1
|
Haj-Yahya F, Steinberg D, Sionov RV. Trans, Trans-Farnesol Enhances the Anti-Bacterial and Anti-Biofilm Effect of Arachidonic Acid on the Cariogenic Bacteria Streptococcus mutans and Streptococcus sobrinus. Int J Mol Sci 2024; 25:11770. [PMID: 39519322 PMCID: PMC11546208 DOI: 10.3390/ijms252111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Streptococcus mutans and Streptococcus sobrinus are Gram-positive bacteria involved in the development of dental caries, as they are able to form biofilms on tooth enamel, ferment sugars into acids, and survive under acidic conditions. This ultimately leads to a local lowering of the pH value on the tooth surface, which causes enamel cavities. HYPOTHESIS One measure to reduce caries is to limit the growth of cariogenic bacteria by using two anti-bacterial agents with different mechanisms of action. The hypothesis of this study was that the anti-bacterial activity of ω-6 polyunsaturated arachidonic acid (AA) against S. mutans and S. sobrinus can be enhanced by the sesquiterpene alcohol trans, trans-farnesol (t,t-farnesol). METHODS The anti-bacterial activity of single and combined treatment was determined by the checkerboard assay. Bacterial viability was assessed by live/dead SYTO 9/propidium iodide (PI) staining on flow cytometry. Anti-biofilm activity was determined by MTT metabolic assay, crystal violet staining of biofilm biomass, SYTO 9/PI staining by spinning disk confocal microscopy (SDCM) and high-resolution scanning electron microscopy (HR-SEM). RESULTS t,t-Farnesol lowered the minimum inhibitory concentration (MIC) and the minimum biofilm inhibitory concentration (MBIC) of AA at sub-MICs. AA reduced the metabolic activity of preformed mature biofilms, while t,t-farnesol had no significant effect. The enhanced anti-bacterial effect of the combined t,t-farnesol/AA treatment was further evidenced by increased PI uptake, indicating membrane perforation. The enhanced anti-biofilm effect was further verified by SDCM and HR-SEM. Gene expression studies showed reduced expression of some biofilm-related genes. CONCLUSIONS Altogether, our study suggests a potential use of the two naturally occurring compounds arachidonic acid and t,t-farnesol for preventing biofilm formation by the cariogenic bacteria S. mutans and S. sobrinus. These findings have implications for caries prevention.
Collapse
|
2
|
Andresen S, de Mojana di Cologna N, Archer-Hartmann S, Rogers AM, Samaddar S, Ganguly T, Black IM, Glushka J, Ng KKS, Azadi P, Lemos JA, Abranches J, Szymanski CM. Involvement of the Streptococcus mutans PgfE and GalE 4-epimerases in protein glycosylation, carbon metabolism, and cell division. Glycobiology 2023; 33:245-259. [PMID: 36637425 PMCID: PMC10114643 DOI: 10.1093/glycob/cwad004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Streptococcus mutans is a key pathogen associated with dental caries and is often implicated in infective endocarditis. This organism forms robust biofilms on tooth surfaces and can use collagen-binding proteins (CBPs) to efficiently colonize collagenous substrates, including dentin and heart valves. One of the best characterized CBPs of S. mutans is Cnm, which contributes to adhesion and invasion of oral epithelial and heart endothelial cells. These virulence properties were subsequently linked to post-translational modification (PTM) of the Cnm threonine-rich repeat region by the Pgf glycosylation machinery, which consists of 4 enzymes: PgfS, PgfM1, PgfE, and PgfM2. Inactivation of the S. mutans pgf genes leads to decreased collagen binding, reduced invasion of human coronary artery endothelial cells, and attenuated virulence in the Galleria mellonella invertebrate model. The present study aimed to better understand Cnm glycosylation and characterize the predicted 4-epimerase, PgfE. Using a truncated Cnm variant containing only 2 threonine-rich repeats, mass spectrometric analysis revealed extensive glycosylation with HexNAc2. Compositional analysis, complemented with lectin blotting, identified the HexNAc2 moieties as GlcNAc and GalNAc. Comparison of PgfE with the other S. mutans 4-epimerase GalE through structural modeling, nuclear magnetic resonance, and capillary electrophoresis demonstrated that GalE is a UDP-Glc-4-epimerase, while PgfE is a GlcNAc-4-epimerase. While PgfE exclusively participates in protein O-glycosylation, we found that GalE affects galactose metabolism and cell division. This study further emphasizes the importance of O-linked protein glycosylation and carbohydrate metabolism in S. mutans and identifies the PTM modifications of the key CBP, Cnm.
Collapse
Affiliation(s)
- Silke Andresen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | - Ashley M Rogers
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Sandip Samaddar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Tridib Ganguly
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Ian M Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kenneth K S Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Christine M Szymanski
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Álvarez S, Leiva-Sabadini C, Schuh CMAP, Aguayo S. Bacterial adhesion to collagens: implications for biofilm formation and disease progression in the oral cavity. Crit Rev Microbiol 2021; 48:83-95. [PMID: 34270375 DOI: 10.1080/1040841x.2021.1944054] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Collagen is the most abundant structural protein in the body and the main component of the extracellular matrix of most tissues, including dentine and periodontal tissues. Despite the well-characterized role of collagen and specifically type-I collagen, as a ligand for host cells, its role as a substrate for bacterial adhesion and biofilm formation is less explored. Therefore, the purpose of this review is to discuss recent findings regarding the adhesion of oral bacteria to collagen surfaces and its role in the progression and severity of oral and systemic diseases. Initial oral colonizers such as streptococci have evolved collagen-binding proteins (cbp) that are important for the colonization of dentine and periodontal tissues. Also, periodontal pathogens such as Porphyromonas gingivalis and Tannerella forsythia utilise cbps for tissue sensing and subsequent invasion. The implications of bacteria-collagen coupling in the context of collagen biomaterials and regenerative dentistry approaches are also addressed. Furthermore, the importance of interdisciplinary techniques such as atomic force microscopy for the nanocharacterization of bacteria-collagen interactions is also considered. Overall, understanding the process of oral bacterial adhesion onto collagen is important for developing future therapeutic approaches against oral and systemic diseases, by modulating the early stages of biofilm formation.
Collapse
Affiliation(s)
- Simón Álvarez
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.,Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Leiva-Sabadini
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christina M A P Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Sebastian Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Schnurr E, Paqué PN, Attin T, Nanni P, Grossmann J, Holtfreter S, Bröker BM, Kohler C, Diep BA, Ribeiro ADA, Thurnheer T. Staphylococcus aureus Interferes with Streptococci Spatial Distribution and with Protein Expression of Species within a Polymicrobial Oral Biofilm. Antibiotics (Basel) 2021; 10:116. [PMID: 33530340 PMCID: PMC7911025 DOI: 10.3390/antibiotics10020116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
We asked whether transient Staphylococcus aureus in the oral environment synergistically interacts with orally associated bacterial species such as Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus mutans, and Veillonella dispar (six-species control biofilm 6S). For this purpose, four modified biofilms with seven species that contain either the wild type strain of the S. aureus genotype (USA300-MRSA WT), its isogenic mutant with MSCRAMM deficiency (USA300-MRSA ΔMSCRAMM), a methicillin-sensitive S. aureus (ST72-MSSA-) or a methicillin-resistant S. aureus (USA800-MRSA) grown on hydroxyapatite disks were examined. Culture analyses, confocal-laser-scanning microscopy and proteome analyses were performed. S. aureus strains affected the amount of supragingival biofilm-associated species differently. The deletion of MSCRAMM genes disrupted the growth of S. aureus and the distribution of S. mutans and S. oralis within the biofilms. In addition, S. aureus caused shifts in the number of detectable proteins of other species in the 6S biofilm. S. aureus (USA300-MRSA WT), aggregated together with early colonizers such as Actinomyces and streptococci, influenced the number of secondary colonizers such as Fusobacterium nucleatum and was involved in structuring the biofilm architecture that triggered the change from a homeostatic biofilm to a dysbiotic biofilm to the development of oral diseases.
Collapse
Affiliation(s)
- Etyene Schnurr
- Instituto de Saúde de Nova Friburgo, Federal Fluminense University, 28625-650 Nova Friburgo, Brazil
| | - Pune N. Paqué
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| | - Paolo Nanni
- Functional Genomics Center, ETH Zürich and University of Zurich, 8057 Zurich, Switzerland; (P.N.); (J.G.)
| | - Jonas Grossmann
- Functional Genomics Center, ETH Zürich and University of Zurich, 8057 Zurich, Switzerland; (P.N.); (J.G.)
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.H.); (B.M.B.)
| | - Barbara M. Bröker
- Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.H.); (B.M.B.)
| | - Christian Kohler
- Friedrich-Loeffler Institute for Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Binh An Diep
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA;
| | | | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| |
Collapse
|
5
|
Multifunctional Amyloids in the Biology of Gram-Positive Bacteria. Microorganisms 2020; 8:microorganisms8122020. [PMID: 33348645 PMCID: PMC7766987 DOI: 10.3390/microorganisms8122020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023] Open
Abstract
Since they were discovered, amyloids have proven to be versatile proteins able to participate in a variety of cellular functions across all kingdoms of life. This multitask trait seems to reside in their ability to coexist as monomers, aggregates or fibrillar entities, with morphological and biochemical peculiarities. It is precisely this common molecular behaviour that allows amyloids to cross react with one another, triggering heterologous aggregation. In bacteria, many of these functional amyloids are devoted to the assembly of biofilms by organizing the matrix scaffold that keeps cells together. However, consistent with their notion of multifunctional proteins, functional amyloids participate in other biological roles within the same organisms, and emerging unprecedented functions are being discovered. In this review, we focus on functional amyloids reported in gram-positive bacteria, which are diverse in their assembly mechanisms and remarkably specific in their biological functions that they perform. Finally, we consider cross-seeding between functional amyloids as an emerging theme in interspecies interactions that contributes to the diversification of bacterial biology.
Collapse
|
6
|
Barran-Berdon AL, Ocampo S, Haider M, Morales-Aparicio J, Ottenberg G, Kendall A, Yarmola E, Mishra S, Long JR, Hagen SJ, Stubbs G, Brady LJ. Enhanced purification coupled with biophysical analyses shows cross-β structure as a core building block for Streptococcus mutans functional amyloids. Sci Rep 2020; 10:5138. [PMID: 32198417 PMCID: PMC7083922 DOI: 10.1038/s41598-020-62115-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/14/2020] [Indexed: 11/10/2022] Open
Abstract
Streptococcus mutans is an etiologic agent of human dental caries that forms dental plaque biofilms containing functional amyloids. Three amyloidogenic proteins, P1, WapA, and Smu_63c were previously identified. C123 and AgA are naturally occurring amyloid-forming fragments of P1 and WapA, respectively. We determined that four amyloidophilic dyes, ThT, CDy11, BD-oligo, and MK-H4, differentiate C123, AgA, and Smu_63c amyloid from monomers, but non-specific binding to bacterial cells in the absence of amyloid precludes their utility for identifying amyloid in biofilms. Congo red-induced birefringence is a more specific indicator of amyloid formation and differentiates biofilms formed by wild-type S. mutans from a triple ΔP1/WapA/Smu_63c mutant with reduced biofilm forming capabilities. Amyloid accumulation is a late event, appearing in older S. mutans biofilms after 60 hours of growth. Amyloid derived from pure preparations of all three proteins is visualized by electron microscopy as mat-like structures. Typical amyloid fibers become evident following protease digestion to eliminate non-specific aggregates and monomers. Amyloid mats, similar in appearance to those reported in S. mutans biofilm extracellular matrices, are reconstituted by co-incubation of monomers and amyloid fibers. X-ray fiber diffraction of amyloid mats and fibers from all three proteins demonstrate patterns reflective of a cross-β amyloid structure.
Collapse
Affiliation(s)
- Ana L Barran-Berdon
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Sebastian Ocampo
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Momin Haider
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | | | - Gregory Ottenberg
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Amy Kendall
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Elena Yarmola
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Surabhi Mishra
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Joanna R Long
- Department of Biochemistry, University of Florida, Gainesville, Florida, USA
| | - Stephen J Hagen
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | - Gerald Stubbs
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
7
|
CovR and VicRKX Regulate Transcription of the Collagen Binding Protein Cnm of Streptococcus mutans. J Bacteriol 2018; 200:JB.00141-18. [PMID: 30201780 DOI: 10.1128/jb.00141-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 09/04/2018] [Indexed: 11/20/2022] Open
Abstract
Cnm is a surface-associated protein present in a subset of Streptococcus mutans strains that mediates binding to extracellular matrices, intracellular invasion, and virulence. Here, we showed that cnm transcription is controlled by the global regulators CovR and VicRKX. In silico analysis identified multiple putative CovR- and VicR-binding motifs in the regulatory region of cnm as well as in the downstream gene pgfS, which is associated with the posttranslational modification of Cnm. Electrophoretic mobility shift assays revealed that CovR and VicR specifically and independently bind to the cnm and pgfS promoter regions. Quantitative real-time PCR and Western blot analyses of ΔcovR and ΔvicK strains as well as of a strain overexpressing vicRKX revealed that CovR functions as a positive regulator of cnm, whereas VicRKX acts as a negative regulator. In agreement with the role of VicRKX as a repressor, the ΔvicK strain showed enhanced binding to collagen and laminin and higher intracellular invasion rates. Overexpression of vicRKX was associated with decreased rates of intracellular invasion but did not affect collagen or lamin binding activities, suggesting that this system controls additional genes involved in binding to these extracellular matrix proteins. As expected, based on the role of CovR in cnm regulation, the ΔcovR strain showed decreased intracellular invasion rates, but, unexpectedly collagen and laminin binding activities were increased in this mutant strain. Collectively, the results presented here expand the repertoire of virulence-related genes regulated by CovR and VicRKX to include the core gene pgfS and the noncore gene cnm IMPORTANCE Streptococcus mutans is a major pathogen associated with dental caries and also implicated in systemic infections, in particular, infective endocarditis. The Cnm adhesin of S. mutans is an important virulence factor associated with systemic infections and caries severity. Despite its role in virulence, the regulatory mechanisms governing cnm expression are poorly understood. Here, we describe the identification of two independent regulatory systems controlling the transcription of cnm and the downstream pgfS-pgfM1-pgfE-pgfM2 operon. A better understanding of the mechanisms controlling expression of virulence factors like Cnm can facilitate the development of new strategies to treat bacterial infections.
Collapse
|
8
|
Song Y, Zhou JL, He YL, Li W, Zou L. [Link between sortase A function and cariogenicity of Streptococcus mutans: a preliminary metabolomics analysis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:360-366. [PMID: 30182561 DOI: 10.7518/hxkq.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study intends to explore the mechanism underlying the support of sortase A (SrtA) of the cariogenicity of Streptococcus mutans (S. mutans). METHODS We performed a metabonomics study based on ¹H nuclear magnetic resonance spectroscopy (NMR), in which we compared the extracellular metabolites of wild-type S. mutans UA159 with those of its SrtA-deficient strain. Metabolite differences among strains were identified using a combination of principal component analysis and orthogonality partial least square discriminant analysis. RESULTS Several differences corresponding mostly to unknown metabolites were identified. Some amino acids such as leucine and valine (δ 0.92×10⁻⁶-1.20×10⁻⁶), lactic acid ( δ1.28×10⁻⁶), oxoglutaric acid (δ 3.00×10⁻⁶), and glycine (δ 3.60×10⁻⁶) differed among strains. CONCLUSIONS This work establishes the feasibility of using ¹H NMR-based metabonomics to provide leads for research into molecular factors that promote caries. The database of microbial metabolites should be also improved in further studies.
Collapse
Affiliation(s)
- Ying Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;Dept. of Conservative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences,Chongqing 401147, China
| | - Jing-Lin Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuan-Li He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Besingi RN, Wenderska IB, Senadheera DB, Cvitkovitch DG, Long JR, Wen ZT, Brady LJ. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. MICROBIOLOGY-SGM 2017; 163:488-501. [PMID: 28141493 DOI: 10.1099/mic.0.000443] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloids have been identified as functional components of the extracellular matrix of bacterial biofilms. Streptococcus mutans is an established aetiologic agent of dental caries and a biofilm dweller. In addition to the previously identified amyloidogenic adhesin P1 (also known as AgI/II, PAc), we show that the naturally occurring antigen A derivative of S. mutans wall-associated protein A (WapA) and the secreted protein SMU_63c can also form amyloid fibrils. P1, WapA and SMU_63c were found to significantly influence biofilm development and architecture, and all three proteins were shown by immunogold electron microscopy to reside within the fibrillar extracellular matrix of the biofilms. We also showed that SMU_63c functions as a negative regulator of biofilm cell density and genetic competence. In addition, the naturally occurring C-terminal cleavage product of P1, C123 (also known as AgII), was shown to represent the amyloidogenic moiety of this protein. Thus, P1 and WapA both represent sortase substrates that are processed to amyloidogenic truncation derivatives. Our current results suggest a novel mechanism by which certain cell surface adhesins are processed and contribute to the amyloidogenic capability of S. mutans. We further demonstrate that the polyphenolic small molecules tannic acid and epigallocatechin-3-gallate, and the benzoquinone derivative AA-861, which all inhibit amyloid fibrillization of C123 and antigen A in vitro, also inhibit S. mutans biofilm formation via P1- and WapA-dependent mechanisms, indicating that these proteins serve as therapeutic targets of anti-amyloid compounds.
Collapse
Affiliation(s)
- Richard N Besingi
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Iwona B Wenderska
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Dilani B Senadheera
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Dennis G Cvitkovitch
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Zezhang T Wen
- Department of Comprehensive Dentistry and Biomaterials and Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Kaufman G, Skrtic D. Structural and recovery mechanisms of 3D dental pulp cell microtissues challenged with Streptococcusmutans in extracellular matrix environment. J Med Microbiol 2016; 65:1332-1340. [PMID: 27638752 DOI: 10.1099/jmm.0.000353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cariopathogen Streptococcus mutans exists in infected dental pulp of deciduous teeth and is frequently linked with heart diseases. Organotypic (3D) dental pulp stem cell (DPSC) cultures/microtissues, developed to mimic the physiological conditions in vivo, were utilized to assess the bacterial impact on their (i) 3D structural configuration and (ii) recovery mechanisms. The cultures, developed in extracellular matrix (ECM) bio-scaffold (Matrigel™), interacted with WT and GFP-tagged bacterial biofilms by permitting their infiltration through the ECM. Challenged cell constructs were visualized by F-actin/nuclei staining. Their pluripotency (Sox2) and differentiation (osteocalcin) markers were assessed by immunocytochemistry. Secreted mineral was detected by alizarin red, and 3D structural arrangements were analysed by epi-fluorescence and confocal scanning microscopy. Bacterial biofilm/ECM-embedded DPSC interactions appeared in distinct areas of the microtissues. Bacterial attachment to the cell surface occurred without evidence of invasion. Surface architecture of the challenged versus unchallenged microtissues was apparently unaltered. However, significant increases in thickness (138.42 vs 106.51 µm) and bacterial penetration were detected in challenged structures causing canal-like microstructures with various diameters (12.94 -42.88 µm) and average diameter of 20.66 to 33.42 µm per microtissue. Challenged constructs expressed pluripotency and differentiation markers and secreted the mineral. Presented model shows strong potential for assessing pulp-pathogen interactions in vivo. S. mutans infiltrated and penetrated the microtissues but did not invade the cells or compromise major cell repair mechanisms. These findings would suggest reexamining the role of S. mutans as an endodontic pathogen and investigating DPSC resistance to its pathogenicity.
Collapse
Affiliation(s)
- Gili Kaufman
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| | - Drago Skrtic
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| |
Collapse
|
11
|
Kaur G, Balamurugan P, Uma Maheswari C, Anitha A, Princy SA. Combinatorial Effects of Aromatic 1,3-Disubstituted Ureas and Fluoride on In vitro Inhibition of Streptococcus mutans Biofilm Formation. Front Microbiol 2016; 7:861. [PMID: 27375583 PMCID: PMC4893485 DOI: 10.3389/fmicb.2016.00861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/23/2016] [Indexed: 01/11/2023] Open
Abstract
Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S. mutans due to over use of various antibiotics are a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our present in silico findings, 1,3-disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3-disubstituted urea derivatives showed good biofilm inhibition. In addition, synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25-62.5 ppm) in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were supported by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - P. Balamurugan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - C. Uma Maheswari
- Organic Synthesis Group, Department of Chemistry, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - A. Anitha
- Organic Synthesis Group, Department of Chemistry, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - S. Adline Princy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
12
|
Avilés-Reyes A, Miller JH, Lemos JA, Abranches J. Collagen-binding proteins of Streptococcus mutans and related streptococci. Mol Oral Microbiol 2016; 32:89-106. [PMID: 26991416 DOI: 10.1111/omi.12158] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
Abstract
The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms used by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host.
Collapse
Affiliation(s)
- A Avilés-Reyes
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - J H Miller
- Department of Anesthesiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - J A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - J Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Crowley PJ, Brady LJ. Evaluation of the effects of Streptococcus mutans chaperones and protein secretion machinery components on cell surface protein biogenesis, competence, and mutacin production. Mol Oral Microbiol 2015; 31:59-77. [PMID: 26386361 DOI: 10.1111/omi.12130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
Abstract
The respective contributions of components of the protein translocation/maturation machinery to cell surface biogenesis in Streptococcus mutans are not fully understood. Here we used a genetic approach to characterize the effects of deletion of genes encoding the ribosome-associated chaperone RopA (Trigger Factor), the surface-localized foldase PrsA, and the membrane-localized chaperone insertases YidC1 and YidC2, both singly and in combination, on bacterial growth, chain length, self-aggregation, cell surface hydrophobicity, autolysis, and antigenicity of surface proteins P1 (AgI/II, PAc), WapA, GbpC, and GtfD. The single and double deletion mutants, as well as additional mutant strains lacking components of the signal recognition particle pathway, were also evaluated for their effects on mutacin production and genetic competence.
Collapse
Affiliation(s)
- P J Crowley
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - L J Brady
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
The collagen binding protein Cnm contributes to oral colonization and cariogenicity of Streptococcus mutans OMZ175. Infect Immun 2015; 83:2001-10. [PMID: 25733523 DOI: 10.1128/iai.03022-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/21/2015] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is the etiological agent of dental caries and one of the many bacterial species implicated in infective endocarditis. The expression of the collagen-binding protein Cnm by S. mutans has been associated with extraoral infections, but its relevance for dental caries has only been theorized to date. Due to the collagenous composition of dentinal and root tissues, we hypothesized that Cnm may facilitate the colonization of these surfaces, thereby enhancing the pathogenic potential of S. mutans in advancing carious lesions. As shown for extraoral endothelial cell lines, Cnm mediates the invasion of oral keratinocytes and fibroblasts by S. mutans. In this study, we show that in the Cnm(+) native strain, OMZ175, Cnm mediates stringent adhesion to dentinal and root tissues as well as collagen-coated surfaces and promotes both cariogenicity and carriage in vivo. In vitro, ex vivo, and in vivo experiments revealed that while Cnm is not universally required for S. mutans cariogenicity, it contributes to (i) the invasion of the oral epithelium, (ii) enhanced binding on collagenous surfaces, (iii) implantation of oral biofilms, and (IV) the severity of caries due to a native Cnm(+) isolate. Taken together, our findings reveal that Cnm is a colonization factor that contributes to the pathogenicity of certain S. mutans strains in their native habitat, the oral cavity.
Collapse
|
15
|
Abstract
Oral colonising bacteria are highly adapted to the various environmental niches harboured within the mouth, whether that means while contributing to one of the major oral diseases of caries, pulp infections, or gingival/periodontal disease or as part of a commensal lifestyle. Key to these infections is the ability to adhere to surfaces via a range of specialised adhesins targeted at both salivary and epithelial proteins, their glycans and to form biofilm. They must also resist the various physical stressors they are subjected to, including pH and oxidative stress. Possibly most strikingly, they have developed the ability to harvest both nutrient sources provided by the diet and those derived from the host, such as protein and surface glycans. We have attempted to review recent developments that have revealed much about the molecular mechanisms at work in shaping the physiology of oral bacteria and how we might use this information to design and implement new treatment strategies.
Collapse
|
16
|
Avilés-Reyes A, Miller J, Simpson-Haidaris P, Lemos J, Abranches J. Cnm is a major virulence factor of invasiveStreptococcus mutansand part of a conserved three-gene locus. Mol Oral Microbiol 2014. [DOI: 10.1111/omi.12041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A. Avilés-Reyes
- Center for Oral Biology; University of Rochester Medical Center; Rochester NY USA
- Department of Microbiology and Immunology; University of Rochester Medical Center; Rochester NY USA
| | - J.H. Miller
- Center for Oral Biology; University of Rochester Medical Center; Rochester NY USA
| | - P.J. Simpson-Haidaris
- Department of Microbiology and Immunology; University of Rochester Medical Center; Rochester NY USA
- Department of Medicine/Hematology-Oncology Division; University of Rochester Medical Center; Rochester NY USA
- Department of Pathology and Laboratory Medicine; University of Rochester Medical Center; Rochester NY USA
| | - J.A. Lemos
- Center for Oral Biology; University of Rochester Medical Center; Rochester NY USA
- Department of Microbiology and Immunology; University of Rochester Medical Center; Rochester NY USA
| | - J. Abranches
- Center for Oral Biology; University of Rochester Medical Center; Rochester NY USA
- Department of Microbiology and Immunology; University of Rochester Medical Center; Rochester NY USA
| |
Collapse
|
17
|
Avilés-Reyes A, Miller JH, Simpson-Haidaris PJ, Lemos JA, Abranches J. Cnm is a major virulence factor of invasive Streptococcus mutans and part of a conserved three-gene locus. Mol Oral Microbiol 2013; 29:11-23. [PMID: 24103776 DOI: 10.1111/mom.12041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2013] [Indexed: 12/12/2022]
Abstract
Cnm, a collagen- and laminin-binding protein present in a subset of Streptococcus mutans strains, mediates binding to extracellular matrices (ECM), intracellular invasion and virulence in the Galleria mellonella model. Antibodies raised against Cnm were used to confirm expression and the cell surface localization of Cnm in the highly invasive OMZ175 strain. Sequence analysis identified two additional genes (cnaB and cbpA) encoding putative surface proteins immediately upstream of cnm. Inactivation of cnaB and cbpA in OMZ175, individually or in combination, did not decrease the ability of this highly invasive and virulent strain to bind to different ECM proteins, invade human coronary artery endothelial cells (HCAEC), or kill G. mellonella. Similarly, expression of cnaB and cbpA in the cnm(-) strain UA159 revealed that these genes did not enhance Cnm-related phenotypes. However, integration of cnm in the chromosome of UA159 significantly increased its ability to bind to collagen and laminin, invade HCAEC, and kill G. mellonella. Moreover, the presence of antibodies against Cnm nearly abolished the ability of OMZ175 to bind to collagen and laminin and invade HCAEC, and significantly protected G. mellonella against OMZ175 infection. We concluded that neither CnaB nor CbpA is necessary for the expression of Cnm-related traits. We also provided definitive evidence that Cnm is an important virulence factor and a suitable target for the development of novel preventive and therapeutic strategies to combat invasive S. mutans strains.
Collapse
Affiliation(s)
- A Avilés-Reyes
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
18
|
Wang Y, Chung FFL, Lee SM, Dykes GA. Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components. BMC Res Notes 2013; 6:143. [PMID: 23578062 PMCID: PMC3637544 DOI: 10.1186/1756-0500-6-143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/03/2013] [Indexed: 01/30/2023] Open
Abstract
Background Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel. Findings This study investigated the effect of five commercial tea (green, oolong, black, pu-erh and chrysanthemum) extracts and tea components (epigallocatechin gallate and gallic acid) on the attachment of five oral pathogens (Streptococcus mutans ATCC 25175, Streptococcus mutans ATCC 35668, Streptococcus mitis ATCC 49456, Streptococcus salivarius ATCC 13419 and Actinomyces naeslundii ATCC 51655) to the HGF-1 gingival cell line. Extracts of two of the teas (pu-erh and chrysanthemum) significantly (p < 0.05) reduced attachment of all the Streptococcus strains by up to 4 log CFU/well but effects of other teas and components were small. Conclusions Pu-erh and chrysanthemum tea may have the potential to reduce attachment of oral pathogens to gingival tissue and improve the health of oral soft tissues.
Collapse
Affiliation(s)
- Yi Wang
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor, Malaysia
| | | | | | | |
Collapse
|
19
|
Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012; 36:1122-80. [PMID: 22537156 DOI: 10.1111/j.1574-6976.2012.00340.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/11/2023] Open
Abstract
Laminin (Ln) and collagen are multifunctional glycoproteins that play an important role in cellular morphogenesis, cell signalling, tissue repair and cell migration. These proteins are ubiquitously present in tissues as a part of the basement membrane (BM), constitute a protective layer around blood capillaries and are included in the extracellular matrix (ECM). As a component of BMs, both Lns and collagen(s), thus function as major mechanical containment molecules that protect tissues from pathogens. Invasive pathogens breach the basal lamina and degrade ECM proteins of interstitial spaces and connective tissues using various ECM-degrading proteases or surface-bound plasminogen and matrix metalloproteinases recruited from the host. Most pathogens associated with the respiratory, gastrointestinal, or urogenital tracts, as well as with the central nervous system or the skin, have the capacity to bind and degrade Lns and collagen(s) in order to adhere to and invade host tissues. In this review, we focus on the adaptability of various pathogens to utilize these ECM proteins as enhancers for adhesion to host tissues or as a targets for degradation in order to breach the cellular barriers. The major pathogens discussed are Streptococcus, Staphylococcus, Pseudomonas, Salmonella, Yersinia, Treponema, Mycobacterium, Clostridium, Listeria, Porphyromonas and Haemophilus; Candida, Aspergillus, Pneumocystis, Cryptococcus and Coccidioides; Acanthamoeba, Trypanosoma and Trichomonas; retrovirus and papilloma virus.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
20
|
Lack of the delta subunit of RNA polymerase increases virulence related traits of Streptococcus mutans. PLoS One 2011; 6:e20075. [PMID: 21625504 PMCID: PMC3098267 DOI: 10.1371/journal.pone.0020075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 04/25/2011] [Indexed: 01/21/2023] Open
Abstract
The delta subunit of the RNA polymerase, RpoE, maintains the transcriptional specificity in Gram-positive bacteria. Lack of RpoE results in massive changes in the transcriptome of the human dental caries pathogen Streptococcus mutans. In this study, we analyzed traits of the ΔrpoE mutant which are important for biofilm formation and interaction with oral microorganisms and human cells and performed a global phenotypic analysis of its physiological functions. The ΔrpoE mutant showed higher self-aggregation compared to the wild type and coaggregated with other oral bacteria and Candida albicans. It formed a biofilm with a different matrix structure and an altered surface attachment. The amount of the cell surface antigens I/II SpaP and the glucosyltransferase GtfB was reduced. The ΔrpoE mutant displayed significantly stronger adhesion to human extracellular matrix components, especially to fibronectin, than the wild type. Its adhesion to human epithelial cells HEp-2 was reduced, probably due to the highly aggregated cell mass. The analysis of 1248 physiological traits using phenotype microarrays showed that the ΔrpoE mutant metabolized a wider spectrum of carbon sources than the wild type and had acquired resistance to antibiotics and inhibitory compounds with various modes of action. The reduced antigenicity, increased aggregation, adherence to fibronection, broader substrate spectrum and increased resistance to antibiotics of the ΔrpoE mutant reveal the physiological potential of S. mutans and show that some of its virulence related traits are increased.
Collapse
|
21
|
Sato Y, Okamoto-Shibayama K, Azuma T. A mechanism for extremely weak SpaP-expression in Streptococcus mutans strain Z1. J Oral Microbiol 2011; 3. [PMID: 21541094 PMCID: PMC3086597 DOI: 10.3402/jom.v3i0.5495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 03/09/2011] [Accepted: 03/23/2011] [Indexed: 12/05/2022] Open
Abstract
Background Streptococcus mutans surface-protein antigen (SpaP, PAc, or antigen I/II) has been well known to play an important role in initial attachment to tooth surfaces. However, strains with weak SpaP-expression were recently reported to be found in natural populations of S. mutans. The S. mutans gbpC-negative strain Z1, which we previously isolated from saliva and plaque samples, apparently expresses relatively low levels of SpaP protein compared to S. mutans strains MT8148 or UA159. Objective To elucidate the mechanism for weak SpaP-expression in this strain, the spaP gene region in strain Z1 was amplified by polymerase chain reaction (PCR) and analyzed. Methods Allelic exchange mutants between strains Z1 and UA159 involving the spaP gene region were constructed. The SpaP protein expressed in the mutants was detected with Coomasie Brilliant Blue (CBB)-staining and Western blot analysis following SDS-PAGE. Results The 4689 bp spaP gene coding sequence for Z1 appeared to be intact. In contrast, a 20 bp nucleotide sequence appeared to be deleted from the region immediately upstream from the Z1 spaP gene when compared to the same region in UA159. The 216 bp and 237 bp intergenic fragments upstream from the spaP gene, respectively, from Z1 and UA159 were isolated, modified, and transformed into the other strain by allelic replacement. The resultant UA159-promoter region-mutant exhibited extremely weak SpaP-expression similar to that of strain Z1 and the Z1 complemented mutant expressed Spa protein levels like that of strain UA159. Conclusion These results suggest that weak SpaP-expression in strain Z1 resulted from a 20 bp-deletion in the spaP gene promoter region.
Collapse
Affiliation(s)
- Yutaka Sato
- Department of Biochemistry, Tokyo Dental College, Chiba City, Japan
| | | | | |
Collapse
|
22
|
The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun 2011; 79:2277-84. [PMID: 21422186 DOI: 10.1128/iai.00767-10] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is considered the primary etiologic agent of dental caries, a global health problem that affects 60 to 90% of the population, and a leading causative agent of infective endocarditis. It can be divided into four different serotypes (c, e, f, and k), with serotype c strains being the most common in the oral cavity. In this study, we demonstrate that in addition to OMZ175 and B14, three other strains (NCTC11060, LM7, and OM50E) of the less prevalent serotypes e and f are able to invade primary human coronary artery endothelial cells (HCAEC). Invasive strains were also significantly more virulent than noninvasive strains in the Galleria mellonella (greater wax worm) model of systemic disease. Interestingly, the invasive strains carried an additional gene, cnm, which was previously shown to bind to collagen and laminin in vitro. Inactivation of cnm rendered the organisms unable to invade HCAEC and attenuated their virulence in G. mellonella. Notably, the cnm knockout strains did not adhere to HCAEC as efficiently as the parental strains did, indicating that the loss of the invasion phenotype observed for the mutants was linked to an adhesion defect. Comparisons of the invasive strains and their respective cnm mutants did not support a correlation between biofilm formation and invasion. Thus, Cnm is required for S. mutans invasion of endothelial cells and possibly represents an important virulence factor of S. mutans that may contribute to cardiovascular infections and pathologies.
Collapse
|
23
|
Nomura R, Naka S, Nakano K, Taniguchi N, Matsumoto M, Ooshima T. Detection of oral streptococci with collagen-binding properties in saliva specimens from mothers and their children. Int J Paediatr Dent 2010; 20:254-60. [PMID: 20536586 DOI: 10.1111/j.1365-263x.2010.01047.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Approximately 10-20% of Streptococcus mutans strains have been reported to possess collagen-binding properties, whereas other species in the oral cavity with those properties remain to be elucidated. Aim. To identify strains with collagen-binding properties and analyse their characteristics in comparison with S. mutans. DESIGN A total of 110 expectorated saliva specimens were collected from 55 pairs of mothers and their children. Bacterial strains with collagen-binding properties were isolated and the species specified. In addition, strains with collagen-binding properties isolated from mother-child pairs were analysed using molecular biological approaches. RESULTS The detection frequency of strains with collagen-binding properties was shown to be 40.9%, among which S. salivarius was the most frequently detected, followed by S. mutans. The collagen-binding activity of the S. mutans group was the highest, followed by S. salivarius. In addition, S. mutans and S. salivarius strains from 3 and 1 mother-child pairs, respectively, were shown to be the same clones. CONCLUSIONS Our results indicate that S. mutans and S. salivarius are major species with collagen-binding properties in the oral cavity, and that strains with such properties may be related to mother-child transmission.
Collapse
Affiliation(s)
- Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
25
|
Preza D, Thiede B, Olsen I, Grinde B. The proteome of the human parotid gland secretion in elderly with and without root caries. Acta Odontol Scand 2009; 67:161-9. [PMID: 19253063 DOI: 10.1080/00016350902751545] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Saliva is important for oral health, including the prevention of dental decay. The purpose of the present work was to indicate whether the parotid gland has altered function in the elderly, particularly in terms of proteins secreted, and whether its functional status could be associated with the presence of root caries. MATERIAL AND METHODS Ductal parotid gland secretion was obtained from 51 individuals: 21 elderly with carious roots (Patients), 20 elderly (Controls), and 10 adults (Young) without root caries. Pooled aliquots were analyzed by liquid chromatography/tandem mass spectrometry to yield lists of major proteins present in the three groups. RESULTS Approximately 200 unique proteins were detected, of which 73 were identified repeatedly with high confidence and therefore included in the comparison. Some of the differences observed, when comparing Patients with respectively elderly Controls and the Young, resembled changes found in patients with Sjogren's syndrome, a condition associated with dental decay. Other changes involved proteins that are likely to impact on the oral microbiota, such as the absence of dermcidin and the presence of collagen in Patients. Cystatin S, a putative indicator of caries, was present at a higher level in Patients. CONCLUSIONS Parotid function tends to change upon aging, with possible consequences as to caries activity. However, analyses of individual samples revealed considerable variations in protein patterns.
Collapse
|