1
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:1111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
Affiliation(s)
- Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma 949-7302, Niigata, Japan
| | - Takeshi Yokoo
- Department of Preemptive Medicine for Digestive Diseases and Healthy Active Life, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Tsubame Rosai Hospital, Tsubame 959-1228, Niigata, Japan
| | - Kenya Kamimura
- Department of General Medicine, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Abstract
The blood-brain barrier (BBB) is increasingly regarded as a dynamic interface that adapts to the needs of the brain, responds to physiological changes, and gets affected by and can even promote diseases. Modulation of BBB function at the molecular level in vivo is beneficial for a variety of basic and clinical studies. Here we show that our heteroduplex oligonucleotide (HDO), composed of an antisense oligonucleotide and its complementary RNA, conjugated to α-tocopherol as a delivery ligand, efficiently reduced the expression of organic anion transporter 3 (OAT3) gene in brain microvascular endothelial cells in mice. This proof-of-concept study demonstrates that intravenous administration of chemically synthesized HDO can remarkably silence OAT3 at the mRNA and protein levels. We also demonstrated modulation of the efflux transport function of OAT3 at the BBB in vivo. HDO will serve as a novel platform technology to advance the biology and pathophysiology of the BBB in vivo, and will also open a new therapeutic field of gene silencing at the BBB for the treatment of various intractable neurological disorders.
Collapse
|
3
|
Greene C, Campbell M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers 2016; 4:e1138017. [PMID: 27141420 DOI: 10.1080/21688370.2015.1138017] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 01/06/2023] Open
Abstract
The blood brain barrier (BBB) represents a major obstacle for targeted drug delivery to the brain for the treatment of central nervous system (CNS) disorders. Significant advances in barrier research over the past decade has led to the discovery of an increasing number of structural and regulatory proteins in tight junctions (TJ) and adherens junctions (AJ). These discoveries are providing the framework for the development of novel TJ modulators which can act specifically and temporarily to alter BBB function and regulate paracellular uptake of molecules. TJ modulators that have shown therapeutic potential in preclinical models include claudin-5 and occludin siRNAs, peptides derived from zonula occludens toxin as well as synthetic peptides targeting the extracellular loops of TJs. Adding to the array of modulating agents are novel mechanisms of BBB regulation such as focused ultrasound (FUS). This review will give a succinct overview of BBB biology and TJ modulation in general. Novel insights into BBB regulation in health and disease will also be summarized.
Collapse
Affiliation(s)
- Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin ; Dublin 2, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin ; Dublin 2, Ireland
| |
Collapse
|
4
|
Huang X, Townley H. Knock-down of ELMO1 in Paediatric Rhabdomyosarcoma Cells by Nanoparticle Mediated siRNA Delivery. Nanobiomedicine (Rij) 2016; 3:4. [PMID: 29942379 PMCID: PMC5998268 DOI: 10.5772/62690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/24/2016] [Indexed: 12/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma that is found in children and has a poor outcome for those with metastatic disease. Two histological groups have been distinguished - embryonal (ERMS) and alveolar (ARMS) forms. The ARMS subtype has higher rates of metastasis, as well as higher levels of ELMO1, which is thought to be involved in cell migration. Therefore, the knock-down of ELMO1 by targeted siRNA could provide a mechanism to prevent the metastatic behaviour of ARMS cells. However, challenges still lie in the delivery of nucleotides to a tumour site. Herein, we have described the use of a variety of mesoporous silica nanoparticles as a delivery system for siRNA that is specific for ELMO1 and shown the effective reduction in cell invasive behaviour in these cells.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Engineering Sciences, University of Oxford, UK
| | - Helen Townley
- Department of Engineering Sciences, University of Oxford, UK.,Department of Obstetrics and Gynaecology, University of Oxford, UK
| |
Collapse
|
5
|
Assmann JC, Körbelin J, Schwaninger M. Genetic manipulation of brain endothelial cells in vivo. Biochim Biophys Acta Mol Basis Dis 2015; 1862:381-94. [PMID: 26454206 DOI: 10.1016/j.bbadis.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Julian C Assmann
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Hubertus Wald Cancer Center, Department of Oncology and Hematology, Martinistr. 52, 20246 Hamburg, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
6
|
Gomes MJ, Martins S, Sarmento B. siRNA as a tool to improve the treatment of brain diseases: Mechanism, targets and delivery. Ageing Res Rev 2015; 21:43-54. [PMID: 25796492 DOI: 10.1016/j.arr.2015.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
As the population ages, brain pathologies such as neurodegenerative diseases and brain cancer increase their incidence, being the need to find successful treatments of upmost importance. Drug delivery to the central nervous system (CNS) is required in order to reach diseases causes and treat them. However, biological barriers, mainly blood-brain barrier (BBB), are the key obstacles that prevent the effectiveness of possible treatments due to their ability to strongly limit the perfusion of compounds into the brain. Over the past decades, new approaches towards overcoming BBB and its efflux transporters had been proposed. One of these approaches here reviewed is through small interfering RNA (siRNA), which is capable to specifically target one gene and silence it in a post-transcriptional way. There are different possible functional proteins at the BBB, as the ones responsible for transport or just for its tightness, which could be a siRNA target. As important as the effective silence is the way to delivery siRNA to its anatomical site of action. This is where nanotechnology-based systems may help, by protecting siRNA circulation and providing cell/tissue-targeting and intracellular siRNA delivery. After an initial overview on incidence of brain diseases and basic features of the CNS, BBB and its efflux pumps, this review focuses on recent strategies to reach brain based on siRNA, and how to specifically target these approaches in order to treat brain diseases.
Collapse
|
7
|
Zhang X, Liu Y, Zhang G, Shi J, Zhang X, Zheng X, Jiang AT, Zhang ZX, Johnston N, Siu KS, Chen R, Lian D, Koos D, Quan D, Min WP. Synergic silencing of costimulatory molecules prevents cardiac allograft rejection. J Transl Med 2014; 12:142. [PMID: 24886282 PMCID: PMC4040111 DOI: 10.1186/1479-5876-12-142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/28/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND While substantial progress has been made in blocking acute transplant rejection with the advent of immune suppressive drugs, chronic rejection, mediated primarily by recipient antigen presentation, remains a formidable problem in clinical transplantation. We hypothesized that blocking co-stimulatory pathways in the recipient by induction of RNA interference using small interference RNA (siRNA) expression vectors can prolong allogeneic heart graft survival. METHOD Vectors expressing siRNA specifically targeting CD40 and CD80 were prepared. Recipients (BALB/c mice) were treated with CD40 and/or CD80 siRNA expression vectors via hydrodynamic injection. Control groups were injected with a scrambled siRNA vector and sham treatment (PBS). After treatment, a fully MHC-mismatched (BALB/c to C57/BL6) heart transplantation was performed. RESULT Allogeneic heart graft survival (>100 days) was approximately 70% in the mice treated simultaneously with CD40 and CD80 siRNA expression vectors with overall reduction in lymphocyte interstitium infiltration, vascular obstruction, and edema. Hearts transplanted into CD40 or CD80 siRNA vector-treated recipients had an increased graft survival time compared to negative control groups, but did not survive longer than 40 days. In contrast, allogenic hearts transplanted into recipients treated with scrambled siRNA vector and PBS stopped beating within 10-16 days. Real-time PCR (RT-PCR) and flow cytometric analysis showed an upregulation of FoxP3 expression in spleen lymphocytes and a concurrent downregulation of CD40 and CD80 expression in splenic dendritic cells of siRNA-treated mice. Functional suppressive activity of splenic dendritic cells (DCs) isolated from tolerant recipients was demonstrated in a mixed lymphocyte reaction (MLR). Furthermore, DCs isolated from CD40- and CD80-treated recipients promoted CD4+CD25+FoxP3+ regulatory T cell differentiation in vitro. CONCLUSION This study demonstrates that the simultaneous silencing of CD40 and CD80 genes has synergistic effects in preventing allograft rejection, and may therefore have therapeutic potential in clinical transplantation.
Collapse
Affiliation(s)
- Xusheng Zhang
- Department of Surgery, Pathology, and Ocology, University of Western Ontario, London, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, Canada
| | - Yanling Liu
- Jiangxi Academy of Medical Sciences, The First Affiliated Hospital, and Institute of Immunotherapy of Nanchang University, Nanchang, China
| | - Guangfeng Zhang
- Department of Surgery, Pathology, and Ocology, University of Western Ontario, London, Canada
- Department of Rheumatology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangdong, China
| | - Jun Shi
- Jiangxi Academy of Medical Sciences, The First Affiliated Hospital, and Institute of Immunotherapy of Nanchang University, Nanchang, China
| | - Xiao Zhang
- Department of Rheumatology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangdong, China
| | - Xiufen Zheng
- Department of Surgery, Pathology, and Ocology, University of Western Ontario, London, Canada
| | - Alex T Jiang
- Department of Surgery, Pathology, and Ocology, University of Western Ontario, London, Canada
| | - Zhu-Xu Zhang
- Department of Surgery, Pathology, and Ocology, University of Western Ontario, London, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, Canada
| | - Nathan Johnston
- Department of Surgery, Pathology, and Ocology, University of Western Ontario, London, Canada
| | - King Sun Siu
- Department of Surgery, Pathology, and Ocology, University of Western Ontario, London, Canada
| | - Ruiqi Chen
- Department of Surgery, Pathology, and Ocology, University of Western Ontario, London, Canada
| | - Dameng Lian
- Multi-Organ Transplant Program, London Health Sciences Centre, London, Canada
| | | | - Douglas Quan
- Department of Surgery, Pathology, and Ocology, University of Western Ontario, London, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, Canada
| | - Wei-Ping Min
- Department of Surgery, Pathology, and Ocology, University of Western Ontario, London, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, Canada
- Jiangxi Academy of Medical Sciences, The First Affiliated Hospital, and Institute of Immunotherapy of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Nishina K, Mizusawa H, Yokota T. Short interfering RNA and the central nervous system: development of nonviral delivery systems. Expert Opin Drug Deliv 2013; 10:289-92. [PMID: 23289737 DOI: 10.1517/17425247.2013.748746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of gene silencing therapies for neurological diseases has placed great importance on the delivery of short interfering RNA (siRNA) to the central nervous system (CNS). However, delivery of siRNA to neurons, glia and brain capillary endothelial cells (BCECs) has not been well established. This editorial describes different approaches that are being used to efficiently deliver siRNA to the CNS via intravenous, intracerebroventricular, or intranasal administration.
Collapse
Affiliation(s)
- Kazutaka Nishina
- Tokyo Medical and Dental University, Graduate School, Department of Neurology and Neurological Science, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
9
|
Angiogenesis induced by CNS inflammation promotes neuronal remodeling through vessel-derived prostacyclin. Nat Med 2012; 18:1658-64. [PMID: 23042236 DOI: 10.1038/nm.2943] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a prominent feature of central nervous system (CNS) disease and has roles in both the continued promotion of inflammation and the subsequent repair processes. Here we report that prostacyclin (or prostaglandin I(2) (PGI(2))) derived from new vessels promotes axonal remodeling of injured neuronal networks after CNS inflammation. In a localized model of experimental autoimmune encephalomyelitis (EAE), new vessels formed around the inflammatory lesion, followed by sprouting of adjacent corticospinal tract (CST) fibers. These sprouting fibers formed a compensatory motor circuit, leading to recovery of motor function. Capillary endothelial cell-derived prostacyclin bound to its receptor, the type I prostaglandin receptor (IP receptor), on CST neurons, promoting sprouting of CST fibers and contributing to the repair process. Inhibition of prostacyclin receptor signaling impaired motor recovery, whereas the IP receptor agonist iloprost promoted axonal remodeling and motor recovery after the induction of EAE. These findings reveal an important function of angiogenesis in neuronal rewiring and suggest that prostacyclin is a promising molecule for enhancing functional recovery from CNS disease.
Collapse
|
10
|
Delivery of siRNA into the blood-brain barrier: recent advances and future perspective. Ther Deliv 2012; 3:417-20. [PMID: 22834073 DOI: 10.4155/tde.12.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Efficient in vivo delivery of siRNA into brain capillary endothelial cells along with endogenous lipoprotein. Mol Ther 2011; 19:2213-21. [PMID: 21915100 DOI: 10.1038/mt.2011.186] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The brain capillary endothelial cell (BCEC) is a major functional component of the blood-brain barrier and is an underlying factor in the pathophysiology of various diseases, including brain ischemia, multiple sclerosis, and neurodegenerative disorders. We examined gene silencing in BCECs by using endogenous lipoprotein to introduce short-interfering RNA (siRNA) in vivo. A cholesterol-conjugated 21/23-mer siRNA targeting organic anion transporter 3 (OAT3) mRNA (Chol-siOAT3) was intravenously injected into mice after its incorporation into extracted endogenous lipoproteins. Chol-siOAT3 was not delivered to neurons or glia, but was successfully delivered into BCECs and resulted in a significant reduction of OAT3 mRNA levels when injected after its incorporation into high-density lipoprotein (HDL). Efficient delivery was not achieved, however, when Chol-siOAT3 was injected without any lipoproteins, or after its incorporation into low-density lipoprotein (LDL). Investigations in apolipoprotein E (ApoE)-deficient and LDL receptor (LDLR)-deficient mice revealed that the uptake of HDL-containing Chol-siOAT3 was mainly mediated by ApoE and LDLR in mice. These findings indicate that siRNA can be delivered into BCECs in vivo by using endogenous lipoprotein, which could make this strategy useful as a new gene silencing therapy for diseases involving BCECs.
Collapse
|
12
|
Liesz A, Zhou W, Mracskó É, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A, Sommer C, Dalpke AH, Veltkamp R. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. ACTA ACUST UNITED AC 2011; 134:704-20. [PMID: 21354973 DOI: 10.1093/brain/awr008] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T lymphocytes are increasingly recognized as key modulators of detrimental inflammatory cascades in acute ischaemic stroke, but the potential of T cell-targeted therapy in brain ischaemia is largely unexplored. Here, we characterize the effect of inhibiting leukocyte very late antigen-4 and endothelial vascular cell adhesion molecule-1-mediated brain invasion-currently the most effective strategy in primary neuroinflammatory brain disease in murine ischaemic stroke models. Very late antigen-4 blockade by monoclonal antibodies improved outcome in models of moderate stroke lesions by inhibiting cerebral leukocyte invasion and neurotoxic cytokine production without increasing the susceptibility to bacterial infections. Gene silencing of the endothelial very late antigen-4 counterpart vascular cell adhesion molecule-1 by in vivo small interfering RNA injection resulted in an equally potent reduction of infarct volume and post-ischaemic neuroinflammation. Furthermore, very late antigen-4-inhibition effectively reduced the post-ischaemic vascular cell adhesion molecule-1 upregulation, suggesting an additional cross-signalling between invading leukocytes and the cerebral endothelium. Dissecting the specific impact of leukocyte subpopulations showed that invading T cells, via their humoral secretion (interferon-γ) and immediate cytotoxic mechanisms (perforin), were the principal pathways for delayed post-ischaemic tissue injury. Thus, targeting T lymphocyte-migration represents a promising therapeutic approach for ischaemic stroke.
Collapse
Affiliation(s)
- Arthur Liesz
- Department of Neurology, University Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Aigner A. Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. J Biomed Biotechnol 2010; 2006:71659. [PMID: 17057369 PMCID: PMC1559929 DOI: 10.1155/jbb/2006/71659] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) is a powerful method for specific gene
silencing which may also lead to promising novel therapeutic
strategies. It is mediated through small interfering RNAs (siRNAs)
which sequence-specifically trigger the cleavage and subsequent
degradation of their target mRNA. One critical factor is the
ability to deliver intact siRNAs into target cells/organs in vivo.
This review highlights the mechanism of RNAi and the guidelines
for the design of optimal siRNAs. It gives an overview of studies
based on the systemic or local application of naked siRNAs or the
use of various nonviral siRNA delivery systems. One promising
avenue is the the complexation of siRNAs with the polyethylenimine
(PEI), which efficiently stabilizes siRNAs and, upon systemic
administration, leads to the delivery of the intact siRNAs into
different organs. The antitumorigenic effects of
PEI/siRNA-mediated in vivo gene-targeting of tumor-relevant
proteins like in mouse tumor xenograft models are described.
Collapse
Affiliation(s)
- Achim Aigner
- Department of Pharmacology and Toxicology,
Philipps-University Marburg, Karl-v.-Frisch-Strasse 1, 35033 Marburg, Germany
- *Achim Aigner:
| |
Collapse
|
14
|
Nishida Y, Ito S, Ohtsuki S, Yamamoto N, Takahashi T, Iwata N, Jishage KI, Yamada H, Sasaguri H, Yokota S, Piao W, Tomimitsu H, Saido TC, Yanagisawa K, Terasaki T, Mizusawa H, Yokota T. Depletion of vitamin E increases amyloid beta accumulation by decreasing its clearances from brain and blood in a mouse model of Alzheimer disease. J Biol Chem 2009; 284:33400-8. [PMID: 19679659 DOI: 10.1074/jbc.m109.054056] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increased oxidative damage is a prominent and early feature in Alzheimer disease. We previously crossed Alzheimer disease transgenic (APPsw) model mice with alpha-tocopherol transfer protein knock-out (Ttpa(-/-)) mice in which lipid peroxidation in the brain was significantly increased. The resulting double-mutant (Ttpa(-/-)APPsw) mice showed increased amyloid beta (Abeta) deposits in the brain, which was ameliorated with alpha-tocopherol supplementation. To investigate the mechanism of the increased Abeta accumulation, we here studied generation, degradation, aggregation, and efflux of Abeta in the mice. The clearance of intracerebral-microinjected (125)I-Abeta(1-40) from brain was decreased in Ttpa(-/-) mice to be compared with wild-type mice, whereas the generation of Abeta was not increased in Ttpa(-/-)APPsw mice. The activity of an Abeta-degrading enzyme, neprilysin, did not decrease, but the expression level of insulin-degrading enzyme was markedly decreased in Ttpa(-/-) mouse brain. In contrast, Abeta aggregation was accelerated in Ttpa(-/-) mouse brains compared with wild-type brains, and well known molecules involved in Abeta transport from brain to blood, low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein, were up-regulated in the small vascular fraction of Ttpa(-/-) mouse brains. Moreover, the disappearance of intravenously administered (125)I-Abeta(1-40) was decreased in Ttpa(-/-) mice with reduced translocation of LRP-1 in the hepatocytes. These results suggest that lipid peroxidation due to depletion of alpha-tocopherol impairs Abeta clearances from the brain and from the blood, possibly causing increased Abeta accumulation in Ttpa(-/-)APPsw mouse brain and plasma.
Collapse
Affiliation(s)
- Yoichiro Nishida
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519. Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:8-20. [DOI: 10.1016/j.nano.2008.06.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 05/21/2008] [Accepted: 06/04/2008] [Indexed: 11/21/2022]
|
16
|
|
17
|
Efficient In Vivo Delivery of siRNA to the Liver by Conjugation of α-Tocopherol. Mol Ther 2008. [DOI: 10.1038/sj.mt.6300420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
18
|
Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol Ther 2008; 16:734-740. [PMID: 18362929 DOI: 10.1038/mt.2008.14] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 01/07/2008] [Indexed: 11/08/2022] Open
Abstract
RNA interference is a powerful tool for target-specific knockdown of gene expression. However, efficient and safe in vivo delivery of short interfering RNA (siRNA) to the target organ, which is essential for therapeutic applications, has not been established. In this study we used alpha-tocopherol (vitamin E), which has its own physiological transport pathway to most of the organs, as a carrier molecule of siRNA in vivo. The alpha-tocopherol was covalently bound to the antisense strand of 27/29-mer siRNA at the 5'-end (Toc-siRNA). The 27/29-mer Toc-siRNA was designed to be cleaved by Dicer, producing a mature form of 21/21-mer siRNA after releasing alpha-tocopherol. The C6 hydroxyl group of alpha-tocopherol, associated with antioxidant activity, was abolished. Using this new vector, intravenous injection of 2 mg/kg of Toc-siRNA, targeting apolipoprotein B (apoB), achieved efficient reduction of endogenous apoB messenger RNA (mRNA) in the liver. The downregulation of apoB mRNA was confirmed by the accumulation of lipid droplets in the liver as a phenotype. Neither induction of interferons (IFNs) nor other overt side effects were revealed by biochemical and pathological analyses. These findings indicate that Toc-siRNA is effective and safe for RNA interference-mediated gene silencing in vivo.
Collapse
|
19
|
ATP-binding cassette transporter A1 (ABCA1) deficiency does not attenuate the brain-to-blood efflux transport of human amyloid-beta peptide (1-40) at the blood-brain barrier. Neurochem Int 2007; 52:956-61. [PMID: 18201804 DOI: 10.1016/j.neuint.2007.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 11/22/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) mediates apolipoprotein-dependent cholesterol release from cellular membranes. Recent studies using ABCA1 knockout mice have demonstrated that ABCA1 affects amyloid-beta peptide (A beta) levels in the brain and the production of senile plaque. Cerebral A beta(1-40) was eliminated from the brain to the circulating blood via the blood-brain barrier (BBB), which expresses ABCA1. Therefore, in the present study, we examined whether ABCA1 affects the brain-to-blood efflux transport of human A beta(1-40)(hA beta(1-40)) at the BBB. The apparent uptake of [125I]hA beta(1-40) into ABCA1-expressing HEK293 cells was not significantly different from that into parental HEK293 cells. In addition, the apparent uptake was not significantly affected even in the presence of apolipoprotein A-I as a cholesterol release acceptor. Moreover, [125I]hA beta(1-40) elimination from mouse brain across the BBB was not significantly different between ABCA1-deficient and wild-type mice 60 min after its administration into the cerebrum. These results suggest that ABCA1 does not directly transport hA beta(1-40) and a deficiency of ABCA1 does not attenuate the brain-to-blood efflux transport of hA beta(1-40) across the BBB.
Collapse
|
20
|
Abstract
Efficient and safe methods for delivering genetic materials into cells must be developed before the clinical potential of gene therapy can be fully realized. Recently, hydrodynamic gene delivery using a rapid injection of a relatively large volume of DNA solution has opened up a new avenue for gene therapy studies in vivo. This method is superior to the existing delivery systems because of its simplicity, efficiency, and versatility. Wide success in applying hydrodynamic principles to delivery of DNA, RNA, proteins, and synthetic compounds, into the cells in various tissues of small animals, has inspired the recent attempts at establishing a hydrodynamic procedure for clinical use. In this review, we provide an overview of the theory and practice of hydrodynamic gene delivery so as to aid researchers for the use of this method in their pre-clinical and translational gene therapy studies.
Collapse
Affiliation(s)
- Takeshi Suda
- 1Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
21
|
Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007; 448:39-43. [PMID: 17572664 DOI: 10.1038/nature05901] [Citation(s) in RCA: 954] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 05/02/2007] [Indexed: 01/12/2023]
Abstract
A major impediment in the treatment of neurological diseases is the presence of the blood-brain barrier, which precludes the entry of therapeutic molecules from blood to brain. Here we show that a short peptide derived from rabies virus glycoprotein (RVG) enables the transvascular delivery of small interfering RNA (siRNA) to the brain. This 29-amino-acid peptide specifically binds to the acetylcholine receptor expressed by neuronal cells. To enable siRNA binding, a chimaeric peptide was synthesized by adding nonamer arginine residues at the carboxy terminus of RVG. This RVG-9R peptide was able to bind and transduce siRNA to neuronal cells in vitro, resulting in efficient gene silencing. After intravenous injection into mice, RVG-9R delivered siRNA to the neuronal cells, resulting in specific gene silencing within the brain. Furthermore, intravenous treatment with RVG-9R-bound antiviral siRNA afforded robust protection against fatal viral encephalitis in mice. Repeated administration of RVG-9R-bound siRNA did not induce inflammatory cytokines or anti-peptide antibodies. Thus, RVG-9R provides a safe and noninvasive approach for the delivery of siRNA and potentially other therapeutic molecules across the blood-brain barrier.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blood-Brain Barrier
- Brain/metabolism
- Brain/virology
- Cell Line
- Drug Delivery Systems
- Encephalitis Virus, Japanese
- Encephalitis, Japanese/prevention & control
- Gene Silencing
- Genetic Vectors/genetics
- Glycoproteins/administration & dosage
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Green Fluorescent Proteins/genetics
- HeLa Cells
- Humans
- Lentivirus/genetics
- Liposomes
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Molecular Sequence Data
- Neurons/metabolism
- Neurons/virology
- Oligopeptides/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rabies virus/genetics
- Rabies virus/physiology
- Receptors, Nicotinic/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Superoxide Dismutase/genetics
- Superoxide Dismutase-1
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Priti Kumar
- The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Aigner A. Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol 2007; 76:9-21. [PMID: 17457539 PMCID: PMC7079960 DOI: 10.1007/s00253-007-0984-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 01/13/2023]
Abstract
Within the recent years, RNA interference (RNAi) has become an almost-standard method for in vitro knockdown of any target gene of interest. Now, one major focus is to further explore its potential in vivo, including the development of novel therapeutic strategies. From the mechanism, it becomes clear that small interfering RNAs (siRNAs) play a pivotal role in triggering RNAi. Thus, the efficient delivery of target gene-specific siRNAs is one major challenge in the establishment of therapeutic RNAi. Numerous studies, based on different modes of administration and various siRNA formulations and/or modifications, have already accumulated promising results. This applies to various animal models covering viral infections, cancer and multiple other diseases. Continuing efforts will lead to the development of efficient and “double-specific” drugs, comprising of siRNAs with high target gene specificity and of nanoparticles enhancing siRNA delivery and target organ specificity.
Collapse
Affiliation(s)
- Achim Aigner
- Department Pharmacology and Toxicology, School of Medicine, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, 35033, Marburg, Germany.
| |
Collapse
|
23
|
Han IK, Kim MY, Byun HM, Hwang TS, Kim JM, Hwang KW, Park TG, Jung WW, Chun T, Jeong GJ, Oh YK. Enhanced brain targeting efficiency of intranasally administered plasmid DNA: an alternative route for brain gene therapy. J Mol Med (Berl) 2006; 85:75-83. [PMID: 17089096 DOI: 10.1007/s00109-006-0114-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 07/02/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
Recently, nasal administration has been studied as a noninvasive route for delivery of plasmid DNA encoding therapeutic or antigenic genes. Here, we examined the brain targeting efficiency and transport pathways of intranasally administered plasmid DNA. Quantitative polymerase chain reaction (PCR) measurements of plasmid DNA in blood and brain tissues revealed that intranasally administered pCMVbeta (7.2 kb) and pN2/CMVbeta (14.1 kb) showed systemic absorption and brain distribution. Following intranasal administration, the beta-galactosidase protein encoded by these plasmids was significantly expressed in brain tissues. Kinetic studies showed that intranasally administered plasmid DNA reached the brain with a 2,595-fold higher efficiency than intravenously administered plasmid DNA did, 10 min post-dose. Over 1 h post-dose, the brain targeting efficiencies were consistently higher for intranasally administered plasmid DNA than for intravenously administered DNA. To examine how plasmid DNA enters the brain and moves to the various regions, we examined tissues from nine brain regions, at 5 and 10 min after intranasal or intravenous administration of plasmid DNA. Intravenously administered plasmid DNA displayed similar levels of plasmid DNA in the nine different regions, whereas, intranasally administered plasmid DNA exhibited different levels of distribution among the regions, with the highest plasmid DNA levels in the olfactory bulb. Moreover, plasmid DNA was mainly detected in the endothelial cells, but not in glial cells. Our results suggest that intranasally applied plasmid DNA may reach the brain through a direct route, possibly via the olfactory bulb, and that the nasal route might be an alternative method for efficiently delivering plasmid DNA to the brain.
Collapse
Affiliation(s)
- In-Kwon Han
- MyGene Bioscience Institute, Kangnam-gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|