1
|
Kakularam KR, Gündem E, Stehling S, Rothe M, Heydeck D, Kuhn H. Eicosanoid biosynthesizing enzymes in Prototheria. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159569. [PMID: 39389415 DOI: 10.1016/j.bbalip.2024.159569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Eicosanoids and related compounds are pleiotropic lipid mediators, which play a role in cell differentiation and in the pathogenesis of various diseases. The biosynthesis of these lipids has extensively been studied in highly developed mammals including humans but little is known about the formation of these mediators in more ancient Prototheria. We searched the genomes of two extant prototherian species (platypus, short-beaked echidna) for genes encoding for lipoxygenase- (ALOX) and prostaglandin synthase-isoforms (PTGS) and detected intact single copy genes for ALOX5, ALOX12, ALOX12B, ALOXE3, PTGS1 and PTGS2. Moreover, we identified two copies of ALOX15B genes (ALOX15B-1 and ALOX15B-2) but in echidna the ALOX15B-2 gene was structurally corrupted. Interestingly, in the two genomes ALOX15 genes were lacking. For functional characterization we expressed the prototherian ALOX15B isoforms and compared important enzyme characteristics of the wildtype proteins and of relevant enzyme mutants with those of human and mouse ALOX15B. Here we observed that the prototherian ALOX15B isoforms exhibit the same reaction specificity as their human ortholog. Mutagenesis of the Triad determinants did not alter the reaction specificity of the prototherian enzymes but modification of the Jisaka determinants murinized the catalytic properties. These data indicate that Prototheria exhibit an active eicosanoid metabolism. They express functional ALOX15B orthologs but lack ALOX15 genes. These observations and the previous findings that ALOX15 orthologs rarely occur in non-mammalian vertebrates such as fish and birds suggest that ALOX15 orthologs were introduced during Prototheria-Metatheria transition via an ALOX15B gene duplication and subsequent divergent enzyme evolution.
Collapse
Affiliation(s)
- Kumar R Kakularam
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Charitéplatz 1, D-10117 Berlin, Germany
| | - Eda Gündem
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sabine Stehling
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Charitéplatz 1, D-10117 Berlin, Germany
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössler-Straße 10, 13125 Berlin, Germany
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
2
|
Oliw EH. Thirty years with three-dimensional structures of lipoxygenases. Arch Biochem Biophys 2024; 752:109874. [PMID: 38145834 DOI: 10.1016/j.abb.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The X-ray crystal structures of soybean lipoxygenase (LOX) and rabbit 15-LOX were reported in the 1990s. Subsequent 3D structures demonstrated a conserved U-like shape of the substrate cavities as reviewed here. The 8-LOX:arachidonic acid (AA) complex showed AA bound to the substrate cavity carboxylate-out with C10 at 3.4 Å from the iron metal center. A recent cryo-electron microscopy (EM) analysis of the 12-LOX:AA complex illustrated AA in the same position as in the 8-LOX:AA complex. The 15- and 12-LOX complexes with isoenzyme-specific inhibitors/substrate mimics confirmed the U-fold. 5-LOX oxidizes AA to leukotriene A4, the first step in biosynthesis of mediators of asthma. The X-ray structure showed that the entrance to the substrate cavity was closed to AA by Phe and Tyr residues of a partly unfolded α2-helix. Recent X-ray analysis revealed that soaking with inhibitors shifted the short α2-helix to a long and continuous, which opened the substrate cavity. The α2-helix also adopted two conformations in 15-LOX. 12-LOX dimers consisted of one closed and one open subunit with an elongated α2-helix. 13C-ENDOR-MD computations of the 9-MnLOX:linoleate complex showed carboxylate-out position with C11 placed 3.4 ± 0.1 Å from the catalytic water. 3D structures have provided a solid ground for future research.
Collapse
Affiliation(s)
- Ernst H Oliw
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
3
|
Roigas S, Kakularam KR, Rothe M, Heydeck D, Aparoy P, Kuhn H. Bony Fish Arachidonic Acid 15-Lipoxygenases Exhibit Different Catalytic Properties than Their Mammalian Orthologs, Suggesting Functional Enzyme Evolution during Vertebrate Development. Int J Mol Sci 2023; 24:14154. [PMID: 37762455 PMCID: PMC10531496 DOI: 10.3390/ijms241814154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The human genome involves six functional arachidonic acid lipoxygenase (ALOX) genes and the corresponding enzymes (ALOX15, ALOX15B, ALOX12, ALOX12B, ALOXE3, ALOX5) have been implicated in cell differentiation and in the pathogenesis of inflammatory, hyperproliferative, metabolic, and neurological disorders. In other vertebrates, ALOX-isoforms have also been identified, but they occur less frequently. Since bony fish represent the most abundant subclass of vertebrates, we recently expressed and characterized putative ALOX15 orthologs of three different bony fish species (Nothobranchius furzeri, Pundamilia nyererei, Scleropages formosus). To explore whether these enzymes represent functional equivalents of mammalian ALOX15 orthologs, we here compared a number of structural and functional characteristics of these ALOX-isoforms with those of mammalian enzymes. We found that in contrast to mammalian ALOX15 orthologs, which exhibit a broad substrate specificity, a membrane oxygenase activity, and a special type of dual reaction specificity, the putative bony fish ALOX15 orthologs strongly prefer C20 fatty acids, lack any membrane oxygenase activity and exhibit a different type of dual reaction specificity with arachidonic acid. Moreover, mutagenesis studies indicated that the Triad Concept, which explains the reaction specificity of all mammalian ALOX15 orthologs, is not applicable for the putative bony fish enzymes. The observed functional differences between putative bony fish ALOX15 orthologs and corresponding mammalian enzymes suggest a targeted optimization of the catalytic properties of ALOX15 orthologs during vertebrate development.
Collapse
Affiliation(s)
- Sophie Roigas
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| | - Kumar R. Kakularam
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössle-Straße 10, 13125 Berlin, Germany;
| | - Dagmar Heydeck
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| | - Polamarasetty Aparoy
- Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam 530003, India;
| | - Hartmut Kuhn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| |
Collapse
|
4
|
Bhuktar H, Shukla S, Kakularam KR, Battu S, Srikanth M, Srivastava S, Medishetti R, Ram P, Jagadish PC, Rasool M, Chakraborty S, Khan N, Reddanna P, Oruganti S, Pal M. Design, synthesis and evaluation of 2-aryl quinoline derivatives against 12R-lipoxygenase (12R-LOX): Discovery of first inhibitor of 12R-LOX. Bioorg Chem 2023; 138:106606. [PMID: 37210826 DOI: 10.1016/j.bioorg.2023.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
The 12R-lipoxygenase (12R-LOX), a (non-heme) iron-containing metalloenzyme belonging to the lipoxygenase (LOX) family catalyzes the conversion of arachidonic acid (AA) to its key metabolites. Studies suggested that 12R-LOX plays a critical role in immune modulation for the maintenance of skin homeostasis and therefore can be considered as a potential drug target for psoriasis and other skin related inflammatory diseases. However, unlike 12-LOX (or 12S-LOX) the enzyme 12R-LOX did not receive much attention till date. In our effort, the 2-aryl quinoline derivatives were designed, synthesized and evaluated for the identification of potential inhibitors of 12R-hLOX. The merit of selection of 2-aryl quinolines was assessed by in silico docking studies of a representative compound (4a) using the homology model of 12R-LOX. Indeed, in addition to participating in H-bonding with THR628 and LEU635 the molecule formed a hydrophobic interaction with VAL631. The desired 2-aryl quinolines were synthesized either via the Claisen-Schmidt condensation followed by one-pot reduction-cyclization or via the AlCl3 induced heteroarylation or via the O-alkylation approach in good to high (82-95%) yield. When screened against human 12R-LOX (12R-hLOX) in vitro four compounds (e.g. 4a, 4d, 4e and 7b) showed encouraging (>45%) inhibition at 100 μM among which 7b and 4a emerged as the initial hits. Both the compounds showed selectivity towards 12R-hLOX over 12S-hLOX, 15-hLOX and 15-hLOXB and concentration dependent inhibition of 12R-hLOX with IC50 = 12.48 ± 2.06 and 28.25 ± 1.63 μM, respectively. The selectivity of 4a and 7b towards 12R-LOX over 12S-LOX was rationalized with the help of molecular dynamics simulations. The SAR (Structure-Activity Relationship) within the present series of compounds suggested the need of a o-hydroxyl group on the C-2 phenyl ring for the activity. The compound 4a and 7b (at 10 and 20 µM) reduced the hyper-proliferative state and colony forming potential of IMQ-induced psoriatic keratinocytes in a concentration dependent manner. Further, both compounds decreased the protein levels of Ki67 and the mRNA expression of IL-17A in the IMQ-induced psoriatic-like keratinocytes. Notably, 4a but not 7b inhibited the production of IL-6 and TNF-α in the keratinocyte cells. In the preliminary toxicity studies (i.e. teratogenicity, hepatotoxicity and heart rate assays) in zebrafish both the compounds showed low safety (<30 µM) margin. Overall, being the first identified inhibitors of 12R-LOX both 4a and 7b deserve further investigations.
Collapse
Affiliation(s)
- Harshavardhan Bhuktar
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Sharda Shukla
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Kumar Reddy Kakularam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Srikanth Battu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Manupati Srikanth
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Susmita Srivastava
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raghavender Medishetti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Pooja Ram
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - P C Jagadish
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sandipan Chakraborty
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - Nooruddin Khan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Srinivas Oruganti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India.
| |
Collapse
|
5
|
Öztürk Kesebir A. Purification and Characterization of Lipoxygenase from Walnuts (Juglans Regia) and Investigation of the Effects of Some Phenolic Compounds on the Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202203961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arzu Öztürk Kesebir
- Faculty of Science Department of Chemistry, Atatürk University 25240 Erzurum Turkey
| |
Collapse
|
6
|
Bacterial lipoxygenases: Biochemical characteristics, molecular structure and potential applications. Biotechnol Adv 2022; 61:108046. [DOI: 10.1016/j.biotechadv.2022.108046] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
|
7
|
Maeda Y, Tanaka T. Molecular Insights into Lipoxygenases in Diatoms Based on Structure Prediction: a Pioneering Study on Lipoxygenases Found in Pseudo-nitzschia arenysensis and Fragilariopsis cylindrus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:468-479. [PMID: 35397048 DOI: 10.1007/s10126-022-10120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Diatoms produce a variety of oxylipins which are oxygenated polyunsaturated fatty acids and are involved in chemical defense and intercellular communication, among other roles. Although the chemistry of diatom oxylipins has long been studied, the enzymes involved in their production, in particular lipoxygenase (LOX), which catalyzes the initial reaction of the synthesis, have not been discovered in diatom genomes. Recently, diatom LOXs were found in two species, Pseudo-nitzschia arenysensis (PaLOX) and Fragilariopsis cylindrus (FcLOX); however, the enzymology of these LOXs is largely unknown. In this review article, we discuss the potential functions of the diatom LOXs based on previously reported structures of LOXs derived from various organisms other than diatoms. Since the structures of PaLOX and FcLOX have not yet been solved, we discussed their functions, such as regio- and stereospecificities, on the basis of their structures predicted using a computational tool based on deep learning technology. Both diatom LOXs were predicted to conserve common core domains with relatively wide substrate-binding pockets. The stereo-determinant residues in PaLOX and FcLOX suggest S specificity. We assume that the highly conserved common core domain can be a clue to reveal unidentified lox genes from the accumulated diatom genome information with the aid of high-throughput structure prediction tools and structure-based alignment tools in the near future.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
8
|
Kakularam KR, Karst F, Polamarasetty A, Ivanov I, Heydeck D, Kuhn H. Paralog- and ortholog-specificity of inhibitors of human and mouse lipoxygenase-isoforms. Biomed Pharmacother 2021; 145:112434. [PMID: 34801853 DOI: 10.1016/j.biopha.2021.112434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023] Open
Abstract
Lipoxygenases (ALOX-isoforms) are lipid peroxidizing enzymes, which have been implicated in cell differentiation and maturation but also in the biosynthesis of lipid mediators playing important roles in the pathogenesis of inflammatory, hyperproliferative and neurological diseases. In mammals these enzymes are widely distributed and the human genome involves six functional genes encoding for six distinct human ALOX paralogs. In mice, there is an orthologous enzyme for each human ALOX paralog but the catalytic properties of human and mouse ALOX orthologs show remarkable differences. ALOX inhibitors are frequently employed for deciphering the biological role of these enzymes in mouse models of human diseases but owing to the functional differences between mouse and human ALOX orthologs the uncritical use of such inhibitors is sometimes misleading. In this study we evaluated the paralog- and ortholog-specificity of 13 frequently employed ALOX-inhibitors against four recombinant human and mouse ALOX paralogs (ALOX15, ALOX15B, ALOX12, ALOX5) under different experimental conditions. Our results indicated that except for zileuton, which exhibits a remarkable paralog-specificity for mouse and human ALOX5, no other inhibitor was strictly paralog specific but some compounds exhibit an interesting ortholog-specificity. Because of the variable isoform specificities of the currently available ALOX inhibitors care must be taken when the biological effects of these compounds observed in complex in vitro and in vivo systems are interpreted.
Collapse
Affiliation(s)
- Kumar Reddy Kakularam
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Felix Karst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Aparoy Polamarasetty
- Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
9
|
Structural considerations on lipoxygenase function, inhibition and crosstalk with nitric oxide pathways. Biochimie 2020; 178:170-180. [PMID: 32980463 DOI: 10.1016/j.biochi.2020.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Lipoxygenases (LOX) are non-heme iron-containing enzymes that catalyze regio- and stereo-selective dioxygenation of polyunsaturated fatty acids (PUFA). Mammalian LOXs participate in the eicosanoid cascade during the inflammatory response, using preferentially arachidonic acid (AA) as substrate, for the synthesis of leukotrienes (LT) and other oxidized-lipid intermediaries. This review focus on lipoxygenases (LOX) structural and kinetic implications on both catalysis selectivity, as well as the basic and clinical implications of inhibition and interactions with nitric oxide (•NO) and nitroalkenes pathways. During inflammation •NO levels are increasingly favoring the formation of reactive nitrogen species (RNS). •NO may act itself as an inhibitor of LOX-mediated lipid oxidation by reacting with lipid peroxyl radicals. Besides, •NO may act as an O2 competitor in the LOX active site, thus displaying a protective role on lipid-peroxidation. Moreover, RNS such as nitrogen dioxide (•NO2) may react with lipid-derived species formed during LOX reaction, yielding nitroalkenes (NO2FA). NO2FA represents electrophilic compounds that could exert anti-inflammatory actions through the interaction with critical LOX nucleophilic amino acids. We will discuss how nitro-oxidative conditions may limit the availability of common LOX substrates, favoring alternative routes of PUFA metabolization to anti-inflammatory or pro-resolutive pathways.
Collapse
|
10
|
Biringer RG. The enzymology of human eicosanoid pathways: the lipoxygenase branches. Mol Biol Rep 2020; 47:7189-7207. [PMID: 32748021 DOI: 10.1007/s11033-020-05698-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Abstract
Eicosanoids are short-lived derivatives of polyunsaturated fatty acids that serve as autocrine and paracrine signaling molecules. They are involved numerous biological processes of both the well state and disease states. A thorough understanding of the progression the disease state and homeostasis of the well state requires a complete evaluation of the systems involved. This review examines the enzymology for the enzymes involved in the production of eicosanoids along the lipoxygenase branches of the eicosanoid pathways with particular emphasis on those derived from arachidonic acid. The enzymatic parameters, protocols to measure them, and proposed catalytic mechanisms are presented in detail.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
11
|
Reisch F, Kakularam KR, Stehling S, Heydeck D, Kuhn H. Eicosanoid biosynthesis in marine mammals. FEBS J 2020; 288:1387-1406. [PMID: 32627384 DOI: 10.1111/febs.15469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
After 300 million years of evolution, the first land-living mammals reentered the marine environment some 50 million years ago. The driving forces for this dramatic lifestyle change are still a matter of discussion but the struggle for food resources and the opportunity to escape predators probably contributed. Reentering the oceans requires metabolic adaption putting evolutionary pressure on a number of genes. To explore whether eicosanoid signaling has been part of this adaptive response, we first explored whether the genomes of marine mammals involve functional genes encoding for key enzymes of eicosanoid biosynthesis. Cyclooxygenase (COX) and lipoxygenase (ALOX) genes are present in the genome of all marine mammals tested. Interestingly, ALOX12B, which has been implicated in skin development of land-living mammals, is lacking in whales and dolphins and genes encoding for its sister enzyme (ALOXE3) involve premature stop codons and/or frameshifting point mutations, which interrupt the open reading frames. ALOX15 orthologs have been detected in all marine mammals, and the recombinant enzymes exhibit similar catalytic properties as those of land-living species. All marine mammals express arachidonic acid 12-lipoxygenating ALOX15 orthologs, and these data are consistent with the Evolutionary Hypothesis of ALOX15 specificity. These enzymes exhibit membrane oxygenase activity and introduction of big amino acids at the triad positions altered the reaction specificity in favor of arachidonic acid 15-lipoxygenation. Thus, the ALOX15 orthologs of marine mammals follow the Triad concept explaining their catalytic specificity.
Collapse
Affiliation(s)
- Florian Reisch
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kumar Reddy Kakularam
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Stehling
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
12
|
Pangopoulos MK, Nolsøe JMN, Antonsen SG, Colas RA, Dalli J, Aursnes M, Stenstrøm Y, Hansen TV. Enzymatic studies with 3-oxa n-3 DPA. Bioorg Chem 2020; 96:103653. [PMID: 32062066 DOI: 10.1016/j.bioorg.2020.103653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 12/31/2022]
Abstract
Cyclooxygenase-2 and several lipoxygenases convert polyunsaturated fatty acids into a large variety of products. During inflammatory processes, these enzymes form several distinct families of specialized pro-resolving lipid mediators possessing potent anti-inflammatory and pro-resolving effects. These mediators have attracted a great interest as leads in drug discovery and have recently been the subject of biosynthetic pathway studies using docosahexaenoic and n-3 docosapentaenoic acid as substrates. Herein we present enzymatic studies with cyclooxygenase-2 and 5-, 12- and 15-lipoxygenase enzymes using 3-oxa n-3 DPA as a synthetic mimic of n-3 docosapentaenoic acid. Structural elucidation based on data from RP-HPLC UV and LC/MS-MS experiments enabled the identification of novel enzymatically formed products. These findings constitute the basis for further biosynthetic studies towards understanding the mechanisms regulating substrate utilization in the biosynthesis of specialized pro-resolving lipid mediators.
Collapse
Affiliation(s)
- Maria K Pangopoulos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Jens M N Nolsøe
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Simen G Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Romain A Colas
- Lipid Mediator Unit, Center for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jesmond Dalli
- Lipid Mediator Unit, Center for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Marius Aursnes
- Department of Pharmacy, Section of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Yngve Stenstrøm
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Trond Vidar Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway; Department of Pharmacy, Section of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
13
|
Hu S, Offenbacher AR, Lu ED, Klinman JP. Comparative kinetic isotope effects on first- and second-order rate constants of soybean lipoxygenase variants uncover a substrate-binding network. J Biol Chem 2019; 294:18069-18076. [PMID: 31624150 PMCID: PMC6885649 DOI: 10.1074/jbc.ra119.010826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/14/2019] [Indexed: 01/08/2023] Open
Abstract
Lipoxygenases are widespread enzymes found in virtually all eukaryotes, including fungi, and, more recently, in prokaryotes. These enzymes act on long-chain polyunsaturated fatty acid substrates (C18 to C20), raising questions regarding how the substrate threads its way from solvent to the active site. Herein, we report a comparison of the temperature dependence of isotope effects on first- and second-order rate constants among single-site variants of the prototypic plant enzyme soybean lipoxygenase-1 substituted at amino acid residues inferred to impact substrate binding. We created 10 protein variants including four amino acid positions, Val-750, Ile-552, Ile-839, and Trp-500, located within a previously proposed substrate portal. The conversion of these bulky hydrophobic side chains to smaller side chains is concluded to increase the mobility of flanking helices, giving rise to increased off rates for substrate dissociation from the enzyme. In this manner, we identified a specific "binding network" that can regulate movement of the substrate from the solvent to the active site. Taken together with our previous findings on C-H and O2 activation of soybean lipoxygenase-1, these results support the emergence of multiple complementary networks within a single protein scaffold that modulate different steps along the enzymatic reaction coordinate.
Collapse
Affiliation(s)
- Shenshen Hu
- Department of Chemistry, University of California, Berkeley, California 94720; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720
| | - Adam R Offenbacher
- Department of Chemistry, University of California, Berkeley, California 94720; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720; Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
| | - Edbert D Lu
- Department of Chemistry, University of California, Berkeley, California 94720; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, California 94720; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720.
| |
Collapse
|
14
|
Biocatalytic Synthesis of Natural Green Leaf Volatiles Using the Lipoxygenase Metabolic Pathway. Catalysts 2019. [DOI: 10.3390/catal9100873] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In higher plants, the lipoxygenase enzymatic pathway combined actions of several enzymes to convert lipid substrates into signaling and defense molecules called phytooxylipins including short chain volatile aldehydes, alcohols, and esters, known as green leaf volatiles (GLVs). GLVs are synthesized from C18:2 and C18:3 fatty acids that are oxygenated by lipoxygenase (LOX) to form corresponding hydroperoxides, then the action of hydroperoxide lyase (HPL) produces C6 or C9 aldehydes that can undergo isomerization, dehydrogenation, and esterification. GLVs are commonly used as flavors to confer a fresh green odor of vegetable to perfumes, cosmetics, and food products. Given the increasing demand in these natural flavors, biocatalytic processes using the LOX pathway reactions constitute an interesting application. Vegetable oils, chosen for their lipid profile are converted in natural GLVs with high added value. This review describes the enzymatic reactions of GLVs biosynthesis in the plant, as well as the structural and functional properties of the enzymes involved. The various stages of the biocatalytic production processes are approached from the lipid substrate to the corresponding aldehyde or alcoholic aromas, as well as the biotechnological improvements to enhance the production potential of the enzymatic catalysts.
Collapse
|
15
|
Djian B, Hornung E, Ischebeck T, Feussner I. The green microalga Lobosphaera incisa harbours an arachidonate 15S-lipoxygenase. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:131-142. [PMID: 30277010 PMCID: PMC6587457 DOI: 10.1111/plb.12920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
The green microalga Lobosphaera incisa is an oleaginous eukaryotic alga that is rich in arachidonic acid (20:4). Being rich in this polyunsaturated fatty acid (PUFA), however, makes it sensitive to oxidation. In plants, lipoxygenases (LOXs) are the major enzymes that oxidise these molecules. Here, we describe, to our best knowledge, the first characterisation of a cDNA encoding a LOX (LiLOX) from a green alga. To obtain first insights into its function, we expressed it in E. coli, purified the recombinant enzyme and analysed its enzyme activity. The protein sequence suggests that LiLOX and plastidic LOXs from bryophytes and flowering plants may share a common ancestor. The fact that LiLOX oxidises all PUFAs tested with a consistent oxidation on the carbon n-6, suggests that PUFAs enter the substrate channel through their methyl group first (tail first). Additionally, LiLOX form the fatty acid hydroperoxide in strict S configuration. LiLOX may represent a good model to study plastid LOX, because it is stable after heterologous expression in E. coli and highly active in vitro. Moreover, as the first characterised LOX from green microalgae, it opens the possibility to study endogenous LOX pathways in these organisms.
Collapse
Affiliation(s)
- B. Djian
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
| | - E. Hornung
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
| | - T. Ischebeck
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
- Goettingen Metabolomics and Lipidomics LaboratoryUniversity of GoettingenGoettingen Center for Molecular Biosciences (GZMB)GoettingenGermany
| | - I. Feussner
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
- Goettingen Metabolomics and Lipidomics LaboratoryUniversity of GoettingenGoettingen Center for Molecular Biosciences (GZMB)GoettingenGermany
- Department of Plant BiochemistryUniversity of GoettingenGoettingen Center for Molecular Biosciences (GZMB)GoettingenGermany
- Department of Plant BiochemistryUniversity of GoettingenInternational Center for Advanced Studies of Energy Conversion (ICASEC)GoettingenGermany
| |
Collapse
|
16
|
Blum M, Dogan I, Karber M, Rothe M, Schunck WH. Chiral lipidomics of monoepoxy and monohydroxy metabolites derived from long-chain polyunsaturated fatty acids. J Lipid Res 2019; 60:135-148. [PMID: 30409844 PMCID: PMC6314268 DOI: 10.1194/jlr.m089755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Indexed: 01/10/2023] Open
Abstract
A chiral lipidomics approach was established for comprehensive profiling of regio- and stereoisomeric monoepoxy and monohydroxy metabolites of long-chain PUFAs as generated enzymatically by cytochromes P450 (CYPs), lipoxygenases (LOXs), and cyclooxygenases (COXs) and, in part, also unspecific oxidations. The method relies on reversed-phase chiral-LC coupled with ESI/MS/MS. Applications revealed partially opposing enantioselectivities of soluble and microsomal epoxide hydrolases (mEHs). Ablation of the soluble epoxide hydrolase (sEH) gene resulted in specific alterations in the enantiomeric composition of endogenous monoepoxy metabolites. For example, the (R,S)/(S,R)-ratio of circulating 14,15-EET changed from 2.1:1 in WT to 9.7:1 in the sEH-KO mice. Studies with liver microsomes suggested that CYP/mEH interactions play a primary role in determining the enantiomeric composition of monoepoxy metabolites during their generation and release from the ER. Analysis of human plasma showed significant enantiomeric excess with several monoepoxy metabolites. Monohydroxy metabolites were generally present as racemates; however, Ca2+-ionophore stimulation of whole blood samples resulted in enantioselective increases of LOX-derived metabolites (12S-HETE and 17S-hydroxydocosahexaenoic acid) and COX-derived metabolites (11R-HETE). Our chiral approach may provide novel opportunities for investigating the role of bioactive lipid mediators that generally exert their physiological functions in a highly regio- and stereospecific manner.
Collapse
Affiliation(s)
- Maximilian Blum
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Goloshchapova K, Stehling S, Heydeck D, Blum M, Kuhn H. Functional characterization of a novel arachidonic acid 12S-lipoxygenase in the halotolerant bacterium Myxococcus fulvus exhibiting complex social living patterns. Microbiologyopen 2018; 8:e00775. [PMID: 30560563 PMCID: PMC6612559 DOI: 10.1002/mbo3.775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 01/24/2023] Open
Abstract
Lipoxygenases are lipid peroxidizing enzymes, which frequently occur in higher plants and mammals. These enzymes are also expressed in lower multicellular organisms but here they are not widely distributed. In bacteria, lipoxygenases rarely occur and evaluation of the currently available bacterial genomes suggested that <0.5% of all sequenced bacterial species carry putative lipoxygenase genes. We recently rescreened the public bacterial genome databases for lipoxygenase-like sequences and identified two novel lipoxygenase isoforms (MF-LOX1 and MF-LOX2) in the halotolerant Myxococcus fulvus. Both enzymes share a low degree of amino acid conservation with well-characterized eukaryotic lipoxygenase isoforms but they involve the catalytically essential iron cluster. Here, we cloned the MF-LOX1 cDNA, expressed the corresponding enzyme as N-terminal hexa-his-tag fusion protein, purified the recombinant enzyme to electrophoretic homogeneity, and characterized it with respect to its protein-chemical and enzymatic properties. We found that M. fulvus expresses a catalytically active intracellular lipoxygenase that converts arachidonic acid and other polyunsaturated fatty acids enantioselectively to the corresponding n-9 hydroperoxy derivatives. The enzyme prefers C20 - and C22 -polyenoic fatty acids but does not exhibit significant membrane oxygenase activity. The possible biological relevance of MF-LOX1 will be discussed in the context of the suggested concepts of other bacterial lipoxygenases.
Collapse
Affiliation(s)
- Kateryna Goloshchapova
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Sabine Stehling
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dagmar Heydeck
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | | | - Hartmut Kuhn
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
18
|
Sugio A, Østergaard LH, Matsui K, Takagi S. Characterization of two fungal lipoxygenases expressed in Aspergillus oryzae. J Biosci Bioeng 2018; 126:436-444. [PMID: 29805113 DOI: 10.1016/j.jbiosc.2018.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/20/2018] [Accepted: 04/06/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Akiko Sugio
- Novozymes Japan Ltd., CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan
| | | | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shinobu Takagi
- Novozymes Japan Ltd., CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan.
| |
Collapse
|
19
|
Kuhn H, Humeniuk L, Kozlov N, Roigas S, Adel S, Heydeck D. The evolutionary hypothesis of reaction specificity of mammalian ALOX15 orthologs. Prog Lipid Res 2018; 72:55-74. [PMID: 30237084 DOI: 10.1016/j.plipres.2018.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Lia Humeniuk
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Nikita Kozlov
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Sophie Roigas
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Susan Adel
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine, Division of Hepathology and Gastroenterology, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
20
|
Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:823-833. [DOI: 10.1016/j.bbalip.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 11/17/2022]
|
21
|
Affiliation(s)
- Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, 17487 Greifswald, Germany
| |
Collapse
|
22
|
Tu HAT, Dobson EP, Henderson LC, Barrow CJ, Adcock JL. Soy flour as an alternative to purified lipoxygenase for the enzymatic synthesis of resolvin analogues. N Biotechnol 2018; 41:25-33. [PMID: 29197557 DOI: 10.1016/j.nbt.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/28/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
Specialized pro-resolving mediators are lipid signaling molecules synthesized from omega-3 and -6 polyunsaturated fatty acids, which promote the resolution of the inflammatory response. They are potential drug targets for the treatment of numerous conditions linked with uncontrolled inflammation. Many of these mediators can be effectively synthesized using enzymes, such as lipoxygenases. However, these enzymes are expensive to purchase and can be difficult to isolate. In this work, we show that commercial soy flour can be used directly as a source of lipoxygenase for the biosynthesis of specialized pro-resolving mediators from DHA and other biologically important fatty acids. The reaction was optimized and the products characterized. We found that the reaction yield and products were comparable to those synthesized using a commercial 15-lipoxygenase preparation.
Collapse
Affiliation(s)
- Hoang-Anh T Tu
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Vic, 3216, Australia
| | - Eleanor P Dobson
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Vic, 3216, Australia
| | - Luke C Henderson
- Carbon Nexus, Institute for Frontier Materials, Deakin University, Waurn Ponds, Vic, 3216, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Vic, 3216, Australia
| | - Jacqui L Adcock
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Vic, 3216, Australia.
| |
Collapse
|
23
|
Eicosanoid Diversity of Stony Corals. Mar Drugs 2018; 16:md16010010. [PMID: 29301345 PMCID: PMC5793058 DOI: 10.3390/md16010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
Oxylipins are well-established lipid mediators in plants and animals. In mammals, arachidonic acid (AA)-derived eicosanoids control inflammation, fever, blood coagulation, pain perception and labor, and, accordingly, are used as drugs, while lipoxygenases (LOX), as well as cyclooxygenases (COX) serve as therapeutic targets for drug development. In soft corals, eicosanoids are synthesized on demand from AA by LOX, COX, and catalase-related allene oxide synthase-lipoxygenase (cAOS-LOX) and hydroperoxide lyase-lipoxygenase (cHPL-LOX) fusion proteins. Reef-building stony corals are used as model organisms for the stress-related genomic studies of corals. Yet, the eicosanoid synthesis capability and AA-derived lipid mediator profiles of stony corals have not been determined. In the current study, the genomic and transcriptomic data about stony coral LOXs, AOS-LOXs, and COXs were analyzed and the eicosanoid profiles and AA metabolites of three stony corals, Acropora millepora, A. cervicornis, and Galaxea fascicularis, were determined by reverse-phase high-performance liquid chromatography (RP-HPLC) coupled with MS-MS and a radiometric detector. Our results confirm that the active LOX and AOS-LOX pathways are present in Acropora sp., which correspond to the genomic/sequence data reported earlier. In addition, LOX, AOS-LOX, and COX products were detected in the closely related species G. fascicularis. In conclusion, the functional 8R-LOX and/or AOS-LOX pathways are abundant among corals, while COXs are restricted to certain soft and stony coral lineages.
Collapse
|
24
|
Kollárová R, Holková I, Rauová D, Bálintová B, Mikuš P, Obložinský M. HPLC Analysis and Biochemical Characterization of LOX from Eschscholtzia californica Cham. Molecules 2017; 22:E1899. [PMID: 29113053 PMCID: PMC6150234 DOI: 10.3390/molecules22111899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Plant lipoxygenases (LOXs, EC 1.13.11.12) are involved in lipid degradation, regulation of growth and development, senescence, and defence reactions. LOX represents the starting enzyme of the octadecanoid pathway. The aim of the work was to purify LOX from California poppy (Eschscholtzia californica Cham.), to determine its biochemical properties and to identify and quantify the products of LOX reaction with unsaturated fatty acids. METHODS LOX from California poppy seedlings was purified by hydrophobic chromatography (Phenyl-Sepharose CL-4B) and by ion-exchange chromatography (Q-Sepharose). The isolated LOX was incubated with linoleic acid used as a substrate. The HPLC experiments were performed with the Agilent Technologies 1050 series HPLC system. For the preparative separation of a mixture of hydroxy fatty acids from the sample matrix, the RP-HPLC method was used (column 120-5 Nucleosil C18). Then, the NP-HPLC analysis (separation, identification, and determination) of hydroxy fatty acid isomers was carried out on a Zorbax Rx-SIL column. RESULTS The purified LOX indicates the presence of a nontraditional plant enzyme with dual positional specificity (a ratio of 9- and 13-hydroperoxide products 1:1), a relative molecular mass of 85 kDa, a pH optimum of 6.5, an increasing activity stimulation by CaCl₂ till 2 mM, and a high substrate reactivity to linoleic acid with kinetic values of KM 2.6 mM and Vmax 3.14 μM/min/mg. CONCLUSIONS For the first time, the LOX from California poppy seedlings was partially purified and the biochemical properties of the enzyme were analyzed. A dual positional specificity of the LOX found from California poppy seedlings is in agreement with the results obtained for LOXs isolated from other Papaveraceaes. A 1:1 ratio of 9-/13-HODE is attractive for the simultaneous investigation of both biotic stress responses (indicated by the 9-HODE marker) and the biosynthesis of jasmonic acid and jasmonates (indicated by the 13-HODE marker).
Collapse
Affiliation(s)
- Renáta Kollárová
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovak Republic.
| | - Ivana Holková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovak Republic.
| | - Drahomíra Rauová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovak Republic.
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovak Republic.
| | - Barbora Bálintová
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovak Republic.
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovak Republic.
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovak Republic.
| | - Marek Obložinský
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovak Republic.
| |
Collapse
|
25
|
Understanding the Molecular Mechanism of the Ala-versus-Gly Concept Controlling the Product Specificity in Reactions Catalyzed by Lipoxygenases: A Combined Molecular Dynamics and QM/MM Study of Coral 8R-Lipoxygenase. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Melon13-lipoxygenase CmLOX18 may be involved in C6 volatiles biosynthesis in fruit. Sci Rep 2017; 7:2816. [PMID: 28588227 PMCID: PMC5460189 DOI: 10.1038/s41598-017-02559-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
To better understand the function role of the melon CmLOX18 gene in the biosynthesis of C6 volatiles during fruit ripening, we biochemically characterized CmLOX18 and identified its subcellular localization in transgenic tomato plants. Heterologous expression in yeast cells showed that the molecular weight of the CmLOX18 protein was identical to that predicted, and that this enzyme possesseed lipoxygenase activity. Linoleic acid was demonstrated to be the preferred substrate for the purified recombinant CmLOX18 protein, which exhibited optimal catalytic activity at pH 4.5 and 30 °C. Chromatogram analysis of the reaction product indicated that the CmLOX18 protein exhibited positional specificity, as evidenced by its release of only a C-13 oxidized product. Subcellular localization analysis by transient expression in Arabidopsis protoplasts showed that CmLOX18 was localized to non-chloroplast organelles. When the CmLOX18 gene was transgenically expressed in tomato via Agrobacterium tumefaciens-mediated transformation, it was shown to enhance expression levels of the tomato hydroperoxide lyase gene LeHPL, whereas the expression levels of six TomLox genes were little changed. Furthermore, transgenic tomato fruits exhibited increases in the content of the C6 volatiles, namely hexanal, (Z)-3-hexanal, and (Z)-3-hexen-1-ol, indicating that CmLOX18 probably plays an important role in the synthesis of C6 compounds in fruits.
Collapse
|
27
|
Wimuttisuk W, Tobwor P, Deenarn P, Intaraudom C, Pruksatrakul T, Nithithanasilp S, Wongtripop S, Phomklad S, Chaitongsakul P, Vichai V. Differential regulation of the lipoxygenase pathway in shrimp hepatopancreases and ovaries during ovarian development in the black tiger shrimp Penaeus monodon. Biochem Biophys Res Commun 2017; 487:396-402. [PMID: 28416387 DOI: 10.1016/j.bbrc.2017.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 11/29/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFAs) are critical to the success of ovarian development in marine crustaceans, especially for domesticated species such as the black tiger shrimp Penaeus monodon. These fatty acids are stored in a midgut gland called the hepatopancreas and subsequently serve as an energy source or are incorporated in yolk during ovarian development. PUFAs are known precursors of hydroxy fatty acids, including hydroxyeicosatetraenoic acid and hydroxyeicosapentaenoic acid (HEPE), which are catalyzed by lipoxygenases (LOX). In previous studies, 8-HEPE has been shown to regulate female reproduction and adipogenesis in marine crustaceans. However, whether the biosynthesis of 8-HEPE in these species is the result of LOX activity has yet to be investigated. In this study, 8-HEPE was identified exclusively in P. monodon hepatopancreases using liquid chromatography-mass spectrometry. Treatment with nordihydroguaiaretic acid resulted in the reduction of 8-HEPE, suggesting the enzyme-dependent catalysis of 8-HEPE in hepatopancreases. Additionally, a full-length P. monodon LOX (PmLOX) was amplified from shrimp ovary cDNA. Sequence analysis revealed that the putative PmLOX contains domains and catalytic residues required for LOX catalytic function. Furthermore, PmLOX expression increased steadily as shrimp ovary maturation progressed, while PmLOX expression and the amount of 8-HEPE decreased in shrimp hepatopancreases. These findings not only suggest differential requirements for hydroxy fatty acid biosynthesis in shrimp ovaries and hepatopancreases during the P. monodon ovarian development, but also provide insights into the LOX pathway in marine crustaceans.
Collapse
Affiliation(s)
- Wananit Wimuttisuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phaholyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Punsa Tobwor
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phaholyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Pacharawan Deenarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phaholyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phaholyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thapanee Pruksatrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phaholyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sutichai Nithithanasilp
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phaholyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Somjai Wongtripop
- Shrimp Genetic Improvement Center, 333 Moo 5, Poomrieng, Chaiya, Surat Thani, 84110, Thailand
| | - Suwanchai Phomklad
- Shrimp Genetic Improvement Center, 333 Moo 5, Poomrieng, Chaiya, Surat Thani, 84110, Thailand
| | - Panomkorn Chaitongsakul
- Shrimp Genetic Improvement Center, 333 Moo 5, Poomrieng, Chaiya, Surat Thani, 84110, Thailand
| | - Vanicha Vichai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phaholyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
28
|
Kalms J, Banthiya S, Galemou Yoga E, Hamberg M, Holzhutter HG, Kuhn H, Scheerer P. The crystal structure of Pseudomonas aeruginosa lipoxygenase Ala420Gly mutant explains the improved oxygen affinity and the altered reaction specificity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:463-473. [PMID: 28093240 DOI: 10.1016/j.bbalip.2017.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 12/30/2022]
Abstract
Secreted LOX from Pseudomonas aeruginosa (PA-LOX) has previously been identified as arachidonic acid 15S-lipoxygenating enzyme. Here we report that the substitution of Ala420Gly in PA-LOX leads to an enzyme variant with pronounced dual specificity favoring arachidonic acid 11R-oxygenation. When compared with other LOX-isoforms the molecular oxygen affinity of wild-type PA-LOX is 1-2 orders of magnitude lower (Km O2 of 0.4mM) but Ala420Gly exchange improved the molecular oxygen affinity (Km O2 of 0.2mM). Experiments with stereo-specifically deuterated linoleic acid indicated that the formation of both 13S- and 9R-HpODE involves abstraction of the proS-hydrogen from C11 of the fatty acid backbone. To explore the structural basis for the observed functional changes (altered specificity, improved molecular oxygen affinity) we solved the crystal structure of the Ala420Gly mutant of PA-LOX at 1.8Å resolution and compared it with the wild-type enzyme. Modeling of fatty acid alignment at the catalytic center suggested that in the wild-type enzyme dioxygen is directed to C15 of arachidonic acid by a protein tunnel, which interconnects the catalytic center with the protein surface. Ala420Gly exchange redirects intra-enzyme O2 diffusion by bifurcating this tunnel so that C11 of arachidonic acid also becomes accessible for O2 insertion.
Collapse
Affiliation(s)
- Jacqueline Kalms
- Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Swathi Banthiya
- Institute for Biochemistry (CC2), Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Etienne Galemou Yoga
- Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mats Hamberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hermann-Georg Holzhutter
- Institute for Biochemistry (CC2), Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute for Biochemistry (CC2), Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
29
|
Offenbacher AR, Zhu H, Klinman JP. Synthesis of Site-Specifically 13C Labeled Linoleic Acids. Tetrahedron Lett 2016; 57:4537-4540. [PMID: 28260819 DOI: 10.1016/j.tetlet.2016.08.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soybean lipoxygenase-1 (SLO-1) catalyzes the C-H abstraction from the reactive carbon (C-11) in linoleic acid as the first and rate-determining step in the formation of alkylhydroperoxides. While previous labeling strategies have focused on deuterium labeling to ascertain the primary and secondary kinetic isotope effects for this reaction, there is an emerging interest and need for selectively enriched 13C isotopologues. In this report, we present synthetic strategies for site-specific 13C labeled linoleic acid substrates. We take advantage of a Corey-Fuchs formyl to terminal 13C-labeled alkyne conversion, using 13CBr4 as the labeling source, to reduce the number of steps from a previous fatty acid 13C synthetic labeling approach. The labeled linoleic acid substrates are useful as nuclear tunneling markers and for extracting active site geometries of the enzyme-substrate complex in lipoxygenase.
Collapse
Affiliation(s)
- Adam R Offenbacher
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720; Quantitative Institutes of Biosciences, University of California, Berkeley, Berkeley, California, 94720
| | - Hui Zhu
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720; Quantitative Institutes of Biosciences, University of California, Berkeley, Berkeley, California, 94720
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720; Quantitative Institutes of Biosciences, University of California, Berkeley, Berkeley, California, 94720; Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, 94720
| |
Collapse
|
30
|
Zorn K, Oroz-Guinea I, Brundiek H, Bornscheuer UT. Engineering and application of enzymes for lipid modification, an update. Prog Lipid Res 2016; 63:153-64. [DOI: 10.1016/j.plipres.2016.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
|
31
|
Collazo L, Klinman JP. Control of the Position of Oxygen Delivery in Soybean Lipoxygenase-1 by Amino Acid Side Chains within a Gas Migration Channel. J Biol Chem 2016; 291:9052-9. [PMID: 26867580 PMCID: PMC4861474 DOI: 10.1074/jbc.m115.709154] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/09/2016] [Indexed: 11/06/2022] Open
Abstract
Understanding gas migration pathways is critical to unraveling structure-function relationships in enzymes that process gaseous substrates such as O2, H2, and N2 This work investigates the role of a defined pathway for O2 in regulating the peroxidation of linoleic acid by soybean lipoxygenase 1. Computational and mutagenesis studies provide strong support for a dominant delivery channel that shuttles molecular oxygen to a specific region of the active site, thereby ensuring the regio- and stereospecificity of product. Analysis of reaction kinetics and product distribution in channel mutants also reveals a plasticity to the gas migration pathway. The findings show that a single site mutation (I553W) limits oxygen accessibility to the active site, greatly increasing the fraction of substrate that reacts with oxygen free in solution. They also show how a neighboring site mutation (L496W) can result in a redirection of oxygen toward an alternate position of the substrate, changing the regio- and stereospecificity of peroxidation. The present data indicate that modest changes in a protein scaffold may modulate the access of small gaseous molecules to enzyme-bound substrates.
Collapse
Affiliation(s)
- Lara Collazo
- From the Department of Molecular and Cell Biology, Department of Chemistry, and the California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720
| | - Judith P Klinman
- From the Department of Molecular and Cell Biology, Department of Chemistry, and the California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720
| |
Collapse
|
32
|
Cao S, Chen H, Zhang C, Tang Y, Liu J, Qi H. Heterologous Expression and Biochemical Characterization of Two Lipoxygenases in Oriental Melon, Cucumis melo var. makuwa Makino. PLoS One 2016; 11:e0153801. [PMID: 27101009 PMCID: PMC4839669 DOI: 10.1371/journal.pone.0153801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/04/2016] [Indexed: 01/25/2023] Open
Abstract
Lipoxygenases (LOXs) are a class of non-heme iron-containing dioxygenases that catalyse oxidation of polyunsaturated fatty acids to produce hydroperoxidation that are in turn converted to oxylipins. Although multiple isoforms of LOXs have been detected in several plants, LOXs in oriental melon have not attracted much attention. Two full-length LOX cDNA clones, CmLOX10 and CmLOX13 which have been isolated from oriental melon (Cucumis melo var. makuwa Makino) cultivar “Yumeiren”, encode 902 and 906 amino acids, respectively. Bioinformatics analysis showed that CmLOX10 and CmLOX13 included all of the typical LOX domains and shared 58.11% identity at the amino acid level with each other. The phylogenetic analysis revealed that CmLOX10 and CmLOX13 were members of the type 2 13-LOX subgroup which are known to be involved in biotic and abiotic stress. Heterologous expression of the full-length CmLOX10 and truncated CmLOX13 in Escherichia coli revealed that the encoded exogenous proteins were identical to the predicted molecular weights and possessed the lipoxygenase activities. The purified CmLOX10 and CmLOX13 recombinant enzymes exhibited maximum activity at different temperature and pH and both had higher affinity for linoleic acid than linolenic acid. Chromatogram analysis of reaction products from the CmLOX10 and CmLOX13 enzyme reaction revealed that both enzymes produced 13S-hydroperoxides when linoleic acid was used as substrate. Furthermore, the subcellular localization analysis by transient expression of the two LOX fusion proteins in tobacco leaves showed that CmLOX10 and CmLOX13 proteins were located in plasma membrane and chloroplasts respectively. We propose that the two lipoxygenases may play different functions in oriental melon during plant growth and development.
Collapse
Affiliation(s)
- Songxiao Cao
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hao Chen
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chong Zhang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yufan Tang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jieying Liu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
33
|
Adel S, Heydeck D, Kuhn H, Ufer C. The lipoxygenase pathway in zebrafish. Expression and characterization of zebrafish ALOX5 and comparison with its human ortholog. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1-11. [DOI: 10.1016/j.bbalip.2015.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 01/08/2023]
|
34
|
Newie J, Andreou A, Neumann P, Einsle O, Feussner I, Ficner R. Crystal structure of a lipoxygenase from Cyanothece sp. may reveal novel features for substrate acquisition. J Lipid Res 2015; 57:276-87. [PMID: 26667668 DOI: 10.1194/jlr.m064980] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/22/2023] Open
Abstract
In eukaryotes, oxidized PUFAs, so-called oxylipins, are vital signaling molecules. The first step in their biosynthesis may be catalyzed by a lipoxygenase (LOX), which forms hydroperoxides by introducing dioxygen into PUFAs. Here we characterized CspLOX1, a phylogenetically distant LOX family member from Cyanothece sp. PCC 8801 and determined its crystal structure. In addition to the classical two domains found in plant, animal, and coral LOXs, we identified an N-terminal helical extension, reminiscent of the long α-helical insertion in Pseudomonas aeruginosa LOX. In liposome flotation studies, this helical extension, rather than the β-barrel domain, was crucial for a membrane binding function. Additionally, CspLOX1 could oxygenate 1,2-diarachidonyl-sn-glycero-3-phosphocholine, suggesting that the enzyme may act directly on membranes and that fatty acids bind to the active site in a tail-first orientation. This binding mode is further supported by the fact that CspLOX1 catalyzed oxygenation at the n-10 position of both linoleic and arachidonic acid, resulting in 9R- and 11R-hydroperoxides, respectively. Together these results reveal unifying structural features of LOXs and their function. While the core of the active site is important for lipoxygenation and thus highly conserved, peripheral domains functioning in membrane and substrate binding are more variable.
Collapse
Affiliation(s)
- Julia Newie
- Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Alexandra Andreou
- Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Piotr Neumann
- Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Oliver Einsle
- Institute for Biochemistry and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ivo Feussner
- Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University Goettingen, 37077 Goettingen, Germany Goettingen Center for Molecular Biosciences (GZMB), Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Ralf Ficner
- Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Georg-August-University Goettingen, 37077 Goettingen, Germany Goettingen Center for Molecular Biosciences (GZMB), Georg-August-University Goettingen, 37077 Goettingen, Germany
| |
Collapse
|
35
|
Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 2015; 573:1-32. [PMID: 26216303 PMCID: PMC6728142 DOI: 10.1016/j.gene.2015.07.073] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes, which have been implicated in a number of physiological processes and in the pathogenesis of inflammatory, hyperproliferative and neurodegenerative diseases. They occur in two of the three domains of terrestrial life (bacteria, eucarya) and the human genome involves six functional LOX genes, which encode for six different LOX isoforms. One of these isoforms is ALOX15, which has first been described in rabbits in 1974 as enzyme capable of oxidizing membrane phospholipids during the maturational breakdown of mitochondria in immature red blood cells. During the following decades ALOX15 has extensively been characterized and its biological functions have been studied in a number of cellular in vitro systems as well as in various whole animal disease models. This review is aimed at summarizing the current knowledge on the protein-chemical, molecular biological and enzymatic properties of ALOX15 in various species (human, mouse, rabbit, rat) as well as its implication in cellular physiology and in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Igor Ivanov
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
36
|
Pekárová M, Kuhn H, Bezáková L, Ufer C, Heydeck D. Mutagenesis of triad determinants of rat Alox15 alters the specificity of fatty acid and phospholipid oxygenation. Arch Biochem Biophys 2015; 571:50-7. [PMID: 25731857 DOI: 10.1016/j.abb.2015.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/11/2015] [Accepted: 02/21/2015] [Indexed: 12/19/2022]
Abstract
Among lipoxygenases ALOX15 orthologs are somewhat peculiar because of their capability of oxygenating polyenoic fatty acids even if they are incorporated in complex lipid-protein assemblies. ALOX15 orthologs of different species have been characterized before, but little is known about the corresponding rat enzyme. Since rats are frequently employed as models in biomedical research we expressed rat Alox15 as recombinant protein in pro- and eukaryotic expression systems and characterized the enzyme with respect to its enzymatic properties. The enzyme oxygenated free arachidonic acid mainly to 12S-HpETE with 15S-HpETE only contributing 10% to the product mixture. Multiple directed mutagenesis studies indicated applicability of the triad concept with particular importance of Leu353 and Ile593 as specificity determinants. Ala404Gly exchange induced subtle alterations in enantioselectivity suggesting partial applicability of the Coffa/Brash concept. Wildtype rat Alox15 and its 15-lipoxygenating Leu353Phe mutant are capable of oxygenating ester lipids of biomembranes and high-density lipoproteins. For the wildtype enzyme 13S-HODE and 12S-HETE were identified as major oxygenation products but for the Leu353Phe mutant 13S-HODE and 15S-HETE prevailed. These data indicate for the first time that mutagenesis of triad determinants modifies the reaction specificity of ALOX15 orthologs with free fatty acids and complex ester lipids in a similar way.
Collapse
Affiliation(s)
- Mária Pekárová
- Institute of Biochemistry, University Medicine Berlin - Charité, Chariteplatz 1, D-10117 Berlin, Germany; Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, 832 32 Bratislava, Slovakia
| | - Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin - Charité, Chariteplatz 1, D-10117 Berlin, Germany
| | - Lýdia Bezáková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, 832 32 Bratislava, Slovakia
| | - Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin - Charité, Chariteplatz 1, D-10117 Berlin, Germany
| | - Dagmar Heydeck
- Institute of Biochemistry, University Medicine Berlin - Charité, Chariteplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
37
|
Heshof R, de Graaff LH, Villaverde JJ, Silvestre AJ, Haarmann T, Dalsgaard TK, Buchert J. Industrial potential of lipoxygenases. Crit Rev Biotechnol 2015; 36:665-74. [DOI: 10.3109/07388551.2015.1004520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ruud Heshof
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Leo H. de Graaff
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Juan J. Villaverde
- Department of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal,
- On leave to INIA, DTEVPF, Plant Protection Products Unit, Ctra. de La Coruña, Madrid, Spain,
| | | | | | - Trine K. Dalsgaard
- Department of Food Sciences, Faculty of Science and Technology, Aarhus University, Tjele, Denmark, and
| | | |
Collapse
|
38
|
Teder T, Boeglin WE, Brash AR. Lipoxygenase-catalyzed transformation of epoxy fatty acids to hydroxy-endoperoxides: a potential P450 and lipoxygenase interaction. J Lipid Res 2014; 55:2587-96. [PMID: 25293588 DOI: 10.1194/jlr.m054072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herein, we characterize a generally applicable transformation of fatty acid epoxides by lipoxygenase (LOX) enzymes that results in the formation of a five-membered endoperoxide ring in the end product. We demonstrated this transformation using soybean LOX-1 in the metabolism of 15,16-epoxy-α-linolenic acid, and murine platelet-type 12-LOX and human 15-LOX-1 in the metabolism of 14,15-epoxyeicosatrienoic acid (14,15-EET). A detailed examination of the transformation of the two enantiomers of 15,16-epoxy-α-linolenic acid by soybean LOX-1 revealed that the expected primary product, a 13S-hydroperoxy-15,16-epoxide, underwent a nonenzymatic transformation in buffer into a new derivative that was purified by HPLC and identified by UV, LC-MS, and ¹H-NMR as a 13,15-endoperoxy-16-hydroxy-octadeca-9,11-dienoic acid. The configuration of the endoperoxide (cis or trans side chains) depended on the steric relationship of the new hydroperoxy moiety to the enantiomeric configuration of the fatty acid epoxide. The reaction mechanism involves intramolecular nucleophilic substitution (SNi) between the hydroperoxy (nucleophile) and epoxy group (electrophile). Equivalent transformations were documented in metabolism of the enantiomers of 14,15-EET by the two mammalian LOX enzymes, 15-LOX-1 and platelet-type 12-LOX. We conclude that this type of transformation could occur naturally with the co-occurrence of LOX and cytochrome P450 or peroxygenase enzymes, and it could also contribute to the complexity of products formed in the autoxidation reactions of polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Tarvi Teder
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232 Department of Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
39
|
Solvent-induced 7R-dioxygenase activity of soybean 15-lipoxygenase-1 in the formation of omega-3 DPA-derived resolvin analogs. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Beavers W, Serwa R, Shimozu Y, Tallman KA, Vaught M, Dalvie ED, Marnett LJ, Porter NA. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations. J Am Chem Soc 2014; 136:11529-39. [PMID: 25034362 PMCID: PMC4140476 DOI: 10.1021/ja506038v] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Indexed: 12/22/2022]
Abstract
Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.
Collapse
Affiliation(s)
- William
N. Beavers
- A.B. Hancock Memorial Laboratory for
Cancer Research, Departments of Chemistry, Biochemistry, and Pharmacology, Vanderbilt Institute for Chemical Biology, Vanderbilt
Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Remigiusz Serwa
- A.B. Hancock Memorial Laboratory for
Cancer Research, Departments of Chemistry, Biochemistry, and Pharmacology, Vanderbilt Institute for Chemical Biology, Vanderbilt
Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yuki Shimozu
- A.B. Hancock Memorial Laboratory for
Cancer Research, Departments of Chemistry, Biochemistry, and Pharmacology, Vanderbilt Institute for Chemical Biology, Vanderbilt
Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Keri A. Tallman
- A.B. Hancock Memorial Laboratory for
Cancer Research, Departments of Chemistry, Biochemistry, and Pharmacology, Vanderbilt Institute for Chemical Biology, Vanderbilt
Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Melissa Vaught
- A.B. Hancock Memorial Laboratory for
Cancer Research, Departments of Chemistry, Biochemistry, and Pharmacology, Vanderbilt Institute for Chemical Biology, Vanderbilt
Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Esha D. Dalvie
- A.B. Hancock Memorial Laboratory for
Cancer Research, Departments of Chemistry, Biochemistry, and Pharmacology, Vanderbilt Institute for Chemical Biology, Vanderbilt
Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Lawrence J. Marnett
- A.B. Hancock Memorial Laboratory for
Cancer Research, Departments of Chemistry, Biochemistry, and Pharmacology, Vanderbilt Institute for Chemical Biology, Vanderbilt
Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ned A. Porter
- A.B. Hancock Memorial Laboratory for
Cancer Research, Departments of Chemistry, Biochemistry, and Pharmacology, Vanderbilt Institute for Chemical Biology, Vanderbilt
Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
41
|
Stereospecific production of 9R-hydroxy-10E,12Z-octadecadienoic acid from linoleic acid by recombinant Escherichia coli cells expressing 9R-lipoxygenase from Nostoc sp. SAG 25.82. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Muñoz-Garcia A, Thomas CP, Keeney DS, Zheng Y, Brash AR. The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1841:401-8. [PMID: 24021977 PMCID: PMC4116325 DOI: 10.1016/j.bbalip.2013.08.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 01/22/2023]
Abstract
This review covers the background to discovery of the two key lipoxygenases (LOX) involved in epidermal barrier function, 12R-LOX and eLOX3, and our current views on their functioning. In the outer epidermis, their consecutive actions oxidize linoleic acid esterified in ω-hydroxy-ceramide to a hepoxilin-related derivative. The relevant background to hepoxilin and trioxilin biochemistry is briefly reviewed. We outline the evidence that linoleate in the ceramide is the natural substrate of the two LOX enzymes and our proposal for its importance in construction of the epidermal water barrier. Our hypothesis is that the oxidation promotes hydrolysis of the oxidized linoleate moiety from the ceramide. The resulting free ω-hydroxyl of the ω-hydroxyceramide is covalently bound to proteins on the surface of the corneocytes to form the corneocyte lipid envelope, a key barrier component. Understanding the role of the LOX enzymes and their hepoxilin products should provide rational approaches to ameliorative therapy for a number of the congenital ichthyoses involving compromised barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Agustí Muñoz-Garcia
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christopher P Thomas
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Diane S Keeney
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuxiang Zheng
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
43
|
Lõhelaid H, Teder T, Tõldsepp K, Ekins M, Samel N. Up-regulated expression of AOS-LOXa and increased eicosanoid synthesis in response to coral wounding. PLoS One 2014; 9:e89215. [PMID: 24551239 PMCID: PMC3925239 DOI: 10.1371/journal.pone.0089215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/17/2014] [Indexed: 12/31/2022] Open
Abstract
In octocorals, a catalase-like allene oxide synthase (AOS) and an 8R-lipoxygenase (LOX) gene are fused together encoding for a single AOS-LOX fusion protein. Although the AOS-LOX pathway is central to the arachidonate metabolism in corals, its biological function in coral homeostasis is unclear. Using an acute incision wound model in the soft coral Capnella imbricata, we here test whether LOX pathway, similar to its role in plants, can contribute to the coral damage response and regeneration. Analysis of metabolites formed from exogenous arachidonate before and after fixed time intervals following wounding indicated a significant increase in AOS-LOX activity in response to mechanical injury. Two AOS-LOX isoforms, AOS-LOXa and AOS-LOXb, were cloned and expressed in bacterial expression system as active fusion proteins. Transcription levels of corresponding genes were measured in normal and stressed coral by qPCR. After wounding, AOS-LOXa was markedly up-regulated in both, the tissue adjacent to the incision and distal parts of a coral colony (with the maximum reached at 1 h and 6 h post wounding, respectively), while AOS-LOXb was stable. According to mRNA expression analysis, combined with detection of eicosanoid product formation for the first time, the AOS-LOX was identified as an early stress response gene which is induced by mechanical injury in coral.
Collapse
Affiliation(s)
- Helike Lõhelaid
- Department of Chemistry, Tallinn University of Technology, Tallinn, Estonia
| | - Tarvi Teder
- Department of Chemistry, Tallinn University of Technology, Tallinn, Estonia
| | - Kadri Tõldsepp
- Department of Chemistry, Tallinn University of Technology, Tallinn, Estonia
| | - Merrick Ekins
- Sessile Marine Invertebrates, Queensland Museum, Brisbane, Queensland, Australia
| | - Nigulas Samel
- Department of Chemistry, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
44
|
Brodhun F, Cristobal-Sarramian A, Zabel S, Newie J, Hamberg M, Feussner I. An iron 13S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 2013; 8:e64919. [PMID: 23741422 PMCID: PMC3669278 DOI: 10.1371/journal.pone.0064919] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/21/2013] [Indexed: 12/03/2022] Open
Abstract
Jasmonates constitute a family of lipid-derived signaling molecules that are abundant in higher plants. The biosynthetic pathway leading to plant jasmonates is initiated by 13-lipoxygenase-catalyzed oxygenation of α-linolenic acid into its 13-hydroperoxide derivative. A number of plant pathogenic fungi (e.g. Fusarium oxysporum) are also capable of producing jasmonates, however, by a yet unknown biosynthetic pathway. In a search for lipoxygenase in F. oxysporum, a reverse genetic approach was used and one of two from the genome predicted lipoxygenases (FoxLOX) was cloned. The enzyme was heterologously expressed in E. coli, purified via affinity chromatography, and its reaction mechanism characterized. FoxLOX was found to be a non-heme iron lipoxygenase, which oxidizes C18-polyunsaturated fatty acids to 13S-hydroperoxy derivatives by an antarafacial reaction mechanism where the bis-allylic hydrogen abstraction is the rate-limiting step. With α-linolenic acid as substrate FoxLOX was found to exhibit a multifunctional activity, because the hydroperoxy derivatives formed are further converted to dihydroxy-, keto-, and epoxy alcohol derivatives.
Collapse
Affiliation(s)
- Florian Brodhun
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Suardíaz R, Masgrau L, Lluch JM, González-Lafont A. An insight into the regiospecificity of linoleic acid peroxidation catalyzed by mammalian 15-lipoxygenases. J Phys Chem B 2013; 117:3747-54. [PMID: 23496802 DOI: 10.1021/jp312747q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
15-Lipoxygenases (15-LOs) catalyze the peroxidation reaction of linoleic acid (LA) in mammals producing almost exclusively 13-(S)-hydroperoxyoctadecadienoic acid (13-(S)-HPODE). Although several hypotheses have been formulated, the molecular basis of such enzymatic regiospecificity is unclear. We have here combined quantum mechanics/molecular mechanics (QM/MM) calculations with molecular dynamics simulations to analyze the peroxidation mechanism using a complete rabbit 15-LO-1/LA solvated model. C9 and C13 being equivalent for planarity and spin density, the QM/MM potential energy profiles of the O2 addition to those two atoms were calculated. The difference in the potential energy barrier heights is clear enough to justify that O2 selectively attacks C13 giving 13-(S)-HPODE. Oxygenation at C9 is hindered by two steric-shielding residues (Leu597 and Gln548). The calculated free energy profile at 300 K for the O2 addition to C13 confirms that the peroxidation on C13 is a reversible viable process in agreement with experiments. Thus, the subsequent reduction of the peroxyl radical to give the final hydroperoxidated product is expected to give the irreversibility character to the overall process.
Collapse
Affiliation(s)
- Reynier Suardíaz
- Departament de Química and ‡Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
46
|
Hofheinz K, Kakularam KR, Adel S, Anton M, Polymarasetty A, Reddanna P, Kuhn H, Horn T. Conversion of pro-inflammatory murine Alox5 into an anti-inflammatory 15S-lipoxygenating enzyme by multiple mutations of sequence determinants. Arch Biochem Biophys 2013; 530:40-7. [DOI: 10.1016/j.abb.2012.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/23/2012] [Accepted: 11/29/2012] [Indexed: 12/19/2022]
|
47
|
Jin J, Zheng Y, Boeglin WE, Brash AR. Biosynthesis, isolation, and NMR analysis of leukotriene A epoxides: substrate chirality as a determinant of the cis or trans epoxide configuration. J Lipid Res 2012; 54:754-761. [PMID: 23242647 DOI: 10.1194/jlr.m033746] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukotriene (LT)A₄ and closely related allylic epoxides are pivotal intermediates in lipoxygenase (LOX) pathways to bioactive lipid mediators that include the leukotrienes, lipoxins, eoxins, resolvins, and protectins. Although the structure and stereochemistry of the 5-LOX product LTA₄ is established through comparison to synthetic standards, this is the exception, and none of these highly unstable epoxides has been analyzed in detail from enzymatic synthesis. Understanding of the mechanistic basis of the cis or trans epoxide configuration is also limited. To address these issues, we developed methods involving biphasic reaction conditions for the LOX-catalyzed synthesis of LTA epoxides in quantities sufficient for NMR analysis. As proof of concept, human 15-LOX-1 was shown to convert 15S-hydroperoxy-eicosatetraenoic acid (15S-HPETE) to the LTA analog 14S,15S-trans-epoxy-eicosa-5Z,8Z,10E,12E-tetraenoate, confirming the proposed structure of eoxin A₄. Using this methodology we then showed that recombinant Arabidopsis AtLOX1, an arachidonate 5-LOX, converts 5S-HPETE to the trans epoxide LTA₄ and converts 5R-HPETE to the cis epoxide 5-epi-LTA₄, establishing substrate chirality as a determinant of the cis or trans epoxide configuration. The results are reconciled with a mechanism based on a dual role of the LOX nonheme iron in LTA epoxide biosynthesis, providing a rational basis for understanding the stereochemistry of LTA epoxide intermediates in LOX-catalyzed transformations.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| | - Yuxiang Zheng
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
48
|
Gaffney BJ, Bradshaw MD, Frausto SD, Wu F, Freed JH, Borbat P. Locating a lipid at the portal to the lipoxygenase active site. Biophys J 2012; 103:2134-44. [PMID: 23200047 PMCID: PMC3512035 DOI: 10.1016/j.bpj.2012.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/28/2022] Open
Abstract
Lipoxygenase enzymes initiate diverse signaling pathways by specifically directing oxygen to different carbons of arachidonate and other polyunsaturated acyl chains, but structural origins of this specificity have remained unclear. We therefore determined the nature of the lipoxygenase interaction with the polar-end of a paramagnetic lipid by electron paramagnetic resonance spectroscopy. Distances between selected grid points on soybean seed lipoxygenase-1 (SBL1) and a lysolecithin spin-labeled on choline were measured by pulsed (electron) dipolar spectroscopy. The protein grid was designed by structure-based modeling so that five natural side chains were replaced with spin labels. Pairwise distances in 10 doubly spin-labeled mutants were examined by pulsed dipolar spectroscopy, and a fit to the model was optimized. Finally, experimental distances between the lysolecithin spin and each single spin site on SBL1 were also obtained. With these 15 distances, distance geometry localized the polar-end and the spin of the lysolecithin to the region between the two domains in the SBL1 structure, nearest to E236, K260, Q264, and Q544. Mutation of a nearby residue, E256A, relieved the high pH requirement for enzyme activity of SBL1 and allowed lipid binding at pH 7.2. This general approach could be used to locate other flexible molecules in macromolecular complexes.
Collapse
Affiliation(s)
- Betty J Gaffney
- Department of Biological Science Department, Florida State University, Tallahassee, FL, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Gilbert NC, Rui Z, Neau DB, Waight MT, Bartlett SG, Boeglin WE, Brash AR, Newcomer ME. Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663. FASEB J 2012; 26:3222-9. [PMID: 22516296 PMCID: PMC3405276 DOI: 10.1096/fj.12-205286] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/10/2012] [Indexed: 01/09/2023]
Abstract
The enzyme 5-lipoxygenase (5-LOX) initiates biosynthesis of the proinflammatory leukotriene lipid mediators and, together with 15-LOX, is also required for synthesis of the anti-inflammatory lipoxins. The catalytic activity of 5-LOX is regulated through multiple mechanisms, including Ca(2+)-targeted membrane binding and phosphorylation at specific serine residues. To investigate the consequences of phosphorylation at S663, we mutated the residue to the phosphorylation mimic Asp, providing a homogenous preparation suitable for catalytic and structural studies. The S663D enzyme exhibits robust 15-LOX activity, as determined by spectrophotometric and HPLC analyses, with only traces of 5-LOX activity remaining; synthesis of the anti-inflammatory lipoxin A(4) from arachidonic acid is also detected. The crystal structure of the S663D mutant in the absence and presence of arachidonic acid (in the context of the previously reported Stable-5-LOX) reveals substantial remodeling of helices that define the active site so that the once fully encapsulated catalytic machinery is solvent accessible. Our results suggest that phosphorylation of 5-LOX at S663 could not only down-regulate leukotriene synthesis but also stimulate lipoxin production in inflammatory cells that do not express 15-LOX, thus redirecting lipid mediator biosynthesis to the production of proresolving mediators of inflammation.
Collapse
Affiliation(s)
- Nathaniel C. Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Zhe Rui
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - David B. Neau
- Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois, USA; and
| | - Maria T. Waight
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sue G. Bartlett
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - William E. Boeglin
- Department of Pharmacology and
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Alan R. Brash
- Department of Pharmacology and
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Marcia E. Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
50
|
Eek P, Järving R, Järving I, Gilbert NC, Newcomer ME, Samel N. Structure of a calcium-dependent 11R-lipoxygenase suggests a mechanism for Ca2+ regulation. J Biol Chem 2012; 287:22377-86. [PMID: 22573333 DOI: 10.1074/jbc.m112.343285] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoxygenases (LOXs) are a key part of several signaling pathways that lead to inflammation and cancer. Yet, the mechanisms of substrate binding and allosteric regulation by the various LOX isoforms remain speculative. Here we report the 2.47-Å resolution crystal structure of the arachidonate 11R-LOX from Gersemia fruticosa, which sheds new light on the mechanism of LOX catalysis. Our crystallographic and mutational studies suggest that the aliphatic tail of the fatty acid is bound in a hydrophobic pocket with two potential entrances. We speculate that LOXs share a common T-shaped substrate channel architecture that gives rise to the varying positional specificities. A general allosteric mechanism is proposed for transmitting the activity-inducing effect of calcium binding from the membrane-targeting PLAT (polycystin-1/lipoxygenase/α-toxin) domain to the active site via a conserved π-cation bridge.
Collapse
Affiliation(s)
- Priit Eek
- Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | | | | | | | | | | |
Collapse
|