1
|
Yang S, Du P, Cui H, Zheng M, He W, Gao X, Hu Z, Jia S, Lu Q, Zhao M. Regulatory factor X1 induces macrophage M1 polarization by promoting DNA demethylation in autoimmune inflammation. JCI Insight 2023; 8:e165546. [PMID: 37733446 PMCID: PMC10619507 DOI: 10.1172/jci.insight.165546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Abnormal macrophage polarization is generally present in autoimmune diseases. Overwhelming M1 macrophage activation promotes the continuous progression of inflammation, which is one of the reasons for the development of autoimmune diseases. However, the underlying mechanism is still unclear. Here we explore the function of Regulatory factor X1 (RFX1) in macrophage polarization by constructing colitis and lupus-like mouse models. Both in vivo and in vitro experiments confirmed that RFX1 can promote M1 and inhibit M2 macrophage polarization. Furthermore, we found that RFX1 promoted DNA demethylation of macrophage polarization-related genes by increasing APOBEC3A/Apobec3 expression. We identified a potential RFX1 inhibitor, adenosine diphosphate (ADP), providing a potential strategy for treating autoimmune diseases.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Pei Du
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Haobo Cui
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meiling Zheng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Wei He
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofei Gao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Zhi Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
2
|
Shilova ON, Tsyba DL, Shilov ES. Mutagenic Activity of AID/APOBEC Deaminases in Antiviral Defense and Carcinogenesis. Mol Biol 2022; 56:46-58. [PMID: 35194245 PMCID: PMC8852905 DOI: 10.1134/s002689332201006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
Proteins of the AID/APOBEC family are capable of cytidine deamination in nucleic acids forming uracil. These enzymes are involved in mRNA editing, protection against viruses, the introduction of point mutations into DNA during somatic hypermutation, and antibody isotype switching. Since these deaminases, especially AID, are potent mutagens, their expression, activity, and specificity are regulated by several intracellular mechanisms. In this review, we discuss the mechanisms of impaired expression and activation of AID/APOBEC proteins in human tumors and their role in carcinogenesis and tumor progression. Also, the diagnostic and potential therapeutic value of increased expression of AID/APOBEC in different types of tumors is analyzed. We assume that in the case of solid tumors, increased expression of endogenous deaminases can serve as a marker of response to immunotherapy since multiple point mutations in host DNA could lead to amino acid substitutions in tumor proteins and thereby increase the frequency of neoepitopes.
Collapse
Affiliation(s)
- O. N. Shilova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - D. L. Tsyba
- Pavlov First State Medical University, 197022 St. Petersburg, Russia
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - E. S. Shilov
- Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
3
|
Expression of APOBEC family members as regulators of endogenous retroelements and malignant transformation in systemic autoimmunity. Clin Immunol 2020; 223:108649. [PMID: 33326823 DOI: 10.1016/j.clim.2020.108649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To explore whether APOBEC family members are involved in the response to inappropriate expression of L1 retroelements in primary Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE), as well as in SS related lymphomagenesis. METHODS Minor salivary glands (MSG) and kidney biopsy (KB) specimens were obtained from 41 SS patients (10 with lymphoma) and 23 patients with SLE, respectively. PBMC and sera were also collected from 73 SLE patients. Full-length L1 transcripts, members of the APOBEC and IFN family were quantitated by real time PCR. Type I IFN activity was assessed in lupus plasma by a cell assay. RESULTS APOBEC3A was increased in SS MSG, SLE KB and PBMC and correlated with L1. AID and APOBEC3G were particularly overexpressed in MSG tissues derived from SS lymphoma patients. CONCLUSION These data reveal a previously unappreciated role of APOBEC family proteins in the pathogenesis of systemic autoimmunity and SS related lymphomagenesis.
Collapse
|
4
|
Qu M, Wang W, Li W, Cao J, Zhang X, Wang C, Wu J, Yu B, Zhang H, Wu H, Kong W, Yu X. Antiviral Activity of Feline BCA2 Is Mainly Dependent on Its Interference With Proviral Transcription Rather Than Degradation of FIV Gag. Front Microbiol 2020; 11:1230. [PMID: 32595622 PMCID: PMC7301684 DOI: 10.3389/fmicb.2020.01230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Human BCA2/RNF115/Rabring7 (hBCA2) is a RING type E3 ubiquitin ligase with the ability of autoubiquitination or promoting protein ubiquitination. It also acts as a host restriction factor has BST2-dependent and BST2-independent antiviral activity to inhibit the release of HIV-1. In a previous study, we demonstrated that feline BCA2 (fBCA2) also has E3 ubiquitin ligase activity, although its antiviral mechanism remained unclear. In this study, we showed that fBCA2 can interact with feline BST2 (fBST2) and exhibits an fBST2-independent antiviral function, and the RING domain is necessary for the antiviral activity of fBCA2. fBCA2 could degrade HIV-1 Gag and restrict HIV-1 transcription to counteract HIV-1 but not promote the degradation of HIV-1 through lysosomal. Furthermore, for both fBCA2 and hBCA2, restricting viral transcription is the main anti-FIV mechanism compared to degradation of FIV Gag or promoting viral degradation. Consequently, transcriptional regulation of HIV or FIV by BCA2 should be the primary restriction mechanism, even though the degradation mechanism is different when BCA2 counteracts HIV or FIV. This may be due to BCA2 has a special preference in antiviral mechanism in the transmission of primate or non-primate retroviruses.
Collapse
Affiliation(s)
- Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Weiran Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Weiting Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaming Cao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Tan AT, Schreiber S. Adoptive T-cell therapy for HBV-associated HCC and HBV infection. Antiviral Res 2020; 176:104748. [DOI: 10.1016/j.antiviral.2020.104748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
|
6
|
Ni L, Li C, Li Y. Correlation of APOBEC3G expression with liver function indexes of patients with chronic hepatitis B and comparison in chronic hepatitis B, liver cirrhosis and liver cancer. Oncol Lett 2020; 19:2562-2567. [PMID: 32194760 DOI: 10.3892/ol.2020.11257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023] Open
Abstract
Correlation of APOBEC3G expression with liver function indexes of patients with chronic hepatitis B and its expression in chronic hepatitis B, liver cirrhosis and liver cancer were investigated to evaluated the significance of APOBEC3G. Fifty-eight patients with chronic hepatitis B were selected, including 20 cases of chronic hepatitis B, 19 cases of liver cirrhosis and 19 cases of liver cancer. Liver function indexes were detected and analyzed, and messenger ribonucleic acid (mRNA) and protein expression levels of APOBEC3G in liver tissues were detected via reverse transcription-polymerase chain reaction (RT-PCR), western blotting and immunohistochemistry, followed by correlation analysis. Certain liver function indexes had significant differences among the three groups of patients (P<0.05). Results of RT-PCR, Western blotting and immunohistochemistry confirmed that the content of APOBEC3G in liver tissues was the highest in patients with chronic hepatitis B, slightly lower in patients with liver cirrhosis and the lowest in patients with liver cancer. The content of APOBEC3G mRNA in liver tissues had a certain correlation with the content of alanine aminotransferase (ALT) (r2 =0.34, P<0.05). Other liver function indexes had no significant correlations with APOBEC3G (P>0.05). APOBEC3G expression has a certain correlation with some liver function indexes of patients with chronic hepatitis B. There are significant differences in the expression level of APOBEC3G in patients with hepatitis, liver cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Lina Ni
- Department of Blood Transfusion, Weihai Central Hospital, Wendeng, Weihai, Shandong 264400, P.R. China
| | - Chuanbao Li
- Department of Hepatobiliary Surgery, Weihai Central Hospital, Wendeng, Weihai, Shandong 264400, P.R. China
| | - Yingbo Li
- Department of Blood Transfusion, Weihai Central Hospital, Wendeng, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
7
|
Chougui G, Margottin-Goguet F. HUSH, a Link Between Intrinsic Immunity and HIV Latency. Front Microbiol 2019; 10:224. [PMID: 30809215 PMCID: PMC6379475 DOI: 10.3389/fmicb.2019.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
A prominent obstacle to HIV eradication in seropositive individuals is the viral persistence in latent reservoir cells, which constitute an HIV sanctuary out of reach of highly active antiretroviral therapies. Thus, the study of molecular mechanisms governing latency is a very active field that aims at providing solutions to face the reservoirs issue. Since the past 15 years, another major field in HIV biology focused on the discovery and study of restriction factors that shape intrinsic immunity, while engaging in a molecular battle against HIV. Some of these restrictions factors act at early stages of the virus life cycle, alike SAMHD1 antagonized by the viral protein Vpx, while others are late actors. Until recently, no such factor was identified in the nucleus and found active at the level of provirus expression, a crucial step where latency may take place. Today, two studies highlight Human Silencing Hub (HUSH) as a potential restriction factor that controls viral expression and is antagonized by Vpx. This Review discusses HUSH restriction in the light of the actual knowledge of intrinsic immunity and HIV latency.
Collapse
Affiliation(s)
- Ghina Chougui
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florence Margottin-Goguet
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
8
|
KDELR2 Competes with Measles Virus Envelope Proteins for Cellular Chaperones Reducing Their Chaperone-Mediated Cell Surface Transport. Viruses 2019; 11:v11010027. [PMID: 30621148 PMCID: PMC6356275 DOI: 10.3390/v11010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022] Open
Abstract
Recently, we found that the cytidine deaminase APOBEC3G (A3G) inhibits measles (MV) replication. Using a microarray, we identified differential regulation of several host genes upon ectopic expression of A3G. One of the up-regulated genes, the endoplasmic reticulum (ER) protein retention receptor KDELR2, reduced MV replication ~5 fold when it was over-expressed individually in Vero and CEM-SS T cells. Silencing of KDELR2 in A3G-expressing Vero cells abrogated the antiviral activity induced by A3G, confirming its role as an A3G-regulated antiviral host factor. Recognition of the KDEL (Lys-Asp-Glu-Leu) motif by KDEL receptors initiates the retrograde transport of soluble proteins that have escaped the ER and play an important role in ER quality control. Although KDELR2 over-expression reduced MV titers in cell cultures, we observed no interaction between KDELR2 and the MV hemagglutinin (H) protein. Instead, KDELR2 retained chaperones in the ER, which are required for the correct folding and transport of the MV envelope glycoproteins H and fusion protein (F) to the cell surface. Our data indicate that KDELR2 competes with MV envelope proteins for binding to calnexin and GRP78/Bip, and that this interaction limits the availability of the chaperones for MV proteins, causing the reduction of virus spread and titers.
Collapse
|
9
|
Strategy of Human Cytomegalovirus To Escape Interferon Beta-Induced APOBEC3G Editing Activity. J Virol 2018; 92:JVI.01224-18. [PMID: 30045985 DOI: 10.1128/jvi.01224-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/26/2023] Open
Abstract
The apolipoprotein B editing enzyme catalytic subunit 3 (APOBEC3) is a family of DNA cytosine deaminases that mutate and inactivate viral genomes by single-strand DNA editing, thus providing an innate immune response against a wide range of DNA and RNA viruses. In particular, APOBEC3A (A3A), a member of the APOBEC3 family, is induced by human cytomegalovirus (HCMV) in decidual tissues where it efficiently restricts HCMV replication, thereby acting as an intrinsic innate immune effector at the maternal-fetal interface. However, the widespread incidence of congenital HCMV infection implies that HCMV has evolved to counteract APOBEC3-induced mutagenesis through mechanisms that still remain to be fully established. Here, we have assessed gene expression and deaminase activity of various APOBEC3 gene family members in HCMV-infected primary human foreskin fibroblasts (HFFs). Specifically, we show that APOBEC3G (A3G) gene products and, to a lesser degree, those of A3F but not of A3A, are upregulated in HCMV-infected HFFs. We also show that HCMV-mediated induction of A3G expression is mediated by interferon beta (IFN-β), which is produced early during HCMV infection. However, knockout or overexpression of A3G does not affect HCMV replication, indicating that A3G is not a restriction factor for HCMV. Finally, through a bioinformatics approach, we show that HCMV has evolved mutational robustness against IFN-β by limiting the presence of A3G hot spots in essential open reading frames (ORFs) of its genome. Overall, our findings uncover a novel immune evasion strategy by HCMV with profound implications for HCMV infections.IMPORTANCE APOBEC3 family of proteins plays a pivotal role in intrinsic immunity defense mechanisms against multiple viral infections, including retroviruses, through the deamination activity. However, the currently available data on APOBEC3 editing mechanisms upon HCMV infection remain unclear. In the present study, we show that particularly the APOBEC3G (A3G) member of the deaminase family is strongly induced upon infection with HCMV in fibroblasts and that its upregulation is mediated by IFN-β. Furthermore, we were able to demonstrate that neither A3G knockout nor A3G overexpression appears to modulate HCMV replication, indicating that A3G does not inhibit HCMV replication. This may be explained by HCMV escape strategy from A3G activity through depletion of the preferred nucleotide motifs (hot spots) from its genome. The results may shed light on antiviral potential of APOBEC3 activity during HCMV infection, as well as the viral counteracting mechanisms under A3G-mediated selective pressure.
Collapse
|
10
|
APOBEC3G-Regulated Host Factors Interfere with Measles Virus Replication: Role of REDD1 and Mammalian TORC1 Inhibition. J Virol 2018; 92:JVI.00835-18. [PMID: 29925665 DOI: 10.1128/jvi.00835-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 01/23/2023] Open
Abstract
We found earlier that ectopic expression of the cytidine deaminase APOBEC3G (A3G) in Vero cells inhibits measles virus (MV), respiratory syncytial virus, and mumps virus, while the mechanism of inhibition remained unclear. A microarray analysis revealed that in A3G-transduced Vero cells, several cellular transcripts were differentially expressed, suggesting that A3G regulates the expression of host factors. One of the most upregulated host cell factors, REDD1 (regulated in development and DNA damage response-1, also called DDIT4), reduced MV replication ∼10-fold upon overexpression in Vero cells. REDD1 is an endogenous inhibitor of mTORC1 (mammalian target of rapamycin complex-1), the central regulator of cellular metabolism. Interestingly, rapamycin reduced the MV replication similarly to REDD1 overexpression, while the combination of both did not lead to further inhibition, suggesting that the same pathway is affected. REDD1 silencing in A3G-expressing Vero cells abolished the inhibitory effect of A3G. In addition, silencing of A3G led to reduced REDD1 expression, confirming that its expression is regulated by A3G. In primary human peripheral blood lymphocytes (PBL), expression of A3G and REDD1 was found to be stimulated by phytohemagglutinin (PHA) and interleukin-2. Small interfering RNA (siRNA)-mediated depletion of A3G in PHA-stimulated PBL reduced REDD1 expression and increased viral titers, which corroborates our findings in Vero cells. Silencing of REDD1 also increased viral titers, confirming the antiviral role of REDD1. Finally, pharmacological inhibition of mTORC1 by rapamycin in PHA-stimulated PBL reduced viral replication to the level found in unstimulated lymphocytes, indicating that mTORC1 activity supports MV replication as a proviral host factor.IMPORTANCE Knowledge about host factors supporting or restricting virus replication is required for a deeper understanding of virus-cell interactions and may eventually provide the basis for therapeutic intervention. This work was undertaken predominantly to explain the mechanism of A3G-mediated inhibition of MV, a negative-strand RNA virus that is not affected by the deaminase activity of A3G acting on single-stranded DNA. We found that A3G regulates the expression of several cellular proteins, which influences the capacity of the host cell to replicate MV. One of these, REDD1, which modulates the cellular metabolism in a central position by regulating the kinase complex mTORC1, was identified as the major cellular factor impairing MV replication. These findings show interesting aspects of the function of A3G and the dependence of the MV replication on the metabolic state of the cell. Interestingly, pharmacological inhibition of mTORC1 can be utilized to inhibit MV replication in Vero cells and primary human peripheral blood lymphocytes.
Collapse
|
11
|
Luo MT, Fan Y, Mu D, Yao YG, Zheng YT. Molecular cloning and characterization of APOBEC3 family in tree shrew. Gene 2017; 646:143-152. [PMID: 29292195 DOI: 10.1016/j.gene.2017.12.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 11/17/2022]
Abstract
The APOBEC3 family is a series antiviral factors that inhibit the replication of many viruses, such as HIV-1 and HBV. Tree shrews (Tupaia belangeri) possess great potential as an animal model for human diseases and therapeutic responses. However, the APOBEC3 family is unknown in tree shrews. Recent work has showed the presence of the APOBEC3 family in tree shrews. In this work, the cDNA sequences of five APOBEC3 members were identified in tree shrews, namely, tsAPOBEC3A, -3C, -3F, -3G and -3H. The results showed that their sequences encoded a zinc (Z)-coordinating-domain as a characteristic of APOBEC3 proteins. Phylogenetic analysis revealed that the tree shrew APOBEC3 (tsAPOBEC3) genes have occurred independently and that they are clustered with other mammalian APOBEC3 members. Transcript expression analysis indicated that tsAPOBEC3 genes are constitutively expressed, and high in immune-related tissues. tsAPOBEC3 gene expression was up-regulated in hepatocytes and PBMCs by IFN-α stimulation. Finally, tsAPOBEC3 proteins could edit both sides of DNA by inserting G→A and C→T hypermutations. Overall, the results suggest that the tsAPOBEC3 family could play a key role in defense immunity through distinct editing mechanisms. Our results provided insights into the genetic basis for the development of a tree shrew model for studying viral infection. Future studies will focus on deepening our understanding on the antiviral functions of these editing enzymes in tree shrew.
Collapse
Affiliation(s)
- Meng-Ting Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Dan Mu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215006, China..
| |
Collapse
|
12
|
Bertoletti A, Tan AT, Koh S. T-cell therapy for chronic viral hepatitis. Cytotherapy 2017; 19:1317-1324. [DOI: 10.1016/j.jcyt.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
|
13
|
Chen TW, Lee CC, Liu H, Wu CS, Pickering CR, Huang PJ, Wang J, Chang IYF, Yeh YM, Chen CD, Li HP, Luo JD, Tan BCM, Chan TEH, Hsueh C, Chu LJ, Chen YT, Zhang B, Yang CY, Wu CC, Hsu CW, See LC, Tang P, Yu JS, Liao WC, Chiang WF, Rodriguez H, Myers JN, Chang KP, Chang YS. APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism. Nat Commun 2017; 8:465. [PMID: 28878238 PMCID: PMC5587710 DOI: 10.1038/s41467-017-00493-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 07/04/2017] [Indexed: 12/29/2022] Open
Abstract
Oral squamous cell carcinoma is a prominent cancer worldwide, particularly in Taiwan. By integrating omics analyses in 50 matched samples, we uncover in Taiwanese patients a predominant mutation signature associated with cytidine deaminase APOBEC, which correlates with the upregulation of APOBEC3A expression in the APOBEC3 gene cluster at 22q13. APOBEC3A expression is significantly higher in tumors carrying APOBEC3B-deletion allele(s). High-level APOBEC3A expression is associated with better overall survival, especially among patients carrying APOBEC3B-deletion alleles, as examined in a second cohort (n = 188; p = 0.004). The frequency of APOBEC3B-deletion alleles is ~50% in 143 genotyped oral squamous cell carcinoma -Taiwan samples (27A3B−/−:89A3B+/−:27A3B+/+), compared to the 5.8% found in 314 OSCC-TCGA samples. We thus report a frequent APOBEC mutational profile, which relates to a APOBEC3B-deletion germline polymorphism in Taiwanese oral squamous cell carcinoma that impacts expression of APOBEC3A, and is shown to be of clinical prognostic relevance. Our finding might be recapitulated by genomic studies in other cancer types. Oral squamous cell carcinoma is a prevalent malignancy in Taiwan. Here, the authors show that OSCC in Taiwanese show a frequent deletion polymorphism in the cytidine deaminases gene cluster APOBEC3 resulting in increased expression of A3A, which is shown to be of clinical prognostic relevance.
Collapse
Affiliation(s)
- Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Chi-Ching Lee
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department and Graduate Institute of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Biochemistry, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Chi-Sheng Wu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Curtis R Pickering
- Departments of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Po-Jung Huang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Jing Wang
- Departments of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Yuan-Ming Yeh
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Chih-De Chen
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Hsin-Pai Li
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Ji-Dung Luo
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Bertrand Chin-Ming Tan
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Timothy En Haw Chan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Chuen Hsueh
- Pathology Core of the Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Pathology, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Yi-Ting Chen
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Bing Zhang
- Department of Molecular and Human Genetics Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Chia-Yu Yang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Gueishan, Taoyuan, 33305, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Chih-Ching Wu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Chia-Wei Hsu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Lai-Chu See
- Department of Public Health, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Biostatistics Core Laboratory, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Petrus Tang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Molecular Regulation and Bioinformatics Laboratory, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan.,Department of Cell and Molecular Biology, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Wei-Fan Chiang
- Department of Oral & Maxillofacial Surgery, Chi-Mei Medical Center, Liouying, 736, Taiwan.,School of Dentistry, National Yang Ming University, Taipei, 112, Taiwan
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jeffrey N Myers
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan. .,College of Medicine, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan. .,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan.
| |
Collapse
|
14
|
APOBEC3B and IL-6 form a positive feedback loop in hepatocellular carcinoma cells. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-016-9058-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Hepatitis B virus X protein is capable of down-regulating protein level of host antiviral protein APOBEC3G. Sci Rep 2017; 7:40783. [PMID: 28098260 PMCID: PMC5241686 DOI: 10.1038/srep40783] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022] Open
Abstract
The apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) family proteins bind RNA and single-stranded DNA, and create C-to-U base modifications through cytidine deaminase activity. APOBEC3G restricts human immunodeficiency virus 1 (HIV-1) infection by creating hypermutations in proviral DNA, while HIV-1-encoded vif protein antagonizes such restriction by targeting APOBEC3G for degradation. APOBEC3G also inhibits hepatitis B virus (HBV): APOBEC3G co-expression inhibits HBV replication and evidences exist indicating APOBEC3G-mediated HBV hypermutations in patients. HBV encodes a small non-structural X protein (HBx) with a recognized activating effect on HBV life cycle. In this work, we report the discovery that HBx selectively and dose-dependently decreases the protein level of co-expressed APOBEC3G in transfected Huh-7 cells. The effect was shown to take place post-translationally, but does not rely on protein degradation via proteasome or lysosome. Further work demonstrated that intracellular APOBEC3G is normally exported via exosome secretion and inhibition of exosome biogenesis causes retention of intracellular APOBEC3G. Finally, HBx co-expression specifically enhanced externalization of APOBEC3G via exosomes, resulting in decrease of intracellular APOBEC3G protein level. These data suggest the possibility that in addition to other mechanisms, HBx-mediated activation of HBV might also involve antagonizing of intracellular restriction factor APOBEC3G through promotion of its export.
Collapse
|
16
|
Abstract
The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.
Collapse
Affiliation(s)
- Sachini U Siriwardena
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University , Detroit, Michigan 48201, United States
- Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
17
|
Seeger C, Sohn JA. Complete Spectrum of CRISPR/Cas9-induced Mutations on HBV cccDNA. Mol Ther 2016; 24:1258-66. [PMID: 27203444 PMCID: PMC5088770 DOI: 10.1038/mt.2016.94] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) causes chronic infections that cannot yet be cured. The virus persists in infected hepatocytes, because covalently closed circular DNA (cccDNA), the template for the transcription of viral RNAs, is stable in nondividing cells. Antiviral therapies with nucleoside analogues inhibit HBV DNA synthesis in capsids in the cytoplasm of infected hepatocytes, but do not destroy nuclear cccDNA. Because over 200 million people are still infected, a cure for chronic hepatitis B (CHB) has become one of the major challenges in antiviral therapy. As a first step toward the development of curative therapies, we previously demonstrated that the CRISPR/Cas9 system can be used to functionally inactivate cccDNA derived from infectious HBV. Moreover, some evidence suggests that certain cytokines might induce an APOBEC-mediated cascade leading to the destruction of cccDNA. In this report we investigated whether a combination of the two mechanisms could act synergistically to inactivate cccDNA. Using next generation sequencing (NGS), we determined the complete spectrum of mutations in cccDNA following Cas9 cleavage and repair by nonhomologous end joining (NHEJ). We found that over 90% of HBV DNA was cleaved by Cas9. In addition our results showed that editing of HBV DNA after Cas9 cleavage is at least 15,000 times more efficient that APOBEC-mediated cytosine deamination following treatment of infected cells with interferon alpha (IFNα). We also found that a previously used method to detect cytosine deaminated DNA, termed 3D-PCR, overestimates the amount and frequency of edited HBV DNA. Taken together, our results demonstrated that the CRISPR/Cas9 system is so far the best method to functionally inactivate HBV cccDNA and provide a cure for CHB.
Collapse
Affiliation(s)
- Christoph Seeger
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Ji A Sohn
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Xu F, Song H, Li N, Tan G. HBsAg blocks TYPE I IFN induced up-regulation of A3G through inhibition of STAT3. Biochem Biophys Res Commun 2016; 473:219-223. [PMID: 27003258 DOI: 10.1016/j.bbrc.2016.03.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
Abstract
Interferon (IFN) is a regularly utilized therapeutic for the treatment of chronic hepatitis B and appears to induce superior HBeAg seroconversion comparing nucleos/tide analogs. However, the mechanisms underlying IFN inhibition of HBV replication, as well as poor responses to IFN are unclear. Apobec3G has been reported to be involved in regulating HBV replication. In this study, we investigated Apobec3G expression and regulatory pathways during HBV infection. We show that over-expression of A3G leads to inhibition of HBV replication. We also show that IFN induces a significant increase in A3G protein expression, which is associated with STAT3 activation. We further show that A3G expression in HBV patients is lower compared to non-infected controls, possibly by HBsAg which inhibits IFN induced A3G up-regulation in a dose dependent manner. This process is likely mediated through inhibition of STAT3-Ser727 phosphorylation. The results presented in this study indicate that STAT3 plays an important role in IFN-induced A3G production, and HBsAg may correlated with poor response to IFN treatment.
Collapse
Affiliation(s)
- Fengchao Xu
- Institute of Translational Medicine, Department of Immunology, The First Hospital, Jilin University, Changchun, Jilin, 130061, PR China
| | - Hongxiao Song
- Institute of Translational Medicine, Department of Immunology, The First Hospital, Jilin University, Changchun, Jilin, 130061, PR China
| | - Na Li
- Department of Obstetric, The First Hospital, Jilin University, Changchun, Jilin, 130021, PR China
| | - Guangyun Tan
- Institute of Translational Medicine, Department of Immunology, The First Hospital, Jilin University, Changchun, Jilin, 130061, PR China.
| |
Collapse
|
19
|
Wang W, Wang J, Qu M, Li X, Zhang J, Zhang H, Wu J, Yu B, Wu H, Kong W, Yu X. Viral Restriction Activity of Feline BST2 Is Independent of Its N-Glycosylation and Induction of NF-κB Activation. PLoS One 2015; 10:e0138190. [PMID: 26379128 PMCID: PMC4574558 DOI: 10.1371/journal.pone.0138190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022] Open
Abstract
BST2 (CD317, tetherin, HM1.24) is an interferon-inducible transmembrane protein which can directly inhibit the release of enveloped virus particles from infected cells, and its anti-viral activity is reported to be related to the specific topological arrangement of its four structural domains. The N-terminal cytoplasmic tail of feline BST2 (fBST2) is characterized by a shorter N-terminal region compared to those of other known homologs. In this study, we investigated the functional impact of modifying the cytoplasmic tail region of fBST2 and its molecular mechanism. The fBST2 protein with the addition of a peptide at the N-terminus retained anti-release activity against human immunodeficiency virus type-1 and pseudovirus based on feline immunodeficiency virus at a weaker level compared with the wild-type fBST2. However, the fBST2 protein with addition of a peptide internally in the ectodomain proximal to the GPI anchor still retained its anti-viral activity well. Notably, the N-glycosylation state and the cell surface level of the N-terminally modified variants were unlike those of the wild-type protein, while no difference was observed in their intracellular localizations. However, in contrast to human BST2, the wild-type fBST2 did not show the ability to activate NF-κB. Consistent with previous reports, our findings showed that adding a peptide in the cytoplasmic tail region of fBST2 may influence its anti-viral activity. The shorter N-terminal cytoplasmic region of fBST2 compared with human BST2 did not apparently affect its anti-viral activity, which is independent of its N-glycosylation and ability to activate NF-κB.
Collapse
Affiliation(s)
- Weiran Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jiawen Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- Center for New Medicine Research, Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Xiaojun Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jingyao Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- * E-mail: (WK); (XHY)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- * E-mail: (WK); (XHY)
| |
Collapse
|
20
|
He X, Li J, Wu J, Zhang M, Gao P. Associations between activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like cytidine deaminase expression, hepatitis B virus (HBV) replication and HBV-associated liver disease (Review). Mol Med Rep 2015; 12:6405-14. [PMID: 26398702 PMCID: PMC4626158 DOI: 10.3892/mmr.2015.4312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
The hepatitis B virus (HBV) infection is a major risk factor in the development of chronic hepatitis (CH) and hepa-tocellular carcinoma (HCC). The activation-induced cytidine deaminase (AID)/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases is significant in innate immunity, as it restricts numerous viruses, including HBV, through hypermutation-dependent and -independent mechanisms. It is important to induce covalently closed circular (ccc)DNA degradation by interferon-α without causing side effects in the infected host cell. Furthermore, organisms possess multiple mechanisms to regulate the expression of AID/APOBECs, control their enzymatic activity and restrict their access to DNA or RNA substrates. Therefore, the AID/APOBECs present promising targets for preventing and treating viral infections. In addition, gene polymorphisms of the AID/APOBEC family may alter host susceptibility to HBV acquisition and CH disease progression. Through G-to-A hypermutation, AID/APOBECs also edit HBV DNA and facilitate the mutation of HBV DNA, which may assist the virus to evolve and potentially escape from the immune responses. The AID/APOBEC family and their associated editing patterns may also exert oncogenic activity. Understanding the effects of cytidine deaminases in CH virus-induced hepatocarcinogenesis may aid with developing efficient prophylactic and therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Xiuting He
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jie Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Wu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Manli Zhang
- Department of Gastroenterology, The Second Branch of The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
21
|
Anderson BD, Harris RS. Transcriptional regulation of APOBEC3 antiviral immunity through the CBF-β/RUNX axis. SCIENCE ADVANCES 2015; 1:e1500296. [PMID: 26601257 PMCID: PMC4643775 DOI: 10.1126/sciadv.1500296] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/03/2015] [Indexed: 06/05/2023]
Abstract
A diverse set of innate immune mechanisms protects cells from viral infections. The APOBEC3 family of DNA cytosine deaminases is an integral part of these defenses. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H would have the potential to destroy HIV-1 complementary DNA replication intermediates if not for neutralization by a proteasomal degradation mechanism directed by the viral protein Vif. At the core of this complex, Vif heterodimerizes with the transcription cofactor CBF-β, which results in fewer transcription complexes between CBF-β and its normal RUNX partners. Recent studies have shown that the Vif/CBF-β interaction is specific to the primate lentiviruses HIV-1 and SIV (simian immunodeficiency virus), although related nonprimate lentiviruses still require a Vif-dependent mechanism for protection from host species' APOBEC3 enzymes. We provide a molecular explanation for this evolutionary conundrum by showing that CBF-β is required for expression of the aforementioned HIV-1-restrictive APOBEC3 gene repertoire. Knockdown and knockout studies demonstrate that CBF-β is required for APOBEC3 mRNA expression in the nonpermissive T cell line H9 and in primary CD4(+) T lymphocytes. Complementation experiments using CBF-β separation-of-function alleles show that the interaction with RUNX transcription factors is required for APOBEC3 transcriptional regulation. Accordingly, the infectivity of Vif-deficient HIV-1 increases in cells lacking CBF-β, demonstrating the importance of CBF-β/RUNX-mediated transcription in establishing the APOBEC3 antiviral state. These findings demonstrate a major layer of APOBEC3 gene regulation in lymphocytes and suggest that primate lentiviruses evolved to hijack CBF-β in order to simultaneously suppress this potent antiviral defense system at both transcriptional and posttranslational levels.
Collapse
|
22
|
Moyamoya disease susceptibility gene RNF213 links inflammatory and angiogenic signals in endothelial cells. Sci Rep 2015; 5:13191. [PMID: 26278786 PMCID: PMC4538604 DOI: 10.1038/srep13191] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022] Open
Abstract
Moyamoya disease (MMD) is a cerebrovascular disorder characterized by occlusive lesions of the circle of Willis. To date, both environmental and genetic factors have been implicated for pathogenesis of MMD. Allelic variations in RNF213 are known to confer the risk of MMD; however, functional roles of RNF213 remain to be largely elusive. We herein report that pro-inflammatory cytokines, IFNG and TNFA, synergistically activated transcription of RNF213 both in vitro and in vivo. Using various chemical inhibitors, we found that AKT and PKR pathways contributed to the transcriptional activation of RNF213. Transcriptome-wide analysis and subsequent validation with quantitative PCR supported that endogenous expression of cell cycle-promoting genes were significantly decreased with knockdown of RNF213 in cultured endothelial cells. Consistently, these cells showed less proliferative and less angiogenic profiles. Chemical inhibitors for AKT (LY294002) and PKR (C16) disrupted their angiogenic potentials, suggesting that RNF213 and its upstream pathways cooperatively organize the process of angiogenesis. Furthermore, RNF213 down-regulated expressions of matrix metalloproteases in endothelial cells, but not in fibroblasts or other cell types. Altogether, our data illustrate that RNF213 plays unique roles in endothelial cells for proper gene expressions in response to inflammatory signals from environments.
Collapse
|
23
|
Jung J, Kim NK, Park S, Shin HJ, Hwang SG, Kim K. Inhibitory effect of Phyllanthus urinaria L. extract on the replication of lamivudine-resistant hepatitis B virus in vitro. Altern Ther Health Med 2015. [PMID: 26220282 PMCID: PMC4518506 DOI: 10.1186/s12906-015-0792-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Long-term treatment of chronic hepatitis B (CHB) with nucleos(t)ide analogs results in the emergence of drug-resistant hepatitis B virus (HBV) harboring mutations in the polymerase (P) gene. The Phyllanthus extract has anti-HBV activity; however, its antiviral activity against lamivudine (LMV)-resistant mutants has not been examined. METHODS HBV harboring LMV-resistant mutations (rtM204I, rtM204V, and rtM204S) in the P gene at the YMDD ((203)tyrosine-methionine-aspartate-aspartate(206)) reverse transcriptase (RT) active site were generated and their sensitivity to Phyllanthus urinaria koreanis extract examined. Southern blotting and real-time PCR were used to determine the concentration of plant extract required to inhibit HBV DNA synthesis by 50 and 90% (EC50 and EC90, respectively). An enzyme-linked immunosorbent assay was used to measure the EC50 of HBV surface antigen (HBsAg) and HBV core antigen (HBcAg) secretion, and the 50% cytotoxic concentration of the extract was measured in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Real-time RT-PCR was used to measure mRNA expression levels. RESULTS The expression of intracellular HBV DNAs in HBV WT- or mutant-transfected HepG2 cells decreased upon treatment with Phyllanthus extract. The secretion of HBsAg and HBcAg also fell in a dose-dependent manner. Phyllanthus extract induced interferon-beta (IFN-β), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) mRNA expression in HBV WT-transfected HepG2 cells, possibly via activation of extracellular signal-regulated kinases and c-jun N-terminal kinases and the induction of retinoic acid inducible gene-I, toll-like receptor 3, myeloid differentiation primary response gene 88, and/or tumor necrosis factor receptor-associated factor 6 gene expression. HBV transfection in the absence of extract or exposure of cells to extract alone did not trigger these signaling cascades. CONCLUSIONS Phyllanthus extract inhibited HBV DNA synthesis and HBsAg and HBcAg secretion by replicating cells harboring HBV wild-type and LMV-resistant mutants, likely by inducing the expression of IFN-β, COX-2, and IL-6. These data indicate that Phyllanthus extract may be useful as an alternative therapeutic agent for the treatment of drug-resistant CHB patients.
Collapse
|
24
|
Yu Q, Carbone CJ, Katlinskaya YV, Zheng H, Zheng K, Luo M, Wang PJ, Greenberg RA, Fuchs SY. Type I interferon controls propagation of long interspersed element-1. J Biol Chem 2015; 290:10191-9. [PMID: 25716322 DOI: 10.1074/jbc.m114.612374] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 01/01/2023] Open
Abstract
Type I interferons (IFN) including IFNα and IFNβ are critical for the cellular defense against viruses. Here we report that increased levels of IFNβ were found in testes from mice deficient in MOV10L1, a germ cell-specific RNA helicase that plays a key role in limiting the propagation of retrotransposons including Long Interspersed Element-1 (LINE-1). Additional experiments revealed that activation of LINE-1 retrotransposons increases the expression of IFNβ and of IFN-stimulated genes. Conversely, pretreatment of cells with IFN suppressed the replication of LINE-1. Furthermore, the efficacy of LINE-1 replication was increased in isogenic cell lines harboring inactivating mutations in diverse elements of the IFN signaling pathway. Knockdown of the IFN receptor chain IFNAR1 also stimulated LINE-1 propagation in vitro. Finally, a greater accumulation of LINE-1 was found in mice that lack IFNAR1 compared with wild type mice. We propose that LINE-1-induced IFN plays an important role in restricting LINE-1 propagation and discuss the putative role of IFN in preserving the genome stability.
Collapse
Affiliation(s)
- Qiujing Yu
- From the Departments of Animal Biology, School of Veterinary Medicine and
| | | | | | - Hui Zheng
- From the Departments of Animal Biology, School of Veterinary Medicine and
| | - Ke Zheng
- From the Departments of Animal Biology, School of Veterinary Medicine and
| | - Mengcheng Luo
- From the Departments of Animal Biology, School of Veterinary Medicine and
| | - P Jeremy Wang
- From the Departments of Animal Biology, School of Veterinary Medicine and
| | - Roger A Greenberg
- Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Serge Y Fuchs
- From the Departments of Animal Biology, School of Veterinary Medicine and
| |
Collapse
|
25
|
Moris A, Murray S, Cardinaud S. AID and APOBECs span the gap between innate and adaptive immunity. Front Microbiol 2014; 5:534. [PMID: 25352838 PMCID: PMC4195361 DOI: 10.3389/fmicb.2014.00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
The activation-induced deaminase (AID)/APOBEC cytidine deaminases participate in a diversity of biological processes from the regulation of protein expression to embryonic development and host defenses. In its classical role, AID mutates germline-encoded sequences of B cell receptors, a key aspect of adaptive immunity, and APOBEC1, mutates apoprotein B pre-mRNA, yielding two isoforms important for cellular function and plasma lipid metabolism. Investigations over the last ten years have uncovered a role of the APOBEC superfamily in intrinsic immunity against viruses and innate immunity against viral infection by deamination and mutation of viral genomes. Further, discovery in the area of human immunodeficiency virus (HIV) infection revealed that the HIV viral infectivity factor protein interacts with APOBEC3G, targeting it for proteosomal degradation, overriding its antiviral function. More recently, our and others' work have uncovered that the AID and APOBEC cytidine deaminase family members have an even more direct link between activity against viral infection and induction and shaping of adaptive immunity than previously thought, including that of antigen processing for cytotoxic T lymphocyte activity and natural killer cell activation. Newly ascribed functions of these cytodine deaminases will be discussed, including their newly identified roles in adaptive immunity, epigenetic regulation, and cell differentiation. Herein this review we discuss AID and APOBEC cytodine deaminases as a link between innate and adaptive immunity uncovered by recent studies.
Collapse
Affiliation(s)
- Arnaud Moris
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France ; Department of Immunology, Hôpital Pitié-Salpêtière Paris, France
| | - Shannon Murray
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| | - Sylvain Cardinaud
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| |
Collapse
|
26
|
Heat-stable molecule derived from Streptococcus cristatus induces APOBEC3 expression and inhibits HIV-1 replication. PLoS One 2014; 9:e106078. [PMID: 25165817 PMCID: PMC4148350 DOI: 10.1371/journal.pone.0106078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 07/31/2014] [Indexed: 11/26/2022] Open
Abstract
Although most human immunodeficiency virus type 1 (HIV-1) cases worldwide are transmitted through mucosal surfaces, transmission through the oral mucosal surface is a rare event. More than 700 bacterial species have been detected in the oral cavity. Despite great efforts to discover oral inhibitors of HIV, little information is available concerning the anti-HIV activity of oral bacterial components. Here we show that a molecule from an oral commensal bacterium, Streptococcus cristatus CC5A can induce expression of APOBEC3G (A3G) and APOBEC3F (A3F) and inhibit HIV-1 replication in THP-1 cells. We show by qRT-PCR that expression levels of A3G and A3F increase in a dose-dependent manner in the presence of a CC5A extract, as does A3G protein levels by Western blot assay. In addition, when the human monocytic cell line THP-1 was treated with CC5A extract, the replication of HIV-1 IIIB was significantly suppressed compared with IIIB replication in untreated THP-1 cells. Knock down of A3G expression in THP-1 cells compromised the ability of CC5A to inhibit HIV-1 IIIB infectivity. Furthermore, SupT1 cells infected with virus produced from CC5A extract-treated THP-1 cells replicated virus with a higher G to A hypermutation rate (a known consequence of A3G activity) than virus used from untreated THP-1 cells. This suggests that S. cristatus CC5A contains a molecule that induces A3G/F expression and thereby inhibits HIV replication. These findings might lead to the discovery of a novel anti-HIV/AIDS therapeutic.
Collapse
|
27
|
Ohba K, Ichiyama K, Yajima M, Gemma N, Nikaido M, Wu Q, Chong P, Mori S, Yamamoto R, Wong JEL, Yamamoto N. In vivo and in vitro studies suggest a possible involvement of HPV infection in the early stage of breast carcinogenesis via APOBEC3B induction. PLoS One 2014; 9:e97787. [PMID: 24858917 PMCID: PMC4032256 DOI: 10.1371/journal.pone.0097787] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/23/2014] [Indexed: 12/13/2022] Open
Abstract
High prevalence of infection with high-risk human papilloma virus (HPV) ranging from 25 to 100% (average 31%) was observed in breast cancer (BC) patients in Singapore using novel DNA chip technology. Early stage of BC demonstrated higher HPV positivity, and BC positive for estrogen receptor (ER) showed significantly higher HPV infection rate. This unique association of HPV with BC in vivo prompted us to investigate a possible involvement of HPV in early stages of breast carcinogenesis. Using normal breast epithelial cells stably transfected with HPV-18, we showed apparent upregulation of mRNA for the cytidine deaminase, APOBEC3B (A3B) which is reported to be a source of mutations in BC. HPV-induced A3B overexpression caused significant γH2AX focus formation, and DNA breaks which were cancelled by shRNA to HPV18 E6, E7 and A3B. These results strongly suggest an active involvement of HPV in the early stage of BC carcinogenesis via A3B induction.
Collapse
Affiliation(s)
- Kenji Ohba
- Infectious Disease program, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Koji Ichiyama
- Infectious Disease program, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Misako Yajima
- Infectious Disease program, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nobuhiro Gemma
- TOSHIBA Research & Development Center, TOSHIBA Corporation, Kawasaki, Kanagawa, Japan
| | - Masaru Nikaido
- Materials and Devices Division, TOSHIBA Corporation, Minato-ku, Tokyo, Japan
| | - Qingqing Wu
- Infectious Disease program, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - PeiPei Chong
- Infectious Disease program, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Rain Yamamoto
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - John Eu Li Wong
- Department of Hematology-Medical Oncology, National University Cancer Institute, the Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Naoki Yamamoto
- Infectious Disease program, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
28
|
Targeting the Interferon Response for Antiviral Therapy. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Roberts SA, Gordenin DA. Clustered and genome-wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness. Bioessays 2014; 36:382-393. [PMID: 24615916 DOI: 10.1002/bies.201300140] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gain of a selective advantage in cancer as well as the establishment of complex traits during evolution require multiple genetic alterations, but how these mutations accumulate over time is currently unclear. There is increasing evidence that a mutator phenotype perpetuates the development of many human cancers. While in some cases the increased mutation rate is the result of a genetic disruption of DNA repair and replication or environmental exposures, other evidence suggests that endogenous DNA damage induced by AID/APOBEC cytidine deaminases can result in transient localized hypermutation generating simultaneous, closely spaced (i.e. "clustered") multiple mutations. Here, we discuss mechanisms that lead to mutation cluster formation, the biological consequences of their formation in cancer and evidence suggesting that APOBEC mutagenesis can also occur genome-wide. This raises the possibility that dysregulation of these enzymes may enable rapid malignant transformation by increasing mutation rates without the loss of fitness associated with permanent mutators.
Collapse
Affiliation(s)
- Steven A Roberts
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | |
Collapse
|
30
|
Beggel B, Münk C, Däumer M, Hauck K, Häussinger D, Lengauer T, Erhardt A. Full genome ultra-deep pyrosequencing associates G-to-A hypermutation of the hepatitis B virus genome with the natural progression of hepatitis B. J Viral Hepat 2013; 20:882-9. [PMID: 24304458 DOI: 10.1111/jvh.12110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/19/2013] [Indexed: 12/12/2022]
Abstract
Human APOBEC3 (A3) cytosine deaminases are antiviral restriction factors capable of editing the genome the hepatitis B virus (HBV). Despite the importance of the human A3 protein family for the innate immune response little is known about the clinical relevance for hepatitis B. The aim of this study was to utilize ultra-deep pyrosequencing (UDPS) data to analyse the phenomenon of G-to-A hypermutation of the complete HBV genome and to relate it to fundamental characteristics of patients with chronic hepatitis B. By analysing the viral population of 80 treatment naïve patients (47 HBeAg-positive and 33 HBeAg-negative), we identified an unequal distribution of G-to-A hypermutations across the genome. Our data indicate that G-to-A hypermutation occurs predominantly in a region between nucleotide positions 600 and 1800 a region which is usually single stranded in matured HBV particles. This implies that A3 likely edits HBV in the virion. Hypermutation rates for HBeAg-negative patients were more than 10-fold higher than those of HBeAg-positive patients. For HBeAg-negative patients higher hypermutation rates were significantly associated with the degree of fibrosis. Additionally, we found that for HBeAg-positive chronic hepatitis G-to-A hypermutation rates were significantly associated with the relative prevalence of the G1764A mutation, which is related to HBeAg seroconversion. In total, our data imply an important association of hypermutation mediated by A3 deaminases with the natural progression of chronic hepatitis B infections both in terms of HBeAg seroconversion and disease progression towards cirrhosis.
Collapse
Affiliation(s)
- B Beggel
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Janahi EM, McGarvey MJ. The inhibition of hepatitis B virus by APOBEC cytidine deaminases. J Viral Hepat 2013; 20:821-8. [PMID: 24304451 DOI: 10.1111/jvh.12192] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022]
Abstract
APOBEC3 (A3) cytidine deaminases are a family of enzymes that have been shown to inhibit the replication of HIV-1 and other retroviruses as part of the innate immune responses to virus infection. They can also hyperedit HBV DNA and inhibit HBV replication. Although A3 proteins are present at low levels in normal liver, A3 gene expression is highly stimulated by both interferon-α and interferon-γ. A3 deaminases are incorporated into nascent HBV capsids where they cleave amino groups from cytidine bases converting them to uracil in newly synthesized DNA following reverse transcription of pregenomic RNA. This modified HBV DNA is susceptible to degradation, or alternatively, numerous G-to-A nucleotide mutations are incorporated into positive-strand viral DNA disrupting coding sequences. A3 proteins in which the cytidine deaminase activity has been lost can also inhibit HBV replication, suggesting that there may be more than one way in which inhibition can occur. There is also evidence that A3 proteins might play a role in the development of hepatocellular carcinoma during chronic HBV infection.
Collapse
Affiliation(s)
- E M Janahi
- Department of Biology, College of Science, University of Bahrain, Sakhir, Bahrain
| | | |
Collapse
|
32
|
Watashi K, Liang G, Iwamoto M, Marusawa H, Uchida N, Daito T, Kitamura K, Muramatsu M, Ohashi H, Kiyohara T, Suzuki R, Li J, Tong S, Tanaka Y, Murata K, Aizaki H, Wakita T. Interleukin-1 and tumor necrosis factor-α trigger restriction of hepatitis B virus infection via a cytidine deaminase activation-induced cytidine deaminase (AID). J Biol Chem 2013; 288:31715-31727. [PMID: 24025329 PMCID: PMC3814766 DOI: 10.1074/jbc.m113.501122] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/08/2013] [Indexed: 12/11/2022] Open
Abstract
Virus infection is restricted by intracellular immune responses in host cells, and this is typically modulated by stimulation of cytokines. The cytokines and host factors that determine the host cell restriction against hepatitis B virus (HBV) infection are not well understood. We screened 36 cytokines and chemokines to determine which were able to reduce the susceptibility of HepaRG cells to HBV infection. Here, we found that pretreatment with IL-1β and TNFα remarkably reduced the host cell susceptibility to HBV infection. This effect was mediated by activation of the NF-κB signaling pathway. A cytidine deaminase, activation-induced cytidine deaminase (AID), was up-regulated by both IL-1β and TNFα in a variety of hepatocyte cell lines and primary human hepatocytes. Another deaminase APOBEC3G was not induced by these proinflammatory cytokines. Knockdown of AID expression impaired the anti-HBV effect of IL-1β, and overexpression of AID antagonized HBV infection, suggesting that AID was one of the responsible factors for the anti-HBV activity of IL-1/TNFα. Although AID induced hypermutation of HBV DNA, this activity was dispensable for the anti-HBV activity. The antiviral effect of IL-1/TNFα was also observed on different HBV genotypes but not on hepatitis C virus. These results demonstrate that proinflammatory cytokines IL-1/TNFα trigger a novel antiviral mechanism involving AID to regulate host cell permissiveness to HBV infection.
Collapse
Affiliation(s)
- Koichi Watashi
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Guoxin Liang
- the Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
| | - Masashi Iwamoto
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hiroyuki Marusawa
- the Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Nanako Uchida
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takuji Daito
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kouichi Kitamura
- the Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
| | - Masamichi Muramatsu
- the Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
| | - Hirofumi Ohashi
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tomoko Kiyohara
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Ryosuke Suzuki
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Jisu Li
- the Liver Research Center Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island 02903
| | - Shuping Tong
- the Liver Research Center Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island 02903
| | - Yasuhito Tanaka
- the Department of Virology and Liver Unit, Nagoya City University Graduate School of Medicinal Sciences, Nagoya 467-8601, Japan, and
| | - Kazumoto Murata
- the Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Hideki Aizaki
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takaji Wakita
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
33
|
Deng Y, Du Y, Zhang Q, Han X, Cao G. Human cytidine deaminases facilitate hepatitis B virus evolution and link inflammation and hepatocellular carcinoma. Cancer Lett 2013; 343:161-71. [PMID: 24120759 DOI: 10.1016/j.canlet.2013.09.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/13/2022]
Abstract
During hepatitis B virus (HBV)-induced hepatocarcinogenesis, chronic inflammation facilitates the evolution of hepatocellular carcinoma (HCC)-promoting HBV mutants. Cytidine deaminases, whose expression is stimulated by inflammatory cytokines and/or chemokines, play an important role in bridging inflammation and HCC. Through G-to-A hypermutation, cytidine deaminases inhibit HBV replication and facilitate the generation of HCC-promoting HBV mutants including C-terminal-truncated HBx. Cytidine deaminases also promote cancer-related somatic mutations including TP53 mutations. Their editing efficiency is counteracted by uracil-DNA glycosylase. Understanding the effects of cytidine deaminases in HBV-induced hepatocarcinogenesis and HCC progression will aid in developing efficient prophylactic and therapeutic strategies against HCC in HBV-infected population.
Collapse
Affiliation(s)
- Yang Deng
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yan Du
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Qi Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xue Han
- Division of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
34
|
Ezzikouri S, Kitab B, Rebbani K, Marchio A, Wain-Hobson S, Dejean A, Vartanian JP, Pineau P, Benjelloun S. Polymorphic APOBEC3 modulates chronic hepatitis B in Moroccan population. J Viral Hepat 2013; 20:678-86. [PMID: 24010642 DOI: 10.1111/jvh.12042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/18/2012] [Indexed: 12/12/2022]
Abstract
The cytidine deaminase apolipoprotein B mRNA editing catalytic subunit-3 (APOBEC3) induces G-to-A hypermutation in hepatitis B virus (HBV) genomes and operates as part of the innate antiviral immune system. We investigated the associations between the presence of APOBEC3 variants and HBV carriage in a case-control study in the Moroccan population. A polymorphic deletion affecting the APOBEC3B gene and the H186R variant of APOBEC3G were genotyped in 179 HBV chronic carriers and 216 healthy control subjects. In addition, to assess the overall impact of APOBEC3 deaminases on circulating HBV, we looked for hyperedited forms of the viral genome using the 3DPCR technique and analysed editing context. Data analysis showed that there was no significant difference in the frequencies of deleted APOBEC3B alleles (P = 0.261) or genotypes (P = 0.333) between patients with chronic hepatitis B and control subjects. By contrast, subjects bearing deleted genotype had a faster progression of liver disease than those with the insertion genotype (adjusted OR, 3.72; 95% CI, 0.38-36.12). The analysis of the APOBEC3G H186R polymorphism revealed that R/R genotype frequencies were not significantly different in HBV infected patients and in healthy subjects. 3DPCR was positive in 26 samples (14%) among 179. Amplified viral segments displayed monomorphic G>A transitions highly reminiscent of APOBEC3G activity. Most intriguingly, hemi/homozygous carriers of the APOBEC3B deletion had significantly lower virus loads than patients with the wild type (median 539 vs. 2213 IU/mL, P = 0.0023). This result suggests that genetic variations in APOBEC3 cytidine deaminases do not predispose to chronicity but may modulate the course of persistent HBV infection.
Collapse
Affiliation(s)
- S Ezzikouri
- Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hu Z, Wu X, Ge J, Wang X. Inhibition of virus replication and induction of human tetherin gene expression by equine IFN-α1. Vet Immunol Immunopathol 2013; 156:107-13. [PMID: 24144682 DOI: 10.1016/j.vetimm.2013.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/21/2013] [Accepted: 09/16/2013] [Indexed: 11/30/2022]
Abstract
Type I interferons (IFNs) play important roles in the defense of host cells against viral infection by inducing the expression of a diverse range of antiviral factors. IFNs from different animals likely share similar features with human IFNs, and some of them have cross-species activities. Equine IFN-α was proved effective in both equine and human cells. However, the previous studies mostly focused on the inhibition of virus induced cytopathic effects. In this study, we used virus-specific assays to demonstrate the antiviral activities of equine IFN-α1 in both equine and human cells. Equine IFN-α1 inhibited the expression of viral structural proteins and the production of virions of equine infectious anemia virus (EIAV) and equine arteritis virus (EAV) in equine cells. In addition, equine IFN-α1 inhibited the production of EIAV virus-like particles (VLP) from human 293T cells. An IFN-inducible human gene, tetherin, was induced in 293T cells by equine IFN-α1. Its induction correlated with the inhibition of VLP release from the cell membrane. This result indicates that equine IFN-α1 shares a similar mechanism of action with human IFN-α in regulating antiviral genes expression in human cells.
Collapse
Affiliation(s)
- Zhe Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agriculture Sciences, PR China
| | | | | | | |
Collapse
|
36
|
Watashi K, Liang G, Iwamoto M, Marusawa H, Uchida N, Daito T, Kitamura K, Muramatsu M, Ohashi H, Kiyohara T, Suzuki R, Li J, Tong S, Tanaka Y, Murata K, Aizaki H, Wakita T. Interleukin-1 and tumor necrosis factor-α trigger restriction of hepatitis B virus infection via a cytidine deaminase activation-induced cytidine deaminase (AID). J Biol Chem 2013. [PMID: 24025329 DOI: 10.1074/jbc.m113.50112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Virus infection is restricted by intracellular immune responses in host cells, and this is typically modulated by stimulation of cytokines. The cytokines and host factors that determine the host cell restriction against hepatitis B virus (HBV) infection are not well understood. We screened 36 cytokines and chemokines to determine which were able to reduce the susceptibility of HepaRG cells to HBV infection. Here, we found that pretreatment with IL-1β and TNFα remarkably reduced the host cell susceptibility to HBV infection. This effect was mediated by activation of the NF-κB signaling pathway. A cytidine deaminase, activation-induced cytidine deaminase (AID), was up-regulated by both IL-1β and TNFα in a variety of hepatocyte cell lines and primary human hepatocytes. Another deaminase APOBEC3G was not induced by these proinflammatory cytokines. Knockdown of AID expression impaired the anti-HBV effect of IL-1β, and overexpression of AID antagonized HBV infection, suggesting that AID was one of the responsible factors for the anti-HBV activity of IL-1/TNFα. Although AID induced hypermutation of HBV DNA, this activity was dispensable for the anti-HBV activity. The antiviral effect of IL-1/TNFα was also observed on different HBV genotypes but not on hepatitis C virus. These results demonstrate that proinflammatory cytokines IL-1/TNFα trigger a novel antiviral mechanism involving AID to regulate host cell permissiveness to HBV infection.
Collapse
Affiliation(s)
- Koichi Watashi
- From the Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
microRNA control of interferons and interferon induced anti-viral activity. Mol Immunol 2013; 56:781-93. [PMID: 23962477 DOI: 10.1016/j.molimm.2013.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 12/22/2022]
Abstract
Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.
Collapse
|
38
|
Mussil B, Suspène R, Aynaud MM, Gauvrit A, Vartanian JP, Wain-Hobson S. Human APOBEC3A isoforms translocate to the nucleus and induce DNA double strand breaks leading to cell stress and death. PLoS One 2013; 8:e73641. [PMID: 23977391 PMCID: PMC3748023 DOI: 10.1371/journal.pone.0073641] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/21/2013] [Indexed: 01/14/2023] Open
Abstract
Human APOBEC3 enzymes deaminate single stranded DNA. At least five can deaminate mitochondrial DNA in the cytoplasm, while three can deaminate viral DNA in the nucleus. However, only one, APOBEC3A, can hypermutate genomic DNA. We analysed the distribution and function of the two APOBEC3A isoforms p1 and p2 in transfected cell lines. Both can translocate to the nucleus and hypermutate CMYC DNA and induce DNA double strand breaks as visualized by the detection of ©H2AX or Chk2. APOBEC3A induced G1 phase cell cycle arrest and triggered several members of the intrinsic apoptosis pathway. Activation of purified human CD4+ T lymphocytes with PHA, IL2 and interferon α resulted in C->T hypermutation of genomic DNA and double stranded breaks suggesting a role for APOBEC3A in pro-inflammatory conditions. As chronic inflammation underlies many diseases including numerous cancers, it is possible that APOBEC3A induction may generate many of the lesions typical of a cancer genome.
Collapse
Affiliation(s)
- Bianka Mussil
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | | | | | - Anne Gauvrit
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | | | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
39
|
Saito A, Akari H. Macaque-tropic human immunodeficiency virus type 1: breaking out of the host restriction factors. Front Microbiol 2013; 4:187. [PMID: 23847610 PMCID: PMC3705164 DOI: 10.3389/fmicb.2013.00187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/20/2013] [Indexed: 12/02/2022] Open
Abstract
Macaque monkeys serve as important animal models for understanding the pathogenesis of lentiviral infections. Since human immunodeficiency virus type 1 (HIV-1) hardly replicates in macaque cells, simian immunodeficiency virus (SIV) or chimeric viruses between HIV-1 and SIV (SHIV) have been used as challenge viruses in this research field. These viruses, however, are genetically distant from HIV-1. Therefore, in order to evaluate the efficacy of anti-HIV-1 drugs and vaccines in macaques, the development of a macaque-tropic HIV-1 (HIV-1mt) having the ability to replicate efficiently in macaques has long been desired. Recent studies have demonstrated that host restriction factors, such as APOBEC3 family and TRIM5, impose a strong barrier against HIV-1 replication in macaque cells. By evading these restriction factors, others and we have succeeded in developing an HIV-1mt that is able to replicate in macaques. In this review, we have attempted to shed light on the role of host factors that affect the susceptibility of macaques to HIV-1mt infection, especially by focusing on TRIM5-related factors.
Collapse
Affiliation(s)
- Akatsuki Saito
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University Inuyama, Japan ; Japan Foundation for AIDS Prevention Chiyoda-ku, Japan
| | | |
Collapse
|
40
|
Vieira VC, Soares MA. The role of cytidine deaminases on innate immune responses against human viral infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:683095. [PMID: 23865062 PMCID: PMC3707226 DOI: 10.1155/2013/683095] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 02/06/2023]
Abstract
The APOBEC family of proteins comprises deaminase enzymes that edit DNA and/or RNA sequences. The APOBEC3 subgroup plays an important role on the innate immune system, acting on host defense against exogenous viruses and endogenous retroelements. The role of APOBEC3 proteins in the inhibition of viral infection was firstly described for HIV-1. However, in the past few years many studies have also shown evidence of APOBEC3 action on other viruses associated with human diseases, including HTLV, HCV, HBV, HPV, HSV-1, and EBV. APOBEC3 inhibits these viruses through a series of editing-dependent and independent mechanisms. Many viruses have evolved mechanisms to counteract APOBEC effects, and strategies that enhance APOBEC3 activity constitute a new approach for antiviral drug development. On the other hand, novel evidence that editing by APOBEC3 constitutes a source for viral genetic diversification and evolution has emerged. Furthermore, a possible role in cancer development has been shown for these host enzymes. Therefore, understanding the role of deaminases on the immune response against infectious agents, as well as their role in human disease, has become pivotal. This review summarizes the state-of-the-art knowledge of the impact of APOBEC enzymes on human viruses of distinct families and harboring disparate replication strategies.
Collapse
Affiliation(s)
- Valdimara C. Vieira
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rua André Cavalcanti, No. 37–4 Andar, Bairro de Fátima, 20231-050 Rio de Janeiro, RJ, Brazil
| | - Marcelo A. Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rua André Cavalcanti, No. 37–4 Andar, Bairro de Fátima, 20231-050 Rio de Janeiro, RJ, Brazil
- Departamento de Genética, Universidade Federal do Rio de Janeiro, 21949-570 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
41
|
Mohamadkhani A, Pourdadash A, Tayebi S, Estakhri A, Nazem H, Sotoudeh M, Poustchi H. The potential role of APOBEC3G in limiting replication of hepatitis B virus. Arab J Gastroenterol 2013; 13:170-3. [PMID: 23432984 DOI: 10.1016/j.ajg.2012.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/27/2012] [Accepted: 08/05/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND STUDY AIMS Recent findings introduced APOBEC3G (A3G) as a host factor that blocks viral replication. It induces G to A hypermutations in viral DNA at the step of reverse transcription and in response to interferon. This study aimed to investigate the expression of liver A3G protein in association with both replication of hepatitis B virus (HBV) and frequency of G to A mutations in BCP (basal core promoter)-PC (pre-core) region. PATIENTS AND METHODS Fifty-one liver biopsies of naïve chronic hepatitis B (CHB) patients enrolled for the expression of A3G were done by immunohistochemistry (IHC) standard method. The presence of HBV DNA and sequences of BCP-PC region at the time of liver biopsy was investigated in all patients. RESULTS Among 34 patients with detectable HBV DNA, 31 carried 1-5 G to A mutations in the BCP-PC region. IHC results showed that the expression level of A3G in CHB patients' liver was very low. Of all patients, A3G is expressed in three undetectable HBV DNA subjects and a patient with 2.24×10(4) copies ml(-1) of HBV DNA. G to A mutated residues were indicated at positions 1727, 1757 and 1896 of the HBV genome of this patient. CONCLUSION This study indicates that despite very low levels of both A3G in liver and the number of positive subjects, A3G has a potential role to restrict the in vivo replication of HBV.
Collapse
Affiliation(s)
- Ashraf Mohamadkhani
- Digestive Disease Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
42
|
Chang MO, Suzuki T, Yamamoto N, Watanabe M, Takaku H. HIV-1 Gag-virus-like particles inhibit HIV-1 replication in dendritic cells and T cells through IFN-α-dependent upregulation of APOBEC3G and 3F. J Innate Immun 2012; 4:579-90. [PMID: 22739040 DOI: 10.1159/000339402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/10/2012] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infection and the acquired immune deficiency syndrome (AIDS) pandemic remain global threats in the absence of a protective or a therapeutic vaccine. HIV-1 replication is reportedly inhibited by some cellular factors, including APOBEC3G (A3G) and APOBEC3F (A3F), which are well known inhibitors of HIV-1. Recently, HIV-1 Gag-virus-like particles (Gag-VLPs) have been shown to be safe and potent HIV-1 vaccine candidates that can elicit strong cellular and humoral immunity without need of any adjuvant. In this report, we stimulated human monocyte-derived dendritic cells (DCs) with Gag-VLPs and we demonstrated that Gag-VLP-treated DCs (VLP-DCs) produced interferon alpha (IFN-α), along with an increase in mRNA and protein expression of A3G and A3F. Gag-VLPs inhibited HIV-1 replication not only in DCs themselves, but also in cocultured T cells in an IFN-α-dependent manner. In addition, A3G/3F content in HIV virions released from VLP-DCs increased. Both the increase in A3G/3F expression and the inhibition of HIV-1 replication were reversed by anti-IFN-α or anti-IFNAR antibodies. Our findings in this study provide insight into the mechanism of Gag-VLP-induced inhibition of HIV-1 replication in DCs and T cells.
Collapse
Affiliation(s)
- Myint Oo Chang
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Chiba, Japan.
| | | | | | | | | |
Collapse
|
43
|
Rossini G, Cerboni C, Santoni A, Landini MP, Landolfo S, Gatti D, Gribaudo G, Varani S. Interplay between human cytomegalovirus and intrinsic/innate host responses: a complex bidirectional relationship. Mediators Inflamm 2012; 2012:607276. [PMID: 22701276 PMCID: PMC3371353 DOI: 10.1155/2012/607276] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/22/2012] [Indexed: 02/07/2023] Open
Abstract
The interaction between human cytomegalovirus (HCMV) and its host is a complex process that begins with viral attachment and entry into host cells, culminating in the development of a specific adaptive response that clears the acute infection but fails to eradicate HCMV. We review the viral and cellular partners that mediate early host responses to HCMV with regard to the interaction between structural components of virions (viral glycoproteins) and cellular receptors (attachment/entry receptors, toll-like receptors, and other nucleic acid sensors) or intrinsic factors (PML, hDaxx, Sp100, viperin, interferon inducible protein 16), the reactions of innate immune cells (antigen presenting cells and natural killer cells), the numerous mechanisms of viral immunoevasion, and the potential exploitation of events that are associated with early phases of virus-host interplay as a therapeutic strategy.
Collapse
Affiliation(s)
- Giada Rossini
- Section of Microbiology, Department of Hematology and Oncology “L. & A. Seragnoli”, University of Bologna, 40138 Bologna, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Paola Landini
- Section of Microbiology, Department of Hematology and Oncology “L. & A. Seragnoli”, University of Bologna, 40138 Bologna, Italy
| | - Santo Landolfo
- Department of Public Health and Microbiology, University of Turin, Turin, Italy
| | - Deborah Gatti
- Department of Public Health and Microbiology, University of Turin, Turin, Italy
| | - Giorgio Gribaudo
- Department of Public Health and Microbiology, University of Turin, Turin, Italy
| | - Stefania Varani
- Section of Microbiology, Department of Hematology and Oncology “L. & A. Seragnoli”, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
44
|
Thippeshappa R, Ruan H, Kimata JT. Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives. BIOLOGY 2012; 1:134-64. [PMID: 23336082 PMCID: PMC3546514 DOI: 10.3390/biology1020134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022]
Abstract
The development of an animal model of human immunodeficiency virus type 1 (HIV-1)/AIDS that is suitable for preclinical testing of antiretroviral therapy, vaccines, curative strategies, and studies of pathogenesis has been hampered by the human-specific tropism of HIV-1. Although simian immunodeficiency virus (SIV) or HIV-1/SIV chimeric viruses (SHIVs)-rhesus macaque models are excellent surrogates for AIDS research, the genetic differences between SIV or SHIV and HIV-1 limit their utility as model systems. The identification of innate retro viral restriction factors has increased our understanding about blockades to HIV-1 replication in macaques and provided a guide for the construction of macaque-tropic HIV-1 clones. However, while these viruses replicate in macaque cells in vitro, they are easily controlled and have not caused AIDS in host animals, indicating that we may not fully understand the restrictive barriers of innate immunity. In this review, we discuss recent findings regarding HIV-1 restriction factors, particularly as they apply to cross-species transmission of primate lentiviruses and the development of a macaque model of HIV-1/AIDS.
Collapse
Affiliation(s)
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.); (H.R.)
| |
Collapse
|
45
|
Monajemi M, Woodworth CF, Benkaroun J, Grant M, Larijani M. Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment. Retrovirology 2012; 9:35. [PMID: 22546055 PMCID: PMC3416701 DOI: 10.1186/1742-4690-9-35] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/30/2012] [Indexed: 12/31/2022] Open
Abstract
The enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection, reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light historical overestimation of A3G's standing as a strictly anti-viral agent. We discuss the limitations of experimental systems used to assess its activities as well as caveats in data interpretation.
Collapse
Affiliation(s)
- Mahdis Monajemi
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland, Canada
| | - Claire F Woodworth
- Mani Larijani, Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Jessica Benkaroun
- Mani Larijani, Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Michael Grant
- Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| |
Collapse
|
46
|
Pillai SK, Abdel-Mohsen M, Guatelli J, Skasko M, Monto A, Fujimoto K, Yukl S, Greene WC, Kovari H, Rauch A, Fellay J, Battegay M, Hirschel B, Witteck A, Bernasconi E, Ledergerber B, Günthard HF, Wong JK. Role of retroviral restriction factors in the interferon-α-mediated suppression of HIV-1 in vivo. Proc Natl Acad Sci U S A 2012; 109:3035-40. [PMID: 22315404 PMCID: PMC3286922 DOI: 10.1073/pnas.1111573109] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The antiviral potency of the cytokine IFN-α has been long appreciated but remains poorly understood. A number of studies have suggested that induction of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) and bone marrow stromal cell antigen 2 (BST-2/tetherin/CD317) retroviral restriction factors underlies the IFN-α-mediated suppression of HIV-1 replication in vitro. We sought to characterize the as-yet-undefined relationship between IFN-α treatment, retroviral restriction factors, and HIV-1 in vivo. APOBEC3G, APOBEC3F, and BST-2 expression levels were measured in HIV/hepatitis C virus (HCV)-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated IFN-α/ribavirin (IFN-α/riba) combination therapy. IFN-α/riba therapy decreased HIV-1 viral load by -0.921 (±0.858) log(10) copies/mL in HIV/HCV-coinfected patients. APOBEC3G/3F and BST-2 mRNA expression was significantly elevated during IFN-α/riba treatment in patient-derived CD4+ T cells (P < 0.04 and P < 0.008, paired Wilcoxon), and extent of BST-2 induction was correlated with reduction in HIV-1 viral load during treatment (P < 0.05, Pearson's r). APOBEC3 induction during treatment was correlated with degree of viral hypermutation (P < 0.03, Spearman's ρ), and evolution of the HIV-1 accessory protein viral protein U (Vpu) during IFN-α/riba treatment was suggestive of increased BST-2-mediated selection pressure. These data suggest that host restriction factors play a critical role in the antiretroviral capacity of IFN-α in vivo, and warrant investigation into therapeutic strategies that specifically enhance the expression of these intrinsic immune factors in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Satish K Pillai
- Department of Medicine, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fehrholz M, Kendl S, Prifert C, Weissbrich B, Lemon K, Rennick L, Duprex PW, Rima BK, Koning FA, Holmes RK, Malim MH, Schneider-Schaulies J. The innate antiviral factor APOBEC3G targets replication of measles, mumps and respiratory syncytial viruses. J Gen Virol 2011; 93:565-576. [PMID: 22170635 DOI: 10.1099/vir.0.038919-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The cytidine deaminase APOBEC3G (apolipoprotein B mRNA-editing enzyme-catalytic polypeptide 3G; A3G) exerts antiviral activity against retroviruses, hepatitis B virus, adeno-associated virus and transposable elements. We assessed whether the negative-strand RNA viruses measles, mumps and respiratory syncytial might be affected by A3G, and found that their infectivity was reduced by 1-2 logs (90-99 %) in A3G overexpressing Vero cells, and in T-cell lines expressing A3G at physiological levels. Viral RNA was co-precipitated with HA-tagged A3G and could be amplified by RT-PCR. Interestingly, A3G reduced viral transcription and protein expression in infected cells by 50-70 %, and caused an increased mutation frequency of 0.95 mutations per 1000 nt in comparison to the background level of 0.22/1000. The observed mutations were not specific for A3G [cytidine to uridine (C→U) or guanine to adenine (G→A) hypermutations], nor specific for ADAR (adenosine deaminase acting on RNA, A→G and U→C transitions, with preference for next neighbour-nucleotides U = A>C>G). In addition, A3G mutants with inactivated catalytic deaminase (H257R and E259Q) were inhibitory, indicating that the deaminase activity is not required for the observed antiviral activity. In combination, impaired transcription and increased mutation frequencies are sufficient to cause the observed reduction in viral infectivity and eliminate virus replication within a few passages in A3G-expressing cells.
Collapse
Affiliation(s)
- Markus Fehrholz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Sabine Kendl
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Christiane Prifert
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Benedikt Weissbrich
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Ken Lemon
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, UK
| | - Linda Rennick
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston University, Boston, USA
| | - Paul W Duprex
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston University, Boston, USA
| | - Bert K Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, UK
| | | | | | - Michael H Malim
- Department of Infectious Diseases, King's College, London, UK
| | | |
Collapse
|
48
|
Okuyama S, Marusawa H, Matsumoto T, Ueda Y, Matsumoto Y, Endo Y, Takai A, Chiba T. Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis. Int J Cancer 2011; 130:1294-301. [PMID: 21469143 DOI: 10.1002/ijc.26114] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 03/25/2011] [Indexed: 11/06/2022]
Abstract
Apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) was originally identified as a member of the cytidine deaminase family with putative nucleotide editing activity. To clarify the physiologic and pathologic roles, and the target nucleotide of APOBEC2, we established an APOBEC2 transgenic mouse model and investigated whether APOBEC2 expression causes nucleotide alterations in host DNA or RNA sequences. Sequence analyses revealed that constitutive expression of APOBEC2 in the liver resulted in significantly high frequencies of nucleotide alterations in the transcripts of eukaryotic translation initiation factor 4 gamma 2 (Eif4g2) and phosphatase and tensin homolog (PTEN) genes. Hepatocellular carcinoma developed in 2 of 20 APOBEC2 transgenic mice at 72 weeks of age. In addition, constitutive APOBEC2 expression caused lung tumors in 7 of 20 transgenic mice analyzed. Together with the fact that the proinflammatory cytokine tumor necrosis factor-α induces ectopic expression of APOBEC2 in hepatocytes, our findings indicate that aberrant APOBEC2 expression causes nucleotide alterations in the transcripts of the specific target gene and could be involved in the development of human hepatocellular carcinoma through hepatic inflammation.
Collapse
Affiliation(s)
- Shunsuke Okuyama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-Ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Res 2011; 157:128-33. [DOI: 10.1016/j.virusres.2010.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022]
|
50
|
Coleman CM, Spearman P, Wu L. Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef. Retrovirology 2011; 8:26. [PMID: 21504576 PMCID: PMC3108291 DOI: 10.1186/1742-4690-8-26] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 04/19/2011] [Indexed: 11/10/2022] Open
Abstract
Background Dendritic cells (DCs) are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS) induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN) partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown. Results We demonstrated that IFN-alpha (IFNα)-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner. Conclusions The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.
Collapse
Affiliation(s)
- Christopher M Coleman
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|