, Fawzi Mahomoodally M, Lobine D, Akram M, Riaz M, Capanoglu E, Sharopov F, Martins N, Cho WC, Sharifi-Rad J. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules 2019; 9:biom9080356. [PMID: 31405030 PMCID: PMC6723188 DOI: 10.3390/biom9080356] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
α-lipoic acid (ALA, thioctic acid) is an organosulfur component produced from plants, animals, and humans. It has various properties, among them great antioxidant potential and is widely used as a racemic drug for diabetic polyneuropathy-associated pain and paresthesia. Naturally, ALA is located in mitochondria, where it is used as a cofactor for pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase complexes. Despite its various potentials, ALA therapeutic efficacy is relatively low due to its pharmacokinetic profile. Data suggests that ALA has a short half-life and bioavailability (about 30%) triggered by its hepatic degradation, reduced solubility as well as instability in the stomach. However, the use of various innovative formulations has greatly improved ALA bioavailability. The R enantiomer of ALA shows better pharmacokinetic parameters, including increased bioavailability as compared to its S enantiomer. Indeed, the use of amphiphilic matrices has capability to improve ALA bioavailability and intestinal absorption. Also, ALA's liquid formulations are associated with greater plasma concentration and bioavailability as compared to its solidified dosage form. Thus, improved formulations can increase both ALA absorption and bioavailability, leading to a raise in therapeutic efficacy. Interestingly, ALA bioavailability will be dependent on age, while no difference has been found for gender. The present review aims to provide an updated on studies from preclinical to clinical trials assessing ALA's usages in diabetic patients with neuropathy, obesity, central nervous system-related diseases and abnormalities in pregnancy.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Yakup Berkay Yılmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Gizem Antika
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | | | - Devina Lobine
- Department of Health Sciences; Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad; Faisalabad 38000, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan
| | - Esra Capanoglu
- Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Maslak 34469, Turkey
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| |
Collapse
|