1
|
Herraiz T, Salgado A, Peña A. Identification, Occurrence, and Mechanism of Formation of 1-Acetyl-β-carbolines Derived from l-Tryptophan and Methylglyoxal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3044-3055. [PMID: 39846416 DOI: 10.1021/acs.jafc.4c09130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
β-Carbolines (βCs) are bioactive compounds present in foods and biological systems. This work describes the identification, occurrence, and mechanism of formation of 1-acetyl-β-carbolines (1-acetyl-βCs) that result from the reaction of l-tryptophan with the α-dicarbonyl compound methylglyoxal. Two β-carbolines are characterized as 1-acetyl-β-carboline (AβC) and 1-acetyl-β-carboline-3-carboxylic acid (AβC-COOH). Their formation was favored in acidic conditions and with increasing temperature, but 1-acetyl-βCs also formed in moderate temperatures and in a wide range of pH, including physiological conditions, and in human serum. The formation mechanism relies on tautomerism and cyclization to give 1-(1-hydroxyethyl)-3,4-dihydro-β-carboline-3-carboxylic acid intermediates followed by the oxidation of C1'-OH and aromatization to 1-acetyl-βCs. The formation of 1-acetyl-βCs took place in the reactions of fructose or glucose with tryptophan under heating and depended on the methylglyoxal released during carbohydrate degradation. Formation from carbohydrates increased at neutral or basic pH values as more methylglyoxal was released under those conditions. Thus, 1-acetyl-βCs could be advanced glycation end-products (AGEs). 1-Acetyl-βCs were identified and quantified for the first time in many foods. AβC ranged from undetectable to 250 ng/g with the highest amount detected in honey, bread, cookies, soy sauce, and coffee. On average, AβC-COOH generally appeared in lower concentrations than AβC but it ranged from undetectable to 323 ng/g with the highest levels found in soy sauce, honey, cookies, and fried bread. These results indicate that 1-acetyl-βCs could be relevant βCs in foods and in vivo.
Collapse
Affiliation(s)
- Tomás Herraiz
- Spanish National Research Council (CSIC), Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Jose Antonio Nováis 6 28040, Madrid, Spain
| | - Antonio Salgado
- Centro de Espectroscopía de RMN (CERMN), Universidad de Alcalá (UAH), Campus Universitario, Ctra. Madrid-Barcelona km 33.6, Alcalá de Henares 28805, Madrid, Spain
| | - Adriana Peña
- Spanish National Research Council (CSIC), Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Jose Antonio Nováis 6 28040, Madrid, Spain
| |
Collapse
|
2
|
Herraiz T, Salgado A. Formation, Identification, and Occurrence of the Furan-Containing β-Carboline Flazin Derived from l-Tryptophan and Carbohydrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6575-6584. [PMID: 38470992 PMCID: PMC10979450 DOI: 10.1021/acs.jafc.3c07773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
β-Carbolines (βCs) are bioactive indole alkaloids found in foods and in vivo. This work describes the identification, formation, and occurrence in foods of the βC with a furan moiety flazin (1-[5-(hydroxymethyl)furan-2-yl]-9H-pyrido[3,4-b]indole-3-carboxylic acid). Flazin was formed by the reaction of l-tryptophan with 3-deoxyglucosone but not with 5-hydroxymethylfurfural. Its formation was favored in acidic conditions and heating (70-110 °C). The proposed mechanism of formation occurs through the formation of intermediates 3,4-dihydro-β-carboline-3-carboxylic acid (imines), followed by the oxidation to C═O in the carbohydrate chain and aromatization to βC ring with subsequent dehydration steps and cyclization to afford the furan moiety. Flazin is generated in the reactions of tryptophan with carbohydrates. Its formation from fructose was higher than from glucose, whereas sucrose gave flazin under acidic conditions and heating owing to hydrolysis. Flazin was identified in foods by HPLC-MS, and its content was determined by HPLC-fluorescence. It occurred in numerous processed foods, such as tomato products, including crushed tomato puree, fried tomato, ketchup, tomato juices, and jams, but also in soy sauce, beer, balsamic vinegar, fruit juices, dried fruits, fried onions, and honey. Their concentrations ranged from not detected to 22.3 μg/mL, with the highest mean levels found in tomato concentrate (13.9 μg/g) and soy sauce (9.4 μg/mL). Flazin was formed during the heating process, as shown in fresh tomato juice and crushed tomatoes. These results indicate that flazin is widely present in foods and is daily uptaken in the diet.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto
de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Novais 6, Ciudad Universitaria, Madrid 28040, Spain
| | - Antonio Salgado
- Centro
de Espectroscopía de RMN (CERMN), Universidad de Alcalá (UAH), Campus Universitario Ctra. Madrid-Barcelona km
33.6, Alcalá de Henares, Madrid 28805, Spain
| |
Collapse
|
3
|
Herraiz T, Peña A, Salgado A. Identification, Formation, and Occurrence of Perlolyrine: A β-Carboline Alkaloid with a Furan Moiety in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13451-13461. [PMID: 37651628 PMCID: PMC10510388 DOI: 10.1021/acs.jafc.3c03612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
β-Carbolines are naturally occurring bioactive alkaloids found in foods and in vivo. This research reports the identification, characterization, mechanism of formation, and occurrence of perlolyrine (1-(5-(hydroxymethyl)furan-2-yl)-9H-pyrido[3,4-b]indole), a β-carboline with a furan moiety. Perlolyrine did not arise from l-tryptophan and hydroxymethylfurfural but from the reaction of l-tryptophan with 3-deoxyglucosone, an intermediate of carbohydrate degradation. The mechanism of formation occurs through 3,4-dihydro-β-carboline-3-carboxylic acid intermediates (imines), followed by the oxidation of C1'-OH to ketoimine and oxidative decarboxylation at C-3, along with dehydration and cyclization to afford the β-carboline with a furan moiety. The formation of perlolyrine was favored in acidic conditions and temperatures in the range of 70-110 °C. Perlolyrine occurred in the reactions of tryptophan with carbohydrates. The formation rate from fructose was much higher than from glucose. Sucrose also gave perlolyrine under acidic conditions and heating. Perlolyrine was identified in many foods by HPLC-MS and analyzed by HPLC-fluorescence. It occurred in many processed foods such as tomato products including tomato puree, fried tomato, ketchups, tomato juices, and jams but also in soy sauce, beer, balsamic vinegar, fruit juices, dried fruits, fried onion, and honey. The concentrations ranged from an undetected amount to 3.5 μg/g with the highest average levels found in tomato concentrate (1.9 μg/g) and soy sauce (1.5 μg/mL). The results show that perlolyrine formed during the heating process of foods. It is concluded that perlolyrine is widely present in foods and it is daily ingested in the diet.
Collapse
Affiliation(s)
- Tomás Herraiz
- Spanish
National Research Council (CSIC), Instituto
de Ciencia y Tecnología de Alimentos y Nutrición
(ICTAN-CSIC), José Antonio Novais 6, Ciudad Universitaria, 28040 Madrid, Spain
| | - Adriana Peña
- Spanish
National Research Council (CSIC), Instituto
de Ciencia y Tecnología de Alimentos y Nutrición
(ICTAN-CSIC), José Antonio Novais 6, Ciudad Universitaria, 28040 Madrid, Spain
| | - Antonio Salgado
- Centro
de Espectroscopía de RMN (CERMN), Universidad de Alcalá (UAH), Campus Universitario Ctra. Madrid-Barcelona km
33.6, 28805 Alcalá
de Henares, Madrid, Spain
| |
Collapse
|
4
|
Herraiz T. β-Carboline Alkaloids in Soy Sauce and Inhibition of Monoamine Oxidase (MAO). Molecules 2023; 28:molecules28062723. [PMID: 36985694 PMCID: PMC10053526 DOI: 10.3390/molecules28062723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Monoamine oxidase (MAO) oxidizes neurotransmitters and xenobiotic amines, including vasopressor and neurotoxic amines such as the MPTP neurotoxin. Its inhibitors are useful as antidepressants and neuroprotectants. This work shows that diluted soy sauce (1/3) and soy sauce extracts inhibited human MAO-A and -B isozymes in vitro, which were measured with a chromatographic assay to avoid interferences, and it suggests the presence of MAO inhibitors. Chromatographic and spectrometric studies showed the occurrence of the β-carboline alkaloids harman and norharman in soy sauce extracts inhibiting MAO-A. Harman was isolated from soy sauce, and it was a potent and competitive inhibitor of MAO-A (0.4 µM, 44 % inhibition). The concentrations of harman and norharman were determined in commercial soy sauces, reaching 243 and 52 μg/L, respectively. Subsequently, the alkaloids 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (THCA) and 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (MTCA) were identified and analyzed in soy sauces reaching concentrations of 69 and 448 mg/L, respectively. The results show that MTCA was a precursor of harman under oxidative and heating conditions, and soy sauces increased the amount of harman under those conditions. This work shows that soy sauce contains bioactive β-carbolines and constitutes a dietary source of MAO-A and -B inhibitors.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 6, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
5
|
Zhu J, Yang L, Wu J, Deng Z, Qu X. Engineering Imine Reductase for Efficient Biosynthesis of 1-Aryl-Tetrahydro-β-Carbolines and Their N-Methylation Products. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jinmei Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lu Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
6
|
Heme peroxidases are responsible for the dehydrogenation and oxidation metabolism of harmaline into harmine. Chin J Nat Med 2022; 20:194-201. [DOI: 10.1016/s1875-5364(22)60151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 11/19/2022]
|
7
|
Ayipo YO, Mordi MN, Mustapha M, Damodaran T. Neuropharmacological potentials of β-carboline alkaloids for neuropsychiatric disorders. Eur J Pharmacol 2020; 893:173837. [PMID: 33359647 DOI: 10.1016/j.ejphar.2020.173837] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/24/2022]
Abstract
Neuropsychiatric disorders are diseases of the central nervous system (CNS) which are characterised by complex pathomechanisms that including homeostatic failure, malfunction, atrophy, pathology remodelling and reactivity anomaly of the neuronal system where treatment options remain challenging. β-Carboline (βC) alkaloids are scaffolds of structurally diverse tricyclic pyrido[3,4-b]indole alkaloid with vast occurrence in nature. Their unique structural features which favour interactions with enzymes and protein receptor targets account for their potent neuropharmacological properties. However, our current understanding of their biological mechanisms for these beneficial effects, especially for neuropsychiatric disorders is sparse. Therefore, we present a comprehensive review of the scientific progress in the last two decades on the prospective pharmacology and physiology of the βC alkaloids in the treatment of some neuropsychiatric conditions such as depression, anxiety, Alzheimer's disease, Parkinson's disease, brain tumour, essential tremor, epilepsy and seizure, licking behaviour, dystonia, agnosia, spasm, positive ingestive response as demonstrated in non-clinical models. The current evidence supports that βC alkaloids offer potential therapeutic agents against most of these disorders and amenable for further drug design.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia; Department of Chemical, Geological and Physical Sciences, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Thenmoly Damodaran
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
8
|
Sampaio TB, Marcondes Sari MH, Pesarico AP, Nogueira CW. δ-Aminolevulinate Dehydratase Activity is Stimulated in a MPTP Mouse Model of Parkinson's Disease: Correlation with Myeloperoxidase Activity. Cell Mol Neurobiol 2017; 37:911-917. [PMID: 27650074 PMCID: PMC11482109 DOI: 10.1007/s10571-016-0428-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023]
Abstract
Myeloperoxidase (MPO) is an inducible heme peroxidase responsive to some stress situations. It is already known that its activity is stimulated in neurodegenerative disorders and in the animal model of parkinson's disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). By contrast, the role of δ-aminolevulinate dehydratase (δ-ALA-D), an essential enzyme for heme synthesis, has not been investigated in the MPTP model. The aim of this study was to investigate the involvement of striatal δ-ALA-D activity in an acute model of PD, induced by MPTP, in C57Bl/6 mice and its correlation with MPO activity. Animals received four MPTP injections (20 mg/kg, i.p.) or saline (vehicle) to induce a PD model. 7 days after MPTP administration, the motor function was evaluated through rotarod and challenging beam tests in mice. Afterward, mice were killed, and the striata were removed for biochemical analyses. MPTP-treated mice showed impairment in motor skills, such as balance and motor coordination. Furthermore, there was a reduction of tyrosine hydroxylase levels in these animals, which characterizes the dopaminergic lesion. Striatal δ-ALA-D activity was stimulated by MPTP, as well as the MPO activity, and a significant positive correlation between δ-ALA-D and MPO activities was also demonstrated. These data suggest that δ-ALA-D activity could be stimulated due to the requirement of heme groups by peroxidases. Therefore, this study demonstrated for the first time the involvement of striatal δ-ALA-D activity in the MPTP model and its correlation with the MPO activity.
Collapse
Affiliation(s)
- Tuane Bazanella Sampaio
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Ana Paula Pesarico
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
9
|
Herraiz T. N-methyltetrahydropyridines and pyridinium cations as toxins and comparison with naturally-occurring alkaloids. Food Chem Toxicol 2016; 97:23-39. [DOI: 10.1016/j.fct.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
|
10
|
Leonti M, Casu L. Soma, food of the immortals according to the Bower Manuscript (Kashmir, 6th century A.D.). JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:373-386. [PMID: 24907429 DOI: 10.1016/j.jep.2014.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/31/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Food is medicine and vice versa. In Hindu and Ayurvedic medicine, and among human cultures of the Indian subcontinent in general, the perception of the food-medicine continuum is especially well established. The preparation of the exhilarating, gold-coloured Soma, Amrita or Ambrosia, the elixir and food of the 'immortals'-the Hindu pantheon-by the ancient Indo-Aryans, is described in the Rigveda in poetic hymns. Different theories regarding the botanical identity of Soma circulate, but no pharmacologically and historically convincing theory exists to date. We intend to contribute to the botanical, chemical and pharmacological characterisation of Soma through an analysis of two historical Amrita recipes recorded in the Bower Manuscript. The recipes are referred therein as panaceas (clarified butter) and also as a medicine to treat nervous diseases (oil), while no exhilarating properties are mentioned. Notwithstanding this, we hypothesise, that these recipes are related to the ca. 1800 years older Rigvedic Soma. We suppose that the psychoactive Soma ingredient(s) are among the components, possibly in smaller proportions, of the Amrita recipes preserved in the Bower Manuscript. MATERIALS AND METHODS The Bower Manuscript is a medical treatise recorded in the 6th century A.D. in Sanskrit on birch bark leaves, probably by Buddhist monks, and unearthed towards the end of the 19th century in Chinese Turkestan. We analysed two Amrita recipes from the Bower Manuscript, which was translated by Rudolf Hoernle into English during the early 20th century. A database search with the updated Latin binomials of the herbal ingredients was used to gather quantitative phytochemical and pharmacological information. RESULTS Together, both Amrita recipes contain around 100 herbal ingredients. Psychoactive alkaloid containing species still important in Ayurvedic, Chinese and Thai medicine and mentioned in the recipe for 'Amrita-Prâsa clarified butter' and 'Amrita Oil' are: Tinospora cordifolia (Amrita, Guduchi), three Sida spp., Mucuna pruriens, Nelumbo nucifera, Desmodium gangeticum, and Tabernaemontana divaricata. These species contain several notorious and potential psychoactive and psychedelic alkaloids, namely: tryptamines, 2-phenylethylamine, ephedrine, aporphines, ibogaine, and L-DOPA. Furthermore, protoberberine alkaloids, tetrahydro-β-carbolines, and tetrahydroisoquinolines with monoamine oxidase inhibitor (MAO-I) activity but also neurotoxic properties are reported. CONCLUSIONS We propose that Soma was a combination of a protoberberine alkaloids containing Tinospora cordifolia juice with MAO-I properties mixed together with a tryptamine rich Desmodium gangeticum extract or a blending of Tinospora cordifolia with an ephedrine and phenylethylamine-rich Sida spp. extract. Tinospora cordifolia combined with Desmodium gangeticum might provide a psychedelic experience with visual effects, while a combination of Tinospora cordifolia with Sida spp. might lead to more euphoric and amphetamine-like experiences.
Collapse
Affiliation(s)
- Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari (CA), Italy.
| | - Laura Casu
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari (CA), Italy
| |
Collapse
|
11
|
Herraiz T, Galisteo J. Naturally-occurring tetrahydro-β-carboline alkaloids derived from tryptophan are oxidized to bioactive β-carboline alkaloids by heme peroxidases. Biochem Biophys Res Commun 2014; 451:42-7. [PMID: 25035927 DOI: 10.1016/j.bbrc.2014.07.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022]
Abstract
β-Carbolines are indole alkaloids that occur in plants, foods, and endogenously in mammals and humans, and which exhibit potent biological, psychopharmacological and toxicological activities. They form from naturally-occurring tetrahydro-β-carboline alkaloids arising from tryptophan by still unknown way and mechanism. Results in this research show that heme peroxidases catalyzed the oxidation of tetrahydro-β-carbolines (i.e. 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid and 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid) into aromatic β-carbolines (i.e. norharman and harman, respectively). This oxidation followed a typical catalytic cycle of peroxidases through redox intermediates I, II, and ferric enzyme. Both, plant peroxidases (horseradish peroxidase, HRP) and mammalian peroxidases (myeloperoxidase, MPO and lactoperoxidase, LPO) catalyzed the oxidation in an efficient manner as determined by kinetic parameters (VMAX and KM). Oxidation of tetrahydro-β-carbolines was inhibited by peroxidase inhibitors such as sodium azide, ascorbic acid, hydroxylamine and excess of H2O2. The formation of aromatic β-carbolines by heme peroxidases can help to explain the presence and activity of these compounds in biological systems.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Juan Galisteo
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
12
|
Herraiz T, Guillén H, Galisteo J. Metabolite profile resulting from the activation/inactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 2-methyltetrahydro-β-carboline by oxidative enzymes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:248608. [PMID: 23984327 PMCID: PMC3745933 DOI: 10.1155/2013/248608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022]
Abstract
Metabolic enzymes are involved in the activation/deactivation of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyiridine (MPTP) neurotoxin and its naturally occurring analogs 2-methyltetrahydro-β-carbolines. The metabolic profile and biotransformation of these protoxins by three enzymes, monoamine oxidase (MAO), cytochrome P450, and heme peroxidases (myeloperoxidase and lactoperoxidase), were investigated and compared. The metabolite profile differed among the enzymes investigated. MAO and heme peroxidases activated these substances to toxic pyridinium and β-carbolinium species. MAO catalyzed the oxidation of MPTP to 1-methyl-4-phenyl-2,3-dihydropyridinium cation (MPDP(+)), whereas heme peroxidases catalyzed the oxidation of MPDP(+) to 1-methyl-4-phenylpyridinium (MPP(+)) and of 2-methyltetrahydro-β-carboline to 2-methyl-3,4-dihydro-β-carbolinium cation (2-Me-3,4-DH β C(+)). These substances were inactivated by cytochrome P450 2D6 through N-demethylation and aromatic hydroxylation (MPTP) and aromatic hydroxylation (2-methyltetrahydro-β-carboline). In conclusion, the toxicological effects of these protoxins might result from a balance between the rate of their activation to toxic products (i.e., N-methylpyridinium-MPP(+) and MPDP(+)- and N-methyl--β--carbolinium- βC(+)-) by MAO and heme peroxidases and the rate of inactivation (i.e., N-demethylation, aromatic hydroxylation) by cytochrome P450 2D6.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | |
Collapse
|
13
|
Herraiz T. Evaluation of the oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to toxic pyridinium cations by monoamine oxidase (MAO) enzymes and its use to search for new MAO inhibitors and protective agents. J Enzyme Inhib Med Chem 2012; 27:810-7. [PMID: 21992679 DOI: 10.3109/14756366.2011.616946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Monoamine oxidase (MAO) enzymes catalyze the oxidative deamination of amines and neurotransmitters and inhibitors of MAO are useful as neuroprotectants. This work evaluates the human MAO-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a dopaminergic neurotoxin, to the directly-acting neurotoxic metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP(+)) and 1-methyl-4-phenylpyridinium (MPP(+)) measured by High-Performance Liquid Chromatography (HPLC), and this approach is subsequently used as a new method for screening of MAO inhibitors and protective agents. Oxidation of MPTP by human MAO-B was more efficient than by MAO-A. R-Deprenyl, a known neuroprotectant, norharman (β-carboline), 5-nitroindazole and menadione (vitamin K3) inhibited MAO-B and reduced the formation of toxic pyridinium cations. Clorgyline and the β-carbolines, harman and norharman, inhibited the oxidation of MPTP by MAO-A. Cigarette smoke, as well as the naturally occurring β-carbolines (norharman and harman) isolated from smoke and coffee inhibited the oxidation of MPTP by MAO-B and/or MAO-A, suggesting protective effects against MPTP. The results show the suitability of the approach used to search for new MAO inhibitors with eventual neuroprotective activity.
Collapse
Affiliation(s)
- Tomás Herraiz
- Spanish National Research Council, (CSIC), Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Madrid, Spain.
| |
Collapse
|
14
|
Handforth A. Harmaline tremor: underlying mechanisms in a potential animal model of essential tremor. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2012; 2. [PMID: 23440018 PMCID: PMC3572699 DOI: 10.7916/d8td9w2p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/24/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND Harmaline and harmine are tremorigenic β-carbolines that, on administration to experimental animals, induce an acute postural and kinetic tremor of axial and truncal musculature. This drug-induced action tremor has been proposed as a model of essential tremor. Here we review what is known about harmaline tremor. METHODS Using the terms harmaline and harmine on PubMed, we searched for papers describing the effects of these β-carbolines on mammalian tissue, animals, or humans. RESULTS Investigations over four decades have shown that harmaline induces rhythmic burst-firing activity in the medial and dorsal accessory inferior olivary nuclei that is transmitted via climbing fibers to Purkinje cells and to the deep cerebellar nuclei, then to brainstem and spinal cord motoneurons. The critical structures required for tremor expression are the inferior olive, climbing fibers, and the deep cerebellar nuclei; Purkinje cells are not required. Enhanced synaptic norepinephrine or blockade of ionic glutamate receptors suppresses tremor, whereas enhanced synaptic serotonin exacerbates tremor. Benzodiazepines and muscimol suppress tremor. Alcohol suppresses harmaline tremor but exacerbates harmaline-associated neural damage. Recent investigations on the mechanism of harmaline tremor have focused on the T-type calcium channel. DISCUSSION Like essential tremor, harmaline tremor involves the cerebellum, and classic medications for essential tremor have been found to suppress harmaline tremor, leading to utilization of the harmaline model for preclinical testing of antitremor drugs. Limitations are that the model is acute, unlike essential tremor, and only approximately half of the drugs reported to suppress harmaline tremor are subsequently found to suppress tremor in clinical trials.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| |
Collapse
|
15
|
The antinociceptive activity of harmicine on chemical-induced neurogenic and inflammatory pain models in mice. Pharmacol Biochem Behav 2012; 102:133-8. [PMID: 22507912 DOI: 10.1016/j.pbb.2012.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 11/21/2022]
Abstract
Harmicine is a β-carboline alkaloid isolated and identified as a major active compound present in many plant species and marine invertebrates. This alkaloid exhibits a wide spectrum of pharmacological activities, including antispasmodic, antipyretic, and anticancer properties. This report described the antinociceptive properties of harmicine by means of chemical experimental models in order to evaluate the use for pain relief. The results demonstrating the potential analgesic properties of harmicine administered intraperitoneally were shown with the writhing test, reducing writhes around 60% (1 mg/kg), and in the formalin test, where harmicine was more effective toward neurogenic (reducing reaction time around 60%, 1 mg/kg) than inflammatory (68% reduction, 10 mg/kg) pain responses. Furthermore, these effects may operate via vanilloid receptors as revealed by the capsaicin test (41% reduction, with 3 mg/kg), as well as via peripheral glutamate receptors as shown by the glutamate test (50% reduction, with 1 mg/kg). Moreover, the opioid antagonist naloxone hydrochloride did not interfere in the antinociceptive properties of harmicine in the writhing test, revealing that this effect may not have a relationship with the opioid systems. Concluding, this report highlights harmicine as a new candidate to be used as analgesic in the future. Therefore, further studies are being undertaken in order to understand the exact mechanisms involved with the antinociceptive properties of harmicine.
Collapse
|
16
|
Herraiz T, Guillén H. Inhibition of the bioactivation of the neurotoxin MPTP by antioxidants, redox agents and monoamine oxidase inhibitors. Food Chem Toxicol 2011; 49:1773-81. [DOI: 10.1016/j.fct.2011.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 02/06/2023]
|
17
|
Mann A, Tyndale RF. Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells. Eur J Neurosci 2010; 31:1185-93. [PMID: 20345925 DOI: 10.1111/j.1460-9568.2010.07142.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 (CYP) 2D6 is an enzyme that is expressed in liver and brain. It can inactivate neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroisoquinoline and beta-carbolines. Genetically slow CYP2D6 metabolizers are at higher risk for developing Parkinson's disease, a risk that increases with exposure to pesticides. The goal of this study was to investigate the neuroprotective role of CYP2D6 in an in-vitro neurotoxicity model. SH-SY5Y human neuroblastoma cells express CYP2D6 as determined by western blotting, immunocytochemistry and enzymatic activity. CYP2D6 metabolized 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin and the CYP2D6-specific inhibitor quinidine (1 microM) blocked 96 +/- 1% of this metabolism, indicating that CYP2D6 is functional in this cell line. Treatment of cells with CYP2D6 inhibitors (quinidine, propanolol, metoprolol or timolol) at varying concentrations significantly increased the neurotoxicity caused by 1-methyl-4-phenylpyridinium (MPP+) at 10 and 25 microM by between 9 +/- 1 and 22 +/- 5% (P < 0.01). We found that CYP3A is also expressed in SH-SY5Y cells and inhibiting CYP3A with ketoconazole significantly increased the cell death caused by 10 and 25 microM of MPP+ by between 8 +/- 1 and 30 +/- 3% (P < 0.001). Inhibiting both CYP2D6 and CYP3A showed an additive effect on MPP+ neurotoxicity. These data further support a possible role for CYP2D6 in neuroprotection from Parkinson's disease-causing neurotoxins, especially in the human brain where expression of CYP2D6 is high in some regions (e.g. substantia nigra).
Collapse
Affiliation(s)
- Amandeep Mann
- The Centre for Mental Health and Addictions, and Centre for Addiction and Mental Health Room 4326, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada, M5S 1A8
| | | |
Collapse
|
18
|
Herraiz T, Arán VJ, Guillén H. Nitroindazole compounds inhibit the oxidative activation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin to neurotoxic pyridinium cations by human monoamine oxidase (MAO). Free Radic Res 2009; 43:975-84. [DOI: 10.1080/10715760903159170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci U S A 2009; 106:8043-8. [PMID: 19416912 DOI: 10.1073/pnas.0900358106] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toxic organic cations can damage nigrostriatal dopaminergic pathways as seen in most parkinsonian syndromes and in some cases of illicit drug exposure. Here, we show that the organic cation transporter 3 (Oct3) is expressed in nondopaminergic cells adjacent to both the soma and terminals of midbrain dopaminergic neurons. We hypothesized that Oct3 contributes to the dopaminergic damage by bidirectionally regulating the local bioavailability of toxic species. Consistent with this view, Oct3 deletion and pharmacological inhibition hampers the release of the toxic organic cation 1-methyl-4-phenylpyridinium from astrocytes and protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration in mice. Furthermore, Oct3 deletion impairs the removal of the excess extracellular dopamine induced by methamphetamine and enhances striatal dopaminergic terminal damage caused by this psychostimulant. These results may have far-reaching implications for our understanding of the mechanism of cell death in a wide range of neurodegenerative diseases and may open new avenues for neuroprotective intervention.
Collapse
|
20
|
Herraiz T, Guillén H, Arán VJ. Oxidative Metabolism of the Bioactive and Naturally Occurring β-Carboline Alkaloids, Norharman and Harman, by Human Cytochrome P450 Enzymes. Chem Res Toxicol 2008; 21:2172-80. [DOI: 10.1021/tx8002565] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tomás Herraiz
- Spanish Council for Scientific Research, Instituto de Fermentaciones Industriales, CSIC, and Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Hugo Guillén
- Spanish Council for Scientific Research, Instituto de Fermentaciones Industriales, CSIC, and Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Vicente J. Arán
- Spanish Council for Scientific Research, Instituto de Fermentaciones Industriales, CSIC, and Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
21
|
Herraiz T. Identification and occurrence of beta-carboline alkaloids in raisins and inhibition of monoamine oxidase (MAO). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8534-40. [PMID: 17883257 DOI: 10.1021/jf0719151] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Monoamine oxidase (MAO) is a mitochondrial enzyme involved in the oxidative catabolism of neurotransmitters and xenobiotic amines, including vasopressor and neurotoxic amines, and a current target for antidepressant and neuroprotective drugs. Raisin extracts and homogenates exhibited reversible in vitro inhibition of MAO isozymes, particularly MAO-A, suggesting the presence of MAO-inhibiting substances. Chromatographic and spectrometric studies showed the occurrence of aromatic beta-carboline alkaloids in raisins, and norharman and harman were identified as the key contributors to MAO inhibition. On average, harman ranged from 6 to 644 ng/g and norharman from 2 to 120 ng/g. Several technological variables appeared to determine the presence of these compounds in raisins. Dark-brown raisins (i.e., sun-dried) contained much higher levels than golden raisins. Tetrahydro-beta-carboline-3-carboxylic acid compounds that are direct precursors of aromatic beta-carbolines were also identified in raisins and appeared in a higher amount, reaching up to 50 microg/g. beta-Carbolines were isolated from raisins and acted as good competitive inhibitors of MAO-A (harman) and MAO-B (norharman) isozymes. These results suggest that beta-carboline alkaloids and perhaps raisins containing a high level of beta-carbolines might exhibit potential activity as MAO inhibitors. The results also show that some raisins can be a source of dietary exposure to bioactive beta-carbolines.
Collapse
Affiliation(s)
- Tomás Herraiz
- Spanish Council for Scientific Research, CSIC, Instituto de Fermentaciones Industriales, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|