1
|
Poimenidi E, Droggiti E, Karavasili K, Kotsirilou D, Mourkogianni E, Koolwijk P, Papadimitriou E. Regulation of Pleiotrophin and PTPRZ1 Expression by Hypoxia to Restrict Hypoxia-Induced Cell Migration. Cancers (Basel) 2025; 17:1516. [PMID: 40361445 DOI: 10.3390/cancers17091516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES In the tumor microenvironment, hypoxia regulates genes that support tumor cell invasion and angiogenesis under the control of the hypoxia-inducible transcription factors (HIFs). Pleiotrophin (PTN) is a secreted protein that activates cell migration in endothelial and cancer cells that express ανβ3 integrin but has inhibitory effects in cells that do not express ανβ3 integrin. In both cases, the protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) seems to mediate the effects of PTN. In the present work, we studied the effect of hypoxia on PTN and PTPRZ1 expression and the functional consequences of this effect. METHODS Western blot, quantitative real-time PCR, and luciferase assays were used to study the impact of hypoxia at the protein, mRNA, and transcriptional levels, respectively. Decoy oligonucleotides (ODNs), siRNA technology, and plasmid overexpression were used to study the involvement of the transcription factors studied. Functional assays were used to study the effect of hypoxia on cell proliferation and migration. RESULTS Hypoxia increases PTN expression through the transcriptional activation of the corresponding gene in ανβ3 integrin-expressing cells. The transcription factors HIF-1α, HIF-2α, and AP-1 mediate the up-regulation of PTN by hypoxia. Functional assays in endothelial cells from PTN knockout mice or endothelial and cancer cells following the downregulation of PTN expression showed that PTN negatively affects chemical hypoxia-induced cell proliferation and migration. In cancer cells that do not express ανβ3 integrin, hypoxia or chemical hypoxia inhibits PTN expression in a HIF-1α-, HIF-2α-, and AP-1-independent manner. The expression of PTPRZ1 is up-regulated by chemical hypoxia, is HIF-1α- and HIF-2α-dependent, and seems to limit the activation of HIF-1α, at least in endothelial cells. CONCLUSIONS Hypoxia or chemical hypoxia regulates PTN and PTPRZ1 expressions to restrict the stimulatory effects of hypoxia on endothelial and cancer cell migration.
Collapse
Affiliation(s)
- Evangelia Poimenidi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Department of Physiology, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Eirini Droggiti
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Katerina Karavasili
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Dimitra Kotsirilou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Department of Physiology, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Eleni Mourkogianni
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Pieter Koolwijk
- Department of Physiology, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Ballesteros-Pla C, Sánchez-Alonso MG, Pizarro-Delgado J, Zuccaro A, Sevillano J, Ramos-Álvarez MP. Pleiotrophin and metabolic disorders: insights into its role in metabolism. Front Endocrinol (Lausanne) 2023; 14:1225150. [PMID: 37484951 PMCID: PMC10360176 DOI: 10.3389/fendo.2023.1225150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Pleiotrophin (PTN) is a cytokine which has been for long studied at the level of the central nervous system, however few studies focus on its role in the peripheral organs. The main aim of this review is to summarize the state of the art of what is known up to date about pleiotrophin and its implications in the main metabolic organs. In summary, pleiotrophin promotes the proliferation of preadipocytes, pancreatic β cells, as well as cells during the mammary gland development. Moreover, this cytokine is important for the structural integrity of the liver and the neuromuscular junction in the skeletal muscle. From a metabolic point of view, pleiotrophin plays a key role in the maintenance of glucose and lipid as well as whole-body insulin homeostasis and favors oxidative metabolism in the skeletal muscle. All in all, this review proposes pleiotrophin as a druggable target to prevent from the development of insulin-resistance-related pathologies.
Collapse
|
3
|
Nobakht S, Milne TJ, Duncan WJ, Ram A, Tkatchenko T, Dong Z, Coates DE. Expression of the pleiotrophin-midkine axis in a sheep tooth socket model of bone healing. J Periodontal Res 2023; 58:109-121. [PMID: 36411509 PMCID: PMC10099163 DOI: 10.1111/jre.13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE AND BACKGROUND Resorption of alveolar bone after tooth extraction is a common problem often requiring bone grafting. The success of the grafting procedures is dependent on multiple factors including the presence of growth factors. This is the first in vivo study to investigate the role of the pleiotrophin family of cytokines in alveolar bone regeneration. This research investigated the role of the pleiotrophin-midkine (PTN-MDK) axis during osteogenesis, with and without a grafting material, after tooth extraction in a sheep model. METHODS Thirty Romney-cross ewes were anesthetized, and all premolar teeth on the right side were extracted. The sockets were randomized to controls sites with no treatment and test sites with Bio-Oss® graft material and Bio-Gide® membrane. Samples were harvested after sacrificing animals 4, 8, and 16 weeks post-grafting (n = 10 per time-point). Tissue for qRT2 -PCR gene analysis was recovered from the socket next to the first molar using a trephine (Ø = 2 mm). Each socket was fixed, decalcified, paraffin-embedded, and sectioned. Immunohistochemistry was conducted to localize both PTN and MDK along with their receptors, protein tyrosine phosphatase receptor type Z1 (PTPRZ1), ALK receptor tyrosine kinase (ALK), and notch receptor 2 (NOTCH2). RESULTS Within the healing sockets, high expression of genes for PTN, MDK, NOTCH2, and ALK was found at all time-points and in both grafted and non-grafted sites, while PTPRZ1 was only expressed at low levels. The relative gene expression of the PTN family of cytokines was not statistically different at the three time-points between test and control groups (p > .05). Immunohistochemistry found PTN and MDK in association with new bone, NOTCH2 in the connective tissue, and PTPRZ1 and ALK in association with cuboidal osteoblasts involved in bone formation. CONCLUSIONS The PTN-MDK axis was highly expressed in both non-grafted and grafted sockets during osteogenesis in a sheep model of alveolar bone regeneration with no evidence that grafting significantly affected expression. The activation of NOTCH2 and PTPRZ1 receptors may be important during bone regeneration in vivo. The discovery of the PTN-MDK axis as important during alveolar bone regeneration is novel and opens up new avenues of research into these stably expressed highly active cytokines. Growth factor supplementation with PTN and/or MDK during healing may be an approach for enhanced regeneration or to initiate healing where delayed.
Collapse
Affiliation(s)
- Saeideh Nobakht
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Trudy J Milne
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Warwick J Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Anumala Ram
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Tatiana Tkatchenko
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Zhen Dong
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Dawn E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Dong Z, Li C, Coates D. PTN-PTPRZ signalling is involved in deer antler stem cell regulation during tissue regeneration. J Cell Physiol 2020; 236:3752-3769. [PMID: 33111346 DOI: 10.1002/jcp.30115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022]
Abstract
A growing deer antler contains a stem cell niche that can drive endochondral bone regeneration at up to 2 cm/day. Pleiotrophin (PTN), as a multifunctional growth factor, is found highly expressed at the messenger RNA level within the active antler stem cell tissues. This study aims to map the expression patterns of PTN protein and its receptors in a growing antler and investigate the effects of PTN on antler stem cells in vitro. Immunohistochemistry was employed to localise PTN/midkine (MDK) and their functional receptors, protein tyrosine phosphatase receptor type Z (PTPRZ), anaplastic lymphoma kinase (ALK), NOTCH2, and integrin αV β3, on serial slides of the antler growth centre. PTN was found to be the dominantly expressed growth factor in the PTN/MDK family. High expression of PTPRZ and ALK co-localised with PTN was found suggesting a potential interaction. The high levels of PTN and PTPRZ reflected the antler stem cell activation status during the regenerative process. When antler stem cells were cultured in vitro under the normoxic condition, no PTN protein was detected and exogenous PTN did not induce differentiation or proliferation but rather stem cell maintenance. Collectively, the antler stem cell niche appears to upregulate PTN and PTPRZ in vivo, and PTN-PTPRZ signalling may be involved in regulating antler stem cell behaviour during rapid antler regeneration.
Collapse
Affiliation(s)
- Zhen Dong
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Dawn Coates
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Abstract
Pleiotrophin (PTN) is a potent mitogenic cytokine with a high affinity for the polysaccharide glycosaminoglycan (GAG). Although it is most strongly associated with neural development during embryogenesis and the neonatal period, its expression has also been linked to a plethora of other physiological events including cancer metastasis, angiogenesis, bone development, and inflammation. A considerable amount of research has been carried out to understand the mechanisms by which PTN regulates these events. In particular, PTN has now been shown to bind a diverse collection of receptors including many GAG-containing proteoglycans. These interactions lead to the activation of many intracellular kinases and, ultimately, activation and transformation of cells. Structural studies of PTN in complex with both GAG and domains from its non-proteoglycan receptors reveal a binding mechanism that relies on electrostatic interactions and points to PTN-induced receptor oligomerization as one of the possible ways PTN uses to control cellular functions.
Collapse
|
6
|
Wang YM, Li K, Dou XG, Bai H, Zhao XP, Ma X, Li LJ, Chen ZS, Huang YC. Treatment of AECHB and Severe Hepatitis (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498915 DOI: 10.1007/978-94-024-1603-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes the general treatment and immune principles and internal management for AECHB and HBV ACLF, including ICU monitoring, general supportive medications/nutrition/nursing, immune therapy, artificial liver supportive systems, hepatocyte/stem cell, and liver transplant, management for special populations, frequently clinical complications and the utilization of Chinese traditional medicines.Early clinical indicators of severe hepatitis B include acratia, gastrointestinal symptoms, a daily increase in serum bilirubin >1 mg/dL, toxic intestinal paralysis, bleeding tendency and mild mind anomaly or character change, and the presence of other diseases inducing severe hepatitis. Laboratory indicators include T-Bil, PTA, cholinesterase, pre-albumin and albumin. The roles of immune indicators (such as IL-6, TNF-α, and fgl2), gene polymorphisms, HBV genotypes, and gene mutations as early clinical indicators. Intensive Care Unit monitor patients with severe hepatitis include intracranial pressure, infection, blood dynamics, respiratory function, renal function, blood coagulation function, nutritional status and blood purification process. Nursing care should not only include routine care, but psychological and special care (complications). Nutrition support and nursing care should be maintained throughout treatment for severe hepatitis. Common methods of evaluating nutritional status include direct human body measurement, creatinine height index (CHI) and subject global assessment of nutrition (SGA). Malnourished patients should receive enteral or parenteral nutrition support. Immune therapies for severe hepatitis include promoting hepatocyte regeneration (e.g. with glucagon, hepatocyte growth factor and prostaglandin E1), glucocorticoid suppressive therapy, and targeting molecular blocking. Corticosteroid treatment should be early and sufficient, and adverse drug reactions monitored. Treatments currently being investigated are those targeting Toll-like receptors, NK cell/NK cell receptors, macrophage/immune coagulation system, CTLA-4/PD-1 and stem cell transplantation. In addition to conventional drugs and radioiodine, corticosteroids and artificial liver treatment can also be considered for severe hepatitis patients with hyperthyreosis. Patients with gestational severe hepatitis require preventive therapy for fetal growth restriction, and it is necessary to choose the timing and method of fetal delivery. For patients with both diabetes and severe hepatitis, insulin is preferred to oral antidiabetic agents to control blood glucose concentration. Liver toxicity of corticosteroids and immune suppressors should be monitored during treatment for severe hepatitis in patients with connective tissue diseases including SLE, RA and sicca syndrome. Patient with connective tissue diseases should preferably be started after the antiviral treatment with nucleos(t)ide analogues. An artificial liver can improve patients’ liver function; remove endotoxins, blood ammonia and other toxins; correct amino acid metabolism and coagulation disorders; and reverse internal environment imbalances. Non-bioartificial livers are suitable for patients with early and middle stage severe hepatitis; for late-stage patients waiting for liver transplantation; and for transplanted patients with rejection reaction or transplant failure. The type of artificial liver should be determined by each patient’s condition and previous treatment purpose, and patients should be closely monitored for adverse reactions and complications. Bio- and hybrid artificial livers are still under development. MELD score is the international standard for choosing liver transplantation. Surgical methods mainly include the in situ classic type and the piggyback type; transplantation includes no liver prophase, no liver phase or new liver phase. Preoperative preparation, management of intraoperative and postoperative complications and postoperative long-term treatment are keys to success. Severe hepatitis belongs to the categories of “acute jaundice”, “scourge jaundice”, and “hot liver” in traditional Chinese medicine. Treatment methods include Chinese traditional medicines, acupuncture and acupoint injection, external application of drugs, umbilical compress therapy, drip, blow nose therapy, earpins, and clysis. Dietary care is also an important part of traditional Chinese medicine treatment.
Collapse
|
7
|
Bai P, Xia N, Sun H, Kong Y. Pleiotrophin, a target of miR-384, promotes proliferation, metastasis and lipogenesis in HBV-related hepatocellular carcinoma. J Cell Mol Med 2017; 21:3023-3043. [PMID: 28557334 PMCID: PMC5661149 DOI: 10.1111/jcmm.13213] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/29/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatitis B virus (HBV) infection plays a crucial role and is a major cause of hepatocellular carcinoma (HCC) in China. microRNAs (miRNAs) have emerged as key players in hepatic steatosis and carcinogenesis. We found that down-regulation of miR-384 expression was a common event in HCC, especially HBV-related HCC. However, the possible function of miR-384 in HBV-related HCC remains unclear. The oncogene pleiotrophin (PTN) was a target of miR-384. HBx inhibited miR-384, increasing PTN expression. The PTN receptor N-syndecan was highly expressed in HCC. PTN induced by HBx acted as a growth factor via N-syndecan on hepatocytes and further promoted cell proliferation, metastasis and lipogenesis. PTN up-regulated sterol regulatory element-binding protein 1c (SREBP-1c) through the N-syndecan/PI3K/Akt/mTORC1 pathway and the expression of lipogenic genes, including fatty acid synthesis (FAS). PTN-mediated de novo lipid synthesis played an important role in HCC proliferation and metastasis. PI3K/AKT and an mTORC1 inhibitor diminished PTN-induced proliferation, metastasis and lipogenesis. Taken together, these data strongly suggest that the dysregulation of miR-384 could play a crucial role in HBV related to HCC, and the target gene of miR-384, PTN, represents a new potential therapeutic target for the prevention of hepatic steatosis and further progression to HCC after chronic HBV infection.
Collapse
Affiliation(s)
- Pei‐song Bai
- Department of OncologyFirst Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Nan Xia
- Institute of Cancer Prevention and ControlPeking University Cancer HospitalBei'jingChina
| | - Hong Sun
- Department of OncologyFirst Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ying Kong
- Department of OncologyFirst Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
8
|
Aghaei I, Saeedi Saravi SS, Ghotbi Ravandi S, Nozari M, Roudbari A, Dalili A, Shabani M, Dehpour AR. Evaluation of prepulse inhibition and memory impairments at early stage of cirrhosis may be considered as a diagnostic index for minimal hepatic encephalopathy. Physiol Behav 2017; 173:87-94. [PMID: 28119160 DOI: 10.1016/j.physbeh.2017.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 10/22/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
Minimal hepatic encephalopathy (MHE), which represents the early stage of this condition, is not clinically apparent and is prevalent in up to 80% of patients. The poor outcomes of MHE encouraged us to identify more simple methods for early diagnosis of MHE. To this purpose, we evaluated the contemporary manifestations of motor, cognitive and sensorimotor gaiting deficits following bile duct-ligation (BDL). Male Wistar rats were undergone BDL to induce cirrhosis and locomotor, spatial learning and memory and sensorimotor gating were assessed 2, 3, and 4weeks after the operation by rotarod, Morris water-maze and prepulse inhibition (PPI) tests. PPI was examined 6weeks after BDL until appearance of hepatic encephalopathy. Results showed that although PPI was significantly enhanced in the 6-week BDL animals, locomotor activity reduced in 4-week BDL rats compared to the BDL rats after a 2-week period. The total distance travelled and swimming time to reach the platform increased in the 4-week BDL rats and, in contrast, the percentage of time spent and space travelled in correct quadrant decreased. Moreover, memory index decreased in the 3-week BDL group compared to sham-operated group. It was observed an increase in global PPI in 3- and 4-week BDL animals in comparison with either 2-week BDL or sham-operated rats. Consequently, it is indicated that BDL animals manifest spatial learning and memory deficits and PPI disruption in early stage of HE and evaluation of these factors can be considered as indices for simple and early diagnosis of MHE.
Collapse
Affiliation(s)
- Iraj Aghaei
- Social Determinants of Health Research Center, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Soheil Saeedi Saravi
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Ghotbi Ravandi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Nozari
- Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Roudbari
- Neuroscience Research Center, Department of Neurology, Poursina Hospital, School of Medicine, Guilan University of Medical sciences, Rasht, Iran
| | - Afshin Dalili
- Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Sorrelle N, Dominguez ATA, Brekken RA. From top to bottom: midkine and pleiotrophin as emerging players in immune regulation. J Leukoc Biol 2017; 102:277-286. [PMID: 28356350 DOI: 10.1189/jlb.3mr1116-475r] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/15/2023] Open
Abstract
Cytokines are pivotal in the generation and resolution of the inflammatory response. The midkine/pleiotrophin (MK/PTN) family of cytokines, composed of just two members, was discovered as heparin-binding neurite outgrowth-promoting factors. Since their discovery, expression of this cytokine family has been reported in a wide array of inflammatory diseases and cancer. In this minireview, we will discuss the emerging appreciation of the functions of the MK/PTN family in the immune system, which include promoting lymphocyte survival, sculpting myeloid cell phenotype, driving immune cell chemotaxis, and maintaining hematopoiesis.
Collapse
Affiliation(s)
- Noah Sorrelle
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and
| | - Adrian T A Dominguez
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and .,Division of Surgical Oncology, Departments of Surgery and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Michelotti GA, Tucker A, Swiderska-Syn M, Machado MV, Choi SS, Kruger L, Soderblom E, Thompson JW, Mayer-Salman M, Himburg HA, Moylan CA, Guy CD, Garman KS, Premont RT, Chute JP, Diehl AM. Pleiotrophin regulates the ductular reaction by controlling the migration of cells in liver progenitor niches. Gut 2016; 65:683-92. [PMID: 25596181 PMCID: PMC4504836 DOI: 10.1136/gutjnl-2014-308176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The ductular reaction (DR) involves mobilisation of reactive-appearing duct-like cells (RDC) along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space of Disse. Perivascular cells in stem cell niches produce pleiotrophin (PTN) to inactivate the PTN receptor, protein tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby augmenting phosphoprotein-dependent signalling. We hypothesised that the DR is regulated by PTN/PTPRZ1 signalling. DESIGN PTN-GFP, PTN-knockout (KO), PTPRZ1-KO, and wild type (WT) mice were examined before and after bile duct ligation (BDL) for PTN, PTPRZ1 and the DR. RDC and HSC from WT, PTN-KO, and PTPRZ1-KO mice were also treated with PTN to determine effects on downstream signaling phosphoproteins, gene expression, growth, and migration. Liver biopsies from patients with DRs were also interrogated. RESULTS Although quiescent HSC and RDC lines expressed PTN and PTPRZ1 mRNAs, neither PTN nor PTPRZ1 protein was demonstrated in healthy liver. BDL induced PTN in MF-HSC and increased PTPRZ1 in MF-HSC and RDC. In WT mice, BDL triggered a DR characterised by periportal accumulation of collagen, RDC and MF-HSC. All aspects of this DR were increased in PTN-KO mice and suppressed in PTPRZ1-KO mice. In vitro studies revealed PTN-dependent accumulation of phosphoproteins that control cell-cell adhesion and migration, with resultant inhibition of cell migration. PTPRZ1-positive cells were prominent in the DRs of patients with ductal plate defects and adult cholestatic diseases. CONCLUSIONS PTN, and its receptor, PTPRZ1, regulate the DR to liver injury by controlling the migration of resident cells in adult liver progenitor niches.
Collapse
Affiliation(s)
| | - Anikia Tucker
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | | | | | - Steve S Choi
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Leandi Kruger
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Erik Soderblom
- Proteomics Center, Duke University, Durham, North Carolina, USA
| | - J Will Thompson
- Proteomics Center, Duke University, Durham, North Carolina, USA
| | | | - Heather A Himburg
- Division of Hematology and Oncology, UCLA, Los Angeles, California, USA
| | - Cynthia A Moylan
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Katherine S Garman
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Richard T Premont
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - John P Chute
- Division of Hematology and Oncology, UCLA, Los Angeles, California, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Genes related with apoptosis by inflammation in diabetic keratocytes. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Tsirmoula S, Lamprou M, Hatziapostolou M, Kieffer N, Papadimitriou E. Pleiotrophin-induced endothelial cell migration is regulated by xanthine oxidase-mediated generation of reactive oxygen species. Microvasc Res 2015; 98:74-81. [PMID: 25582077 DOI: 10.1016/j.mvr.2015.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/25/2014] [Accepted: 01/03/2015] [Indexed: 01/13/2023]
Abstract
Pleiotrophin (PTN) is a heparin-binding growth factor that induces cell migration through binding to its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and integrin alpha v beta 3 (ανβ3). In the present work, we studied the effect of PTN on the generation of reactive oxygen species (ROS) in human endothelial cells and the involvement of ROS in PTN-induced cell migration. Exogenous PTN significantly increased ROS levels in a concentration and time-dependent manner in both human endothelial and prostate cancer cells, while knockdown of endogenous PTN expression in prostate cancer cells significantly down-regulated ROS production. Suppression of RPTPβ/ζ through genetic and pharmacological approaches, or inhibition of c-src kinase activity abolished PTN-induced ROS generation. A synthetic peptide that blocks PTN-ανβ3 interaction abolished PTN-induced ROS generation, suggesting that ανβ3 is also involved. The latter was confirmed in CHO cells that do not express β3 or over-express wild-type β3 or mutant β3Y773F/Y785F. PTN increased ROS generation in cells expressing wild-type β3 but not in cells not expressing or expressing mutant β3. Phosphoinositide 3-kinase (PI3K) or Erk1/2 inhibition suppressed PTN-induced ROS production, suggesting that ROS production lays down-stream of PI3K or Erk1/2 activation by PTN. Finally, ROS scavenging and xanthine oxidase inhibition completely abolished both PTN-induced ROS generation and cell migration, while NADPH oxidase inhibition had no effect. Collectively, these data suggest that xanthine oxidase-mediated ROS production is required for PTN-induced cell migration through the cell membrane functional complex of ανβ3 and RPTPβ/ζ and activation of c-src, PI3K and ERK1/2 kinases.
Collapse
Affiliation(s)
- Sotiria Tsirmoula
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504 Patras, Greece
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504 Patras, Greece
| | - Maria Hatziapostolou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504 Patras, Greece
| | - Nelly Kieffer
- Sino-French Research Centre for Life Sciences and Genomics, CNRS/LIA124, Rui Jin Hospital, Jiao Tong University Medical School, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504 Patras, Greece.
| |
Collapse
|
13
|
Lamprou M, Kaspiris A, Panagiotopoulos E, Giannoudis PV, Papadimitriou E. The role of pleiotrophin in bone repair. Injury 2014; 45:1816-23. [PMID: 25456495 DOI: 10.1016/j.injury.2014.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 02/02/2023]
Abstract
Bone has an enormous capacity for growth, regeneration, and remodelling, largely due to induction of osteoblasts that are recruited to the site of bone formation. Although the pathways involved have not been fully elucidated, it is well accepted that the immediate environment of the cells is likely to play a role via cell–matrix interactions, mediated by several growth factors. Formation of new blood vessels is also significant and interdependent to bone formation, suggesting that enhancement of angiogenesis could be beneficial during the process of bone repair. Pleiotrophin (PTN), also called osteoblast-specific factor 1, is a heparin-binding angiogenic growth factor, with a well-defined and significant role in both physiological and pathological angiogenesis. In this review we summarise the existing evidence on the role of PTN in bone repair.
Collapse
|
14
|
Du CX, Wang L, Li Y, Xiao W, Guo QL, Chen F, Tan XT. Elevated expression of pleiotrophin in lymphocytic leukemia CD19+ B cells. APMIS 2014; 122:905-13. [PMID: 24698102 DOI: 10.1111/apm.12229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/12/2013] [Indexed: 01/09/2023]
Abstract
Pleiotrophin (PTN) has been demonstrated to be strongly expressed in many fetal tissues, but seldom in healthy adult tissues. While PTN has been reported to be expressed in many types of tumors as well as at high serum concentrations in patients with many types of cancer, to date, there has been no report that PTN is expressed in leukemia, especially in lymphocytic leukemia. We isolated the CD19(+) subset of B cells from peripheral blood from healthy adults, B-cell acute lymphocytic leukemia (B-ALL) patients, and B-cell chronic lymphocytic leukemia (B-CLL) patients and examined these cells for PTN mRNA and protein expression. We used immunocytochemistry, western blotting, and enzyme-linked immunosorbent assay to show that PTN protein is highly expressed in CD19(+) B cells from B-ALL and B-CLL patients, but barely expressed in B cells from healthy adults. We also examined PTN expression at the nucleic acid level using reverse transcription polymerase chain reaction (RT-PCR) and northern blotting and detected a high levels of PTN transcripts in the CD19(+) B cells from both groups of leukemia patients, but very few in the CD19(+) B cells from the healthy controls. Interestingly, the quantity of the PTN transcripts correlated with the severity of disease. Moreover, suppression of PTN activity with an anti-PTN antibody promoted apoptosis of cells from leukemia patients and cell lines SMS-SB and JVM-2. This effect of the anti-PTN antibody suggests that PTN may be a new target for the treatment of lymphocytic leukemia.
Collapse
Affiliation(s)
- Chun-Xian Du
- Department of Respiratory Medicine, The Zhongnan Hospital, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol 2014; 9:142-60. [PMID: 24610033 PMCID: PMC4048289 DOI: 10.1007/s11481-014-9531-7] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 12/22/2022]
Abstract
Infection, cancer and cardiovascular diseases are the major causes for morbidity and mortality in the United States according to the Center for Disease Control. The underlying etiology that contributes to the severity of these diseases is either hypoxia induced inflammation or inflammation resulting in hypoxia. Therefore, molecular mechanisms that regulate hypoxia-induced adaptive responses in cells are important areas of investigation. Oxygen availability is sensed by molecular switches which regulate synthesis and secretion of growth factors and inflammatory mediators. As a consequence, tissue microenvironment is altered by re-programming metabolic pathways, angiogenesis, vascular permeability, pH homeostasis to facilitate tissue remodeling. Hypoxia inducible factor (HIF) is the central mediator of hypoxic response. HIF regulates several hundred genes and vascular endothelial growth factor (VEGF) is one of the primary target genes. Understanding the regulation of HIF and its influence on inflammatory response offers unique opportunities for drug development to modulate inflammation and ischemia in pathological conditions.
Collapse
Affiliation(s)
- S Ramakrishnan
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA,
| | | | | |
Collapse
|
16
|
Marques TG, Chaib E, da Fonseca JH, Lourenço ACR, Silva FD, Ribeiro MAF, Galvão FHF, D'Albuquerque LAC. Review of experimental models for inducing hepatic cirrhosis by bile duct ligation and carbon tetrachloride injection. Acta Cir Bras 2013; 27:589-94. [PMID: 22850713 DOI: 10.1590/s0102-86502012000800013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/21/2012] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To present a review about a comparative study of bile duct ligation versus carbon tetrachloride Injection for inducing experimental liver cirrhosis. METHODS This research was made through Medline/PubMed and SciELO web sites looking for papers on the content "induction of liver cirrhosis in rats". We have found 107 articles but only 30 were selected from 2004 to 2011. RESULTS The most common methods used for inducing liver cirrhosis in the rat were administration of carbon tetrachloride (CCl4) and bile duct ligation (BDL). CCl4 has induced cirrhosis from 36 hours to 18 weeks after injection and BDL from seven days to four weeks after surgery. CONCLUSION For a safer inducing cirrhosis method BDL is better than CCl4 because of the absence of toxicity for researches and shorter time for achieving it.
Collapse
|
17
|
Pleiotrophin suppression of receptor protein tyrosine phosphatase-β/ζ maintains the self-renewal competence of fetal human oligodendrocyte progenitor cells. J Neurosci 2013; 32:15066-75. [PMID: 23100427 DOI: 10.1523/jneurosci.1320-12.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) persist in human white matter, yet the mechanisms by which they are maintained in an undifferentiated state are unknown. Human OPCs differentially express protein tyrosine phosphatase receptor β/ζ (PTPRZ1) and its inhibitory ligand, pleiotrophin, suggesting the maintenance of an autocrine loop by which PTPRZ1 activity is tonically suppressed. PTPRZ1 constitutively promotes the tyrosine dephosphorylation of β-catenin and, thus, β-catenin participation in T cell factor (TCF)-mediated transcription. Using CD140a/PDGFRα-based fluorescence-activated cell sorting to isolate fetal OPCs from the fetal brain at gestational ages 16-22 weeks, we asked whether pleiotrophin modulated the expansion of OPCs and, if so, whether this was effected through the serial engagement of PTPRZ1 and β-catenin-dependent signals, such as TCF-mediated transcription. Lentiviral shRNAi knockdown of PTPRZ1 induced TCF-mediated transcription and substantially augmented GSK3β inhibition-induced TCF-reporter luciferase expression, suggesting dual regulation of β-catenin and the importance of PTPRZ1 as a tonic brake upon TCF-dependent transcription. Pharmacological inhibition of GSK3β triggered substrate detachment and initiated sphere formation, yet had no effect on either proliferation or net cell number. In contrast, pleiotrophin strongly potentiated the proliferation of CD140a(+)-sorted OPCs, as did PTPRZ1 knockdown, which significantly increased the total number of population doublings exhibited by OPCs before mitotic senescence. These observations suggest that pleiotrophin inhibition of PTPRZ1 contributes to the homeostatic self-renewal of OPCs and that this process is mediated by the tonic activation of β-catenin/TCF-dependent transcription.
Collapse
|
18
|
Kobuchi S, Fukushima K, Maeda Y, Kokuhu T, Ushigome H, Yoshimura N, Sugioka N, Takada K. Effects of bile duct stricture on the pharmacokinetics of the immunosuppressant tacrolimus in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2053-7107-1-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Schrobback K, Malda J, Crawford RW, Upton Z, Leavesley DI, Klein TJ. Effects of oxygen on zonal marker expression in human articular chondrocytes. Tissue Eng Part A 2012; 18:920-33. [PMID: 22097912 DOI: 10.1089/ten.tea.2011.0088] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Articular cartilage is organized in depth zones with phenotypically distinct subpopulations of chondrocytes that are exposed to different oxygen tensions. Despite growing evidence of the critical role for oxygen in chondrogenesis, little is known about its effect on chondrocytes from different zones. This study evaluates zonal marker expression of human articular chondrocytes from different zones under various oxygen tensions. Chondrocytes isolated from full-thickness, superficial, and middle/deep cartilage from knee replacement surgeries were expanded and redifferentiated under hypoxic (5% O(2)) or normoxic (20% O(2)) conditions. Differentiation under hypoxia increased expression of hypoxia-inducible factors 1alpha and 2alpha and accumulation of extracellular matrix, particularly in middle/deep chondrocytes, and favored re-expression of proteoglycan 4 by superficial chondrocytes compared with middle/deep cells. Zone-dependent expression of clusterin varied with culture duration. These results demonstrate that zonal chondrocytes retain important phenotypic differences during in vitro cultivation, and that these characteristics can be improved by altering the oxygen environment. However, transcript levels for pleiotrophin, cartilage intermediate layer protein, and collagen type X were similar between zones, challenging their reliability as zonal markers for tissue-engineered cartilage from osteoarthritis patients. Key factors including oxygen tension and cell source should be considered to prescribe zone-specific properties to tissue-engineered cartilage.
Collapse
Affiliation(s)
- Karsten Schrobback
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Takayama H, Miyake Y, Nouso K, Ikeda F, Shiraha H, Takaki A, Kobashi H, Yamamoto K. Serum levels of platelet-derived growth factor-BB and vascular endothelial growth factor as prognostic factors for patients with fulminant hepatic failure. J Gastroenterol Hepatol 2011; 26:116-21. [PMID: 21175804 DOI: 10.1111/j.1440-1746.2010.06441.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS In animal models for acute liver injury, the administration of some angiogenic factors such as vascular endothelial growth factor (VEGF) and granulocyte-colony stimulating factor (G-CSF) are shown to reduce liver injury and improve liver proliferative capacity. The aim of the present study was to assess the role of angiogenic factors in fulminant hepatic failure (FHF). METHODS Serum levels of nine angiogenic factors (angiopoietin-2, follistatin, G-CSF, hepatocyte growth factor [HGF], interleukin-8, leptin, platelet-derived growth factor [PDGF]-BB, platelet endothelial cell adhesion molecule-1 and VEGF) were measured using the Bio-Plex Protein Array System in 30 patients, 17 of whom were diagnosed with FHF, 13 with acute hepatitis (AH), and 20 controls. RESULTS Serum levels of PDGF-BB and VEGF were lower in FHF patients than AH patients and controls (PDGF-BB; 2050±1572 pg/mL vs 4521±2419 pg/mL vs 8506±5500 pg/mL, VEGF; 39±38 pg/mL vs 144±122 pg/mL vs 205±121 pg/mL). By using univariate logistic regression models, serum levels of PDGF-BB and VEGF were associated with poor outcomes. Serum PDGF-BB levels were strongly correlated with serum VEGF levels (r=0.70). Furthermore, serum PDGF-BB levels were significantly correlated with platelet counts (r=0.79), PT activity (r=0.37) and D.Bil/T.Bil ratio (r=0.50), while serum VEGF levels were significantly correlated with platelet counts (r=0.68) and PT activity (r=0.38). CONCLUSIONS We consider that serum levels of PDGF-BB and VEGF are worth investigating as biomarkers for predicting outcomes of FHF patients.
Collapse
Affiliation(s)
- Hiroki Takayama
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Weng T, Liu L. The role of pleiotrophin and beta-catenin in fetal lung development. Respir Res 2010; 11:80. [PMID: 20565841 PMCID: PMC2901351 DOI: 10.1186/1465-9921-11-80] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/18/2010] [Indexed: 12/21/2022] Open
Abstract
Mammalian lung development is a complex biological process, which is temporally and spatially regulated by growth factors, hormones, and extracellular matrix proteins. Abnormal changes of these molecules often lead to impaired lung development, and thus pulmonary diseases. Epithelial-mesenchymal interactions are crucial for fetal lung development. This paper reviews two interconnected pathways, pleiotrophin and Wnt/β-catenin, which are involved in fibroblast and epithelial cell communication during fetal lung development.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | |
Collapse
|
22
|
Expression of pleiotrophin and its receptors in human placenta suggests roles in trophoblast life cycle and angiogenesis. Placenta 2009; 30:649-53. [PMID: 19481257 DOI: 10.1016/j.placenta.2009.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/28/2009] [Accepted: 05/01/2009] [Indexed: 11/22/2022]
Abstract
Pleiotrophin (PTN) is a heparin-binding protein with multiple activities in cell growth, migration and differentiation mediated through multiple receptors. In mammals, PTN expression in trophoblast is found exclusively in the human and in some of the apes in which an endogenous retrovirus upstream of the first coding exon generates a phylogenetically new trophoblast-specific promoter associated with exon UV3. To understand the functions of ERV promoter-mediated trophoblastic PTN expression in pregnancy, we correlated the expression of PTN and its receptors anaplastic lymphoma kinase (ALK), receptor protein tyrosine phosphatase beta/zeta (RPTPbeta/zeta), and Syndecan-1 and Syndecan-3 (SDC1 and SDC3) with key developmental processes in first-trimester human placentation. In an extensive survey of cell lines and primary tissues, we found that trophoblastic transcription of PTN is initiated exclusively from the ERV promoter, whereas decidual expression is initiated at the phylogenetically ancient U1 exon-associated promoter. Using immunohistochemistry, we found that different patterns of overlapping expression of PTN and its receptors occur in different trophoblast subtypes. Notably, a role in angiogenesis is supported by expression of PTN and its receptors in villous mesenchyme, fetal macrophages and villus core fetal vessels. PTN staining of extravillous cytotrophoblasts and the syncytial microvillous membrane is consistent with increasing levels of PTN, as measured by ELISA, in the maternal bloodstream as pregnancy progresses.
Collapse
|
23
|
Wirz W, Antoine M, Tag CG, Gressner AM, Korff T, Hellerbrand C, Kiefer P. Hepatic stellate cells display a functional vascular smooth muscle cell phenotype in a three-dimensional co-culture model with endothelial cells. Differentiation 2008; 76:784-94. [PMID: 18177423 DOI: 10.1111/j.1432-0436.2007.00260.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic stellate cells (HSCs) are pericytes of liver sinusoidal endothelial cells (LSECs) and activation of HSC into a myofibroblast-like phenotype (called transdifferentiation) is involved in several hepatic disease processes including neovascularization during liver metastasis, chronic and acute liver injury. While early smooth muscle cell (SMC) differentiation markers including SM alpha-actin and SM22alpha are expressed in a variety of non-SMC, expression of late-stage markers is far more restricted. Here, we found that in addition to early SMC markers, activated rat HSC express a large panel of characteristic late vascular SMC markers including SM myosin heavy chain, h1-calponin and h-caldesmon. Furthermore, myocardin, which is present exclusively in SMCs and cardiomyocytes and controls the transcription of a subset of early and late SMC markers, is highly expressed in activated HSC. We further studied activated HSC in a functional three-dimensional spheroidal co-culture system together with endothelial cells (EC). Co-culture spheroids of EC and SMC differentiate spontaneously and organize into a core of SMC and a surface layer of EC representing an inside-outside model of the physiological assembly of blood vessels. Replacing SMC by in vitro activated HSC resulted in a similar organized spheroid with differentiated, von-Willebrand factor producing, surface lining quiescent human umbilical vein endothelial cell and a core of HSC. In an in vitro angiogenesis assay, activated HSC induced quiescence in vascular EC-the hallmark of vascular SMC function. Co-spheroids of LSEC and activated HSC formed capillary-like sprouts in gel angiogenesis assays expressing the vascular EC marker VE-cadherin. Our findings indicate that activated HSC are capable to adapt a functional SMC phenotype and to induce formation of tubular sprouts by LSEC and vascular endothelial cells. Since tumors and tumor metastasis induce HSC activation, HSC may take part in tumor-induced neoangiogenesis by adapting SMC-like functions.
Collapse
Affiliation(s)
- W Wirz
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen, D-52073 Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Mikelis C, Papadimitriou E. Heparin-binding protein pleiotrophin: an important player in the angiogenic process. Connect Tissue Res 2008; 49:149-52. [PMID: 18661331 DOI: 10.1080/03008200802148652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, is a fundamental process in life, being also significantly important in several pathological situations. Pleiotrophin is a heparin-binding growth factor with pleiotrophic actions and significant role(s) in the formation of new blood vessels, being regulated by angiogenic stimuli and acting directly on endothelial cells. In this minireview, we summarize data on the regulation and mode of action of pleiotrophin and its involvement in physiological and tumor angiogenesis.
Collapse
Affiliation(s)
- Constantinos Mikelis
- Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, Patras, Greece
| | | |
Collapse
|
25
|
Antoine M, Wirz W, Tag CG, Gressner AM, Marvituna M, Wycislo M, Hellerbrand C, Kiefer P. Expression and function of fibroblast growth factor (FGF) 9 in hepatic stellate cells and its role in toxic liver injury. Biochem Biophys Res Commun 2007; 361:335-41. [PMID: 17662249 DOI: 10.1016/j.bbrc.2007.06.189] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 06/29/2007] [Indexed: 01/19/2023]
Abstract
Hepatic injury and regeneration of the liver are associated with activation of hepatic stellate cells (HSC). Fibroblast growth factors (FGFs) and their receptors are important regulators of repair in various tissues. HSC express FGFR3IIIc as well as FGFGR4 and different spliced FGFR1IIIc and FGFR2IIIc isoforms which differ in the presence or absence of the acid box and of the first Ig-like domain. Expression of FGF9, known to be capable to activate the HSC FGFR2/3-isoforms, was increased in HSC in liver slice cultures after exposition to carbon tetrachloride, as an acute liver injury model. FGF9 significantly stimulated 3-H thymidine incorporation of hepatocytes, but failed to induce DNA synthesis in HSC despite the fact that FGF9 induced a sustained activation of extracellular signal-related kinases (ERK) 1/2. FGF9 induced an increased phosphorylation of Tyr436 of the fibroblast growth factor receptor substrate (FRS) 2, while phosphorylation of Tyr196 which is required for efficient Grb2 recruitment remained unchanged. Our findings suggest that HSC FGF9 provide a paracrine mitogenic signal to hepatocytes during acute liver injury, while the autocrine FGF9 signaling appears to be not sufficient to induce cell proliferation.
Collapse
Affiliation(s)
- Marianne Antoine
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gu D, Yu B, Zhao C, Ye W, Lv Q, Hua Z, Ma J, Zhang Y. The effect of pleiotrophin signaling on adipogenesis. FEBS Lett 2007; 581:382-8. [PMID: 17239862 DOI: 10.1016/j.febslet.2006.12.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/15/2006] [Accepted: 12/19/2006] [Indexed: 11/30/2022]
Abstract
Pleiotrophin (PTN) plays diverse roles in cell growth and differentiation. In this investigation, we demonstrate that PTN plays a negative role in adipogensis and that glycogen synthase kinase 3beta (GSK-3beta) and beta-catenin are involved in the regulation of PTN-mediated preadipocyte differentiation. Knocking down the expression of PTN using siRNA resulted in an increase in phospho-GSK-3beta expression, and the accumulation of nuclear beta-catenin, which are critical downstream signaling proteins for both the PTN and Wnt signaling pathways. Our investigation suggests that there is a PTN/PI3K/AKT/GSK-3beta/beta-catenin signaling pathway, which cross-talks with the Wnt/Fz/GSK-3beta/beta-catenin pathway and negatively regulates adipogenesis.
Collapse
Affiliation(s)
- Dayong Gu
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Room 407, Building L, Tsinghua Campus, University Town, Shenzhen, Guangdong 518055, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Antoine M, Wirz W, Tag CG, Gressner AM, Wycislo M, Müller R, Kiefer P. Fibroblast growth factor 16 and 18 are expressed in human cardiovascular tissues and induce on endothelial cells migration but not proliferation. Biochem Biophys Res Commun 2006; 346:224-33. [PMID: 16756958 DOI: 10.1016/j.bbrc.2006.05.105] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 05/16/2006] [Indexed: 11/22/2022]
Abstract
Endothelial cells line the blood vessel and precursor endothelial cells appear to have a pivotal effect on the organ formation of the heart, the embryonic development of the kidney, and the liver. Several growth factors including the fibroblast growth factors (FGF) seem to be involved in these processes. Ligands such as basic FGF produced and secreted by endothelial cells may also coordinate cellular migration, differentiation, and proliferation under pathological conditions including wound healing, tumorgenesis, and fibrogenesis in the adult. Recently we demonstrated the expression of two secreted FGFs, FGF16, and FGF18, in HUVEC and in rat aortic tissue. In the present report, we confirmed by RT-PCR analysis that FGF18 is wildly expressed in the cardiovascular tissue, while FGF16 showed a more restricted expression pattern. HUVEC clearly demonstrated chemotaxis towards FGF16 and FGF18. Both FGFs also enhanced cell migration in response to mechanical damage. However, recombinant FGF16 and FGF18 failed to induce endothelial cell proliferation or sprouting in a three-dimensional in vitro angiogenesis assay. Fgf18 expression was earlier reported in the liver, and we detected FGF18 expression in liver vascular and liver sinusoidal endothelial cells (LSECs), but not in hepatic parenchymal cells. Recombinant FGF18 stimulated DNA synthesis in primary hepatocytes, suggesting, that endothelial FGF18 might have a paracrine function in promoting growth of the parenchymal tissue. Interestingly, FGF2, which is mitogenic on endothelial cells and hepatocytes stimulates a sustained MAPK activation in both cell types, while FGF18 causes a short transient activation of the MAPK pathway in endothelial cells but a sustained activation in hepatocytes. Therefore, the difference in the time course of MAPK activation by the different FGFs appears to be the cause for the different cellular responses.
Collapse
Affiliation(s)
- M Antoine
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|