1
|
Kibritoglu E, Yuksel H. Numerical analysis of coil designs to expedite fracture healing using dielectrophoresis with S method. Comput Biol Med 2025; 192:110213. [PMID: 40279972 DOI: 10.1016/j.compbiomed.2025.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/11/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Classical methods for speeding up fracture healing usually rely on direct electrical stimulation and electromagnetic fields to boost the levels of growth factors at the fracture site. However, these techniques often concentrate on bone cells themselves rather than addressing the critical blood flow dynamics necessary for effective healing. This study introduces a mathematical model designed to explore the potential of dielectrophoretic forces (DEPFs) in improving blood flow at the fracture site. By adjusting blood flow, the model seeks to enhance the delivery of vital nutrients, hormones, and growth factors, including endothelial cells (ECs), vascular endothelial growth factor (VEGF) and oxygen, which are essential for accelerating the fracture healing process. METHOD The proposed approach includes a new technique, termed the S method, which assesses the non-uniformity of DEPFs by algebraically analyzing the electric field lines associated with positive and negative dielectrophoresis. We developed analytical equations to simulate various coil configurations, focusing on long bone fractures where blood flow is vertically oriented. The DEPF Factor (χDEPF) was used to measure the ratio of blood flow velocity in the presence of DEPFs compared to the absence of DEPFs, thus indicating the effectiveness of DEPF in enhancing blood flow. RESULTS The simulation results revealed that DEPF reaches its peak efficacy at the gamma dispersion band, with the most significant enhancement occurring at a frequency of 15 MHz. Specifically, the average values of χDEPF were 1.8, 3.2, and 7.9 for the catenary, lintearia, and valeria coils, respectively. Our computational model, which incorporated VEGF, ECs, and oxygen tension, demonstrated that the catenary coil slightly improved healing rates in impaired fractures, the lintearia coil normalized healing times between impaired and normal fractures, and the valeria coil not only accelerated healing in impaired fractures but also enhanced healing in normal fractures. CONCLUSIONS This paper's findings suggest that the valeria coil exhibits the best DEPF functionality, making it the optimal configuration for future experimental studies aimed at evaluating the efficacy of DEPF in promoting fracture healing. The ability of DEPFs to significantly enhance blood flow could represent a substantial advancement in the treatment of both normal and impaired fractures.
Collapse
Affiliation(s)
- Erman Kibritoglu
- Department of Electrical and Electronics Engineering, Bogazici University, Bebek, İstanbul, 34342, Turkey
| | - Heba Yuksel
- Department of Electrical and Electronics Engineering, Bogazici University, Bebek, İstanbul, 34342, Turkey.
| |
Collapse
|
2
|
Boregowda SV, Booker CN, Strivelli J, Phinney DG. Mesenchymal Stem/Stromal Cells (MSCs) from Mouse Pelvic vs. Long Bones Exhibit Disparate Critical Quality Attributes: Implications for Translational Studies. Cells 2025; 14:274. [PMID: 39996746 PMCID: PMC11853496 DOI: 10.3390/cells14040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been exploited as an experimental cell therapy in a broad array of clinical applications but have underperformed based on results from pre-clinical studies due to gaps in translating pre-clinical findings to human patients. Herein, we isolated mouse MSCs from pelvic bone marrow (BMP), a preferred source for human MSCs, and compared their growth, differentiation, and immuno-modulatory activity to those derived from long bone marrow (BML), the traditional source of mouse MSCs. We report that BMP-MSCs exhibit significantly enhanced growth kinetics in 5% and 21% oxygen saturation and superior bi-lineage differentiation and hematopoiesis-supporting activity as compared to BML-MSCs. Additionally, we show that TNF upregulates inducible nitric oxide synthase (NOS2) in BML- and BMP- MSCs and augments their immune suppressive activity in cell-based assays, while interferon-gamma (INFG) upregulates indoleamine, 2-3, dioxygenase (IDO1) and enhances the immune suppressive activity of only BMP-MSCs. These results indicate that mouse MSCs sourced from different bone compartments exhibit measurable differences in critical quality attributes, and these differences are comparable to those observed across species. Based on these differences, BMP- MSCs represent a useful resource to model the behavior of human BM-derived MSCs.
Collapse
Affiliation(s)
| | | | | | - Donald G. Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; (S.V.B.); (C.N.B.); (J.S.)
| |
Collapse
|
3
|
Zhang J, Ren N, Chen S, Liu K, Xiong L, Zheng X. Itga11 promotes osteogenic differentiation, inhibits angiogenesis and proliferation of mesenchymal stem cells under hypoxia. Tissue Cell 2024; 91:102616. [PMID: 39566247 DOI: 10.1016/j.tice.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVE This study aimed to explore the role and mechanism of hypoxic environment in rat bone mesenchymal stem cells (rBMSCs) proliferation, osteogenic differentiation and angiogenesis. METHODS Cell proliferation, angiogenesis and osteogenic differentiation were assessed using the CCK-8 assay, tube formation assay and alizarin red staining, respectively. Transcriptomic databases for rBMSCs under hypoxic (1 % O2) and normoxic (18 % O2) conditions were constructed to identify differentially expressed genes (DEGs), which were then subjected to gene function annotation and KEGG pathway analysis. To modulate the expression of Itga11, siRNA targeting Itga11 (si-Itga11) and a negative control (si-con), as well as pcDNA-Itga11 and an empty control plasmid (pcDNA), were employed to induce silencing or overexpression of Itga11. The protein levels were evaluated using Western blot analysis. RESULTS Hypoxia stimulated the proliferation and angiogenesis of rBMSCs but suppressed their osteogenic differentiation. Differential expression analysis identified 541 upregulated and 277 downregulated genes in the hypoxic group compared to the normoxic group. KEGG pathway enrichment analysis suggested that the hypoxic response in rBMSCs is closely associated with the Pi3k /Akt signaling pathway. Itga11 was significantly downregulated in rBMSCs under hypoxic conditions. Overexpression of Itga11 in rBMSCs inhibited their proliferation and angiogenesis and enhanced osteogenic differentiation, while its knockdown had the opposite effect. Itga11 was found to activate the Pi3k /Akt signaling pathway in rBMSCs. CONCLUSION Itga11 facilitates osteogenic differentiation and suppresses angiogenesis and proliferation of MSCs under hypoxia by activating the Pi3k /Akt signaling pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, PR China.
| | - Na Ren
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, PR China
| | - Shujuan Chen
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, PR China
| | - Kun Liu
- School of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Lei Xiong
- School of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Xing Zheng
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, PR China
| |
Collapse
|
4
|
Lumban Gaol LM, Purba A, Diposarosa R, Pratiwi YS. Role of Hypoxic Secretome from Mesenchymal Stem Cells in Enhancing Tissue Repair: Regulatory Effects on HIF-1α, VEGF, and Fibroblast in a Sphincterotomy Rat Model. J Inflamm Res 2024; 17:7463-7484. [PMID: 39464333 PMCID: PMC11505569 DOI: 10.2147/jir.s480061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Background Fecal incontinence (FI) is the inability to control bowel movements, resulting in fecal leakage. If left untreated, FI can seriously impact the long-term well-being of individuals affected. Recently, using secretome has become a promising new treatment method. The secretome combines growth factors released outside cells during stem cell development, such as mesenchymal stem cells. It consists of soluble proteins, nucleic acids, fats, and extracellular vesicles, which contribute to different cell processes. The primary aim is to assess the impact of hypoxic secretome administration on accelerating wound healing through the HIF-1α pathway in a post-sphincterotomy rat model. Methods The study was conducted with two distinct groups of 10 rats each, the control and treatment groups, which were injected with hypoxic secretome at 0.3 mL. The inclusion criteria for the rats were as follows: male gender, belonging to the Sprague-Dawley strain, aged between 12 to 16 weeks, with an average body weight ranging from 240 to 250 grams. Results There was an increase in HIF-1α gene expression in both groups. The treatment group 37 was significantly higher on day 42 (p = 0.001). VEGF increased significantly in the treatment 38 group on day 42 (p = 0.015). The neovascularization score increased significantly in the treatment 39 group during the first 24 hours (p = 0.004). The fibroblast score increased significantly in the 40 treatment group in the first 24 hours (p = 0.000) and 42 days (p = 0.035). After being given secretome, there was a higher increase in % collagen area and collagen area (µm2) in the treatment group compared to the control group (27,77 vs 11.01) and (419.027,66 vs 186.694,16). Conclusion The use of hypoxic secretome has a significant effect as a choice for the treatment of anal sphincter injury after sphincterotomy through the HIF-1α-VEGF-Fibroblast pathway.
Collapse
Affiliation(s)
- Leecarlo Millano Lumban Gaol
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
- Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
- Faculty of Medicine Krida Wacana Christian University, Jakarta, Indonesia
| | - Ambrosius Purba
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
| | - Rizki Diposarosa
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
- Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | | |
Collapse
|
5
|
Zhu F, Wang T, Wang G, Yan C, He B, Qiao B. The Exosome-Mediated Bone Regeneration: An Advanced Horizon Toward the Isolation, Engineering, Carrying Modalities, and Mechanisms. Adv Healthc Mater 2024; 13:e2400293. [PMID: 38426417 DOI: 10.1002/adhm.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Exosomes, nanoparticles secreted by various cells, composed of a bilayer lipid membrane, and containing bioactive substances such as proteins, nucleic acids, metabolites, etc., have been intensively investigated in tissue engineering owing to their high biocompatibility and versatile biofunction. However, there is still a lack of a high-quality review on bone defect regeneration potentiated by exosomes. In this review, the biogenesis and isolation methods of exosomes are first introduced. More importantly, the engineered exosomes of the current state of knowledge are discussed intensively in this review. Afterward, the biomaterial carriers of exosomes and the mechanisms of bone repair elucidated by compelling evidence are presented. Thus, future perspectives and concerns are revealed to help devise advanced modalities based on exosomes to overcome the challenges of bone regeneration. It is totally believed this review will attract special attention from clinicians and provide promising ideas for their future works.
Collapse
Affiliation(s)
- Fukang Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Taiyou Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Guangjian Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Department of Orthopaedics, The People's Hospital of Rongchang District, Chongqing, 402460, P. R. China
| | - Caiping Yan
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Bin He
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Qiao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
6
|
Yasan GT, Gunel-Ozcan A. Hypoxia and Hypoxia Mimetic Agents As Potential Priming Approaches to Empower Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2024; 19:33-54. [PMID: 36642875 DOI: 10.2174/1574888x18666230113143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 01/17/2023]
Abstract
Mesenchymal stem cells (MSC) exhibit self-renewal capacity and multilineage differentiation potential, making them attractive for research and clinical application. The properties of MSC can vary depending on specific micro-environmental factors. MSC resides in specific niches with low oxygen concentrations, where oxygen functions as a metabolic substrate and a signaling molecule. Conventional physical incubators or chemically hypoxia mimetic agents are applied in cultures to mimic the original low oxygen tension settings where MSC originated. This review aims to focus on the current knowledge of the effects of various physical hypoxic conditions and widely used hypoxia-mimetic agents-PHD inhibitors on mesenchymal stem cells at a cellular and molecular level, including proliferation, stemness, differentiation, viability, apoptosis, senescence, migration, immunomodulation behaviors, as well as epigenetic changes.
Collapse
Affiliation(s)
| | - Aysen Gunel-Ozcan
- Department of Stem Cell Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Mahjoor M, Fakouri A, Farokhi S, Nazari H, Afkhami H, Heidari F. Regenerative potential of mesenchymal stromal cells in wound healing: unveiling the influence of normoxic and hypoxic environments. Front Cell Dev Biol 2023; 11:1245872. [PMID: 37900276 PMCID: PMC10603205 DOI: 10.3389/fcell.2023.1245872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 10/31/2023] Open
Abstract
The innate and adaptive immune systems rely on the skin for various purposes, serving as the primary defense against harmful environmental elements. However, skin lesions may lead to undesirable consequences such as scarring, accelerated skin aging, functional impairment, and psychological effects over time. The rising popularity of mesenchymal stromal cells (MSCs) for skin wound treatment is due to their potential as a promising therapeutic option. MSCs offer advantages in terms of differentiation capacity, accessibility, low immunogenicity, and their central role in natural wound-healing processes. To accelerate the healing process, MSCs promote cell migration, angiogenesis, epithelialization, and granulation tissue development. Oxygen plays a critical role in the formation and expansion of mammalian cells. The term "normoxia" refers to the usual oxygen levels, defined at 20.21 percent oxygen (160 mm of mercury), while "hypoxia" denotes oxygen levels of 2.91 percent or less. Notably, the ambient O2 content (20%) in the lab significantly differs from the 2%-9% O2 concentration in their natural habitat. Oxygen regulation of hypoxia-inducible factor-1 (HIF-1) mediated expression of multiple genes plays a crucial role in sustaining stem cell destiny concerning proliferation and differentiation. This study aims to elucidate the impact of normoxia and hypoxia on MSC biology and draw comparisons between the two. The findings suggest that expanding MSC-based regenerative treatments in a hypoxic environment can enhance their growth kinetics, genetic stability, and expression of chemokine receptors, ultimately increasing their effectiveness.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
8
|
Li C, Zhao R, Yang H, Ren L. Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms. Int J Mol Sci 2023; 24:ijms24086999. [PMID: 37108162 PMCID: PMC10139217 DOI: 10.3390/ijms24086999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Zhao
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Adebayo AK, Nakshatri H. Modeling Preclinical Cancer Studies under Physioxia to Enhance Clinical Translation. Cancer Res 2022; 82:4313-4321. [PMID: 36169928 PMCID: PMC9722631 DOI: 10.1158/0008-5472.can-22-2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Oxygen (O2) plays a key role in cellular homeostasis. O2 levels are tightly regulated in vivo such that each tissue receives an optimal amount to maintain physiologic status. Physiologic O2 levels in various organs range between 2% and 9% in vivo, with the highest levels of 9% in the kidneys and the lowest of 0.5% in parts of the brain. This physiologic range of O2 tensions is disrupted in pathologic conditions such as cancer, where it can reach as low as 0.5%. Regardless of the state, O2 tension in vivo is maintained at significantly lower levels than ambient O2, which is approximately 21%. Yet, routine in vitro cellular manipulations are carried out in ambient air, regardless of whether or not they are eventually transferred to hypoxic conditions for subsequent studies. Even brief exposure of hematopoietic stem cells to ambient air can cause detrimental effects through a mechanism termed extraphysiologic oxygen shock/stress (EPHOSS), leading to reduced engraftment capabilities. Here, we provide an overview of the effects of ambient air exposure on stem and non-stem cell subtypes, with a focus on recent findings that reveal the impact of EPHOSS on cancer cells.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Tian Y, Fang J, Zeng F, Chen Y, Pei Y, Gu F, Ding C, Niu G, Gu B. The role of hypoxic mesenchymal stem cells in tumor immunity. Int Immunopharmacol 2022; 112:109172. [PMID: 36087506 DOI: 10.1016/j.intimp.2022.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022]
Abstract
The emerging evidence has shown that mesenchymal stem cells (MSCs) not only exert a significant role in the occurrence and development of tumors, but also have immunosuppressive potential in tumor immunity. Hypoxia is a sign of solid tumors, but how functions of hypoxic MSCs alter in the tumor microenvironment (TME) remains less well and comprehensively described. Herein, we mostly describe and investigate recent advances in our comprehension of the emerging effects of different tissue derived MSCs in hypoxia condition on tumor progression and development, as well as bidirectional influence between hypoxic MSCs and immune cells of the TME. Furthermore, we also discuss the potential drug-resistant and therapeutic role of hypoxic MSCs. It can be envisaged that novel and profound insights into the functionality of hypoxic MSCs and the underlying mechanisms in tumor and tumor immunity will promote the meaningful and promising treatment strategies against tumor.
Collapse
Affiliation(s)
- Yiqing Tian
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jian Fang
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, Anhui, PR China
| | - Fanpeng Zeng
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yongqiang Chen
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yunfeng Pei
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Feng Gu
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Chen Ding
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Guoping Niu
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, PR China.
| |
Collapse
|
11
|
Moniz I, Ramalho-Santos J, Branco AF. Differential Oxygen Exposure Modulates Mesenchymal Stem Cell Metabolism and Proliferation through mTOR Signaling. Int J Mol Sci 2022; 23:ijms23073749. [PMID: 35409106 PMCID: PMC8998189 DOI: 10.3390/ijms23073749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells reside under precise hypoxic conditions that are paramount in determining cell fate and behavior (metabolism, proliferation, differentiation, etc.). In this work, we show that different oxygen tensions promote a distinct proliferative response and affect the biosynthetic demand and global metabolic profile of umbilical cord-mesenchymal stem cells (UC-MSCs). Using both gas-based strategies and CoCl2 as a substitute for the costly hypoxic chambers, we found that specific oxygen tensions influence the fate of UC-MSCs differently. While 5% O2 potentiates proliferation, stimulates biosynthetic pathways, and promotes a global hypermetabolic profile, exposure to <1% O2 contributes to a quiescent-like cell state that relies heavily on anaerobic glycolysis. We show that using CoCl2 as a hypoxia substitute of moderate hypoxia has distinct metabolic effects, when compared with gas-based strategies. The present study also highlights that, while severe hypoxia regulates global translation via mTORC1 modulation, its effects on survival-related mechanisms are mainly modulated through mTORC2. Therefore, the experimental conditions used in this study establish a robust and reliable hypoxia model for UC-MSCs, providing relevant insights into how stem cells are influenced by their physiological environment, and how different strategies of modulating hypoxia may influence experimental outcomes.
Collapse
Affiliation(s)
- Inês Moniz
- CNC—Centre for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal;
| | - João Ramalho-Santos
- CNC—Centre for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal;
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Correspondence: (J.R.-S.); (A.F.B.)
| | - Ana F. Branco
- CNC—Centre for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal;
- Correspondence: (J.R.-S.); (A.F.B.)
| |
Collapse
|
12
|
Insight in Hypoxia-Mimetic Agents as Potential Tools for Mesenchymal Stem Cell Priming in Regenerative Medicine. Stem Cells Int 2022; 2022:8775591. [PMID: 35378955 PMCID: PMC8976669 DOI: 10.1155/2022/8775591] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-mimetic agents are new potential tools in MSC priming instead of hypoxia incubators or chambers. Several pharmaceutical/chemical hypoxia-mimetic agents can be used to induce hypoxia in the tissues: deferoxamine (DFO), dimethyloxaloylglycine (DMOG), 2,4-dinitrophenol (DNP), cobalt chloride (CoCl2), and isoflurane (ISO). Hypoxia-mimetic agents can increase cell proliferation, preserve or enhance differentiation potential, increase migration potential, and induce neovascularization in a concentration- and stem cell source-dependent manner. Moreover, hypoxia-mimetic agents may increase HIF-1α, changing the metabolism and enhancing glycolysis like hypoxia. So, there is clear evidence that treatment with hypoxia-mimetic agents is beneficial in regenerative medicine, preserving stem cell capacities. These agents are not studied so wildly as hypoxia but, considering the low cost and ease of use, are believed to find application as pretreatment of many diseases such as ischemic heart disease and myocardial fibrosis and promote cardiac and cartilage regeneration. The knowledge of MSC priming is critical in evaluating safety procedures and use in clinics. In this review, similarities and differences between hypoxia and hypoxia-mimetic agents in terms of their therapeutic efficiency are considered in detail. The advantages, challenges, and future perspectives in MSC priming with hypoxia mimetic agents are also discussed.
Collapse
|
13
|
Ye Y, Zhao X, Xu Y, Yu J. Hypoxia-Inducible Non-coding RNAs in Mesenchymal Stem Cell Fate and Regeneration. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.799716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into multiple cell lines, which makes them an important source of cells for tissue engineering applications. They are defined by the capability to renew themselves and maintain pluripotency. This ability is modulated by the balance between complex cues from cellular microenvironment. Self-renewal and differentiation abilities are regulated by particular microenvironmental signals. Oxygen is considered to be an important part of cell microenvironment, which not only acts as a metabolic substrate but also a signal molecule. It has been proved that MSCs are hypoxic in the physiological environment. Signals from MSCs' microenvironment or niche which means the anatomical location of the MSCs, maintain the final properties of MSCs. Physiological conditions like oxygen tension are deemed to be a significant part of the mesenchymal stem cell niche, and have been proved to be involved in modulating embryonic and adult MSCs. Non-coding RNAs (ncRNAs), which play a key role in cell signal transduction, transcription and translation of genes, have been widely concerned as epigenetic regulators in a great deal of tissues. With the rapid development of bioinformatics analysis tools and high-throughput RNA sequencing technology, more and more evidences show that ncRNAs play a key role in tissue regeneration. It shows potential as a biomarker of MSC differentiation. In this paper, we reviewed the physiological correlation of hypoxia as a unique environmental parameter which is conducive to MSC expansion and maintenance, discussed the correlation of tissue engineering, and summarized the influence of hypoxia related ncRNAs on MSCs' fate and regeneration. This review will provide reference for future research of MSCs' regeneration.
Collapse
|
14
|
Chun YS, Lee DH, Won TG, Kim CS, Shetty AA, Kim SJ. Cell therapy for osteonecrosis of femoral head and joint preservation. J Clin Orthop Trauma 2021; 24:101713. [PMID: 34926146 PMCID: PMC8646149 DOI: 10.1016/j.jcot.2021.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
Osteonecrosis of femoral head (ONFH) is a disease of the femoral head and can cause femoral head collapse and arthritis. This can lead to pain and gait disorders. ONFH has various risk factors, it is often progressive, and if untreated results in secondary osteo-arthritis. Biological therapy makes use of bone marrow concentrate, cultured osteoblast and mesenchymal stem cell (MSC) obtained from various sources. These are often used in conjunction with core decompression surgery. In this review article, we discuss the current status of cell therapy and its limitations. We also present the future development of biological approach to treat ONFH.
Collapse
Affiliation(s)
- You Seung Chun
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong Hwan Lee
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Corresponding author. Department of Orthopedic Surgery, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, South Korea.
| | - Tae Gu Won
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chan Sik Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Asode Ananthram Shetty
- Canterbury Christ Church University, Faculty of Medicine, Health and Social Care, 30 Pembroke Court, Chatham Maritime, Kent, ME4 4UF, United Kingdom
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
15
|
Gala D, Mohak S, Fábián Z. Extracellular Vehicles of Oxygen-Depleted Mesenchymal Stromal Cells: Route to Off-Shelf Cellular Therapeutics? Cells 2021; 10:cells10092199. [PMID: 34571848 PMCID: PMC8465344 DOI: 10.3390/cells10092199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cellular therapy is a promising tool of human medicine to successfully treat complex and challenging pathologies such as cardiovascular diseases or chronic inflammatory conditions. Bone marrow-derived mesenchymal stromal cells (BMSCs) are in the limelight of these efforts, initially, trying to exploit their natural properties by direct transplantation. Extensive research on the therapeutic use of BMSCs shed light on a number of key aspects of BMSC physiology including the importance of oxygen in the control of BMSC phenotype. These efforts also led to a growing number of evidence indicating that the beneficial therapeutic effects of BMSCs can be mediated by BMSC-secreted agents. Further investigations revealed that BMSC-excreted extracellular vesicles could mediate the potentially therapeutic effects of BMSCs. Here, we review our current understanding of the relationship between low oxygen conditions and the effects of BMSC-secreted extracellular vesicles focusing on the possible medical relevance of this interplay.
Collapse
|
16
|
Bourgeais J, Hérault O. In Vitro Analysis of Energy Metabolism in Bone-Marrow Mesenchymal Stromal Cells. Methods Mol Biol 2021; 2308:59-70. [PMID: 34057714 DOI: 10.1007/978-1-0716-1425-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bone marrow mesenchymal stromal cells (MSCs) play an essential role in the regulation of normal and leukemic hematopoiesis. Their multipotent potential of differentiation also makes them an interesting therapeutic tool. Among factors involved in the regulation of MSCs, energy metabolism plays a key role in their proliferation and differentiation. Seahorse Bioscience introduced extracellular flux technology to the life sciences market in 2006. This methodology allows, in living cells and in real time, the concomitant determination of basal oxygen consumption, glycolysis rates, ATP production, and respiratory capacity in a single experiment. Here we describe the protocol used to study concomitantly the respiratory and glycolytic metabolism of primary MSCs from the determination of oxygen consumption (OCR) and extracellular acidification (ECAR) rates.
Collapse
Affiliation(s)
- Jérôme Bourgeais
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, Faculty of Medicine, Tours University, Tours, France.,Department of Biolocical Hematology, Tours University Hospital, Tours, France
| | - Olivier Hérault
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France. .,EA7501 GICC, Faculty of Medicine, Tours University, Tours, France. .,Department of Biolocical Hematology, Tours University Hospital, Tours, France.
| |
Collapse
|
17
|
Modulation of the Dental Pulp Stem Cell Secretory Profile by Hypoxia Induction Using Cobalt Chloride. J Pers Med 2021; 11:jpm11040247. [PMID: 33808091 PMCID: PMC8066657 DOI: 10.3390/jpm11040247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
The action of stem cells is mediated by their paracrine secretions which comprise the secretory profile. Various approaches can be used to modify the secretory profile of stem cells. Creating a hypoxic environment is one method. The present study aims to demonstrate the influence of CoCl2 in generating hypoxic conditions in a dental pulp stem cell (DPSCs) culture, and the effect of this environment on their secretory profile. DPSCs that were isolated from human permanent teeth were characterized and treated with different concentrations of CoCl2 to assess their viability by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and proliferation by a cell counting kit (CCK)-8 assay. The gene expression level of hypoxia-inducible factor 1-alpha (HIF-1α) was analyzed by quantitative real time polymerase chain reaction (qRT-PCR) to demonstrate a hypoxic environment. Comparative evaluation of the growth factors and cytokines were done by cytometric bead array. Gene expression levels of transcription factors OCT4 and SOX2 were analyzed by qRT-PCR to understand the effect of CoCl2 on stemness in DPSCs. DPSCs were positive for MSC-specific markers. Doses of CoCl2, up to 20 µM, did not negatively affect cell viability; in low doses (5 µM), it promoted cell survival. Treatment with 10 µM of CoCl2 significantly augmented the genetic expression of HIF-1α. Cells treated with 10 µM of CoCl2 showed changes in the levels of growth factors and cytokines produced. It was very evident that CoCl2 also increased the expression of OCT4 and SOX2, which is the modulation of stemness of DPSCs. A CoCl2 treatment-induced hypoxic environment modulates the secretory profile of DPSCs.
Collapse
|
18
|
Samal JRK, Rangasami VK, Samanta S, Varghese OP, Oommen OP. Discrepancies on the Role of Oxygen Gradient and Culture Condition on Mesenchymal Stem Cell Fate. Adv Healthc Mater 2021; 10:e2002058. [PMID: 33533187 PMCID: PMC11469238 DOI: 10.1002/adhm.202002058] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, mesenchymal stem (or stromal) cells (MSCs) have garnered enormous interest due to their therapeutic value especially for their multilineage differentiation potential leading to regenerative medicine applications. MSCs undergo physiological changes upon in vitro expansion resulting in expression of different receptors, thereby inducing high variabilities in therapeutic efficacy. Therefore, understanding the biochemical cues that influence the native local signals on differentiation or proliferation of these cells is very important. There have been several reports that in vitro culture of MSCs in low oxygen gradient (or hypoxic conditions) upregulates the stemness markers and promotes cell proliferation in an undifferentiated state, as hypoxia mimics the conditions the progenitor cells experience within the tissue. However, different studies report different oxygen gradients and culture conditions causing ambiguity in their interpretation of the results. In this progress report, it is aimed to summarize recent studies in the field with specific focus on conflicting results reported during the application of hypoxic conditions for improving the proliferation or differentiation of MSCs. Further, it is tried to decipher the factors that can affect characteristics of MSC under hypoxia and suggest a few techniques that could be combined with hypoxic cell culture to better recapitulate the MSC tissue niche.
Collapse
Affiliation(s)
- Jay R. K. Samal
- Department of Instructive Biomaterial EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Vignesh K. Rangasami
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Sumanta Samanta
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Oommen P. Varghese
- Translational Chemical Biology LaboratoryDepartment of Chemistry, Polymer ChemistryÅngström LaboratoryUppsala UniversityUppsala751 21Sweden
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| |
Collapse
|
19
|
To Breathe or Not to Breathe: The Role of Oxygen in Bone Marrow-Derived Mesenchymal Stromal Cell Senescence. Stem Cells Int 2021; 2021:8899756. [PMID: 33519938 PMCID: PMC7817290 DOI: 10.1155/2021/8899756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based cellular therapy is a promising tool for the treatment of pathological conditions with underlying severe tissue damage or malfunction like in chronic cardiovascular, musculoskeletal, or inflammatory conditions. One of the biggest technical challenges of the use of natural stem cells, however, is the prevention of their premature senescence during therapeutical manipulations. Culturing stem cells under hypoxic conditions is believed to be a possible route to fulfill this goal. Here, we review current literature data on the effects of hypoxia on bone marrow-derived mesenchymal stromal cells, one of the most popular tools of practical cellular therapy, in the context of their senescence.
Collapse
|
20
|
Rossetti R, Rós FA, Souza LEBD, Maçonetto JDM, Costa PNMD, Ferreira FU, Borges JS, Carvalho JVD, Morotti NP, Kashima S, Covas DT. Hypoxia-cultured mouse mesenchymal stromal cells from bone marrow and compact bone display different phenotypic traits. Exp Cell Res 2020; 399:112434. [PMID: 33340494 DOI: 10.1016/j.yexcr.2020.112434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/10/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022]
Abstract
It has been suggested that the bone marrow microenvironment harbors two distinct populations of mesenchymal stromal cells (MSC), one with a perivascular location and other present in the endosteum. A better understanding of the biology of these MSC subsets has been pursued in order to refine its clinical application. However, most comparative characterizations of mouse MSC have been performed in normoxia. This can result in misleading interpretations since mouse MSC subsets with low/defective p53 activity are known to be selected during culture in normoxia. Here, we report a comprehensive in vitro characterization of mouse MSC isolated from bone marrow (BM-MSC) and compact bone (CB-MSC) expanded and assayed under hypoxia for their morphology, clonogenic efficiency and differentiation capacity. We found that, under hypoxia, compact bone is richer in absolute numbers of MSC and isolation of MSC from compact bone is associated with a reduced risk of hematopoietic cell carryover. In addition, CB-MSC have higher in vitro osteogenic capacity than BM-MSC, while adipogenic differentiation potential is similar. These findings reinforce the hypothesis of the existence of MSC in bone marrow and compact bone representing functionally distinct cell populations and highlight the compact bone as an efficient source of murine MSC under physiological oxygen concentrations.
Collapse
Affiliation(s)
- Rafaela Rossetti
- Blood Center of Ribeirão Preto - Ribeirão Preto Medical School, University of São Paulo, 2501 Tenente Catão Roxo Avenue, 14051-060, Ribeirão Preto, São Paulo, Brazil.
| | - Felipe Augusto Rós
- Blood Center of Ribeirão Preto - Ribeirão Preto Medical School, University of São Paulo, 2501 Tenente Catão Roxo Avenue, 14051-060, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Eduardo Botelho de Souza
- Blood Center of Ribeirão Preto - Ribeirão Preto Medical School, University of São Paulo, 2501 Tenente Catão Roxo Avenue, 14051-060, Ribeirão Preto, São Paulo, Brazil
| | - Juliana de Matos Maçonetto
- Blood Center of Ribeirão Preto - Ribeirão Preto Medical School, University of São Paulo, 2501 Tenente Catão Roxo Avenue, 14051-060, Ribeirão Preto, São Paulo, Brazil
| | - Péricles Natan Mendes da Costa
- Blood Center of Ribeirão Preto - Ribeirão Preto Medical School, University of São Paulo, 2501 Tenente Catão Roxo Avenue, 14051-060, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda Ursoli Ferreira
- Blood Center of Ribeirão Preto - Ribeirão Preto Medical School, University of São Paulo, 2501 Tenente Catão Roxo Avenue, 14051-060, Ribeirão Preto, São Paulo, Brazil
| | - Josiane Serrano Borges
- Blood Center of Ribeirão Preto - Ribeirão Preto Medical School, University of São Paulo, 2501 Tenente Catão Roxo Avenue, 14051-060, Ribeirão Preto, São Paulo, Brazil
| | - Julianne Vargas de Carvalho
- Blood Center of Ribeirão Preto - Ribeirão Preto Medical School, University of São Paulo, 2501 Tenente Catão Roxo Avenue, 14051-060, Ribeirão Preto, São Paulo, Brazil
| | - Nayara Patrícia Morotti
- Blood Center of Ribeirão Preto - Ribeirão Preto Medical School, University of São Paulo, 2501 Tenente Catão Roxo Avenue, 14051-060, Ribeirão Preto, São Paulo, Brazil
| | - Simone Kashima
- Blood Center of Ribeirão Preto - Ribeirão Preto Medical School, University of São Paulo, 2501 Tenente Catão Roxo Avenue, 14051-060, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto - Ribeirão Preto Medical School, University of São Paulo, 2501 Tenente Catão Roxo Avenue, 14051-060, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
21
|
Differentiation Potential of Early- and Late-Passage Adipose-Derived Mesenchymal Stem Cells Cultured under Hypoxia and Normoxia. Stem Cells Int 2020; 2020:8898221. [PMID: 33014073 PMCID: PMC7519987 DOI: 10.1155/2020/8898221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
With an increasing focus on the large-scale expansion of mesenchymal stem cells (MSCs) required for clinical applications for the treatment of joint and bone diseases such as osteoarthritis, the optimisation of conditions for in vitro MSC expansion requires careful consideration to maintain native MSC characteristics. Physiological parameters such as oxygen concentration, media constituents, and passage numbers influence the properties of MSCs and may have major impact on their therapeutic potential. Cells grown under hypoxic conditions have been widely documented in clinical use. Culturing MSCs on large scale requires bioreactor culture; however, it is challenging to maintain low oxygen and other physiological parameters over several passages in large bioreactor vessels. The necessity to scale up the production of cells in vitro under normoxia may affect important attributes of MSCs. For these reasons, our study investigated the effects of normoxic and hypoxic culture condition on early- and late-passage adipose-derived MSCs. We examined effect of each condition on the expression of key stem cell marker genes POU5F1, NANOG, and KLF4, as well as differentiation genes RUNX2, COL1A1, SOX9, COL2A1, and PPARG. We found that expression levels of stem cell marker genes and osteogenic and chondrogenic genes were higher in normoxia compared to hypoxia. Furthermore, expression of these genes reduced with passage number, with the exception of PPARG, an adipose differentiation marker, possibly due to the adipose origin of the MSCs. We confirmed by flow cytometry the presence of cell surface markers CD105, CD73, and CD90 and lack of expression of CD45, CD34, CD14, and CD19 across all conditions. Furthermore, in vitro differentiation confirmed that both early- and late-passage adipose-derived MSCs grown in hypoxia or normoxia could differentiate into chondrogenic and osteogenic cell types. Our results demonstrate that the minimal standard criteria to define MSCs as suitable for laboratory-based and preclinical studies can be maintained in early- or late-passage MSCs cultured in hypoxia or normoxia. Therefore, any of these culture conditions could be used when scaling up MSCs in bioreactors for allogeneic clinical applications or tissue engineering for the treatment of joint and bone diseases such as osteoarthritis.
Collapse
|
22
|
Raghuram AC, Yu RP, Lo AY, Sung CJ, Bircan M, Thompson HJ, Wong AK. Role of stem cell therapies in treating chronic wounds: A systematic review. World J Stem Cells 2020; 12:659-675. [PMID: 32843920 PMCID: PMC7415243 DOI: 10.4252/wjsc.v12.i7.659] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/03/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The impairment of cutaneous wound healing results in chronic, non-healing wounds that are caused by altered wound environment oxygenation, tissue injury, and permissive microbial growth. Current modalities for the treatment of these wounds inadequately address the complex changes involved in chronic wound pathogenesis. Consequently, stem cell therapies have emerged as a potential therapeutic modality to promote cutaneous regeneration through trophic and paracrine activity.
AIM To investigate current literature regarding use of stem cell therapies for the clinical treatment of chronic, non-healing wounds.
METHODS PubMed, EMBASE, Cochrane Library, Web of Science, and Scopus were queried with combinations of the search terms “mesenchymal stem cells,” “adult stem cells,” “embryonic stem cells,” “erythroid precursor cells,” “stem cell therapies,” and “chronic wounds” in order to find relevant articles published between the years of 2000 and 2019 to review a 20-year experience. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (reviews, case reports/series, retrospective/prospective studies, and clinical trials) were evaluated by the authors for their depiction of clinical stem cell therapy use. Data were extracted from the articles using a standardized collection tool.
RESULTS A total of 43 articles describing the use of stem cell therapies for the treatment of chronic wounds were included in this review. While stem cell therapies have been explored in in vitro and in vivo applications in the past, recent efforts are geared towards assessing their clinical role. A review of the literature revealed that adipose-derived stem cells, bone marrow-derived stem cells, bone marrow-derived mononuclear cells, epidermally-derived mesenchymal stem cells, fibroblast stem cells, keratinocyte stem cells, placental mesenchymal stem cells, and umbilical cord mesenchymal stem cells have all been employed in the treatment of chronic wounds of various etiologies. Most recently, embryonic stem cells have emerged as a novel stem cell therapy with the capacity for multifaceted germ cell layer differentiation. With the capacity for self-renewal and differentiation, stem cells can enrich existing cell populations in chronic wounds in order to overcome barriers impeding the progression of wound healing. Further, stem cell therapies can be utilized to augment cell engraftment, signaling and activity, and resultant patient outcomes.
CONCLUSION Assessing observed clinical outcomes, potential for stem cell use, and relevant therapeutic challenges allows wound care stakeholders to make informed decisions regarding optimal treatment approaches for their patients’ chronic wounds.
Collapse
Affiliation(s)
- Anjali C Raghuram
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Roy P Yu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Andrea Y Lo
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Cynthia J Sung
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Melissa Bircan
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Holly J Thompson
- Wilson Dental Library, Herman Ostrow School of Dentistry of USC, Los Angeles, CA 90089, United States
| | - Alex K Wong
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| |
Collapse
|
23
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Okamura K, Inagaki Y, Matsui TK, Matsubayashi M, Komeda T, Ogawa M, Mori E, Tanaka Y. RT-qPCR analyses on the osteogenic differentiation from human iPS cells: an investigation of reference genes. Sci Rep 2020; 10:11748. [PMID: 32678244 PMCID: PMC7367276 DOI: 10.1038/s41598-020-68752-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
Reverse transcription quantitative PCR (RT-qPCR) is used to quantify gene expression and require standardization with reference genes. We sought to identify the reference genes best suited for experiments that induce osteogenic differentiation from human induced pluripotent stem cells. They were cultured in an undifferentiated maintenance medium and after confluence, further cultured in an osteogenic differentiation medium for 28 days. RT-qPCR was performed on undifferentiation markers, osteoblast and osteocyte differentiation markers, and reference gene candidates. The expression stability of each reference gene candidate was ranked using four algorithms. General rankings identified TATA box binding protein in the first place, followed by transferrin receptor, ribosomal protein large P0, and finally, beta-2-microglobulin, which was revealed as the least stable. Interestingly, universally used GAPDH and ACTB were found to be unsuitable. Our findings strongly suggest a need to evaluate the expression stability of reference gene candidates for each experiment.
Collapse
Affiliation(s)
- Kensuke Okamura
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Yusuke Inagaki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan.
| | - Takeshi K Matsui
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Komeda
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Munehiro Ogawa
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| |
Collapse
|
25
|
Chen W, Zhuo Y, Duan D, Lu M. Effects of Hypoxia on Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2020; 15:332-339. [PMID: 31441734 DOI: 10.2174/1574888x14666190823144928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are distributed in many parts of the human body, including
the bone marrow, placenta, umbilical cord, fat, and nasal mucosa. One of the unique features of
MSCs is their multidirectional differentiation potential, including the ability to undergo osteogenesis,
adipogenesis, and chondrogenesis, and to produce neurons, endothelial cells, Schwann cells, medullary
nucleus cells, cardiomyocytes, and alveolar epithelial cells. MSCs have thus become a hot research
topic in recent years. Numerous studies have investigated the differentiation of MSCs into various
types of cells in vitro and their application to numerous fields. However, most studies have cultured
MSCs under atmospheric oxygen tension with an oxygen concentration of 21%, which does not reflect
a normal physiological state, given that the oxygen concentration generally used in vitro is four to ten
times that to which MSCs would be exposed in the body. We therefore review the growing number of
studies exploring the effect of hypoxic preconditioning on the differentiation of MSCs.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| |
Collapse
|
26
|
Jung SE, Choi JW, Moon H, Oh S, Lim S, Lee S, Kim SW, Hwang KC. Small G protein signaling modulator 3 (SGSM3) knockdown attenuates apoptosis and cardiogenic differentiation in rat mesenchymal stem cells exposed to hypoxia. PLoS One 2020; 15:e0231272. [PMID: 32271805 PMCID: PMC7145021 DOI: 10.1371/journal.pone.0231272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Connexin 43 (Cx43) may be important in cell death and survival due to cell-to-cell communication-independent mechanisms. In our previous study, we found that small G protein signaling modulator 3 (SGSM3), a partner of Cx43, contributes to myocardial infarction (MI) in rat hearts. Based on these previous results, we hypothesized that SGSM3 could also play a role in bone marrow-derived rat mesenchymal stem cells (MSCs), which differentiate into cardiomyocytes and/or cells with comparable phenotypes under low oxygen conditions. Cx43 and Cx43-related factor expression profiles were compared between normoxic and hypoxic conditions according to exposure time, and Sgsm3 gene knockdown (KD) using siRNA transfection was performed to validate the interaction between SGSM3 and Cx43 and to determine the roles of SGSM3 in rat MSCs. We identified that SGSM3 interacts with Cx43 in MSCs under different oxygen conditions and that Sgsm3 knockdown inhibits apoptosis and cardiomyocyte differentiation under hypoxic stress. SGSM3/Sgsm3 probably has an effect on MSC survival and thus therapeutic potential in diseased hearts, but SGSM3 may worsen the development of MSC-based therapeutic approaches in regenerative medicine. This study was performed to help us better understand the mechanisms involved in the therapeutic efficacy of MSCs, as well as provide data that could be used pharmacologically.
Collapse
Affiliation(s)
- Seung Eun Jung
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Jung-Won Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Hanbyeol Moon
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Sena Oh
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| |
Collapse
|
27
|
Isolation and Culture of Human Stem Cells from Apical Papilla under Low Oxygen Concentration Highlight Original Properties. Cells 2019; 8:cells8121485. [PMID: 31766521 PMCID: PMC6952825 DOI: 10.3390/cells8121485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells isolated from the apical papilla of wisdom teeth (SCAPs) are an attractive model for tissue repair due to their availability, high proliferation rate and potential to differentiate in vitro towards mesodermal and neurogenic lineages. Adult stem cells, such as SCAPs, develop in stem cell niches in which the oxygen concentration [O2] is low (3–8% compared with 21% of ambient air). In this work, we evaluate the impact of low [O2] on the physiology of SCAPs isolated and processed in parallel at 21% or 3% O2 without any hyperoxic shock in ambient air during the experiment performed at 3% O2. We demonstrate that SCAPs display a higher proliferation capacity at 3% O2 than in ambient air with elevated expression levels of two cell surface antigens: the alpha-6 integrin subunit (CD49f) and the embryonic stem cell marker (SSEA4). We show that the mesodermal differentiation potential of SCAPs is conserved at early passage in both [O2], but is partly lost at late passage and low [O2], conditions in which SCAPs proliferate efficiently without any sign of apoptosis. Unexpectedly, we show that autophagic flux is active in SCAPs irrespective of [O2] and that this process remains high in cells even after prolonged exposure to 3% O2.
Collapse
|
28
|
Zhang B, Kasoju N, Li Q, Soliman E, Yang A, Cui Z, Ma J, Wang H, Ye H. Culture surfaces induce hypoxia-regulated genes in human mesenchymal stromal cells. ACTA ACUST UNITED AC 2019; 14:035012. [PMID: 30849767 DOI: 10.1088/1748-605x/ab0e61] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Culturing human Mesenchymal stromal cells (hMSCs) in vitro in hypoxic conditions resulted in reduced senescence, enhanced pluripotency and altered proliferation rate. It has been known that in vitro hypoxia affects expression of cell surface proteins. However, the impact of culture surfaces on the hypoxia-regulated genes (HRG) have not yet been reported. This study utilized Next-Generation sequencing to analyse the changes in the gene expression levels of HRG for hMSCs cultured on different culture surfaces. The samples, which were cultured on four different synthesized surfaces (treatments) and tissue culture plate (control), resulted in a difference in growth rate. The sequencing results revealed that the transcription of a number of key genes involved in regulating hypoxic functions were significantly altered, including HIF2A, a marker for potency, differentiation, and various cellular functions. Significant alternations in the expression levels of previously reported oxygen-sensitive surface proteins were detected in this study, some of which closely correlate with the expression levels of HIF2A. Our analysis of the hMSCs transcriptome and HRG mapped out a list of genes encoding surface proteins which may directly regulate or be regulated by HIF2A. The findings from this study showed that culture surfaces have an impact on regulating the expression profile of HRG. Therefore, novel culture surfaces may be designed to selectively activate HIF2A and other HRG and pathways under in vitro normoxia. The understanding of the crosstalk between the regulating genes of hypoxia and culture surfaces may be utilized to strengthen desired hypoxic functions.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom. Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Huang ZW, Fong CY, Gauthaman K, Sukumar P, Mahyuddin AP, Barrett AN, Bongso A, Choolani M. Biology of human primitive erythroblasts for application in noninvasive prenatal diagnosis. Prenat Diagn 2018; 38:673-684. [PMID: 29876942 DOI: 10.1002/pd.5295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Human primitive erythroblasts produced during early embryogenesis have been found in maternal circulation at early gestation and are considered good target cells for noninvasive prenatal diagnosis. We aimed to gain a better understanding of the biology of primitive erythroblasts and maximize their potential utility for noninvasive prenatal diagnosis. METHODS Cells were obtained from first trimester human placental tissues. Biological properties including surface antigen composition, differentiation, proliferation, enucleation, and degeneration were studied as gestation progressed. A microdroplet culture system was developed to observe the behavior of these cells in vitro. RESULTS Histology showed that primitive erythroblasts undergo maturation from polychromatic to orthochromatic erythroblasts and can differentiate spontaneously in vitro. Cell surface markers and nuclear gene expression suggest that the cells do not possess stemness properties, despite being primitive in nature. They have limited proliferative activity and highly deacetylated chromatin, but a microdroplet culture system can prolong their viability under normoxic conditions. No apoptosis was seen by 11 weeks' gestation, and there was no enucleation in vitro. CONCLUSION These properties confirm that viable cells with intact nuclei can be obtained at very early gestation for genetic analysis.
Collapse
Affiliation(s)
- Zhou-Wei Huang
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| | - Chui-Yee Fong
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| | - Kalamegam Gauthaman
- King Abdulaziz University, King Fahd Medical Research Centre, Jeddah, 21589, Saudi Arabia
| | - Ponnusamy Sukumar
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore.,Management Development Institute of Singapore, 501 Stirling Road, 148951, Singapore
| | - Aniza P Mahyuddin
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| | - Angela N Barrett
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| | - Ariff Bongso
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| | - Mahesh Choolani
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| |
Collapse
|
30
|
Littmann E, Autefage H, Solanki A, Kallepitis C, Jones J, Alini M, Peroglio M, Stevens M. Cobalt-containing bioactive glasses reduce human mesenchymal stem cell chondrogenic differentiation despite HIF-1α stabilisation. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 2018; 38:877-886. [PMID: 29456294 PMCID: PMC5738970 DOI: 10.1016/j.jeurceramsoc.2017.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/01/2017] [Indexed: 05/19/2023]
Abstract
Bioactive glasses (BGs) are excellent delivery systems for the sustained release of therapeutic ions and have been extensively studied in the context of bone tissue engineering. More recently, due to their osteogenic properties and expanding application to soft tissue repair, BGs have been proposed as promising materials for use at the osteochondral interface. Since hypoxia plays a critical role during cartilage formation, we sought to investigate the influence of BGs releasing the hypoxia-mimicking agent cobalt (CoBGs) on human mesenchymal stem cell (hMSC) chondrogenesis, as a novel approach that may guide future osteochondral scaffold design. The CoBG dissolution products significantly increased the level of hypoxia-inducible factor-1 alpha in hMSCs in a cobalt dose-dependent manner. Continued exposure to the cobalt-containing BG extracts significantly reduced hMSC proliferation and metabolic activity, as well as chondrogenic differentiation. Overall, this study demonstrates that prolonged exposure to cobalt warrants careful consideration for cartilage repair applications.
Collapse
Affiliation(s)
- E. Littmann
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - H. Autefage
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Corresponding authors at: Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| | - A.K. Solanki
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - C. Kallepitis
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - J.R. Jones
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - M. Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M. Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M.M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Corresponding authors at: Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| |
Collapse
|
31
|
Buizer AT, Bulstra SK, Veldhuizen AG, Kuijer R. The balance between proliferation and transcription of angiogenic factors of mesenchymal stem cells in hypoxia. Connect Tissue Res 2018; 59:12-20. [PMID: 28165799 DOI: 10.1080/03008207.2017.1289189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bridging large bone defects with mesenchymal stromal cells-seeded scaffolds remains a big challenge in orthopedic surgery, due to the lack of vascularization. Within such a cell-scaffold construct, cells are exposed to ischemic conditions. When human mesenchymal stem cells (hMSCs) encounter hypoxic conditions, they show higher cell proliferation than at ambient oxygen levels. However, when hMSCs are exposed to prolonged ischemia, cell proliferation ceases completely. Exposure of hMSCs to hypoxic conditions is known to result in the transcription of angiogenic factors (AGF), which can promote the development of new blood vessels. In this study, we investigated at which oxygen level hMSC proliferation and the transcription of AGF were optimal. Human bone marrow-derived hMSCs were cultured at 0.1, 1, 2, 3, 4, 5, and 21% oxygen. Cell proliferation over 14 days was assayed using a DNA quantification method. hMSC metabolic activity over 14 days was measured using a MTT test. Quantitative RT-PCR was used to assess mRNA levels of angiogenic factors at the tested oxygen percentages. hMSCs showed the highest cell proliferation rate at 1% oxygen. The highest corrected cell metabolic rate was found at 21% oxygen, followed by 2% oxygen. HIF1α transcription did not increase under hypoxic conditions compared to 21% oxygen conditions. However, transcription of VEGF and ANG-1 was significantly higher at 2% oxygen than at 21% O2. The optimum oxygen range at which hMSCs proliferated rapidly and angiogenic factors ANG-1 and VEGF simultaneously came to expression was from 1 to 2% oxygen.
Collapse
Affiliation(s)
- Arina T Buizer
- a Department of Orthopedic Surgery , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,b Department of Biomedical Engineering , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Sjoerd K Bulstra
- a Department of Orthopedic Surgery , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Albert G Veldhuizen
- a Department of Orthopedic Surgery , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Roel Kuijer
- b Department of Biomedical Engineering , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
32
|
Zhang H, Barralet JE. Mimicking oxygen delivery and waste removal functions of blood. Adv Drug Deliv Rev 2017; 122:84-104. [PMID: 28214553 DOI: 10.1016/j.addr.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
In addition to immunological and wound healing cell and platelet delivery, ion stasis and nutrient supply, blood delivers oxygen to cells and tissues and removes metabolic wastes. For decades researchers have been trying to develop approaches that mimic these two immediately vital functions of blood. Oxygen is crucial for the long-term survival of tissues and cells in vertebrates. Hypoxia (oxygen deficiency) and even at times anoxia (absence of oxygen) can occur during organ preservation, organ and cell transplantation, wound healing, in tumors and engineering of tissues. Different approaches have been developed to deliver oxygen to tissues and cells, including hyperbaric oxygen therapy (HBOT), normobaric hyperoxia therapy (NBOT), using biochemical reactions and electrolysis, employing liquids with high oxygen solubility, administering hemoglobin, myoglobin and red blood cells (RBCs), introducing oxygen-generating agents, using oxygen-carrying microparticles, persufflation, and peritoneal oxygenation. Metabolic waste accumulation is another issue in biological systems when blood flow is insufficient. Metabolic wastes change the microenvironment of cells and tissues, influence the metabolic activities of cells, and ultimately cause cell death. This review examines advances in blood mimicking systems in the field of biomedical engineering in terms of oxygen delivery and metabolic waste removal.
Collapse
|
33
|
Mu S, Guo S, Wang X, Zhan Y, Li Y, Jiang Y, Zhang R, Zhang B. Effects of deferoxamine on the osteogenic differentiation of human periodontal ligament cells. Mol Med Rep 2017; 16:9579-9586. [PMID: 29039615 DOI: 10.3892/mmr.2017.7810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 08/17/2017] [Indexed: 11/06/2022] Open
Abstract
Hypoxia regulates a number of cell biological processes, including cell survival, development and differentiation. Deferoxamine (DFO), an oral chelator for blood transfusion patients, has been demonstrated to induce hypoxia and is frequently used as a hypoxia‑mimicking agent. The purpose of the present study was to investigate the influence of DFO on the proliferation, migration and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The effects of DFO on hPDLC viability and migration were measured using an MTT and wound healing assay. To characterize the hypoxia microenvironment, the expression of hypoxia‑inducible factor‑1α (HIF‑1α) in hPDLCs treated with DFO was quantified using the reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Subsequently, the osteogenic differentiation potential of DFO was determined by RT‑qPCR of the mRNA of osteogenic markers (runt‑related transcription factor 2 [Runx‑2], osteopontin [OPN] and collagen type I [Col‑1]). The alkaline phosphatase activity and mineral deposition were analyzed using alizarin red S staining. The MTT and wound healing assays demonstrated that low‑concentrations of DFO had little impact on hPDLC viability and migration 48 h into the treatment. DFO upregulated the expression of hPDLC genes specific for osteogenic differentiation: HIF‑1α, Runx‑2, OPN and Col‑1. Furthermore, formation of mineralized nodules was enhanced by DFO. The present study suggests that DFO provided favorable culture conditions to promote the osteogenic differentiation and mineralization of hPDLCs. The mechanism underlying these alterations remains to be elucidated.
Collapse
Affiliation(s)
- Sen Mu
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shuanlong Guo
- Department of Stomatology, Fenyang Hospital, Fenyang, Shanxi 032200, P.R. China
| | - Xiang Wang
- Department of General Dentistry, Yinzhou Stomatology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yuanbo Zhan
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ying Jiang
- Pediatric Department of Stomatology, Yinzhou Stomatology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Ruimin Zhang
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
34
|
Wang M, Yang N. A review of bioregulatory and coupled mechanobioregulatory mathematical models for secondary fracture healing. Med Eng Phys 2017; 48:90-102. [DOI: 10.1016/j.medengphy.2017.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/18/2017] [Accepted: 06/18/2017] [Indexed: 01/09/2023]
|
35
|
Talavera-Adame D, Newman D, Newman N. Conventional and novel stem cell based therapies for androgenic alopecia. Stem Cells Cloning 2017; 10:11-19. [PMID: 28979149 PMCID: PMC5588753 DOI: 10.2147/sccaa.s138150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The prevalence of androgenic alopecia (AGA) increases with age and it affects both men and women. Patients diagnosed with AGA may experience decreased quality of life, depression, and feel self-conscious. There are a variety of therapeutic options ranging from prescription drugs to non-prescription medications. Currently, AGA involves an annual global market revenue of US$4 billion and a growth rate of 1.8%, indicating a growing consumer market. Although natural and synthetic ingredients can promote hair growth and, therefore, be useful to treat AGA, some of them have important adverse effects and unknown mechanisms of action that limit their use and benefits. Biologic factors that include signaling from stem cells, dermal papilla cells, and platelet-rich plasma are some of the current therapeutic agents being studied for hair restoration with milder side effects. However, most of the mechanisms exerted by these factors in hair restoration are still being researched. In this review, we analyze the therapeutic agents that have been used for AGA and emphasize the potential of new therapies based on advances in stem cell technologies and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Nathan Newman
- American Advanced Medical Corp. (Private Practice), Beverly Hills, CA
| |
Collapse
|
36
|
A review of computational models of bone fracture healing. Med Biol Eng Comput 2017; 55:1895-1914. [DOI: 10.1007/s11517-017-1701-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022]
|
37
|
Lee SC, Kim KH, Kim OH, Lee SK, Hong HE, Won SS, Jeon SJ, Choi BJ, Jeong W, Kim SJ. Determination of optimized oxygen partial pressure to maximize the liver regenerative potential of the secretome obtained from adipose-derived stem cells. Stem Cell Res Ther 2017; 8:181. [PMID: 28774345 PMCID: PMC5543744 DOI: 10.1186/s13287-017-0635-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/11/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A hypoxic-preconditioned secretome from stem cells reportedly promotes the functional and regenerative capacity of the liver more effectively than a control secretome. However, the optimum oxygen partial pressure (pO2) in the cell culture system that maximizes the therapeutic potential of the secretome has not yet been determined. METHODS We first determined the cellular alterations in adipose tissue-derived stem cells (ASCs) cultured under different pO2 (21%, 10%, 5%, and 1%). Subsequently, partially hepatectomized mice were injected with the secretome of ASCs cultured under different pO2, and then sera and liver specimens were obtained for analyses. RESULTS Of all AML12 cells cultured under different pO2, the AML12 cells cultured under 1% pO2 showed the highest mRNA expression of proliferation-associated markers (IL-6, HGF, and VEGF). In the cell proliferation assay, the AML12 cells cultured with the secretome of 1% pO2 showed the highest cell proliferation, followed by the cells cultured with the secretome of 21%, 10%, and 5% pO2, in that order. When injected into the partially hepatectomized mice, the 1% pO2 secretome most significantly increased the number of Ki67-positive cells, reduced serum levels of proinflammatory mediators (IL-6 and TNF-α), and reduced serum levels of liver transaminases. In addition, analysis of the liver specimens indicated that injection with the 1% pO2 secretome maximized the expression of the intermediate molecules of the PIP3/Akt and IL-6/STAT3 signaling pathways, all of which are known to promote liver regeneration. CONCLUSIONS The data of this study suggest that the secretome of ASCs cultured under 1% pO2 has the highest liver reparative and regenerative potential of all the secretomes tested here.
Collapse
Affiliation(s)
- Sang Chul Lee
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Republic of Korea
| | - Ok-Hee Kim
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea
| | - Sang Kuon Lee
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea
| | - Ha-Eun Hong
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea
| | - Seong Su Won
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea
| | - Sang-Jin Jeon
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea
| | - Byung Jo Choi
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea
| | - Wonjun Jeong
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea
| | - Say-June Kim
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
38
|
Inagaki Y, Akahane M, Shimizu T, Inoue K, Egawa T, Kira T, Ogawa M, Kawate K, Tanaka Y. Modifying oxygen tension affects bone marrow stromal cell osteogenesis for regenerative medicine. World J Stem Cells 2017; 9:98-106. [PMID: 28785381 PMCID: PMC5529317 DOI: 10.4252/wjsc.v9.i7.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/27/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To establish a hypoxic environment for promoting osteogenesis in rat marrow stromal cells (MSCs) using osteogenic matrix cell sheets (OMCSs).
METHODS Rat MSCs were cultured in osteogenic media under one of four varying oxygen conditions: Normoxia (21% O2) for 14 d (NN), normoxia for 7 d followed by hypoxia (5% O2) for 7 d (NH), hypoxia for 7 d followed by normoxia for 7 d (HN), or hypoxia for 14 d (HH). Osteogenesis was evaluated by observing changes in cell morphology and calcium deposition, and by measuring osteocalcin secretion (ELISA) and calcium content. In vivo syngeneic transplantation using OMCSs and β-tricalcium phosphate discs, preconditioned under NN or HN conditions, was also evaluated by histology, calcium content measurements, and real-time quantitative PCR.
RESULTS In the NN and HN groups, differentiated, cuboidal-shaped cells were readily observed, along with calcium deposits. In the HN group, the levels of secreted osteocalcin increased rapidly from day 10 as compared with the other groups, and plateaued at day 12 (P < 0.05). At day 14, the HN group showed the highest amount of calcium deposition. In vivo, the HN group showed histologically prominent new bone formation, increased calcium deposition, and higher collagen type I messenger RNA expression as compared with the NN group.
CONCLUSION The results of this study indicate that modifying oxygen tension is an effective method to enhance the osteogenic ability of MSCs used for OMCSs.
Collapse
|
39
|
Xi L, Guoqing C, Weidong T. [Effect of hypoxia on the biological characteristics of human dental follicle cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:245-252. [PMID: 28675007 DOI: 10.7518/hxkq.2017.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of hypoxia on the characteristics of human dental follicle cells (hDFCs). METHODS The tissue explant collagenase method was used to isolate hDFCs from young permanent teeth. The immunofluorescence technique was used to detect cell surface markers, and the multi-differentiation potential was detected by multilineage differentiation induction assay. Then, the hypoxic microenvironment was physically mimicked, and the cells were divided into the normoxia group (20%O₂) and the hypoxia group (2%O₂). The effects of hypoxia on cell migration and proliferation were examined by Transwell chamber test and CCK-8 assay, respectively. The gene and protein expression levels of stemness-related markers at both oxygen concentrations were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. After osteogenic induction of both groups, qRT-PCR was performed to evaluate the osteogenesis-related gene, and alizarin red staining was used to assess the formation of mineralized nodules. RESULTS With the multi-differentiation capacity of osteogenic cells, adipogenic cells, and nerves, hDFCs demonstrate strong stem cell characteristics and possess the criteria of mesenchymal stem cells, which can meet the requirements of seed cells in dental tissue engineering. Hypoxia was conducive to the maintenance of hDFC stemness. Hypoxia promoted the migration and proliferation of hDFCs. The hDFCs were induced to osteogenic differentiation under hypoxic conditions, thereby enhancing osteogenesis. CONCLUSIONS Hypoxic microenvironment plays an important role in maintaining the stemness and promoting the proliferation, migration, and differentiation of hDFCs. Thus, this microenvironment could also serve several important functions in future clinical applications.
Collapse
Affiliation(s)
- Liang Xi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Oral and Maxillofacial Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen Guoqing
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tian Weidong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Oral and Maxillofacial Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Pezzi A, Amorin B, Laureano Á, Valim V, Dahmer A, Zambonato B, Sehn F, Wilke I, Bruschi L, Silva MALD, Filippi-Chiela E, Silla L. Effects Of Hypoxia in Long-Term In Vitro Expansion of Human Bone Marrow Derived Mesenchymal Stem Cells. J Cell Biochem 2017; 118:3072-3079. [PMID: 28240374 DOI: 10.1002/jcb.25953] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSC) are considered multipotent stromal, non-hematopoietic cells with properties of self-renovation and differentiation. Optimal conditions for culture of MSC have been under investigation. The oxygen tension used for cultivation has been studied and appears to play an important role in biological behavior of mesenchymal cells. The aim is characterize MSC in hypoxia and normoxia conditions comparing their morphological and functional characteristics. Bone marrow-derived mesenchymal stem cells obtained from 15 healthy donors and cultured. MSC obtained from each donor were separated into two cultivation conditions normoxia (21% O2 ) and hypoxia (three donors at 1%, three donors at 2%, five donors at 3%, and four donors at 4% O2 ) up to second passage. MSC were evaluated for proliferation, differentiation, immunophenotyping, size and cell complexity, oxidative stress, mitochondrial activity, and autophagy. Culture conditions applied did not seem to affect immunophenotypic features and cellular plasticity. However, cells subjected to hypoxia showed smaller size and greater cellular complexity, besides lower proliferation (P < 0.002). Furthermore, cells cultured in low O2 tension had lower mitochondrial activity (P < 0.03) and a reduced tendency to autophagy, although oxidative stress did not vary among groups (P < 0.39). Oxygen tension seems to be a key regulator of cellular adaptation in vitro, and metabolic effects underlying this variable remain undescribed. Heterogeneity or even lack of results on the impact of oxygen concentration used for expanding MSC highlights the need for further research, in order to optimize conditions of cultivation and expansion and achieve greater safety and therapeutic efficacy. J. Cell. Biochem. 118: 3072-3079, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annelise Pezzi
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Amorin
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Centro Universitário Ritter dos Reis, Porto Alegre, Brazil
| | - Álvaro Laureano
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa Valim
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Alice Dahmer
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Zambonato
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Filipe Sehn
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ianaê Wilke
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria Aparecida Lima da Silva
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil
| | | | - Lucia Silla
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Hematology and Bone Marrow Transplantation of Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
41
|
Hypoxia mimetic induces lipid accumulation through mitochondrial dysfunction and stimulates autophagy in murine preadipocyte cell line. Biochim Biophys Acta Gen Subj 2017; 1861:673-682. [DOI: 10.1016/j.bbagen.2016.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023]
|
42
|
Sisakhtnezhad S, Alimoradi E, Akrami H. External factors influencing mesenchymal stem cell fate in vitro. Eur J Cell Biol 2016; 96:13-33. [PMID: 27988106 DOI: 10.1016/j.ejcb.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have extensive potentials, which make them attractive candidates for the developmental biology, drug discovery and regenerative medicine. However, the use of MSCs is limited by their scarceness in tissues and in culture conditions. They also exhibit various degrees of potency which subsequently influencing their applications. Nowadays, questions remain about how self-renewal and differentiation of MSCs can be controlled in vitro and in vivo, how they will behave and migrate to the right place and how they modulate the immune system. Therefore, identification of factors and culture conditions to affect the fate and function of MSCs may be effective to enhance their applications in clinical situations. Studies have indicated that the fate of MSCs in culture is influenced by various external factors, including the specific cell source, donor age, plating density, passage number and plastic surface quality. Some other factors such as cell culture media and their supplementary factors, O2 concentration, mechano-/electro-stimuli and three-dimensional scaffolds are also shown to be influential. This review addresses the current state of MSC research for describing and discussing the findings about external factors that influence the fate and function of MSCs. Additionally, the new discoveries and suggestions regarding their molecular mechanisms will be explained.
Collapse
Affiliation(s)
| | - Elham Alimoradi
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
43
|
Sheng L, Mao X, Yu Q, Yu D. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells. Exp Ther Med 2016; 13:55-62. [PMID: 28123468 PMCID: PMC5245145 DOI: 10.3892/etm.2016.3917] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/09/2016] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation has been demonstrated to be an effective way of augmenting angiogenesis of ischemic tissue. The low oxygen conditions in ischemic tissue directly affect the biological behavior of engrafted cells. However, to date, the mechanism through which hypoxia regulates self-renewal, differentiation and paracrine function of BM-MSCs remains unclear. Clarification of this mechanism would be beneficial to the use of stem cell-based therapy. The PI3K/AKT pathway has been extensively investigated for its role in cell proliferation, cell transformation, paracrine function and angiogenesis. The present study aimed to analyze the role of PI3K/AKT pathway in hypoxia-induced proliferation of BM-MSCs and their differentiation into endothelial cells in vitro by the application of LY294002, a PI3K/AKT pathway inhibitor, with cells cultured in normoxia serving as a control. The results showed that rat BM-MSCs at passage 3 and 4 displayed only few phenotypical differences in the expression of surface antigens as detected by flow cytometry. When compared with the cells treated in normoxia, the proliferation of BM-MSCs in hypoxia was promoted, a greater number of cells expressed CD31 and a higher expression of vascular endothelial growth factor was observed after culture in hypoxic conditions. However, by inhibiting with LY294002, these changes induced by hypoxia were partly inhibited. In conclusion, the present study showed that the PI3K/AKT pathway served an important role in hypoxia-enhanced in vitro proliferation of BM-MSCs and their differentiation into endothelial cells and paracrine vascular endothelial growth factor.
Collapse
Affiliation(s)
- Lingling Sheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Dong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| |
Collapse
|
44
|
Kim DS, Ko YJ, Lee MW, Park HJ, Park YJ, Kim DI, Sung KW, Koo HH, Yoo KH. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells. Cell Stress Chaperones 2016; 21:1089-1099. [PMID: 27565660 PMCID: PMC5083677 DOI: 10.1007/s12192-016-0733-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022] Open
Abstract
Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O2) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.
Collapse
Affiliation(s)
- Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Young Jong Ko
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea.
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea.
| | - Hyun Jin Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Yoo Jin Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Dong-Ik Kim
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea.
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea.
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
45
|
Hypoxia enhances osteogenic differentiation in retinoic acid-treated murine-induced pluripotent stem cells. Tissue Eng Regen Med 2016; 13:547-553. [PMID: 30603435 DOI: 10.1007/s13770-016-9127-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/25/2016] [Accepted: 02/11/2016] [Indexed: 12/17/2022] Open
Abstract
Hypoxic condition influences biological responses in various cell types. However, a hypoxic regulating osteogenic differentiation remains controversy. Here, an influence of short-term culture in hypoxic condition on osteogenic marker gene expression by retinoic acid-treated murine gingival fibroblast-derived induced pluripotent stem cells (RA-miPS) was investigated. Results demonstrated that hypoxic condition significantly upregulated Vegf, Runx2, Osx, and Ocn mRNA expression by RA-miPS in normal culture medium at day 3. Further, desferrioxamine significantly downregulated pluripotent marker (Nanog and Oct4) and enhanced osteogenic marker (Runx2, Osx, Dlx5, and Ocn) gene expression as well as promoted in vitro mineral deposition. However, the effect of cobalt chloride on osteogenic differentiation of RA-miPS was not robust. In summary, the results imply that hypoxic condition may be useful in the enhancement of osteogenic differentiation in RA-miPS. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13770-016-9127-9 and is accessible for authorized users.
Collapse
|
46
|
Shuvalova NS, Kordium VA. Morphological characteristics of mesenchymal stem cells from Wharton jelly, cultivated under physiological oxygen tensions, in various gas mixtures. ACTA ACUST UNITED AC 2016. [DOI: 10.7124/bc.000928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- N. S. Shuvalova
- State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| | - V. A. Kordium
- State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| |
Collapse
|
47
|
Poly-L-lysine Prevents Senescence and Augments Growth in Culturing Mesenchymal Stem Cells Ex Vivo. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8196078. [PMID: 27403437 PMCID: PMC4925960 DOI: 10.1155/2016/8196078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) possess great therapeutic potential. Efficient in vitro expansion of MSCs is however necessary for their clinical application. The extracellular matrix (ECM) provides structural and biochemical support to the surrounding cells, and it has been used as a coating substrate for cell culture. In this study, we have aimed to improve the functionality and stemness of MSCs during culture using poly-L-lysine (PLL). Functionality of MSCs was analysed by cell cycle analysis, differentiation assay, β-galactosidase staining, and RT-PCR. Furthermore, we assessed the global gene expression profile of MSCs on uncoated and PLL-coated plates. MSCs on PLL-coated plates exhibited a faster growth rate with increased S-phase and upregulated expression of the stemness markers. In addition, their osteogenic differentiation potential was increased, and genes involved in cell adhesion, FGF-2 signalling, cell cycle, stemness, cell differentiation, and cell proliferation were upregulated, compared to that of the MSCs cultured on uncoated plates. We also confirmed that MSCs on uncoated plates expressed higher β-galactosidase than the MSCs on PLL-coated plates. We demonstrate that PLL provides favourable microenvironment for MSC culture by reversing the replicative senescence. This method will significantly contribute to effective preparation of MSCs for cellular therapy.
Collapse
|
48
|
Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway. Stem Cells Int 2016; 2016:6570671. [PMID: 27123007 PMCID: PMC4829725 DOI: 10.1155/2016/6570671] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 12/22/2022] Open
Abstract
Porcine bone marrow mesenchymal stem cells (pBMSCs) have the potential for application in regenerative medicine. This study aims to investigate the effects of extracellular calcium ([Ca2+]o) on pBMSCs proliferation and to explore the possible underlying mechanisms. The results demonstrated that 4 mM [Ca2+]o significantly promoted pBMSCs proliferation by reducing the G0/G1 phase cell percentage and by increasing the S phase cell proportion and the proliferation index of pBMSCs. Accordingly, [Ca2+]o stimulated the expression levels of proliferative genes such as cyclin A2, cyclin D1/3, cyclin E2, and PCNA and inhibited the expression of p21. In addition, [Ca2+]o resulted in a significant elevation of intracellular calcium and an increased ratio of p-ERK/ERK. However, inhibition of calcium-sensing receptor (CaSR) by its antagonist NPS2143 abolished the aforementioned effects of [Ca2+]o. Moreover, [Ca2+]o-induced promotion of pBMSCs proliferation, the changes of proliferative genes expression levels, and the activation of ERK1/2 signaling pathway were effectively blocked by U0126, a selective ERK kinase inhibitor. In conclusion, our findings provided evidence that the enhanced pBMSCs proliferation in response to [Ca2+]o was associated with the activation of CaSR and ERK1/2 signaling pathway, which may be useful for the application of pBMSCs in future clinical studies aimed at tissue regeneration and repair.
Collapse
|
49
|
Abstract
Mesenchymal stem cells (MSCs) were initially characterized as connective tissue progenitors resident in bone marrow, but have now been isolated from a variety of tissues and organs and shown to also exhibit potent tissue regenerative properties mediated largely via paracrine actions. These findings have spurred the development of MSC-based therapies for treating a diverse array of nonskeletal diseases. Although genetic and experimental rodent models of disease represent important tools for developing efficacious MSC-based therapies, development of reliable methods to isolate MSCs from mouse bone marrow has been hampered by the unique biological properties of these cells. Indeed, few isolation schemes afford high yields and purity while maintaining the genomic integrity of cells. We recently demonstrated that mouse MSCs are highly sensitive to oxidative stress, and long-term expansion of these cells in atmospheric oxygen selects for immortalized clones that lack a functional p53 protein. Herein, we describe a protocol for the isolation of primary MSCs from mouse bone marrow that couples immunodepletion with culture in a low-oxygen environment and affords high purity and yield while preserving p53 function.
Collapse
Affiliation(s)
- Siddaraju V Boregowda
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Veena Krishnappa
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA.
| |
Collapse
|
50
|
Yoo HI, Moon YH, Kim MS. Effects of CoCl2 on multi-lineage differentiation of C3H/10T1/2 mesenchymal stem cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:53-62. [PMID: 26807023 PMCID: PMC4722191 DOI: 10.4196/kjpp.2016.20.1.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) in the bone marrow and other somatic tissues reside in an environment with relative low oxygen tension. Cobalt chloride (CoCl2) can mimic hypoxic conditions through transcriptional changes of some genes including hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). This study evaluated the potential role of CoCl2 preconditioning on multi-lineage differentiation of C3H/10T1/2, a murine MSC line to understand its possible molecular mechanisms in vitro. CoCl2 treatment of MSCs markedly increased HIF-1α and VEGF mRNA, and protein expression of HIF-1α. Temporary preconditioning of MSCs with CoCl2 induced up-regulation of osteogenic markers including alkaline phosphatase, osteocalcin, and type I collagen during osteogenic differentiation, followed by enhanced mineralization. CoCl2 also increased chondrogenic markers including aggrecan, sox9, and type II collagen, and promoted chondrocyte differentiation. CoCl2 suppressed the expression of adipogenic markers including PPARγ, aP2, and C/EBPα, and inhibited adipogenesis. Temporary preconditioning with CoCl2 could affect the multi-lineage differentiation of MSCs.
Collapse
Affiliation(s)
- Hong Il Yoo
- Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Yeon Hee Moon
- Department of Dental Hygiene, Chodang University, Muan 58530, Korea
| | - Min Seok Kim
- Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|