1
|
He S, Liu Y, Zhang Z, Cai M, Hao Y, Hu H. Gene Editing in Ganoderma lucidum: Development, Challenges, and Future Prospects. J Fungi (Basel) 2025; 11:310. [PMID: 40278130 PMCID: PMC12029067 DOI: 10.3390/jof11040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
As an emerging and innovative technology, gene-editing technology has been widely applied in crop breeding, human disease treatment, animal model research, drug and vaccine development, and microbial engineering. We mainly introduce the development of gene-editing technology, the application of clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) in Ganoderma lucidum breeding, the current challenges and optimization strategies in the use of gene-editing technology in Ganoderma breeding, as well as the current status of gene-editing technology in Ganoderma breeding. Finally, the future research directions and innovative strategies that gene editing may explore in Ganoderma breeding are prospects given the existing background, future research directions, and innovative strategies that gene editing may explore in Ganoderma breeding prospects.
Collapse
Affiliation(s)
- Shiqi He
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Yuanchao Liu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Zhi Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
- Guangdong Yuewei Biotechnology Co., Ltd., Shaoguan 512029, China
| | - Manjun Cai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Yufan Hao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Huiping Hu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
- Guangdong Yuewei Biotechnology Co., Ltd., Shaoguan 512029, China
| |
Collapse
|
2
|
Timalsina B, Lee S, Kaang BK. Advances in the labelling and selective manipulation of synapses. Nat Rev Neurosci 2024; 25:668-687. [PMID: 39174832 DOI: 10.1038/s41583-024-00851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Synapses are highly specialized neuronal structures that are essential for neurotransmission, and they are dynamically regulated throughout the lifetime. Although accumulating evidence indicates that these structures are crucial for information processing and storage in the brain, their precise roles beyond neurotransmission are yet to be fully appreciated. Genetically encoded fluorescent tools have deepened our understanding of synaptic structure and function, but developing an ideal methodology to selectively visualize, label and manipulate synapses remains challenging. Here, we provide an overview of currently available synapse labelling techniques and describe their extension to enable synapse manipulation. We categorize these approaches on the basis of their conceptual bases and target molecules, compare their advantages and limitations and propose potential modifications to improve their effectiveness. These methods have broad utility, particularly for investigating mechanisms of synaptic function and synaptopathy.
Collapse
Affiliation(s)
- Binod Timalsina
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea.
| |
Collapse
|
3
|
Mikhailov N, Hämäläinen RH. Modulating Mitochondrial DNA Heteroplasmy with Mitochondrially Targeted Endonucleases. Ann Biomed Eng 2024; 52:2627-2640. [PMID: 36001180 PMCID: PMC11329604 DOI: 10.1007/s10439-022-03051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
Abstract
Mitochondria, mainly known as energy factories of eukaryotic cells, also exert several additional signaling and metabolic functions and are today recognized as major cellular biosynthetic and signaling hubs. Mitochondria possess their own genome (mitochondrial DNA-mtDNA), that encodes proteins essential for oxidative phosphorylation, and mutations in it are an important contributor to human disease. The mtDNA mutations often exist in heteroplasmic conditions, with both healthy and mutant versions of the mtDNA residing in patients' cells and the level of mutant mtDNA may vary between different tissues and organs and affect the clinical outcome of the disease. Thus, shifting the ratio between healthy and mutant mtDNA in patients' cells provides an intriguing therapeutic option for mtDNA diseases. In this review we describe current strategies for modulating mitochondrial heteroplasmy levels with engineered endonucleases including mitochondrially targeted TALENs and Zinc finger nucleases (ZFNs) and discuss their therapeutic potential. These gene therapy tools could in the future provide therapeutic help both for patients with mitochondrial disease as well as in preventing the transfer of pathogenic mtDNA mutations from a mother to her offspring.
Collapse
Affiliation(s)
- Nikita Mikhailov
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
4
|
Bisht D, Salave S, Desai N, Gogoi P, Rana D, Biswal P, Sarma G, Benival D, Kommineni N, Desai D. Genome editing and its role in vaccine, diagnosis, and therapeutic advancement. Int J Biol Macromol 2024; 269:131802. [PMID: 38670178 DOI: 10.1016/j.ijbiomac.2024.131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Genome editing involves precise modification of specific nucleotides in the genome using nucleases like CRISPR/Cas, ZFN, or TALEN, leading to increased efficiency of homologous recombination (HR) for gene editing, and it can result in gene disruption events via non-homologous end joining (NHEJ) or homology-driven repair (HDR). Genome editing, particularly CRISPR-Cas9, revolutionizes vaccine development by enabling precise modifications of pathogen genomes, leading to enhanced vaccine efficacy and safety. It allows for tailored antigen optimization, improved vector design, and deeper insights into host genes' impact on vaccine responses, ultimately enhancing vaccine development and manufacturing processes. This review highlights different types of genome editing methods, their associated risks, approaches to overcome the shortcomings, and the diverse roles of genome editing.
Collapse
Affiliation(s)
- Deepanker Bisht
- ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Purnima Gogoi
- School of Medicine and Public Health, University of Wisconsin and Madison, Madison, WI 53726, USA
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Prachurya Biswal
- College of Veterinary and Animal Sciences, Bihar Animal Sciences University, Kishanganj 855115, Bihar, India
| | - Gautami Sarma
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India.
| | | | - Dhruv Desai
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
6
|
Patel A, Miles A, Strackhouse T, Cook L, Leng S, Patel S, Klinger K, Rudrabhatla S, Potlakayala SD. Methods of crop improvement and applications towards fortifying food security. Front Genome Ed 2023; 5:1171969. [PMID: 37484652 PMCID: PMC10361821 DOI: 10.3389/fgeed.2023.1171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Agriculture has supported human life from the beginning of civilization, despite a plethora of biotic (pests, pathogens) and abiotic (drought, cold) stressors being exerted on the global food demand. In the past 50 years, the enhanced understanding of cellular and molecular mechanisms in plants has led to novel innovations in biotechnology, resulting in the introduction of desired genes/traits through plant genetic engineering. Targeted genome editing technologies such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) have emerged as powerful tools for crop improvement. This new CRISPR technology is proving to be an efficient and straightforward process with low cost. It possesses applicability across most plant species, targets multiple genes, and is being used to engineer plant metabolic pathways to create resistance to pathogens and abiotic stressors. These novel genome editing (GE) technologies are poised to meet the UN's sustainable development goals of "zero hunger" and "good human health and wellbeing." These technologies could be more efficient in developing transgenic crops and aid in speeding up the regulatory approvals and risk assessments conducted by the US Departments of Agriculture (USDA), Food and Drug Administration (FDA), and Environmental Protection Agency (EPA).
Collapse
Affiliation(s)
- Aayushi Patel
- Penn State Harrisburg, Middletown, PA, United States
| | - Andrew Miles
- Penn State University Park, State College, University Park, PA, United States
| | | | - Logan Cook
- Penn State Harrisburg, Middletown, PA, United States
| | - Sining Leng
- Shanghai United Cell Biotechnology Co Ltd, Shanghai, China
| | - Shrina Patel
- Penn State Harrisburg, Middletown, PA, United States
| | | | | | | |
Collapse
|
7
|
Wang X, Lu H, Li M, Zhang Z, Wei Z, Zhou P, Cao Y, Ji D, Zou W. Research development and the prospect of animal models of mitochondrial DNA-related mitochondrial diseases. Anal Biochem 2023; 669:115122. [PMID: 36948236 DOI: 10.1016/j.ab.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
Mitochondrial diseases (MDs) are genetic and clinical heterogeneous diseases caused by mitochondrial oxidative phosphorylation defects. It is not only one of the most common genetic diseases, but also the only genetic disease involving two different genomes in humans. As a result of the complicated genetic condition, the pathogenesis of MDs is not entirely elucidated at present, and there is a lack of effective treatment in the clinic. Establishing the ideal animal models is the critical preclinical platform to explore the pathogenesis of MDs and to verify new therapeutic strategies. However, the development of animal modeling of mitochondrial DNA (mtDNA)-related MDs is time-consuming due to the limitations of physiological structure and technology. A small number of animal models of mtDNA mutations have been constructed using cell hybridization and other methods. However, the diversity of mtDNA mutation sites and clinical phenotypes make establishing relevant animal models tricky. The development of gene editing technology has become a new hope for establishing animal models of mtDNA-related mitochondrial diseases.
Collapse
Affiliation(s)
- Xiaolei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hedong Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Min Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Montoliu L. Transgenesis and Genome Engineering: A Historical Review. Methods Mol Biol 2023; 2631:1-32. [PMID: 36995662 DOI: 10.1007/978-1-0716-2990-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Our ability to modify DNA molecules and to introduce them into mammalian cells or embryos almost appears in parallel, starting from the 1970s of the last century. Genetic engineering techniques rapidly developed between 1970 and 1980. In contrast, robust procedures to microinject or introduce DNA constructs into individuals did not take off until 1980 and evolved during the following two decades. For some years, it was only possible to add transgenes, de novo, of different formats, including artificial chromosomes, in a variety of vertebrate species or to introduce specific mutations essentially in mice, thanks to the gene-targeting methods by homologous recombination approaches using mouse embryonic stem (ES) cells. Eventually, genome-editing tools brought the possibility to add or inactivate DNA sequences, at specific sites, at will, irrespective of the animal species involved. Together with a variety of additional techniques, this chapter will summarize the milestones in the transgenesis and genome engineering fields from the 1970s to date.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and Center for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain.
- National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
9
|
Chira S, Nutu A, Isacescu E, Bica C, Pop L, Ciocan C, Berindan-Neagoe I. Genome Editing Approaches with CRISPR/Cas9 for Cancer Treatment: Critical Appraisal of Preclinical and Clinical Utility, Challenges, and Future Research. Cells 2022; 11:cells11182781. [PMID: 36139356 PMCID: PMC9496708 DOI: 10.3390/cells11182781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing burden on human malignant diseases became a major concern for healthcare practitioners, that must deal with tumor relapse and the inability to efficiently treat metastasis, in addition to side effects. Throughout the decades, many therapeutic strategies have been employed to improve the clinical outcomes of cancer patients and great efforts have been made to develop more efficient and targeted medicines. The malignant cell is characterized by genetic and epigenetic modifications, therefore targeting those specific drivers of carcinogenesis is highly desirable. Among the genome editing technologies, CRISPR/Cas9 stood as a promising candidate for cancer treatment alternatives, due to its low complexity design. First described as a defense mechanism of bacteria against invading foreign DNA, later it was shown that CRISPR components can be engineered to target specific DNA sequences in a test tube, a discovery that was awarded later with the Nobel Prize in chemistry for its rapid expansion as a reliable genome editing tool in many fields of research, including medicine. The present paper aims of describing CRISPR/Cas9 potential targets for malignant disorders, and the approaches used for achieving this goal. Aside from preclinical studies, we also present the clinical trials that use CRISPR-based technology for therapeutic purposes of cancer. Finally, a summary of the presented studies adds a more focused view of the therapeutic value CRISPR/Cas9 holds and the associated shortcomings.
Collapse
|
10
|
Widjaya MA, Ju JC, Lee SD. CRISPR-Edited Stem Cell Transplantation for HIV-Related Gene Modification In Vivo: A Systematic Review. Stem Cell Rev Rep 2022; 18:1743-1755. [PMID: 35169967 DOI: 10.1007/s12015-022-10345-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND CRISPR is a novel genomic editing technology which can be useful for the treatment of immune diseases such as HIV. However, the application of CRISPR in stem cells for HIV-related research was not effective, and most of the research was done in vivo. This systematic review is to identify a new research idea about increase CRISPR-editing efficiencies in stem cell transplantation for HIV treatment, as well as its future perspective. METHOD Four databases were searched for articles published during 1952 to 2020. PRISMA method was used to select appropriate research papers. CAMARADES was used to identify the paper quality. The outcome was engraftment efficiency, gene disruption percentage, differentiation ability, HIV-resistant efficiency. RESULT Screening method showed 196 papers mentioned the topic. However, only 5 studies were reliable with the research objective. We found that (1) Two research ideas which was double gene knockout and knockout-knockin method to provide HIV-resistant cells, engraftment support and avoid cardiac disease as an HIV disease side effect. (2) Ribonucleoprotein (RNP) delivery was the best way to deliver the CRISPR/Cas9 and Adeno-Associated Virus (AAV) would be effective for knockin purpose. (3) CRISPR/SaCas9 could replace CRISPR/Cas9 role in editing HIV-related gene. CONCLUSION Potential genes to increase HIV resistance and stem cell engraftment should be explored more in the future. Double knockout and knock-in procedures should be applied to set up a better engraftment for improving HIV treatment or resistance of patients. CRISPR/SaCas9 and RNP delivery should be explored more in the future. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020203312.
Collapse
Affiliation(s)
- Michael Anekson Widjaya
- Department of Biotechnology, College of Health Science, Asia University, Taichung, 41354, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Jyh-Cherng Ju
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan. .,Translational Medicine Research Center, China Medical University Hospital, Taichung, 40402, Taiwan. .,Department of Bioinformatics and Medical Engineering, College of Information and Electrical Engineering, Asia University, Taichung, 41354, Taiwan. .,Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Shin-Da Lee
- Department of Physical Therapy, China Medical University, Taichung, 40402, Taiwan. .,Department of Physical Therapy, Asia University, Taichung, 41354, Taiwan. .,School of Rehabilitation Medicine, Weifang Medical University, Shandong, 261053, China.
| |
Collapse
|
11
|
Yoon C, Lee SJ. Selective coordination of cobalt ions by zinc fingers in
Escherichia coli
. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chungwoon Yoon
- Department of Chemistry and Institute for Molecular Biology and Genetics Jeonbuk National University Jeonju Republic of Korea
| | - Seung Jae Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics Jeonbuk National University Jeonju Republic of Korea
| |
Collapse
|
12
|
Yang X, Jiang J, Li Z, Liang J, Xiang Y. Strategies for mitochondrial gene editing. Comput Struct Biotechnol J 2021; 19:3319-3329. [PMID: 34188780 PMCID: PMC8202187 DOI: 10.1016/j.csbj.2021.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria, as the energy factory of cells, participate in metabolism processes and play a critical role in the maintenance of human life activities. Mitochondria belong to semi-automatic organelles, which have their own genome different from nuclear genome. Mitochondrial DNA (mtDNA) mutations can cause a series of diseases and threaten human health. However, an effective approach to edit mitochondrial DNA, though long-desired, is lacking. In recent years, gene editing technologies, represented by restriction endonucleases (RE) technology, zinc finger nuclease (ZFN) technology, transcription activator-like effector nuclease (TALEN) technology, CRISPR system and pAgo-based system have been comprehensively explored, but the application of these technologies in mitochondrial gene editing is still to be explored and optimized. The present study highlights the progress and limitations of current mitochondrial gene editing technologies and approaches, and provides insights for development of novel strategies for future attempts.
Collapse
Affiliation(s)
- Xingbo Yang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiacheng Jiang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zongyu Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayi Liang
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yaozu Xiang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai East Hospital, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Allen KP, Csida TJ, Thulin JD. Assessing Accumulation of Organic Material on Rodent Cage Accessories. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2021; 60:281-288. [PMID: 33673882 DOI: 10.30802/aalas-jaalas-20-000087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
According to the 8th edition of the Guide for the Care and Use of Laboratory Animals (the Guide), rodent cage accessories, such as filter tops, should be sanitized at least once every 2 wk. We performed a study to test the hypothesis that organic contamination (measured by ATP content, expressed as relative light units (RLU)) of cage accessories (wire bar inserts and filter top lids) does not differ at 2 wk (14 d) as compared with 30, 60, and 90-d time points after cage change even when in constant use. An additional time point for filter top lids of 180 d after cage change was also evaluated. Eight groups were studied: the wire bar inserts and filter top lids used for mice and rats, in both static and individually ventilated cages (IVC). When analyzing data from both mouse and rat static and IVC caging, we found that the mean RLU values for mouse IVC and rat static and IVC cage components were below 100,000 RLU at the 14-d time point. The mean value for the mouse static group was slightly above 100,000 RLU at this time point. Based on this observation, we considered 100,000 RLU to be an appropriate actionable level. We concluded that changing wire bar inserts at least every 14 d, as recommended in the Guide for sanitizing these components in mouse and rat static cages, may be considered acceptable. This interval could be extended for mouse and rat IVC cages up to 90 d while remaining below this limit. Filter top lids for mouse static cages should be changed at least every 30 d, but static rat and IVC mouse/rat filter top lids could be changed up to every 180 d, while still staying below this actionable level of contamination.
Collapse
Affiliation(s)
- Kenneth P Allen
- Biomedical Resource Center, Office of Research, Milwaukee, Wisconsin; Department of Microbiology and Molecular Genetics, Milwaukee, Wisconsin;,
| | - Tarrant J Csida
- Biomedical Resource Center, Office of Research, Milwaukee, Wisconsin
| | - Joseph D Thulin
- Biomedical Resource Center, Office of Research, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
14
|
Amritha PP, Shah JM. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies. Mol Genet Genomics 2021; 296:485-500. [PMID: 33751237 DOI: 10.1007/s00438-021-01769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Finding and explaining the functions of genes in plants have promising applications in crop improvement and bioprospecting and hence, it is important to compare various techniques available for gene function identification in plants. Today, the most popular technology among researchers to identify the functions of genes is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-based genome editing method. But by no means can we say that CRISPR/Cas9 is the go-to method for all purposes. It comes with its own baggage. Researchers will agree and have lived through at least seven more technologies deployed to find the functions of genes, which come under three umbrellas: 1. genetic engineering, 2. transient expression, and 3. chemical/physical mutagenesis. Each of the methods evolved when the previous one ran into an insurmountable problem. In this review, we compare the eight technologies against one another on 14 parameters. This review lays bare the pros and cons, and similarities and dissimilarities of various methods. Every method comes with its advantages and disadvantages. For example, the CRISPR/Cas9-based genome editing is an excellent method for modifying gene sequences, creating allelic versions of genes, thereby aiding the understanding of gene function. But it comes with the baggage of unwanted or off-target mutations. Then, we have methods based on random or targeted knockout of the gene, knockdown, and overexpression of the gene. Targeted disruption of genes is required for complete knockout of gene function, which may not be accomplished by editing. We have also discussed the strategies to overcome the shortcomings of the targeted gene-knockout and the CRISPR/Cas9-based methods. This review serves as a comprehensive guide towards the understanding and comparison of various technologies available for gene function identification in plants and hence, it will find application for crop improvement and bioprospecting related research.
Collapse
Affiliation(s)
- P P Amritha
- Department of Plant Science, Central University of Kerala, Periya, Kasaragod, Kerala, 671320, India
| | - Jasmine M Shah
- Department of Plant Science, Central University of Kerala, Periya, Kasaragod, Kerala, 671320, India.
| |
Collapse
|
15
|
The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP. CHEMTEXTS 2020. [DOI: 10.1007/s40828-020-00126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe huge progress in whole genome sequencing (genomic revolution) methods including next generation sequencing (NGS) techniques allows one to obtain data on genome sequences of all organisms, ranging from bacteria to plants to mammals, within hours to days (era of whole genome/exome sequencing) (Goodwin et al. in Nat Rev Genet 17:333–351, 2016; Levy and Myers in Annu Rev Genomics Hum Genet 17:95–115, 2016; Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). Today, within the era of functional genomics the highest goal is to transfer this huge amount of sequencing data into information of functional and clinical relevance (genome annotation project). The World Health Organization (WHO) estimates that more than 10,000 diseases in humans are monogenic, i.e., that these diseases are caused by mutations within single genes (Jackson et al. in Essays Biochem 62:643–723, 2018). NGS technologies are continuously improving while our knowledge on genetic mutations driving the development of diseases is also still emerging (Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). It would be desirable to have tools that allow one to correct these genetic mutations, so-called genome editing tools. Apart from applications in biotechnology, medicine, and agriculture, it is still not concisely understood in basic science how genotype influences phenotype. Firstly, the Cre/loxP system and RNA-based technologies for gene knockout or knockdown are explained. Secondly, zinc-finger (ZnF) nucleases and transcription activator-like effector nucleases (TALENs) are discussed as targeted genome editing systems. Thirdly, CRISPR/Cas is presented including outline of the discovery and mechanisms of this adaptive immune system in bacteria and archaea, structure and function of CRISPR/Cas9 and its application as a tool for genomic editing. Current developments and applications of CRISPR/Cas9 are discussed. Moreover, limitations and drawbacks of the CRISPR/Cas system are presented and questions on ethical concerns connected to application of genome editing tools are discussed.
Collapse
|
16
|
Yang R, Bostick Z, Garbouchian A, Luisi J, Banker G, Bentley M. A novel strategy to visualize vesicle-bound kinesins reveals the diversity of kinesin-mediated transport. Traffic 2019; 20:851-866. [PMID: 31461551 PMCID: PMC7714429 DOI: 10.1111/tra.12692] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023]
Abstract
In mammals, 15 to 20 kinesins are thought to mediate vesicle transport. Little is known about the identity of vesicles moved by each kinesin or the functional significance of such diversity. To characterize the transport mediated by different kinesins, we developed a novel strategy to visualize vesicle-bound kinesins in living cells. We applied this method to cultured neurons and systematically determined the localization and transport parameters of vesicles labeled by different members of the Kinesin-1, -2, and -3 families. We observed vesicle labeling with nearly all kinesins. Only six kinesins bound vesicles that undergo long-range transport in neurons. Of these, three had an axonal bias (KIF5B, KIF5C and KIF13B), two were unbiased (KIF1A and KIF1Bβ), and one transported only in dendrites (KIF13A). Overall, the trafficking of vesicle-bound kinesins to axons or dendrites did not correspond to their motor domain preference, suggesting that on-vesicle regulation is crucial for kinesin targeting. Surprisingly, several kinesins were associated with populations of somatodendritic vesicles that underwent little long-range transport. This assay should be broadly applicable for investigating kinesin function in many cell types.
Collapse
Affiliation(s)
- Rui Yang
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon
- Department of Biochemistry, Duke University, Durham, North Carolina
| | - Zoe Bostick
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Alex Garbouchian
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Julie Luisi
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon
| | - Gary Banker
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon
| | - Marvin Bentley
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
17
|
Chaudhary J, Alisha A, Bhatt V, Chandanshive S, Kumar N, Mir Z, Kumar A, Yadav SK, Shivaraj SM, Sonah H, Deshmukh R. Mutation Breeding in Tomato: Advances, Applicability and Challenges. PLANTS (BASEL, SWITZERLAND) 2019; 8:E128. [PMID: 31091747 PMCID: PMC6572636 DOI: 10.3390/plants8050128] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 02/04/2023]
Abstract
Induced mutagenesis is one of the most effective strategies for trait improvement without altering the well-optimized genetic background of the cultivars. In this review, several currently accessible methods such as physical, chemical and insertional mutagenesis have been discussed concerning their efficient exploration for the tomato crop improvement. Similarly, challenges for the adaptation of genome-editing, a newly developed technique providing an opportunity to induce precise mutation, have been addressed. Several efforts of genome-editing have been demonstrated in tomato and other crops, exploring its effectiveness and convenience for crop improvement. Descriptive data compiled here from such efforts will be helpful for the efficient exploration of technological advances. However, uncertainty about the regulation of genome-edited crops is still a significant concern, particularly when timely trait improvement in tomato cultivars is needed. In this regard, random approaches of induced mutagenesis are still promising if efficiently explored in breeding applications. Precise identification of casual mutation is a prerequisite for the molecular understanding of the trait development as well as its utilization for the breeding program. Recent advances in sequencing techniques provide an opportunity for the precise detection of mutagenesis-induced sequence variations at a large scale in the genome. Here, we reviewed several novel next-generation sequencing based mutation mapping approaches including Mutmap, MutChromeSeq, and whole-genome sequencing-based mapping which has enormous potential to accelerate the mutation breeding in tomato. The proper utilization of the existing well-characterized tomato mutant resources combined with novel mapping approaches would inevitably lead to rapid enhancement of tomato quality and yield. This article provides an overview of the principles and applications of mutagenesis approaches in tomato and discusses the current progress and challenges involved in tomato mutagenesis research.
Collapse
Affiliation(s)
- Juhi Chaudhary
- Department of Biology, Oberlin College, Oberlin, OH 44074, USA.
| | - Alisha Alisha
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Vacha Bhatt
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Sonali Chandanshive
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Nirbhay Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Zahoor Mir
- National Research Center on Plant Biotechnology, New Delhi, Delhi 110012, India.
| | - Ashwini Kumar
- Division of Plant Pathology, ICAR-IARI, New Delhi, Delhi 110001, Inida.
| | - Satish K Yadav
- National Bureau of Plant Genetic Resources, New Delhi, Delhi 110012, India.
| | - S M Shivaraj
- Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Quebec, QC G1V 0A6, Canada.
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| |
Collapse
|
18
|
Gasparyan HJ, Kroh J, Michael WM, Petreaca RC. Development of the SapI/AarI Incision Mediated Plasmid Editing Method. J Mol Biol 2018; 430:1426-1430. [PMID: 29627461 DOI: 10.1016/j.jmb.2018.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Plasmid engineering and molecular cloning is a virtually ubiquitous tool in biology. Although various methods have been developed for ligating DNA molecules or targeted mutagenesis of plasmids, each has its limitations. Many of the commonly used laboratory strategies are inefficient, while commercially available kits are quite costly and often specialized for highly specific circumstances. Here, we describe the SapI/AarI incision mediated plasmid editing (SIMPLE) method, which allows users to perform site-directed mutagenesis, deletions, and even short insertions into any plasmid in a single PCR reaction, using just one restriction enzyme. In addition, the SIMPLE method can be adapted to insert any sized DNA fragment into a vector using a two-step PCR approach, and can be used to ligate any number of DNA fragments with non-compatible ends in the specific order desired. The SIMPLE method provides researches an efficient and powerful tool with a broad range of applications for molecular cloning.
Collapse
Affiliation(s)
- Hovik J Gasparyan
- Biology Department, Loyola Marymount University, 1 Loyola Maryount Dr., Los Angeles, CA 90045, United States
| | - Jacob Kroh
- Biochemistry Program, Ohio State University, 1461 Mount Vernon Avenue, Marion, OH 43302, United States
| | - W Matthew Michael
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States
| | - Ruben C Petreaca
- Department of Molecular Genetics, Ohio State University, 1461 Mount Vernon Avenue, Marion, OH 43302, United States.
| |
Collapse
|
19
|
|
20
|
Liang Y, Zeng X, Peng X, Hou X. Arabidopsis glutamate:glyoxylate aminotransferase 1 (Ler) mutants generated by CRISPR/Cas9 and their characteristics. Transgenic Res 2018; 27:61-74. [DOI: 10.1007/s11248-017-0052-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
21
|
Abstract
In the post-genomic era, the efficient exploitation of the available information for plant breeding is a pressing problem. The discoveries that DNA double-stranded breaks (DSBs) are both recombinagenic and mutagenic have fuelled the development of targetable zinc-finger nucleases (ZFNs), which act as molecular scissors for the induction of controlled DSBs. These powerful tools are used by researchers to accelerate mutagenesis of the normal gene loci toward the development of useful traits in plants. Seeds contain the embryo, which is a multicellular system representing a micrography of a plant. Therefore, they can serve as a foundation for applying targeted genome engineering techniques. The following single-step method describes how to deliver and express transiently ZFNs in tomato (Solanum lycopersicum) seeds using electroporation. Unlike methods that rely on tissue culture and plant regeneration after transformation, the direct delivery of ZFNs to seeds provides a high-throughput breeding technology for safe and site-specific mutagenesis. Tomato is a leading crop in the world and biotechnological advances in this species have great impact.
Collapse
Affiliation(s)
- Zoe Hilioti
- Institute of Applied Biosciences (INAB), CERTH, Thessaloniki, Greece.
| |
Collapse
|
22
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF, Bae H. Genome Editing Tools in Plants. Genes (Basel) 2017; 8:E399. [PMID: 29257124 PMCID: PMC5748717 DOI: 10.3390/genes8120399] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs.
Collapse
Affiliation(s)
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
23
|
Hilioti Z, Ganopoulos I, Ajith S, Bossis I, Tsaftaris A. A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case. PLANT CELL REPORTS 2016; 35:2241-2255. [PMID: 27473525 DOI: 10.1007/s00299-016-2031-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
A selection-free, highly efficient targeted mutagenesis approach based on a novel ZFN monomer arrangement for genome engineering in tomato reveals plant trait modifications. How to achieve precise gene targeting in plants and especially in crops remains a long-sought goal for elucidating gene function and advancing molecular breeding. To address this issue, zinc finger nuclease (ZFN)-based technology was developed for the Solanum lycopersicum seed system. A ZFN architecture design with an intronic sequence between the two DNA recognition sites was evaluated for its efficiency in targeted gene mutagenesis. Custom engineered ZFNs for the developmental regulator LEAFY-COTYLEDON1-LIKE4 (L1L4) coding for the β subunit of nuclear factor Y, when transiently expressed in tomato seeds, cleaved the target site and stimulated imperfect repair driven by nonhomologous end-joining, thus, introducing mutations into the endogenous target site. The successful in planta application of the ZFN platform resulted in L1L4 mutations which conferred heterochronic phenotypes during development. Our results revealed that sequence changes upstream of the DNA binding domain of L1L4 can lead to phenotypic diversity including fruit organ. These results underscore the utility of engineered ZFN approach in targeted mutagenesis of tomato plant which may accelerate translational research and tomato breeding.
Collapse
Affiliation(s)
- Zoe Hilioti
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, 57001, Greece.
| | - Ioannis Ganopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, 57001, Greece
| | - Sabna Ajith
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, 57001, Greece
| | - Ioannis Bossis
- Animal Science Department, Agricultural University of Athens, Athens, 11855, Greece
| | - Athanasios Tsaftaris
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, 57001, Greece
| |
Collapse
|
24
|
Pernet O, Yadav SS, An DS. Stem cell-based therapies for HIV/AIDS. Adv Drug Deliv Rev 2016; 103:187-201. [PMID: 27151309 PMCID: PMC4935568 DOI: 10.1016/j.addr.2016.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/26/2022]
Abstract
One of the current focuses in HIV/AIDS research is to develop a novel therapeutic strategy that can provide a life-long remission of HIV/AIDS without daily drug treatment and, ultimately, a cure for HIV/AIDS. Hematopoietic stem cell-based anti-HIV gene therapy aims to reconstitute the patient immune system by transplantation of genetically engineered hematopoietic stem cells with anti-HIV genes. Hematopoietic stem cells can self-renew, proliferate and differentiate into mature immune cells. In theory, anti-HIV gene-modified hematopoietic stem cells can continuously provide HIV-resistant immune cells throughout the life of a patient. Therefore, hematopoietic stem cell-based anti-HIV gene therapy has a great potential to provide a life-long remission of HIV/AIDS by a single treatment. Here, we provide a comprehensive review of the recent progress of developing anti-HIV genes, genetic modification of hematopoietic stem progenitor cells, engraftment and reconstitution of anti-HIV gene-modified immune cells, HIV inhibition in in vitro and in vivo animal models, and in human clinical trials.
Collapse
Affiliation(s)
- Olivier Pernet
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| | - Swati Seth Yadav
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| | - Dong Sung An
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; Hematology-Oncology, The Department of Medicine, David Geffen School of Medicine at UCLA, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| |
Collapse
|
25
|
Samanta MK, Dey A, Gayen S. CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res 2016; 25:561-73. [PMID: 27012546 DOI: 10.1007/s11248-016-9953-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/19/2016] [Indexed: 12/26/2022]
Abstract
To meet current challenges in agriculture, genome editing using sequence-specific nucleases (SSNs) is a powerful tool for basic and applied plant biology research. Here, we describe the principle and application of available genome editing tools, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat associated CRISPR/Cas9 system. Among these SSNs, CRISPR/Cas9 is the most recently characterized and rapidly developing genome editing technology, and has been successfully utilized in a wide variety of organisms. This review specifically illustrates the power of CRISPR/Cas9 as a tool for plant genome engineering, and describes the strengths and weaknesses of the CRISPR/Cas9 technology compared to two well-established genome editing tools, ZFNs and TALENs.
Collapse
Affiliation(s)
- Milan Kumar Samanta
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | - Avishek Dey
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | - Srimonta Gayen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
26
|
Camarasa MV, Gálvez VM. Robust method for TALEN-edited correction of pF508del in patient-specific induced pluripotent stem cells. Stem Cell Res Ther 2016; 7:26. [PMID: 26861665 PMCID: PMC4748475 DOI: 10.1186/s13287-016-0275-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 01/06/2016] [Indexed: 01/11/2023] Open
Abstract
Cystic fibrosis is one of the most frequent inherited rare diseases, caused by mutations in the cystic fibrosis transmembrane conductance regulator gene. Apart from symptomatic treatments, therapeutic protocols for curing the disease have not yet been established. The regeneration of genetically corrected, disease-free epithelia in cystic fibrosis patients is envisioned by designing a stem cell/genetic therapy in which patient-derived pluripotent stem cells are genetically corrected, from which target tissues are derived. In this framework, we present an efficient method for seamless correction of pF508del mutation in patient-specific induced pluripotent stem cells by gene edited homologous recombination. Gene edition has been performed by transcription activator-like effector nucleases and a homologous recombination donor vector which contains a PiggyBac transposon-based double selectable marker cassette. This new method has been designed to partially avoid xenobiotics from the culture system, improve cell culture efficiency and genome stability by using a robust culture system method, and optimize timings. Overall, once the pluripotent cells have been amplified for the first nucleofection, the procedure can be completed in 69 days, and can be easily adapted to edit and change any gene of interest.
Collapse
Affiliation(s)
- María Vicenta Camarasa
- Caubet-Cimera Foundation, Hospital Joan March, Ctra Soller Km 12, 07110, Bunyola, Mallorca, Spain.
| | - Víctor Miguel Gálvez
- Caubet-Cimera Foundation, Hospital Joan March, Ctra Soller Km 12, 07110, Bunyola, Mallorca, Spain
| |
Collapse
|
27
|
DiGiusto DL. Stem cell gene therapy for HIV: strategies to inhibit viral entry and replication. Curr HIV/AIDS Rep 2016; 12:79-87. [PMID: 25578054 DOI: 10.1007/s11904-014-0242-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since the demonstration of a cure of an HIV+ patient with an allogeneic stem cell transplant using naturally HIV-resistant cells, significant interest in creating similar autologous products has fueled the development of a variety of "cell engineering" approaches to stem cell therapy for HIV. Among the more well-studied strategies is the inhibition of viral entry through disruption of expression of viral co-receptors or through competitive inhibitors of viral fusion with the cell membrane. Preclinical evaluation of these approaches often starts in vitro but ultimately is tested in animal models prior to clinical implementation. In this review, we trace the development of several key approaches (meganucleases, short hairpin RNA (shRNA), and fusion inhibitors) to modification of hematopoietic stem cells designed to impart resistance to HIV to their T-cell and monocytic progeny. The basic evolution of technologies through in vitro and in vivo testing is discussed as well as the pros and cons of each approach and how the addition of postentry inhibitors may enhance the overall antiviral efficacy of these approaches.
Collapse
Affiliation(s)
- David L DiGiusto
- Department of Stem Cell and Cell Therapeutic Operations, Stanford Hospital and Clinics, 300 Pasteur Drive, Stanford, CA, 94305, USA,
| |
Collapse
|
28
|
Llewellyn GN, Exline CM, Holt N, Cannon PM. Using Engineered Nucleases to Create HIV-Resistant Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Chandrasegaran S, Carroll D. Origins of Programmable Nucleases for Genome Engineering. J Mol Biol 2015; 428:963-89. [PMID: 26506267 DOI: 10.1016/j.jmb.2015.10.014] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023]
Abstract
Genome engineering with programmable nucleases depends on cellular responses to a targeted double-strand break (DSB). The first truly targetable reagents were the zinc finger nucleases (ZFNs) showing that arbitrary DNA sequences could be addressed for cleavage by protein engineering, ushering in the breakthrough in genome manipulation. ZFNs resulted from basic research on zinc finger proteins and the FokI restriction enzyme (which revealed a bipartite structure with a separable DNA-binding domain and a non-specific cleavage domain). Studies on the mechanism of cleavage by 3-finger ZFNs established that the preferred substrates were paired binding sites, which doubled the size of the target sequence recognition from 9 to 18bp, long enough to specify a unique genomic locus in plant and mammalian cells. Soon afterwards, a ZFN-induced DSB was shown to stimulate homologous recombination in cells. Transcription activator-like effector nucleases (TALENs) that are based on bacterial TALEs fused to the FokI cleavage domain expanded this capability. The fact that ZFNs and TALENs have been used for genome modification of more than 40 different organisms and cell types attests to the success of protein engineering. The most recent technology platform for delivering a targeted DSB to cellular genomes is that of the RNA-guided nucleases, which are based on the naturally occurring Type II prokaryotic CRISPR-Cas9 system. Unlike ZFNs and TALENs that use protein motifs for DNA sequence recognition, CRISPR-Cas9 depends on RNA-DNA recognition. The advantages of the CRISPR-Cas9 system-the ease of RNA design for new targets and the dependence on a single, constant Cas9 protein-have led to its wide adoption by research laboratories around the world. These technology platforms have equipped scientists with an unprecedented ability to modify cells and organisms almost at will, with wide-ranging implications across biology and medicine. However, these nucleases have also been shown to cut at off-target sites with mutagenic consequences. Therefore, issues such as efficacy, specificity and delivery are likely to drive selection of reagents for particular purposes. Human therapeutic applications of these technologies will ultimately depend on risk versus benefit analysis and informed consent.
Collapse
Affiliation(s)
- Srinivasan Chandrasegaran
- Department of Environmental Health Sciences, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
30
|
Jo YI, Kim H, Ramakrishna S. Recent developments and clinical studies utilizing engineered zinc finger nuclease technology. Cell Mol Life Sci 2015; 72:3819-30. [PMID: 26089249 PMCID: PMC11113831 DOI: 10.1007/s00018-015-1956-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 12/27/2022]
Abstract
Efficient methods for creating targeted genetic modifications have long been sought for the investigation of gene function and the development of therapeutic modalities for various diseases, including genetic disorders. Although such modifications are possible using homologous recombination, the efficiency is extremely low. Zinc finger nucleases (ZFNs) are custom-designed artificial nucleases that make double-strand breaks at specific sequences, enabling efficient targeted genetic modifications such as corrections, additions, gene knockouts and structural variations. ZFNs are composed of two domains: (i) a DNA-binding domain comprised of zinc finger modules and (ii) the FokI nuclease domain that cleaves the DNA strand. Over 17 years after ZFNs were initially developed, a number of improvements have been made. Here, we will review the developments and future perspectives of ZFN technology. For example, ZFN activity and specificity have been significantly enhanced by modifying the DNA-binding domain and FokI cleavage domain. Advances in culture methods, such as the application of a cold shock and the use of small molecules that affect ZFN stability, have also increased ZFN activity. Furthermore, ZFN-induced mutant cells can be enriched using episomal surrogate reporters. Additionally, we discuss several ongoing clinical studies that are based on ZFN-mediated genome editing in humans. These breakthroughs have substantially facilitated the use of ZFNs in research, medicine and biotechnology.
Collapse
Affiliation(s)
| | - Hyongbum Kim
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program of Nano Science and Technology, Yonsei University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Sungdong-gu, Seoul, South Korea.
| |
Collapse
|
31
|
In vitro gene manipulation of spinal muscular atrophy fibroblast cell line using gene-targeting fragment for restoration of SMN protein expression. Gene Ther 2015; 23:10-7. [DOI: 10.1038/gt.2015.92] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 06/17/2015] [Accepted: 08/05/2015] [Indexed: 11/08/2022]
|
32
|
Liu X, Hao R, Chen S, Guo D, Chen Y. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J Gen Virol 2015; 96:2252-2261. [PMID: 25904148 DOI: 10.1099/vir.0.000159] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) remains a global health threat as chronic HBV infection may lead to liver cirrhosis or cancer. Current antiviral therapies with nucleoside analogues can inhibit the replication of HBV, but do not disrupt the already existing HBV covalently closed circular DNA. The newly developed CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a powerful tool to target cellular genome DNA for gene editing. In order to investigate the possibility of using the CRISPR/Cas9 system to disrupt the HBV DNA templates, we designed eight guide RNAs (gRNAs) that targeted the conserved regions of different HBV genotypes, which could significantly inhibit HBV replication both in vitro and in vivo. Moreover, the HBV-specific gRNA/Cas9 system could inhibit the replication of HBV of different genotypes in cells, and the viral DNA was significantly reduced by a single gRNA/Cas9 system and cleared by a combination of different gRNA/Cas9 systems.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Ruidong Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Deyin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.,School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| |
Collapse
|
33
|
Khalili K, Kaminski R, Gordon J, Cosentino L, Hu W. Genome editing strategies: potential tools for eradicating HIV-1/AIDS. J Neurovirol 2015; 21:310-21. [PMID: 25716921 DOI: 10.1007/s13365-014-0308-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022]
Abstract
Current therapy for controlling human immunodeficiency virus (HIV-1) infection and preventing acquired immunodeficiency syndrome (AIDS) progression has profoundly decreased viral replication in cells susceptible to HIV-1 infection, but it does not eliminate the low level of viral replication in latently infected cells, which contain integrated copies of HIV-1 proviral DNA. There is an urgent need for the development of HIV-1 genome eradication strategies that will lead to a permanent or "sterile" cure of HIV-1/AIDS. In the past few years, novel nuclease-initiated genome editing tools have been developing rapidly, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system. These surgical knives, which can excise any genome, provide a great opportunity to eradicate the HIV-1 genome by targeting highly conserved regions of the HIV-1 long terminal repeats or essential viral genes. Given the time consuming and costly engineering of target-specific ZFNs and TALENs, the RNA-guided endonuclease Cas9 technology has emerged as a simpler and more versatile technology to allow permanent removal of integrated HIV-1 proviral DNA in eukaryotic cells, and hopefully animal models or human patients. The major unmet challenges of this approach at present include inefficient nuclease gene delivery, potential off-target cleavage, and cell-specific genome targeting. Nanoparticle or lentivirus-mediated delivery of next generation Cas9 technologies including nickase or RNA-guided FokI nuclease (RFN) will further improve the potential for genome editing to become a promising approach for curing HIV-1/AIDS.
Collapse
Affiliation(s)
- Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA, 19140, USA,
| | | | | | | | | |
Collapse
|
34
|
Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. PLANT MOLECULAR BIOLOGY 2015; 87:99-110. [PMID: 25344637 DOI: 10.1007/s11103-014-0263-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/17/2014] [Indexed: 05/18/2023]
Abstract
Genome editing is one of the most powerful tools for revealing gene function and improving crop plants. Recently, RNA-guided genome editing using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system has been used as a powerful and efficient tool for genome editing in various organisms. Here, we report genome editing in tobacco (Nicotiana tabacum) mediated by the CRISPR/Cas9 system. Two genes, NtPDS and NtPDR6, were used for targeted mutagenesis. First, we examined the transient genome editing activity of this system in tobacco protoplasts, insertion and deletion (indel) mutations were observed with frequencies of 16.2-20.3% after transfecting guide RNA (gRNA) and the nuclease Cas9 in tobacco protoplasts. The two genes were also mutated using multiplexing gRNA at a time. Additionally, targeted deletions and inversions of a 1.8-kb fragment between two target sites in the NtPDS locus were demonstrated, while indel mutations were also detected at both the sites. Second, we obtained transgenic tobacco plants with NtPDS and NtPDR6 mutations induced by Cas9/gRNA. The mutation percentage was 81.8% for NtPDS gRNA4 and 87.5% for NtPDR6 gRNA2. Obvious phenotypes were observed, etiolated leaves for the psd mutant and more branches for the pdr6 mutant, indicating that highly efficient biallelic mutations occurred in both transgenic lines. No significant off-target mutations were obtained. Our results show that the CRISPR/Cas9 system is a useful tool for targeted mutagenesis of the tobacco genome.
Collapse
Affiliation(s)
- Junping Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bertoni C. Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells. Front Physiol 2014; 5:148. [PMID: 24795643 PMCID: PMC4001063 DOI: 10.3389/fphys.2014.00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/28/2014] [Indexed: 01/06/2023] Open
Abstract
The progressive loss of muscle mass characteristic of many muscular dystrophies impairs the efficacy of most of the gene and molecular therapies currently being pursued for the treatment of those disorders. It is becoming increasingly evident that a therapeutic application, to be effective, needs to target not only mature myofibers, but also muscle progenitors cells or muscle stem cells able to form new muscle tissue and to restore myofibers lost as the result of the diseases or during normal homeostasis so as to guarantee effective and lost lasting effects. Correction of the genetic defect using oligodeoxynucleotides (ODNs) or engineered nucleases holds great potential for the treatment of many of the musculoskeletal disorders. The encouraging results obtained by studying in vitro systems and model organisms have set the groundwork for what is likely to become an emerging field in the area of molecular and regenerative medicine. Furthermore, the ability to isolate and expand from patients various types of muscle progenitor cells capable of committing to the myogenic lineage provides the opportunity to establish cell lines that can be used for transplantation following ex vivo manipulation and expansion. The purpose of this article is to provide a perspective on approaches aimed at correcting the genetic defect using gene editing strategies and currently under development for the treatment of Duchenne muscular dystrophy (DMD), the most sever of the neuromuscular disorders. Emphasis will be placed on describing the potential of using the patient own stem cell as source of transplantation and the challenges that gene editing technologies face in the field of regenerative biology.
Collapse
Affiliation(s)
- Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles CA, USA
| |
Collapse
|
36
|
Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS One 2014; 9:e95225. [PMID: 24743319 PMCID: PMC3990601 DOI: 10.1371/journal.pone.0095225] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/24/2014] [Indexed: 11/19/2022] Open
Abstract
Genetically engineered zinc-finger nucleases (ZFNs) are useful for marker-free gene targeting using a one-step approach. We used ZFNs to efficiently disrupt bovine myostatin (MSTN), which was identified previously as the gene responsible for double muscling in cattle. The mutation efficiency of bovine somatic cells was approximately 20%, and the biallelic mutation efficiency was 8.3%. To evaluate the function of the mutated MSTN locus before somatic cell nuclear transfer, MSTN mRNA and protein expression was examined in four mutant cell colonies. We generated marker-gene-free cloned cattle, in which the MSTN biallelic mutations consisted of a 6-bp deletion in one of the alleles and a 117-bp deletion and 9-bp insertion in the other allele, resulting in at least four distinct mRNA splice variants. In the MSTN mutant cattle, the total amount of MSTN protein with the C-terminal domain was reduced by approximately 50%, and hypertrophied muscle fibers of the quadriceps and the double-muscled phenotype appeared at one month of age. Our proof-of-concept study is the first to produce MSTN mutations in cattle, and may allow the development of genetically modified strains of double-muscled cattle.
Collapse
|
37
|
Gene therapy targeting HIV entry. Viruses 2014; 6:1395-409. [PMID: 24662607 PMCID: PMC3970157 DOI: 10.3390/v6031395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/19/2014] [Accepted: 02/26/2014] [Indexed: 12/19/2022] Open
Abstract
Despite the unquestionable success of antiretroviral therapy (ART) in the treatment of HIV infection, the cost, need for daily adherence, and HIV-associated morbidities that persist despite ART all underscore the need to develop a cure for HIV. The cure achieved following an allogeneic hematopoietic stem cell transplant (HSCT) using HIV-resistant cells, and more recently, the report of short-term but sustained, ART-free control of HIV replication following allogeneic HSCT, using HIV susceptible cells, have served to both reignite interest in HIV cure research, and suggest potential mechanisms for a cure. In this review, we highlight some of the obstacles facing HIV cure research today, and explore the roles of gene therapy targeting HIV entry, and allogeneic stem cell transplantation in the development of strategies to cure HIV infection.
Collapse
|
38
|
Cradick TJ, Antico CJ, Bao G. High-throughput cellular screening of engineered nuclease activity using the single-strand annealing assay and luciferase reporter. Methods Mol Biol 2014; 1114:339-352. [PMID: 24557914 DOI: 10.1007/978-1-62703-761-7_22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Engineered nucleases have been used to generate many model organisms and show great promise for therapeutic genome editing. Current methods to evaluate the activity of these nucleases can be laborious and often are hampered by readouts with small signals and a significant amount of background noise. We present a simple method that utilizes the established single-strand annealing (SSA) assay coupled with a luciferase assay to generate a high-throughput analysis of nuclease activity. Luciferase reporters provide a higher signal and lower background levels than fluorescent reporters. We engineered a commercially available luciferase plasmid (pGL4.51, Promega) to generate a set of nuclease target plasmids that produce a high signal and activity that correlates well with in vitro data. The SSA luciferase assay can discriminate between nucleases that give similar signals with other nuclease activity assays. The target plasmid and nucleases are transfected into cells and are generally cultured for 2 days. Luciferase activity is quantified in the same cell culture plate--streamlining the process from transfection to assay. We have used this robust process to investigate the activity of zinc finger nucleases (ZFNs) and transcription activated-like effector nucleases (TALENs).
Collapse
Affiliation(s)
- Thomas J Cradick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | |
Collapse
|
39
|
Manjunath N, Yi G, Dang Y, Shankar P. Newer gene editing technologies toward HIV gene therapy. Viruses 2013; 5:2748-66. [PMID: 24284874 PMCID: PMC3856413 DOI: 10.3390/v5112748] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/02/2013] [Accepted: 11/08/2013] [Indexed: 01/27/2023] Open
Abstract
Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called "Berlin patient" who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.
Collapse
Affiliation(s)
- N. Manjunath
- Authors to whom correspondence should be addressed; E-Mails: (N.M.); (P.S.); Tel.: +1-915-215-4241 (N.M.); +1-915-215-4242 (P.S); Fax: +1-915-783-1271 (N.M. and P.S)
| | | | | | - Premlata Shankar
- Authors to whom correspondence should be addressed; E-Mails: (N.M.); (P.S.); Tel.: +1-915-215-4241 (N.M.); +1-915-215-4242 (P.S); Fax: +1-915-783-1271 (N.M. and P.S)
| |
Collapse
|
40
|
Gross GG, Junge JA, Mora RJ, Kwon HB, Olson CA, Takahashi TT, Liman ER, Ellis-Davies GCR, McGee AW, Sabatini BL, Roberts RW, Arnold DB. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 2013; 78:971-85. [PMID: 23791193 PMCID: PMC3779638 DOI: 10.1016/j.neuron.2013.04.017] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
Abstract
The ability to visualize endogenous proteins in living neurons provides a powerful means to interrogate neuronal structure and function. Here we generate recombinant antibody-like proteins, termed Fibronectin intrabodies generated with mRNA display (FingRs), that bind endogenous neuronal proteins PSD-95 and Gephyrin with high affinity and that, when fused to GFP, allow excitatory and inhibitory synapses to be visualized in living neurons. Design of the FingR incorporates a transcriptional regulation system that ties FingR expression to the level of the target and reduces background fluorescence. In dissociated neurons and brain slices, FingRs generated against PSD-95 and Gephyrin did not affect the expression patterns of their endogenous target proteins or the number or strength of synapses. Together, our data indicate that PSD-95 and Gephyrin FingRs can report the localization and amount of endogenous synaptic proteins in living neurons and thus may be used to study changes in synaptic strength in vivo.
Collapse
Affiliation(s)
- Garrett G Gross
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pillay LM, Selland LG, Fleisch VC, Leighton PLA, Cheng CS, Famulski JK, Ritzel RG, March LD, Wang H, Allison WT, Waskiewicz AJ. Evaluating the mutagenic activity of targeted endonucleases containing a Sharkey FokI cleavage domain variant in zebrafish. Zebrafish 2013; 10:353-64. [PMID: 23781947 DOI: 10.1089/zeb.2012.0832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic targeted endonucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have recently emerged as powerful tools for targeted mutagenesis, especially in organisms that are not amenable to embryonic stem cell manipulation. Both ZFNs and TALENs consist of DNA-binding arrays that are fused to the nonspecific FokI nuclease domain. In an effort to improve targeted endonuclease mutagenesis efficiency, we enhanced their catalytic activity using the Sharkey FokI nuclease domain variant. All constructs tested display increased DNA cleavage activity in vitro. We demonstrate that one out of four ZFN arrays containing the Sharkey FokI variant exhibits a dramatic increase in mutagenesis frequency in vivo in zebrafish. The other three ZFNs exhibit no significant alteration of activity in vivo. Conversely, we demonstrate that TALENs containing the Sharkey FokI variant exhibit absent or severely reduced in vivo mutagenic activity in zebrafish. Notably, Sharkey ZFNs and TALENs do not generate increased toxicity-related defects or mortality. Our results present Sharkey ZFNs as an effective alternative to conventional ZFNs, but advise against the use of Sharkey TALENs.
Collapse
Affiliation(s)
- Laura M Pillay
- Department of Biological Sciences, University of Alberta , Edmonton, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Genome engineering--the ability to precisely alter the DNA information in living cells--is beginning to transform human genetics and genomics. Advances in tools and methods have enabled genetic modifications ranging from the "scarless" correction of a single base pair to the deletion of entire chromosomes. Targetable nucleases are leading the advances in this field, providing the tools to modify any gene in seemingly any organism with high efficiency. Targeted gene alterations have now been reported in more than 30 diverse species, ending the reign of mice as the exclusive model of mammalian genetics, and targetable nucleases have been used to modify more than 150 human genes and loci. A nuclease has also already entered clinical trials, signaling the beginning of genome engineering as therapy. The recent dramatic increase in the number of investigators using these techniques signifies a transition away from methods development toward a new age of exciting applications.
Collapse
Affiliation(s)
- David J Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616;
| | | |
Collapse
|
43
|
Sarkar A, Kumar S, Punetha A, Grover A, Sundar D. Analysis and Prediction of DNA-Recognition by Zinc Finger Proteins. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Zinc fingers are the most abundant class of DNA-binding proteins encoded in the eukaryotic genomes. Custom-designed zinc finger proteins attached to various DNA-modifying domains can be used to achieve highly specific genome modification, which has tremendous applications in molecular therapeutics. Analysis of sequence and structure of the zinc finger proteins provides clues for understanding protein-DNA interactions and aid in custom-design of zinc finger proteins with tailor-made specificity. Computational methods for prediction of recognition helices for C2H2 zinc fingers that bind to specific target DNA sites could provide valuable insights for researchers interested in designing specific zinc finger proteins for biological and biomedical applications. In this chapter, we describe the zinc finger protein-DNA interaction patterns, challenges in engineering the recognition-specificity of zinc finger proteins, the computational methods of prediction of proteins that recognize specific target DNA sequence and their applications in molecular therapeutics.
Collapse
|
44
|
Lee CM, Flynn R, Hollywood JA, Scallan MF, Harrison PT. Correction of the ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Gene by Zinc-Finger Nuclease Homology-Directed Repair. Biores Open Access 2013; 1:99-108. [PMID: 23514673 PMCID: PMC3559198 DOI: 10.1089/biores.2012.0218] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of zinc-finger nucleases (ZFNs) to permanently and precisely modify the human genome offers a potential alternative to cDNA-based gene therapy. The ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is observed in ∼70% of patients with cystic fibrosis (CF) and is a candidate for ZFN-mediated repair. Here, we report the modular design and synthesis of a pair of ZFNs that can create a double-stranded break (DSB) 203 bp upstream of the ΔF508 lesion, resulting in a nonhomologous end-joining (NHEJ) frequency of 7.8%. In spite of this relatively long distance between the DSB and the ΔF508 mutation, homology-directed repair (HDR) could be detected when using a DNA donor containing part of the wild-type (WT) CFTR. The ZFN target half-sites in CFTR are separated by a 4-bp spacer, but efficient cleavage of synthetic targets with either a 4- or 6-bp spacer was observed in vitro. These ZFNs may be suitable for a genome-editing strategy using a partial cDNA sequence-containing exons 10–24 of CFTR to restore CFTR function to cells containing not only the ΔF508 mutation but also potentially any mutation in or downstream of exon 10.
Collapse
Affiliation(s)
- Ciaran M Lee
- Department of Physiology, University College Cork , Cork, Ireland . ; Department of Microbiology, University College Cork , Cork, Ireland
| | | | | | | | | |
Collapse
|
45
|
Antunes MS, Smith JJ, Jantz D, Medford JI. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BMC Biotechnol 2012; 12:86. [PMID: 23148662 PMCID: PMC3536558 DOI: 10.1186/1472-6750-12-86] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 10/26/2012] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND A systematic method for plant genome manipulation is a major aim of plant biotechnology. One approach to achieving this involves producing a double-strand DNA break at a genomic target site followed by the introduction or removal of DNA sequences by cellular DNA repair. Hence, a site-specific endonuclease capable of targeting double-strand breaks to unique locations in the plant genome is needed. RESULTS We engineered and tested a synthetic homing endonuclease, PB1, derived from the I-CreI endonuclease of Chlamydomonas reinhardtii, which was re-designed to recognize and cleave a newly specified DNA sequence. We demonstrate that an activity-optimized version of the PB1 endonuclease, under the control of a heat-inducible promoter, is capable of targeting DNA breaks to an introduced PB1 recognition site in the genome of Arabidopsis thaliana. We further demonstrate that this engineered endonuclease can very efficiently excise unwanted transgenic DNA, such as an herbicide resistance marker, from the genome when the marker gene is flanked by PB1 recognition sites. Interestingly, under certain conditions the repair of the DNA junctions resulted in a conservative pairing of recognition half sites to remove the intervening DNA and reconstitute a single functional recognition site. CONCLUSION These results establish parameters needed to use engineered homing endonucleases for the modification of endogenous loci in plant genomes.
Collapse
Affiliation(s)
- Mauricio S Antunes
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - J Jeff Smith
- Precision BioSciences, 302 East Pettigrew Street, Dibrell Building, Suite A-100, Durham, North Carolina 27701, USA
| | - Derek Jantz
- Precision BioSciences, 302 East Pettigrew Street, Dibrell Building, Suite A-100, Durham, North Carolina 27701, USA
| | - June I Medford
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
46
|
Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A. Genome modifications in plant cells by custom-made restriction enzymes. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:373-89. [PMID: 22469004 DOI: 10.1111/j.1467-7652.2011.00672.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Genome editing, i.e. the ability to mutagenize, insert, delete and replace sequences, in living cells is a powerful and highly desirable method that could potentially revolutionize plant basic research and applied biotechnology. Indeed, various research groups from academia and industry are in a race to devise methods and develop tools that will enable not only site-specific mutagenesis but also controlled foreign DNA integration and replacement of native and transgene sequences by foreign DNA, in living plant cells. In recent years, much of the progress seen in gene targeting in plant cells has been attributed to the development of zinc finger nucleases and other novel restriction enzymes for use as molecular DNA scissors. The induction of double-strand breaks at specific genomic locations by zinc finger nucleases and other novel restriction enzymes results in a wide variety of genetic changes, which range from gene addition to the replacement, deletion and site-specific mutagenesis of endogenous and heterologous genes in living plant cells. In this review, we discuss the principles and tools for restriction enzyme-mediated gene targeting in plant cells, as well as their current and prospective use for gene targeting in model and crop plants.
Collapse
Affiliation(s)
- Tzvi Tzfira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
47
|
Puria R, Sahi S, Nain V. HER2+ Breast Cancer Therapy: By CPP-ZFN Mediated Targeting of mTOR? Technol Cancer Res Treat 2012; 11:175-80. [DOI: 10.7785/tcrt.2012.500247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A significant fraction of HER2+ patients develop resistance to available therapies such as trastuzumab. The acquired resistance is primarily due to hyper activation of HER2 downstream PI3K/Akt/mTOR signalling pathway. Hence, identification of inhibitors of components of this pathway, particularly mTOR, is an area of intense investigation. Interestingly, mTOR specific inhibitors (rapamycin/rapalogs) have been tested and shown to potentiate the effect of HER2 inhibitors. However, the use of mTOR inhibitors will also be associated with the limitations inherently linked with extensive use of anticancer drugs e.g., toxicity and acquired drug resistance. Hereby, we hypothesize development of an alternative novel molecular therapeutic intervention based on cell penetrating peptide (CPP), a highly efficient carrier, conjugated to zinc finger nuclease (ZFN), a precise molecular scissor. The use of HER2 specific CPP conjugated to mTOR specific ZFN, will make the mTOR locus non-functional and inhibit the PI3K/Akt/mTOR pathway, essential for growth and proliferation of cancerous cells. With the availability of HER2+ cancerous cell specific CPP and proved applications of ZFN in targeted genome engineering of over 11 species, the prospects of success of CPP-ZFN anti-cancer therapy are very high.
Collapse
Affiliation(s)
- Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater NOIDA, Gautam Budh Nagar-201310, India
| | - Shakti Sahi
- School of Biotechnology, Gautam Buddha University, Greater NOIDA, Gautam Budh Nagar-201310, India
| | - Vikrant Nain
- School of Biotechnology, Gautam Buddha University, Greater NOIDA, Gautam Budh Nagar-201310, India
| |
Collapse
|
48
|
Rousseau J, Chapdelaine P, Boisvert S, Almeida LP, Corbeil J, Montpetit A, Tremblay JP. Endonucleases: tools to correct the dystrophin gene. J Gene Med 2012; 13:522-37. [PMID: 21954090 DOI: 10.1002/jgm.1611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Various endonucleases can be engineered to induce double-strand breaks (DSBs) in chosen DNA sequences. These DSBs are spontaneously repaired by nonhomologous-end-joining, resulting in micro-insertions or micro-deletions (INDELs). We detected, characterized and quantified the frequency of INDELs produced by one meganuclease (MGN) targeting the RAG1 gene, six MGNs targeting three introns of the human dystrophin gene and one pair of zinc finger nucleases (ZFNs) targeting exon 50 of the human dystrophin gene. The experiments were performed in human cells (i.e. 293 T cells, myoblasts and myotubes). METHODS To analyse the INDELs produced by the endonucleases the targeted region was polymerase chain reaction amplified and the amplicons were digested with the Surveyor enzyme, cloned in bacteria or deep sequenced. RESULTS Endonucleases targeting the dystrophin gene produced INDELs of different sizes but there were clear peaks in the size distributions. The positions of these peaks were similar for MGNs but not for ZFNs in 293 T cells and in myoblasts. The size of the INDELs produced by these endonucleases in the dystrophin gene would have permitted a change in the reading frame. In a subsequent experiment, we observed that the frequency of INDELs was increased by re-exposition of the cells to the same endonuclease. CONCLUSIONS Endonucleases are able to: (i) restore the normal reading of a gene with a frame shift mutation; (ii) delete a nonsense codon; and (iii) knockout a gene. Endonucleases could thus be used to treat Duchenne muscular dystrophy and other hereditary diseases that are the result of a nonsense codon or a frame shift mutation.
Collapse
Affiliation(s)
- Joel Rousseau
- Unité de Recherche de Recherche en Génétique Humaine, Centre de Recherche de CHUL, CHUQ, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Novel approaches to inhibit HIV entry. Viruses 2012; 4:309-24. [PMID: 22470838 PMCID: PMC3315218 DOI: 10.3390/v4020309] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/17/2012] [Accepted: 02/07/2012] [Indexed: 12/22/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) entry into target cells is a multi-step process involving binding of the viral glycoprotein, Env, to its receptor CD4 and a coreceptor-either CCR5 or CXCR4. Understanding the means by which HIV enters cells has led to the identification of genetic polymorphisms, such as the 32 base-pair deletion in the ccr5 gene (ccr5∆32) that confers resistance to infection in homozygous individuals, and has also resulted in the development of entry inhibitors-small molecule antagonists that block infection at the entry step. The recent demonstration of long-term control of HIV infection in a leukemic patient following a hematopoietic stem cell transplant using cells from a ccr5∆32 homozygous donor highlights the important role of the HIV entry in maintaining an established infection and has led to a number of attempts to treat HIV infection by genetically modifying the ccr5 gene. In this review, we describe the HIV entry process and provide an overview of the different classes of approved HIV entry inhibitors while highlighting novel genetic strategies aimed at blocking HIV infection at the level of entry.
Collapse
|
50
|
Schlecht HP, Schellhorn S, Dezube BJ, Jacobson JM. New approaches in the treatment of HIV/AIDS - focus on maraviroc and other CCR5 antagonists. Ther Clin Risk Manag 2011; 4:473-85. [PMID: 18728830 PMCID: PMC2504054 DOI: 10.2147/tcrm.s1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Treatment of HIV-1 infection has produced dramatic success for many patients. Nevertheless, viral resistance continues to limit the efficacy of currently available agents in many patients. The CCR5 antagonists are a new class of antiretroviral agents that target a necessary coreceptor for viral entry of many strains of HIV-1. Recently, the first agent within this class, maraviroc, was approved by a number of regulatory agencies, including the Food and Drug Administration. Herein we review the role of the CCR5 receptor in HIV-1 infection and potential methods to target it in anti-HIV-1 therapy. We review the various categories of agents and discuss specific agents that have progressed to clinical study. We discuss in detail the recently approved, first in class CCR5 antagonist, maraviroc, and discuss aspects of resistance to CCR5 antagonism and the potential role of CCR5 antagonism in the management of HIV-1 infection.
Collapse
Affiliation(s)
- Hans P Schlecht
- Department of Medicine (Infectious Diseases), Hahnemann University Hospital, Drexel University College of Medicine Philadelphia, PA, USA
| | | | | | | |
Collapse
|