1
|
Lemcke R, Egebjerg C, Berendtsen NT, Egerod KL, Thomsen AR, Pers TH, Christensen JP, Kornum BR. Molecular consequences of peripheral Influenza A infection on cell populations in the murine hypothalamus. eLife 2023; 12:RP87515. [PMID: 37698546 PMCID: PMC10497288 DOI: 10.7554/elife.87515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.
Collapse
Affiliation(s)
- René Lemcke
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Christine Egebjerg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Nicolai T Berendtsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Allan R Thomsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Dattilo V, Amato R, Perrotti N, Gennarelli M. The Emerging Role of SGK1 (Serum- and Glucocorticoid-Regulated Kinase 1) in Major Depressive Disorder: Hypothesis and Mechanisms. Front Genet 2020; 11:826. [PMID: 32849818 PMCID: PMC7419621 DOI: 10.3389/fgene.2020.00826] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous psychiatric disease characterized by persistent low mood, diminished interests, and impaired cognitive and social functions. The multifactorial etiology of MDD is still largely unknown because of the complex genetic and environmental interactions involved. Therefore, no established mechanism can explain all the aspects of the disease. In this light, an extensive research about the pathophysiology of MDD has been carried out. Several pathogenic hypotheses, such as monoamines deficiency and neurobiological alterations in the stress-responsive system, including the hypothalamic-pituitary-adrenal (HPA) axis and the immune system, have been proposed for MDD. Over time, remarkable studies, mainly on preclinical rodent models, linked the serum- and glucocorticoid-regulated kinase 1 (SGK1) to the main features of MDD. SGK1 is a serine/threonine kinase belonging to the AGK Kinase family. SGK1 is ubiquitously expressed, which plays a pivotal role in the hormonal regulation of several ion channels, carriers, pumps, and transcription factors or regulators. SGK1 expression is modulated by cell stress and hormones, including gluco- and mineralocorticoids. Compelling evidence suggests that increased SGK1 expression or function is related to the pathogenic stress hypothesis of major depression. Therefore, the first part of the present review highlights the putative role of SGK1 as a critical mediator in the dysregulation of the HPA axis, observed under chronic stress conditions, and its controversial role in the neuroinflammation as well. The second part depicts the negative regulation exerted by SGK1 in the expression of both the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), resulting in an anti-neurogenic activity. Finally, the review focuses on the antidepressant-like effects of anti-oxidative nutraceuticals in several preclinical model of depression, resulting from the restoration of the physiological expression and/or activity of SGK1, which leads to an increase in neurogenesis. In summary, the purpose of this review is a systematic analysis of literature depicting SGK1 as molecular junction of the complex mechanisms underlying the MDD in an effort to suggest the kinase as a potential biomarker and strategic target in modern molecular antidepressant therapy.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosario Amato
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Massimo Gennarelli
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Rensel MA, Schlinger BA. The stressed brain: regional and stress-related corticosterone and stress-regulated gene expression in the adult zebra finch (Taeniopygia guttata). J Neuroendocrinol 2020; 32:e12852. [PMID: 32364267 PMCID: PMC7286616 DOI: 10.1111/jne.12852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022]
Abstract
Glucocorticoids (CORT) are well-known as important regulators of behaviour and cognition at basal levels and under stress. However, the precise mechanisms governing CORT action and functional outcomes of this action in the brain remain unclear, particularly in model systems other than rodents. In the present study, we investigated the dynamics of CORT regulation in the zebra finch, an important model system for vocal learning, neuroplasticity and cognition. We tested the hypothesis that CORT is locally regulated in the zebra finch brain by quantifying regional and stress-related variation in total CORT across brain regions. In addition, we used an ex vivo slice culture system to test whether CORT regulates target gene expression uniquely in discrete regions of the brain. We documented a robust increase in brain CORT across regions after 30 minutes of restraint stress but, interestingly, baseline and stress-induced CORT levels varied between regions. In addition, CORT treatment of brain slice cultures differentially affected expression of three CORT target genes: it up-regulated expression of FKBP5 in most regions and SGK1 in the hypothalamus only, whereas GILZ was unaffected by CORT treatment across all brain regions investigated. The specific mechanisms producing regional variation in CORT and CORT-dependent downstream gene expression remain unknown, although these data provide additional support for the hypothesis that the songbird brain employs regulatory mechanisms that result in precise control over the influence of CORT on glucocorticoid-sensitive neural circuits.
Collapse
Affiliation(s)
- Michelle A. Rensel
- Institute for Society and Genetics, the University of California Los Angeles, Los Angeles, CA
- Laboratory of Neuroendocrinology, the University of California Los Angeles, Los Angeles, CA
- Corresponding author (MAR)
| | - Barney A. Schlinger
- Laboratory of Neuroendocrinology, the University of California Los Angeles, Los Angeles, CA
- Dept. of Integrative Biology and Physiology, the University of California Los Angeles, Los Angeles, CA
- Dept. of Ecology and Evolutionary Biology, the University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
4
|
Koesema E, Kodadek T. Global analysis of gene expression mediated by OX1 orexin receptor signaling in a hypothalamic cell line. PLoS One 2017; 12:e0188082. [PMID: 29145494 PMCID: PMC5690679 DOI: 10.1371/journal.pone.0188082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 10/31/2017] [Indexed: 01/23/2023] Open
Abstract
The orexins and their cognate G-protein coupled receptors have been widely studied due to their associations with various behaviors and cellular processes. However, the detailed downstream signaling cascades that mediate these effects are not completely understood. We report the generation of a neuronal model cell line that stably expresses the OX1 orexin receptor (OX1) and an RNA-Seq analysis of changes in gene expression seen upon receptor activation. Upon treatment with orexin, several families of related transcription factors are transcriptionally regulated, including the early growth response genes (Egr), the Kruppel-like factors (Klf), and the Nr4a subgroup of nuclear hormone receptors. Furthermore, some of the transcriptional effects observed have also been seen in data from in vivo sleep deprivation microarray studies, supporting the physiological relevance of the data set. Additionally, inhibition of one of the most highly regulated genes, serum and glucocorticoid-regulated kinase 1 (Sgk1), resulted in the diminished orexin-dependent induction of a subset of genes. These results provide new insight into the molecular signaling events that occur during OX1 signaling and support a role for orexin signaling in the stimulation of wakefulness during sleep deprivation studies.
Collapse
Affiliation(s)
- Eric Koesema
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, FL, United States of America
| | - Thomas Kodadek
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, FL, United States of America
| |
Collapse
|
5
|
Sominsky L, Ziko I, Nguyen TX, Andrews ZB, Spencer SJ. Early life disruption to the ghrelin system with over-eating is resolved in adulthood in male rats. Neuropharmacology 2017; 113:21-30. [DOI: 10.1016/j.neuropharm.2016.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
|
6
|
Derous D, Mitchell SE, Green CL, Chen L, Han JJ, Wang Y, Promislow DE, Lusseau D, Speakman JR, Douglas A. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways. Aging (Albany NY) 2016; 8:642-63. [PMID: 26945906 PMCID: PMC4925820 DOI: 10.18632/aging.100895] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/20/2016] [Indexed: 01/03/2023]
Abstract
Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.
Collapse
Affiliation(s)
- Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| | - Sharon E. Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Cara L. Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Luonan Chen
- Key laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing‐Dong J. Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences‐Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingchun Wang
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Daniel E.L. Promislow
- Department of Pathology and Department of Biology, University of Washington at Seattle, Seattle, WA 98195, USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| |
Collapse
|
7
|
Lin EJD, Sun M, Choi E, Magee D, Stets C, During MJ. Social overcrowding as a chronic stress model that increases adiposity in mice. Psychoneuroendocrinology 2015; 51:318-30. [PMID: 25462904 PMCID: PMC4273577 DOI: 10.1016/j.psyneuen.2014.10.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 01/08/2023]
Abstract
Stress is a widely recognized risk factor for psychiatric and metabolic disorders. A number of animal models utilizing various stressors have been developed to facilitate our understanding in the pathophysiology of stress-related dysfunctions. The most commonly used chronic stress paradigms include the unpredictable chronic mild stress paradigm, the social defeat paradigm and the social deprivation paradigm. Here we assess the potential of social crowding as an alternative chronic stress model to study the effects on affective behaviors and metabolic disturbances. Ten-week-old male C57BL/6 mice were housed in groups of four (control) or eight (social crowding; SC) in standard cage for 9 weeks. Exploration, anxiety- and depressive-like behaviors were assessed in the open field test, the elevated T-maze, the novelty-suppressed feeding test and the forced swim test. SC mice exhibited a modest anxiety-like phenotype without change in depressive-like behaviors. Nine weeks of social crowding did not affect the body weight, but robustly increased adiposity as determined by increased mass of fat depots. Consistent with the increased fat content, serum leptin was markedly elevated in the SC mice. Specific changes in gene expression were also observed in the hypothalamus and the white adipose tissue following SC housing. Our study demonstrates the potential of social crowding as an alternative model for the study of stress-related metabolic and behavioral dysfunctions.
Collapse
Affiliation(s)
- En-Ju D Lin
- Cancer Genetics and Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, and the Comprehensive Cancer Center, The Ohio State University, 912 Biomedical Research Tower, 460 West 12th Ave, Columbus, OH, USA.
| | - Meng Sun
- Cancer Genetics and Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Eugene Choi
- Cancer Genetics and Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Daniel Magee
- Cancer Genetics and Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Colin Stets
- Cancer Genetics and Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Matthew J During
- Cancer Genetics and Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA,Functional Genomics and Translational Neuroscience Lab, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Akimoto Y, Kanai S, Ohta M, Akimoto S, Uematsu H, Miyasaka K. Age-associated reduction of stimulatory effect of ghrelin on food intake in mice. Arch Gerontol Geriatr 2011; 55:238-43. [PMID: 21958715 DOI: 10.1016/j.archger.2011.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
Aging is associated with a progressive decrease in appetite and food intake. We focused on the age-associated changes of the stimulatory effect of the appetite-regulating peptide, ghrelin. Food intake and the concentrations of acyl ghrelin and desacyl ghrelin in the plasma and in the stomach were measured with and without overnight fasting in young and old mice. Moreover, the food intake in response to the intraperitoneal administration of graded doses of acyl ghrelin was compared between young and old mice. Fasting drives food intake in young mice, but not in old mice. The concentrations of acyl ghrelin and desacyl ghrelin in the plasma and in the stomach were higher in the old mice than in the young mice. Food intake did not increase in old mice when stimulated by the administration of 1-3 nmol of acyl ghrelin, which could produce a significant increase in food intake in young mice. In conclusion, food intake did not increase in old mice after either overnight fasting or the administration of acyl ghrelin. The release and synthesis of ghrelin seem to be rather higher in old mice compared to young mice. These increases might be the results of compensation for the decline of receptor (and/or post-receptor) functions.
Collapse
Affiliation(s)
- Yosuke Akimoto
- Section of Gerodontology, Department of Gerodontology, Division of Gerontology and Gerodontology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Lang F, Strutz-Seebohm N, Seebohm G, Lang UE. Significance of SGK1 in the regulation of neuronal function. J Physiol 2010; 588:3349-54. [PMID: 20530112 DOI: 10.1113/jphysiol.2010.190926] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The present brief review highlights the putative role of the serum- and glucocorticoid-inducible-kinase-1 (SGK1) in the regulation of neuronal function. SGK1 is genomically upregulated by cell shrinkage and by a variety of hormones including mineralocorticoids and glucocorticoids. The kinase is activated by insulin and growth factors via phosphatidylinositide-3-kinase (PI3-kinase), phosphoinositide-dependent kinase PDK1 and mammalian target of rapamycin mTORC2. SGK1 upregulates ion channels (e.g. SCN5A, ENaC, ASIC1, TRPV5,6, ROMK, Kv1.1-5, KCNEx/KCNQ1-5, GluR6, VSOAC, ClC2, CFTR), carriers (e.g. NHE3, NKCC2, NCC, NaPiIIb, SMIT, GLUT1,4, SGLT1, NaDC, EAAT1-5, SN1, ASCT2, 4F2/LAT, PepT2), and the Na(+)/K(+)-ATPase. SGK1 regulates enzymes (e.g. glycogen-synthase-kinase-3, ubiquitin-ligase Nedd4-2, phosphomannose-mutase-2), and transcription factors (e.g. forkhead transcription factor Foxo3a, β-catenin, nuclear factor-kappa-B (NFB)). SGK1 participates in the regulation of transport, hormone release, neuroexcitability, inflammation, coagulation, cell proliferation and apoptosis. SGK1 contributes to regulation of renal Na(+) retention, renal K(+) elimination, salt appetite, gastric acid secretion, intestinal Na(+)/H(+) exchange and nutrient transport, insulin-dependent salt sensitivity of blood pressure, salt sensitivity of peripheral glucose uptake, cardiac repolarization and memory consolidation. Presumably, SGK1 contributes to the regulation of diverse cerebral functions (e.g. memory consolidation, fear retention) and the pathophysiology of several cerebral diseases (e.g. Parkinson's disease, schizophrenia, depression, Alzheimer's disease). Despite multiple SGK1 functions, the phenotype of the SGK1 knockout mouse is mild and becomes only apparent under challenging conditions.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, University of Tübingen, Gmelinstrasse 5, D72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
10
|
Effect of ghrelin on glucose-insulin homeostasis: therapeutic implications. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010. [PMID: 20700401 PMCID: PMC2911604 DOI: 10.1155/2010/234709] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 11/23/2009] [Indexed: 12/17/2022]
Abstract
Ghrelin is a 28-amino-acid peptide that displays a strong growth hormone- (GH-) releasing activity through the activation of the growth hormone secretagogue receptor (GHSR). The first studies about role of ghrelin were focused on its orexigenic ability, but despite indisputable pharmacological data, the evidence for a physiological role for ghrelin in the control of appetite is much less clear. Mice with targeted deletion of either ghrelin or the GHSR exhibit an essentially normal metabolic phenotype when fed a regular chow diet, suggesting that ghrelin may have a redundant role in the regulation of food intake. RNAs for ghrelin as well as GHSR are expressed in the pancreas of rats and humans and several studies propose that ghrelin could have an important function in glucose homeostasis and insulin release, independent of GH secretion. Low plasma ghrelin levels are associated with elevated fasting insulin levels and insulin resistance, suggesting both physiological and pathophysiological roles for ghrelin. For this reason, at least theoretically, ghrelin and/or its signalling manipulation could be useful for the treatment or prevention of diseases of glucose homeostasis such as type 2 diabetes.
Collapse
|
11
|
Inhoff T, Wiedenmann B, Klapp BF, Mönnikes H, Kobelt P. Is desacyl ghrelin a modulator of food intake? Peptides 2009; 30:991-4. [PMID: 19428778 DOI: 10.1016/j.peptides.2009.01.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/21/2009] [Accepted: 01/23/2009] [Indexed: 01/25/2023]
Abstract
Desacyl ghrelin is produced in the gastric mucosa and plasma by deacylation of ghrelin. It occurs in considerably larger amounts than ghrelin in various regions in the organisms of rats and mice. It exerts biological activities in vitro as different as stimulating adipogenesis or inhibiting glucose output in hepatocytes. In fasted rats, desacyl ghrelin levels decreased under catabolic metabolic conditions and in mice, high desacyl ghrelin concentrations went along with decreased food intake. These observations suggest an influence of the peptide on food intake and energy homeostasis. Behavioral studies led to controversial results, but several suggest an anorexigenic effect. Studies on desacyl ghrelin-induced modulation of food intake indicate the involvement of central nervous pathways, since it is said to cross the blood-brain barrier and to induce increased neuronal activity hypothalamic nuclei. It is likely to be involved in the regulation of the synthesis of anorexigenic hypothalamic mediators. Quite possibly, there might be means of interaction between desacyl ghrelin and its supposable precursor ghrelin.
Collapse
Affiliation(s)
- Tobias Inhoff
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | | | | | | | | |
Collapse
|
12
|
Befort K, Filliol D, Darcq E, Ghate A, Matifas A, Lardenois A, Muller J, Thibault C, Dembele D, Poch O, Kieffer BL. Gene expression is altered in the lateral hypothalamus upon activation of the mu opioid receptor. Ann N Y Acad Sci 2008; 1129:175-84. [PMID: 18591478 DOI: 10.1196/annals.1417.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The lateral hypothalamus (LH) is a brain structure that controls hedonic properties of both natural rewards and drugs of abuse. Mu opioid receptors are known to mediate drug reward, but whether overstimulation of these receptors impacts on LH function has not been studied. Here we have used a genome-wide microarray approach to identify LH responses to chronic mu opioid receptor activation at the transcriptional level. We have subjected wild-type and mu opioid receptor knockout mice to an escalating morphine regimen, which produces severe physical dependence in wild-type but not mutant animals. We have analyzed gene profiles in LH samples using the 430A.2 Affymetrix array and identified a set of 25 genes whose expression is altered by morphine in wild-type mice only. The regulation was confirmed for a subset of these genes using real-time quantitative PCR on samples from independent treatments. Altered expression of aquaporin 4, apolipoprotein D, and prostaglandin synthase is indicative of modified LH physiology. The regulation of two signaling genes (the serum glucocorticoid kinase and the regulator of G protein signaling 4) suggests that neurotransmission is altered in LH circuitry. Finally, the downregulation of apelin may indicate a potential role for this neuropeptide in opioid signaling and hedonic homeostasis. Altogether, our study shows that chronic mu opioid receptor stimulation induces gene expression plasticity in the LH and provides a unique collection of mu opioid receptor-dependent genes that potentially contribute to alter reward processes in addictive diseases.
Collapse
Affiliation(s)
- K Befort
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Giovambattista A, Gaillard RC, Spinedi E. Ghrelin gene-related peptides modulate rat white adiposity. VITAMINS AND HORMONES 2007; 77:171-205. [PMID: 17983857 DOI: 10.1016/s0083-6729(06)77008-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is known that ghrelin and des-N-octanoyl (desacyl) ghrelin modulate food intake and adipogenesis in vivo. However, desacyl ghrelin represents the majority of ghrelin forms found in the circulation. The present study explored whether ghrelin gene-derived compounds could modulate, in vitro, adipocyte endocrine function and preadipocyte differentiation. Retroperitoneal (RP) adipocytes were cultured in the absence or presence of either ghrelin or desacyl ghrelin and in combination with either inhibitors of protein synthesis, insulin, dexamethasone (DXM), or GHSR1a antagonist. The results indicate that both ghrelin forms possess a direct leptin-releasing activity (LRA) on RP adipocytes and significantly enhanced adipocyte ob mRNA expression. These activities were related and unrelated to the activation of GHSR1a after coincubation with ghrelin and desacyl ghrelin, respectively. Moreover, desacyl ghrelin facilitated RP preadipocyte differentiation. Desacyl ghrelin enhanced cell lipid content, and PPARgamma2, and LPL mRNAs expression. The LRAs developed by different substances tested followed a rank order: ghrelin > desacyl ghrelin = insulin > or = DXM. Additionally, desacyl ghrelin was able to enhance medium glucose consumption by mature adipocytes in culture. These data strongly support that adipogenesis and adipocyte function are processes directly and positively modulated by ghrelin gene-derived peptides, thus further indicating that, besides their effects on food intake, ghrelin gene-derived peptides could play an important role on adiposity for maintaining homeostasis.
Collapse
Affiliation(s)
- Andrés Giovambattista
- Neuroendocrine Unit, Multidisciplinary Institute on Cell Biology (CONICET-CICPBA), 1900, La Plata, Argentina
| | | | | |
Collapse
|
14
|
Abstract
Ghrelin is produced primarily in the stomach in response to hunger, and circulates in the blood. Plasma ghrelin levels increase during fasting and decrease after ingesting glucose and lipid, but not protein. The efferent vagus nerve contributes to the fasting-induced increase in ghrelin secretion. Ghrelin secreted by the stomach stimulates the afferent vagus nerve and promotes food intake. Ghrelin also stimulates pituitary gland secretion of growth hormone (GH) via the afferent vagus nerve. GH inhibits stomach ghrelin secretion. These findings indicate that the vagal circuit between the central nervous system and stomach has a crucial role in regulating plasma ghrelin levels. Moreover, body mass index modulates plasma ghrelin levels. In a lean state and anorexia nervosa, plasma ghrelin levels are increased, whereas in obesity, except in Prader-Willi syndrome, plasma ghrelin levels are decreased and the feeding- and sleeping-induced decline in plasma ghrelin levels is disrupted. There are two forms of ghrelin: active n-octanoyl-modified ghrelin and des-acyl ghrelin. Fasting increases both ghrelin types compared with the fed state. Hyperphagia and obesity are likely to decrease plasma des-acyl ghrelin, but not n-octanoyl-modified ghrelin levels. Hypothalamic serum and glucocorticoid-inducible kinase-1 and serotonin 5-HT2C/1B receptor gene expression levels are likely to be proportional to plasma des-acyl ghrelin levels during fasting, whereas they are likely to be inversely proportional to plasma des-acyl ghrelin levels in an increased energy storage state such as obesity. Thus, a dysfunction of the ghrelin feedback systems might contribute to the pathophysiology of obesity and eating disorders.
Collapse
Affiliation(s)
- Katsunori Nonogaki
- Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|