1
|
Alam K, Hossain MS, Zhao Y, Zhang Z, Xu S, Hao J, Yang Q, Li A. Tryptanthrins as multi-bioactive agents: discovery, diversity distribution and synthesis. Bioorg Chem 2025; 154:108071. [PMID: 39721143 DOI: 10.1016/j.bioorg.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Tryptanthrin and its derivatives, representing a type of alkaloids with indoloquinazoline structures, were first obtained from blue plants and indigo, and then extracted from fungi, marine bacteria and a number of many other natural sources. Various strategies for their chemical synthesis have been reported while tryptanthrin biosynthesis has been less investigated. Tryptanthrin and its derivative products have a broad range of pharmacological and biological functions. In this review, we cover the sources, chemical synthesis and biosynthesis, modes of action and biological activities of tryptanthrin and its derivatives.
Collapse
Affiliation(s)
- Khorshed Alam
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Bangladesh Standards and Testing Institution (BSTI), Dhaka 1208, Bangladesh.
| | - Md Sawkat Hossain
- Chittagong Medical College Hospital, K B Fazlul Kader Road, Panchlaish, Chattogram 4203, Bangladesh.
| | - Yiming Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Zhiheng Zhang
- Haide College, Ocean University of China, Qingdao 266100, China.
| | - Shouying Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jinfang Hao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Gajos-Michniewicz A, Czyz M. Therapeutic Potential of Natural Compounds to Modulate WNT/β-Catenin Signaling in Cancer: Current State of Art and Challenges. Int J Mol Sci 2024; 25:12804. [PMID: 39684513 DOI: 10.3390/ijms252312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Targeted therapies and immunotherapies have improved the clinical outcome of cancer patients; however, the efficacy of treatment remains frequently limited due to low predictability of response and development of drug resistance. Therefore, novel therapeutic strategies for various cancer types are needed. Current research emphasizes the potential therapeutic value of targeting WNT/β-catenin dependent signaling that is deregulated in various cancer types. Targeting the WNT/β-catenin signaling pathway with diverse synthetic and natural agents is the subject of a number of preclinical studies and clinical trials for cancer patients. The usage of nature-derived agents is attributed to their health benefits, reduced toxicity and side effects compared to synthetic agents. The review summarizes preclinical studies and ongoing clinical trials that aim to target components of the WNT/β-catenin pathway across a diverse spectrum of cancer types, highlighting their potential to improve cancer treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
3
|
Han NR, Park HJ, Ko SG, Moon PD. Tryptanthrin Down-Regulates Oncostatin M by Targeting GM-CSF-Mediated PI3K-AKT-NF-κB Axis. Nutrients 2024; 16:4109. [PMID: 39683503 DOI: 10.3390/nu16234109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Oncostatin M (OSM) is involved in several inflammatory responses. Tryptanthrin (TRYP), as a natural alkaloid, is a bioactive compound derived from indigo plants. Objectives/ Methods: The purpose of this study is to investigate the potential inhibitory activity of TRYP on OSM release from neutrophils using neutrophils-like differentiated (d)HL-60 cells and neutrophils from mouse bone marrow. RESULTS The results showed that TRYP reduced the production and mRNA expression levels of OSM in the granulocyte-macrophage colony-stimulating factor (GM-CSF)-stimulated neutrophils-like dHL-60 cells. In addition, TRYP decreased the OSM production levels in the GM-CSF-stimulated neutrophils from mouse bone marrow. TRYP inhibited the phosphorylation of phosphatidylinositol 3-kinase (PI3K), AKT, and nuclear factor (NF)-κB in the GM-CSF-stimulated neutrophils-like dHL-60 cells. CONCLUSIONS Therefore, these results reveal for the first time that TRYP inhibits OSM release via the down-regulation of PI3K-AKT-NF-κB axis from neutrophils, presenting its potential as a therapeutic agent for inflammatory responses.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Chang CS, Bai LY, Chiu CF, Hu JL, Weng JR. Discovery of the tryptanthrin-derived indoloquinazoline as an anti-breast cancer agent via ERK/JNK activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:3710-3720. [PMID: 38511855 DOI: 10.1002/tox.24226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Tryptanthrin, an alkaloid applied in traditional Chinese medicine, exhibits a variety of pharmacological activities. This study aimed to investigate the anti-tumor activity of the tryptanthrin derivative (8-cyanoindolo[2,1-b]quinazoline-6,12-dione [CIQ]) in breast cancer cells. In both MDA-MB-231 and MCF-7 breast cancer cells, CIQ inhibited cell viability and promoted caspase-dependent apoptosis. At the concentration- and time-dependent ways, CIQ increased the levels of p-ERK, p-JNK, and p-p38 in breast cancer cells. We found that exposure to the JNK inhibitor or the ERK inhibitor partially reversed CIQ's viability. We also observed that CIQ increased reactive oxygen species (ROS) generation, and upregulated the phosphorylation and expression of H2AX. However, the pretreatment of the antioxidants did not protect the cells against CIQ's effects on cell viability and apoptosis, which suggested that ROS does not play a major role in the mechanism of action of CIQ. In addition, CIQ inhibited the invasion of MDA-MB-231 cells and decreased the expression of the prometastatic factors (MMP-2 and Snail). These findings demonstrated that the possibility of this compound to show promise in playing an important role against breast cancer.
Collapse
Affiliation(s)
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Chang-Fang Chiu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Cancer Center, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Lan Hu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Zhou X. Recent advances of tryptanthrin and its derivatives as potential anticancer agents. RSC Med Chem 2024; 15:1127-1147. [PMID: 38665827 PMCID: PMC11042161 DOI: 10.1039/d3md00698k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
Tryptanthrin is one of the well-known natural alkaloids with a broad spectrum of biological activities and can act as anti-inflammatory, anticancer, antibacterial, antifungal, antiviral, antitubercular, and other agents. Owing to its potent anticancer activity, tryptanthrin has been widely explored for the therapy of various cancers besides being effective against other diseases. Tryptanthrin with a pharmacological indoloquinazoline moiety can not only be modified by different functional groups to achieve various tryptanthrin derivatives, which may realize the improvement of anticancer activity, but also bind with different metal ions to obtain varied tryptanthrin metal complexes as potential anticancer agents, due to their higher anticancer activities in comparison with tryptanthrin (or its derivatives) and cisplatin. This review outlines the recent advances in the syntheses, structures, and anticancer activities of tryptanthrin derivatives and their metal complexes, trying to reveal their structure-activity relationships and to provide a helpful way for medicinal chemists in the development of new and effective tryptanthrin-based anticancer agents.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Second Clinical Medicine College of Lanzhou University Lanzhou China
| |
Collapse
|
6
|
Iqbal S, Farhanaz, Roohi, Zaheer MR, Shankar K, Hussain MK, Zia Q, Rehman MT, AlAjmi MF, Gupta A. Visible-light promoted catalyst-free (VLCF) multi-component synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids: evaluation of in vitro anticancer activity, molecular docking, MD simulation and DFT studies. J Biomol Struct Dyn 2024; 42:3145-3165. [PMID: 37227775 DOI: 10.1080/07391102.2023.2214229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
A new and highly efficient visible-light-promoted catalyst free (VLCF) strategy for neat and clean synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids (6a-d) has been introduced. We have performed visible-light triggered 1,3-Dipolar cycloaddition reaction of maleimide (5a-d) with azomethine ylide generated in situ derived from tryptanthrin (3) and L-proline (4) to obtain desired products (6a-d) in good to excellent yield. Authentication and characterization of product was done using various spectroscopic techniques such as IR, 1H NMR, 13C NMR, Mass spectrometry and single crystal XRD analysis. To explain the reaction spontaneity, product stability, reactivity as well as possible mode of the interaction a quantum chemical investigation was performed and depicted through DFT studies. The synthesized compound 6a was also evaluated for anti-proliferative activity against a panel of five cancer cell lines (MCF-7, MDA-MB-231, HeLa, PC-3 and Ishikawa) and normal human embryonic kidney (HEK-293) cell line by using MTT assay. Compound 6a showed very good in vitro anti-proliferative activity (IC50 = 6.58-17.98 μM) against four cancer cell lines and no cytotoxicity against normal HEK-293. In order to evaluate the anticancer potential of compounds 6a-d, molecular docking was performed against wild type and mutant EGFR. The results suggest that all the compounds occupied the active site of both enzymes, with a strong binding energy (-10.2 to -11.5 kcal/mol). These results have been confirmed by molecular dynamics simulation by evaluating root mean square deviation (RMSD) and root mean square fluctuation (RMSF), along with principal component analysis (PCA).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Safia Iqbal
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Farhanaz
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Roohi
- Protein Research Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Rehan Zaheer
- Department of Chemistry, R.M.P.S.P. Girls Post Graduate College, Basti, India
| | - Krapa Shankar
- Sun Pharmaceutical industries Ltd, Sarhaul, Sector 18, Gurgaon, India
| | | | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Md Tabish Rehman
- Department of pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anamika Gupta
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
7
|
Zou Y, Zhang G, Li C, Long H, Chen D, Li Z, Ouyang G, Zhang W, Zhang Y, Wang Z. Discovery of Tryptanthrin and Its Derivatives and Its Activities against NSCLC In Vitro via Both Apoptosis and Autophagy Pathways. Int J Mol Sci 2023; 24:ijms24021450. [PMID: 36674964 PMCID: PMC9861433 DOI: 10.3390/ijms24021450] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
In this study, a series of novel tryptanthrin derivatives were synthesized and their inhibitory activities against selected human cancer cell lines, namely, lung (A549), chronic myeloid leukemia (K562), prostate (PC3), and live (HepG2), were evaluated using a methyl thiazolyl tetrazolium colorimetric (MTT) assay. Among the tested compounds, compound C1 exhibited a promising inhibitory effect on the A549 cell line with an IC50 value of 0.55 ± 0.33 µM. The observation of the cell morphological result showed that treatment with C1 could significantly inhibit the migration of A549 cells through the cell migration assay. Moreover, after treatment with C1, the A549 cells exhibited a typical apoptotic morphology and obvious autophagy. In addition, the detection of apoptosis and the mitochondrial membrane potential indicated that C1 induced A549 cell apoptosis via modulating the levels of Bcl2 family members and disrupted the mitochondrial membrane potential. Compound C1 also suppressed the expression of cyclin D1 and increased the expression of p21 in the A549 cells, inducing cell cycle arrest in the G2/M phase in a dose dependent manner. The further mechanism study found that C1 markedly increased the transformation from LC3-I to LC3-II. Taken together, our results suggest that C1 is capable of inhibiting the proliferation of non-small cell lung cancer (NSCLC) cells, inducing cell apoptosis, and triggering autophagy.
Collapse
Affiliation(s)
- Yayu Zou
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Guanglong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang 550025, China
| | - Chengpeng Li
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Haitao Long
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Danping Chen
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Zhurui Li
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Guiping Ouyang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Wenjing Zhang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Yi Zhang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Zhenchao Wang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel./Fax: +86-851-8830-8717
| |
Collapse
|
8
|
Tryptanthrin ameliorates imiquimod-induced psoriasis in mice by suppressing inflammation and oxidative stress via NF-κB/MAPK/Nrf2 pathways. J Nat Med 2023; 77:188-201. [PMID: 36378401 DOI: 10.1007/s11418-022-01664-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Nowadays, approximately 3% of the world's population suffers from psoriasis, an inflammatory dermatosis with high recurrence. Tryptanthrin (TRYP) is a natural alkaloid that possesses anti-inflammatory activities on multiple diseases. The present study aimed to unravel whether TRYP could relieve psoriasis and how it works. Imiquimod (IMQ)-induced psoriatic mouse models were administered saline (model), TRYP (25 and 100 mg/kg), or methotrexate (MTX, 1 mg/kg) and considered as the positive control. TNF-α-induced keratinocytes (HaCaT cells) with TRYP (0, 10, 20 and 50 nM) were used for in vitro verification. Psoriasis area severity index (PASI) and spleen index were evaluated. Th17 cell infiltration in both spleens and lymph nodes was detected by flow cytometry. The expression levels of inflammatory cytokines, glutathione (GSH), malondialdehyde (MDA) and catalase (CAT), as well as superoxide dismutase (SOD), were examined by ELISA, while the NF-κB/MAPK/Nrf2 pathways-related proteins were determined by western blot. TRYP significantly attenuated psoriatic skin lesions, increased GSH, SOD, and CAT levels, reduced spleen index, accumulation of MDA, the abundance of Th17 cells in both the spleen and lymph nodes, and secretion of inflammatory cytokines in IMQ-induced psoriatic mouse models. Mechanically, TRYP suppressed IMQ-activated NF-κB (IκB and p65), MAPK (JNK, ERK1/2, and p38), and activated Nrf2 signaling pathways. Similar alterations for inflammation and oxidative stress parameters and NF-κB/MAPK/Nrf2 pathways were also observed in TNF-α-treated HaCaT cells upon TRYP treatment. Our findings suggested TRYP is effective in protecting against inflammation and oxidative stress in psoriasis-like pathogenesis by modulating the NF-κB/MAPK/Nrf2 pathways.
Collapse
|
9
|
Zunica ERM, Axelrod CL, Kirwan JP. Phytochemical Targeting of Mitochondria for Breast Cancer Chemoprevention, Therapy, and Sensitization. Int J Mol Sci 2022; 23:ijms232214152. [PMID: 36430632 PMCID: PMC9692881 DOI: 10.3390/ijms232214152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is a common and deadly disease that causes tremendous physical, emotional, and financial burden on patients and society. Early-stage breast cancer and less aggressive subtypes have promising prognosis for patients, but in aggressive subtypes, and as cancers progress, treatment options and responses diminish, dramatically decreasing survival. Plants are nutritionally rich and biologically diverse organisms containing thousands of metabolites, some of which have chemopreventive, therapeutic, and sensitizing properties, providing a rich source for drug discovery. In this study we review the current landscape of breast cancer with a central focus on the potential role of phytochemicals for treatment, management, and disease prevention. We discuss the relevance of phytochemical targeting of mitochondria for improved anti-breast cancer efficacy. We highlight current applications of phytochemicals and derivative structures that display anti-cancer properties and modulate cancer mitochondria, while describing future applicability and identifying areas of promise.
Collapse
|
10
|
Natural quinazolinones: From a treasure house to promising anticancer leads. Eur J Med Chem 2022; 245:114915. [DOI: 10.1016/j.ejmech.2022.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
|
11
|
Shabna A, Antony J, Vijayakurup V, Saikia M, Liju VB, Retnakumari AP, Amrutha NA, Alex VV, Swetha M, Aiswarya SU, Jannet S, Unni US, Sundaram S, Sherin DR, Anto NP, Bava SV, Chittalakkottu S, Ran S, Anto RJ. Pharmacological attenuation of melanoma by tryptanthrin pertains to the suppression of MITF-M through MEK/ERK signaling axis. Cell Mol Life Sci 2022; 79:478. [PMID: 35948813 PMCID: PMC11072980 DOI: 10.1007/s00018-022-04476-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
Melanoma is the most aggressive among all types of skin cancers. The current strategies against melanoma utilize BRAFV600E, as a focal point for targeted therapy. However, therapy resistance developed in melanoma patients against the conventional anti-melanoma drugs hinders the ultimate benefits of targeted therapies. A major mechanism by which melanoma cells attain therapy resistance is via the activation of microphthalmia-associated transcription factor-M (MITF-M), the key transcription factor and oncogene aiding the survival of melanoma cells. We demonstrate that tryptanthrin (Tpn), an indole quinazoline alkaloid, which we isolated and characterized from Wrightia tinctoria, exhibits remarkable anti-tumor activity towards human melanoma through the down-regulation of MITF-M. Microarray analysis of Tpn-treated melanoma cells followed by a STRING protein association network analysis revealed that differential expression of genes in melanoma converges at MITF-M. Furthermore, in vitro and in vivo studies conducted using melanoma cells with differential MITF-M expression status, endogenously or ectopically, demonstrated that the anti-melanoma activity of Tpn is decisively contingent on its efficacy in down-regulating MITF-M expression. Tpn potentiates the degradation of MITF-M via the modulation of MEK1/2-ERK1/2-MITF-M signaling cascades. Murine models demonstrate the efficacy of Tpn in attenuating the migration and metastasis of melanoma cells, while remaining pharmacologically safe. In addition, Tpn suppresses the expression of mutated BRAFV600E and inhibits Casein Kinase 2α, a pro-survival enzyme that regulates ERK1/2 homeostasis in many tumor types, including melanoma. Together, we point to a promising anti-melanoma drug in Tpn, by virtue of its attributes to impede melanoma invasion and metastasis by attenuating MITF-M.
Collapse
Affiliation(s)
- Anwar Shabna
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Jayesh Antony
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Zoology, St. Thomas College, Palai, Kottayam, Kerala, India
| | - Vinod Vijayakurup
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Anatomy and Cell Biology, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL, 32610, USA
| | - Minakshi Saikia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Vijayasteltar B Liju
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Archana P Retnakumari
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Nisthul A Amrutha
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kannur, Kerala, 670661, India
| | - Vijai V Alex
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Sreekumar U Aiswarya
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Somaraj Jannet
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Uma Subramanian Unni
- KRIBS-BioNest, Third Campus of Rajiv Gandhi Centre for Biotechnology (RGCB) Kalamassery, Kochi, Kerala, India
| | - Sankar Sundaram
- Department of Pathology, Government Medical College, Kottayam, Kerala, 686008, India
| | - Daisy R Sherin
- Indian Institute of Information Technology and Management, Karyavattom, Kazhakkoottam, Kerala, 695581, India
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Smitha V Bava
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Sadasivan Chittalakkottu
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kannur, Kerala, 670661, India
| | - Sophia Ran
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, PO Box 19626, Springfield, IL, USA
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
12
|
Garcia AR, Silva-Luiz YPG, Alviano CS, Alviano DS, Vermelho AB, Rodrigues IA. The Natural Alkaloid Tryptanthrin Induces Apoptosis-like Death in Leishmania spp. Trop Med Infect Dis 2022; 7:tropicalmed7060112. [PMID: 35736990 PMCID: PMC9231190 DOI: 10.3390/tropicalmed7060112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a vector-borne disease against which there are no approved vaccines, and the treatment is based on highly toxic drugs. The alkaloids consist of a chemical class of natural nitrogen-containing substances with a long history of antileishmanial activity. The present study aimed at determining the antileishmanial activity and in silico pharmacokinetic and toxicological potentials of tryptanthrin alkaloid. The anti-Leishmania amazonensis and anti-L. infantum assays were performed against both promastigotes and intracellular amastigotes. Cellular viability was determined by parasites’ ability to grow (promastigotes) or differentiate (amastigotes) after incubation with tryptanthrin. The mechanisms of action were explored by mitochondrion dysfunction and apoptosis-like death evaluation. For the computational pharmacokinetics and toxicological analysis (ADMET), tryptanthrin was submitted to the PreADMET webserver. The alkaloid displayed anti-promastigote activity against L. amazonensis and L. infantum (IC50 = 11 and 8.0 μM, respectively). Tryptanthrin was active against intracellular amastigotes with IC50 values of 75 and 115 μM, respectively. Mitochondrial membrane depolarization was observed in tryptanthrin-treated promastigotes. In addition, parasites undergoing apoptosis-like death were detected after 18 h of exposure. In silico ADMET predictions revealed that tryptanthrin has pharmacokinetic and toxicological properties similar to miltefosine. The results presented herein demonstrate that tryptanthrin is an interesting drug candidate against leishmaniasis.
Collapse
Affiliation(s)
- Andreza R. Garcia
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Yasmin P. G. Silva-Luiz
- Graduate Program in Science (Microbiology), Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Celuta S. Alviano
- Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.A.); dani (D.S.A.); (A.B.V.)
| | - Daniela S. Alviano
- Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.A.); dani (D.S.A.); (A.B.V.)
| | - Alane B. Vermelho
- Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.A.); dani (D.S.A.); (A.B.V.)
| | - Igor A. Rodrigues
- Department of Natural Products and Food, School of Pharmacy, CCS, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence:
| |
Collapse
|
13
|
G MS, Swetha M, Keerthana CK, Rayginia TP, Anto RJ. Cancer Chemoprevention: A Strategic Approach Using Phytochemicals. Front Pharmacol 2022; 12:809308. [PMID: 35095521 PMCID: PMC8793885 DOI: 10.3389/fphar.2021.809308] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer chemoprevention approaches are aimed at preventing, delaying, or suppressing tumor incidence using synthetic or natural bioactive agents. Mechanistically, chemopreventive agents also aid in mitigating cancer development, either by impeding DNA damage or by blocking the division of premalignant cells with DNA damage. Several pre-clinical studies have substantiated the benefits of using various dietary components as chemopreventives in cancer therapy. The incessant rise in the number of cancer cases globally is an issue of major concern. The excessive toxicity and chemoresistance associated with conventional chemotherapies decrease the success rates of the existent chemotherapeutic regimen, which warrants the need for an efficient and safer alternative therapeutic approach. In this scenario, chemopreventive agents have been proven to be successful in protecting the high-risk populations from cancer, which further validates chemoprevention strategy as rational and promising. Clinical studies have shown the effectiveness of this approach in managing cancers of different origins. Phytochemicals, which constitute an appreciable proportion of currently used chemotherapeutic drugs, have been tested for their chemopreventive efficacy. This review primarily aims to highlight the efficacy of phytochemicals, currently being investigated globally as chemopreventives. The clinical relevance of chemoprevention, with special emphasis on the phytochemicals, curcumin, resveratrol, tryptanthrin, kaempferol, gingerol, emodin, quercetin genistein and epigallocatechingallate, which are potential candidates due to their ability to regulate multiple survival pathways without inducing toxicity, forms the crux of this review. The majority of these phytochemicals are polyphenols and flavanoids. We have analyzed how the key molecular targets of these chemopreventives potentially counteract the key drivers of chemoresistance, causing minimum toxicity to the body. An overview of the underlying mechanism of action of these phytochemicals in regulating the key players of cancer progression and tumor suppression is discussed in this review. A summary of the clinical trials on the important phytochemicals that emerge as chemopreventives is also incorporated. We elaborate on the pre-clinical and clinical observations, pharmacokinetics, mechanism of action, and molecular targets of some of these natural products. To summarize, the scope of this review comprises of the current status, limitations, and future directions of cancer chemoprevention, emphasizing the potency of phytochemicals as effective chemopreventives.
Collapse
Affiliation(s)
- Mohan Shankar G
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - C K Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Tennyson P Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
14
|
Teja C, Ramanathan K, Naresh K, Vidya R, Gomathi K, Nawaz FR. Design, Synthesis, and Biological Evaluation of Tryptanthrin Alkaloids as Potential anti-Diabetic and Anticancer Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.2021257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - Karuppasamy Ramanathan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kondapalli Naresh
- Department of Pharmaceutical Chemistry, G. Pulla Reddy College of Pharmacy, Hyderabad, India
| | - R. Vidya
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - K. Gomathi
- Dr. MGR Educational Research Institute, Chennai, India
| | - Fazlur Rahman Nawaz
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
15
|
Synthetic Tryptanthrin Derivatives Induce Cell Cycle Arrest and Apoptosis via Akt and MAPKs in Human Hepatocellular Carcinoma Cells. Biomedicines 2021; 9:biomedicines9111527. [PMID: 34829756 PMCID: PMC8615277 DOI: 10.3390/biomedicines9111527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
Trytanthrin, found in Ban-Lan-Gen, is a natural product containing an indoloquinazoline moiety and has been shown to possess anti-inflammatory and anti-viral activities. Chronic inflammation and hepatitis B are known to be associated with the progression of hepatocellular carcinoma (HCC). In this study, a series of tryptanthrin derivatives were synthesized to generate potent anti-tumor agents against HCC. This effort yielded two compounds, A1 and A6, that exhibited multi-fold higher cytotoxicity in HCC cells than the parent compound. Flow cytometric analysis demonstrated that A1 and A6 caused S-phase arrest and downregulated the expression of cyclin A1, B1, CDK2, and p-CDC2. In addition to inducing caspase-dependent apoptosis, A1 and A6 exhibited similar regulation of the phosphorylation or expression of multiple signaling targets, including Akt, NF-κB, and mitogen-activated protein kinases. The anti-tumor activities of A1 and A6 were also attributable to the generation of reactive oxygen species, accompanied by an increase in p-p53 levels. Therefore, A1 and A6 have potential clinical applications since they target diverse aspects of cancer cell growth in HCC.
Collapse
|
16
|
Wang Y, Li S, Wang X, Chen Q, He Z, Luo C, Sun J. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021; 271:120737. [PMID: 33690103 DOI: 10.1016/j.biomaterials.2021.120737] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Despite that great progression has been made in nanoparticulate drug delivery systems (nano-DDS), multiple drug delivery dilemmas still impair the delivery efficiency of nanomedicines. Rational design of smart transformable nano-DDS based on the in vivo drug delivery process represents a promising strategy for overcoming delivery obstacle of nano-DDS. In recent years, tremendous efforts have been devoted to developing smart transformable anticancer nanomedicines. Herein, we provide a review to outline the advances in this emerging field. First, smart size-reducible nanoparticles (NPs) for deep tumor penetration are summarized, including carrier degradation-induced, protonation-triggered and photobleaching-induced size reduction. Second, emerging transformable nanostructures for various therapeutic applications are discussed, including prolonging tumor retention, reversing drug-resistance, inhibiting tumor metastasis, preventing tumor recurrence and non-pharmaceutical therapy. Third, shell-detachable nanocarriers are introduced, focusing on chemical bonds breaking-initiated, charge repulsion-mediated and exogenous stimuli-triggered shell detachment approaches. Finally, the future perspectives and challenges of transformable nanomedicines in clinical cancer therapy are highlighted.
Collapse
Affiliation(s)
- Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Shumeng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xinhui Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
17
|
Yu H, Li TN, Ran Q, Huang QW, Wang J. Strobilanthes cusia (Nees) Kuntze, a multifunctional traditional Chinese medicinal plant, and its herbal medicines: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113325. [PMID: 32889034 DOI: 10.1016/j.jep.2020.113325] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Strobilanthes cusia (Nees) Kuntze (SCK, Malan), a traditional Chinese medicinal plant, has long applied to detoxification, defervescence, detumescence and antiphlogosis. "Southern Banlangen" (Rhizoma et Radix Baphicacanthis Cusiae, RRBC), root and rhizome of SCK, is widely used for treatment of many epidemic diseases. Malanye (Southern Daqingye), stem and leaf of SCK, is an antipyretic-alexipharmic drug frequently-used in southern China. Qingdai (Indigo Naturalis, IN), a processed product of SCK, is always applied to dermatoses in the folk. AIM OF THE REVIEW In order to elucidate the historical uses, recent advances and pharmaceutical prospects of SCK, we summarized roundly in aspects of history, processing method, chemical constitution, quality control, pharmacological activity and toxicity. Some deficiencies in current studies and research directions in the future are also discussed. This is the first comprehensive review of SCK and its herbal medicines, which may be of some help for further research. METHODOLOGY Comprehensive analysis was conducted on the basis of academic papers, pharmaceutical monographs, ancient medicinal works, and drug standards of China. All available information on SCK and its herbal medicines was collected by using the keywords such as "Strobilanthes cusia", "Southern Banlangen", "indirubin", "tryptanthrin" through different electronic databases including NCBI Pubmed, Google Scholar, Chinese National Knowledge Infrastructure and so on. Pharmacopoeia of China and some ancient works were obtained from National Digital Library of China. RESULT Medicinal uses of SCK were already described by famous ancient researchers. Because of vague description, plant species in some works cannot be confirmed. Literature demonstrated that multiple components including total 36 alkaloids and 35 glycosides, the main bioactive components of SCK, were found in SCK and its herbal medicines. Modern studies indicated that SCK and some of its components had multiple pharmacological effects including resistance to cancer, remission of inflammation, suppression of microorganisms, relief of dermatoses, and so on. However, studies on pharmacology, pharmacokinetics, and quality control are still not enough. CONCLUSION A number of reports suggested that SCK and its processed medicines could be promising drug candidates for multiple diseases especially promyelocytic leukemia, ulcerative colitis (UC) and psoriasis. However, bioactive activities of most components, especially glycosides should still be explored further. It is crucial to elucidate the in-depth molecular mechanisms, and pharmacokinetic characteristics of main components in those herbal medicines. Moreover, to ensure the effectiveness of clinical medication, future studies should undoubtedly give the priority to clarifying the effective compositions of SCK, and then a measurement standard of those indicators should be protocolled to establish a comprehensive quality evaluation mode.
Collapse
Affiliation(s)
- Han Yu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Ting-Na Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| |
Collapse
|
18
|
Obafemi CA, Adegbite OB, Fadare OA, Iwalewa EO, Omisore NO, Sanusi K, Yilmaz Y, Ceylan Ü. Tryptanthrin from microwave-assisted reduction of isatin using solid-state-supported sodium borohydride: DFT calculations, molecular docking and evaluation of its analgesic and anti-inflammatory activity. Heliyon 2021; 7:e05756. [PMID: 33437886 PMCID: PMC7788106 DOI: 10.1016/j.heliyon.2020.e05756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/27/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Tryptanthrin is a potent natural alkaloid with good in vitro pharmacological properties. Herein, we report the synthesis of the compound via a new method involving the reduction of isatin with solid-state-supported sodium borohydride under microwave irradiation. The title compound has been tested for its analgesic and anti-inflammatory activity. The results showed that tryptanthrin dose dependently inhibits oedema and pain formation in all the models used. The agent also exhibited significant higher effects in its anti-inflammatory and analgesic activities better than positive drugs (aspirin and indomethacin) being currently used in the treatment and in the management of acute and chronic forms of pain and inflammatory disorders. The inhibitory potential of the compound was investigated by molecular docking using the software AutoDock Vina. The docking results were used to better rationalize the action and prediction of the binding affinity of tryptanthrin. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (2df, 2pd) level of theory showed that compared to ascorbic acid, tryptanthrin shows higher antioxidant activity which may be improved upon by functionalizing the aromatic core to enhance its solubility in polar solvents. The calculated electronic and thermodynamic properties obtained for tryptanthrin compete well with the standard ascorbic acid.
Collapse
Affiliation(s)
- Craig A Obafemi
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Oluwaseun B Adegbite
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olatomide A Fadare
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ezekiel O Iwalewa
- Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan; Nigeria
| | - Nusrat O Omisore
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Kayode Sanusi
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yusuf Yilmaz
- NT Vocational School, Gaziantep University, 27310, Gaziantep, Turkey
| | - Ümit Ceylan
- Department of Medical Services and Techniques, Vocational High School Health Services, Giresun University, 28100, Giresun, Turkey
| |
Collapse
|
19
|
Qi-Yue Y, Ting Z, Ya-Nan H, Sheng-Jie H, Xuan D, Li H, Chun-Guang X. From natural dye to herbal medicine: a systematic review of chemical constituents, pharmacological effects and clinical applications of indigo naturalis. Chin Med 2020; 15:127. [PMID: 33317592 PMCID: PMC7734464 DOI: 10.1186/s13020-020-00406-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Background Indigo naturalis is a blue dye in ancient, as well as an extensive used traditional Chinese medicine. It has a wide spectrum of pharmacological properties and can be used to treat numerous ailments such as leukemia, psoriasis, and ulcerative colitis. This article aims to expand our understanding of indigo naturalis in terms of its chemical constituents, pharmacological action and clinical applications. Methods We searched PubMed, web of science, CNKI, Google academic, Elsevier and other databases with the key words of “Indigo naturalis”, and reviewed and sorted out the modern research of indigo naturalis based on our research results. Results We outlined the traditional manufacturing process, chemical composition and quality control of indigo naturalis, systematically reviewed traditional applictions, pharmacological activities and mechanism of indigo naturalis, and summarized its clinical trials about treatment of psoriasis, leukemia and ulcerative colitis. Conclusions Indigo naturalis has a variety of pharmacological activities, such as anti-inflammatory, antioxidant, antibacterial, antiviral, immunomodulatory and so on. It has very good clinical effect on psoriasis, leukemia and ulcerative colitis. However, it should be noted that long-term use of indigo naturalis may produce some reversible adverse reactions. In summarize, indigo naturalis is an extremely important drug with great value and potential.![]()
Collapse
Affiliation(s)
- Yang Qi-Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, People's Republic of China
| | - Zhang Ting
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - He Ya-Nan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Huang Sheng-Jie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Deng Xuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Han Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China. .,Chengdu University of Traditional Chinese Medicine, No. 1188 Liutai Avenue, Chengdu, 611137, China.
| | - Xie Chun-Guang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, People's Republic of China.
| |
Collapse
|
20
|
Speranza J, Miceli N, Taviano MF, Ragusa S, Kwiecień I, Szopa A, Ekiert H. Isatis tinctoria L. (Woad): A Review of its Botany, Ethnobotanical Uses, Phytochemistry, Biological Activities, and Biotechnological Studies. PLANTS (BASEL, SWITZERLAND) 2020; 9:E298. [PMID: 32121532 PMCID: PMC7154893 DOI: 10.3390/plants9030298] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In 2011, I. tinctoria root was accepted in the official European phytotherapy by introducing its monograph in the European Pharmacopoeia. The biological properties of raw material have been known from Traditional Chinese Medicine (TCM). Over recent decades, I. tinctoria has been investigated both from a phytochemical and a biological point of view. The modern in vitro and in vivo scientific studies proved anti-inflammatory, anti-tumour, antimicrobial, antiviral, analgesic, and antioxidant activities. The phytochemical composition of I. tinctoria has been thoroughly investigated and the plant was proven to contain many valuable biologically active compounds, including several alkaloids, among which tryptanthrin, indirubin, indolinone, phenolic compounds, and polysaccharides as well as glucosinolates, carotenoids, volatile constituents, and fatty acids. This article provides a general botanical and ethnobotanical overview that summarizes the up-to-date knowledge on the phytochemistry and biological properties of this valuable plant in order to support its therapeutic potential. Moreover, the biotechnological studies on I. tinctoria, which mainly focused on hairy root cultures for the enhanced production of flavonoids and alkaloids as well as on the establishment of shoot cultures and micropropagation protocols, were reviewed. They provide input for future research prospects.
Collapse
Affiliation(s)
- Jasmine Speranza
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy;
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy;
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy;
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy;
| | - Salvatore Ragusa
- Department of Health Sciences, University ‘Magna Graecia’ of Catanzaro, V. Europa, IT-88100 Catanzaro, Italy;
| | - Inga Kwiecień
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (I.K.); (A.S.); (H.E.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (I.K.); (A.S.); (H.E.)
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (I.K.); (A.S.); (H.E.)
| |
Collapse
|
21
|
Gujjarappa R, Vodnala N, Reddy VG, Malakar CC. Niacin as a Potent Organocatalyst towards the Synthesis of Quinazolines Using Nitriles as C-N Source. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| | - Velma Ganga Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC); School of Science; RMIT University; GPO Box 2476 3001 Melbourne Australia
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| |
Collapse
|
22
|
Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anti-cancer activity. Carbohydr Polym 2020; 229:115511. [DOI: 10.1016/j.carbpol.2019.115511] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/01/2019] [Accepted: 10/19/2019] [Indexed: 11/19/2022]
|
23
|
Zhang H, Liu X, Xu T, Xu K, Du B, Li Y. Biodegradable reduction and pH dual-sensitive polymer micelles based on poly(2-ethyl-2-oxazoline) for efficient delivery of curcumin. RSC Adv 2020; 10:25435-25445. [PMID: 35518633 PMCID: PMC9055264 DOI: 10.1039/d0ra02779k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
A series of disulfide-linked amphiphilic polymers polyoxaline-SS-poly(lactide) (PEtOx-SS-PLA) were prepared and self-assembled into nano-micelles in water.
Collapse
Affiliation(s)
- Hena Zhang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Xiaojun Liu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Ting Xu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Kang Xu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Baixiang Du
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Yuling Li
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| |
Collapse
|
24
|
Yang C, He B, Zheng Q, Wang D, Qin M, Zhang H, Dai W, Zhang Q, Meng X, Wang X. Nano-encapsulated tryptanthrin derivative for combined anticancer therapy via inhibiting indoleamine 2,3-dioxygenase and inducing immunogenic cell death. Nanomedicine (Lond) 2019; 14:2423-2440. [DOI: 10.2217/nnm-2019-0074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We developed a polycaprolactone-based nanoparticle (NP) to encapsulate tryptanthrin derivative CY-1-4 and evaluated its antitumor efficacy. Materials & methods: CY-1-4 NPs were prepared and evaluated for their cytotoxicity and associated mechanisms, indoleamine 2,3-dioxygenase (IDO)-inhibitory ability, immunogenic cell death (ICD)-inducing ability and antitumor efficacy. Results: CY-1-4 NPs were 123 nm in size. In vitro experiments indicated that they could both induce ICD and inhibit IDO. In vivo studies indicated that a medium dose reduced 58% of the tumor burden in a B16-F10-bearing mouse model, decreased IDO expression in tumor tissues and regulated lymphocytes subsets in spleen and tumors. Conclusion: CY-1-4 is a potential antitumor candidate that could act as a single agent with combined functions of IDO inhibition and ICD induction.
Collapse
Affiliation(s)
- Canyu Yang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Qiang Zheng
- State Key Laboratory of Natural & Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Dakuan Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Mengmeng Qin
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
- State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Xiangbao Meng
- State Key Laboratory of Natural & Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| |
Collapse
|
25
|
Awad D, Prattes M, Kofler L, Rössler I, Loibl M, Pertl M, Zisser G, Wolinski H, Pertschy B, Bergler H. Inhibiting eukaryotic ribosome biogenesis. BMC Biol 2019; 17:46. [PMID: 31182083 PMCID: PMC6558755 DOI: 10.1186/s12915-019-0664-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ribosome biogenesis is a central process in every growing cell. In eukaryotes, it requires more than 250 non-ribosomal assembly factors, most of which are essential. Despite this large repertoire of potential targets, only very few chemical inhibitors of ribosome biogenesis are known so far. Such inhibitors are valuable tools to study this highly dynamic process and elucidate mechanistic details of individual maturation steps. Moreover, ribosome biogenesis is of particular importance for fast proliferating cells, suggesting its inhibition could be a valid strategy for treatment of tumors or infections. RESULTS We systematically screened ~ 1000 substances for inhibitory effects on ribosome biogenesis using a microscopy-based screen scoring ribosomal subunit export defects. We identified 128 compounds inhibiting maturation of either the small or the large ribosomal subunit or both. Northern blot analysis demonstrates that these inhibitors cause a broad spectrum of different rRNA processing defects. CONCLUSIONS Our findings show that the individual inhibitors affect a wide range of different maturation steps within the ribosome biogenesis pathway. Our results provide for the first time a comprehensive set of inhibitors to study ribosome biogenesis by chemical inhibition of individual maturation steps and establish the process as promising druggable pathway for chemical intervention.
Collapse
Affiliation(s)
- Dominik Awad
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
- Present address: Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Mathias Loibl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Melanie Pertl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| |
Collapse
|
26
|
Amara R, Awad H, Chaker D, Bentabed‐Ababsa G, Lassagne F, Erb W, Chevallier F, Roisnel T, Dorcet V, Fajloun Z, Vidal J, Mongin F. Conversion of Isatins to Tryptanthrins, Heterocycles Endowed with a Myriad of Bioactivities. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rim Amara
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
- Laboratoire de Synthèse Organique Appliquée Faculté des Sciences Exactes et Appliquées Université Oran1 Ahmed Ben Bella BP 1524 El M'Naouer 31000 Oran Algeria
| | - Haçan Awad
- Faculty of Sciences 3 Lebanese University Campus El‐Kobbeh Tripoli Lebanon
| | - Diana Chaker
- Laboratory of Applied Biotechnology Azm Center for Research in Biotechnology and its Applications, EDST Lebanese University 1300 Tripoli Lebanon
| | - Ghenia Bentabed‐Ababsa
- Laboratoire de Synthèse Organique Appliquée Faculté des Sciences Exactes et Appliquées Université Oran1 Ahmed Ben Bella BP 1524 El M'Naouer 31000 Oran Algeria
| | - Frédéric Lassagne
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - William Erb
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - Floris Chevallier
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - Thierry Roisnel
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - Vincent Dorcet
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - Ziad Fajloun
- Faculty of Sciences 3 Lebanese University Campus El‐Kobbeh Tripoli Lebanon
- Laboratory of Applied Biotechnology Azm Center for Research in Biotechnology and its Applications, EDST Lebanese University 1300 Tripoli Lebanon
| | - Joëlle Vidal
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| | - Florence Mongin
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 35000 Rennes France
| |
Collapse
|
27
|
Rhodes S, Short S, Sharma S, Kaur R, Jha M. One-pot mild and efficient synthesis of [1,3]thiazino[3,2-a]indol-4-ones and their anti-proliferative activity. Org Biomol Chem 2019; 17:3914-3920. [DOI: 10.1039/c9ob00500e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One-pot synthesis of [1,3]thiazino[3,2-a]indol-4-one frameworks is developed in aqueous medium and the anti-proliferative activity of the synthesized compounds is evaluated against two triple negative breast cancer cell lines.
Collapse
Affiliation(s)
- Steven Rhodes
- Department of Biology and Chemistry
- Nipissing University
- North Bay
- Canada
| | - Spencer Short
- Department of Biology and Chemistry
- Nipissing University
- North Bay
- Canada
| | - Sidhika Sharma
- Department of Biology
- University of North Georgia
- Oakwood
- USA
| | - Ramneet Kaur
- Department of Biology
- University of North Georgia
- Oakwood
- USA
| | - Mukund Jha
- Department of Biology and Chemistry
- Nipissing University
- North Bay
- Canada
| |
Collapse
|
28
|
Gujjarappa R, Maity SK, Hazra CK, Vodnala N, Dhiman S, Kumar A, Beifuss U, Malakar CC. Divergent Synthesis of Quinazolines Using Organocatalytic Domino Strategies under Aerobic Conditions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| | - Suvik K. Maity
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| | - Chinmoy K. Hazra
- Department of Chemistry; Korea Advanced Institute of Science & Technology (KAIST); 34141 Daejeon 305 - 701 South Korea
| | - Nagaraju Vodnala
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| | - Shiv Dhiman
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| | - Anil Kumar
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| | - Uwe Beifuss
- Institut für Chemie; Universität Hohenheim; Garbenstr. 30 70599 Stuttgart Germany
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| |
Collapse
|
29
|
Li C, Wu H, Yang Y, Liu J, Chen Z. Sesquiterpene lactone 6-O-angeloylplenolin reverses vincristine resistance by inhibiting YB-1 nuclear translocation in colon carcinoma cells. Oncol Lett 2018; 15:9673-9680. [PMID: 29928343 PMCID: PMC6004700 DOI: 10.3892/ol.2018.8592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 02/09/2018] [Indexed: 01/12/2023] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to cancer chemotherapy efficacy. In the present study, 6-O-angeloylplenolin repressed the overexpression of ATP binding cassette subfamily B member 1 (MDR1) and increasing the intracellular concentration of anticancer drugs. A reduction in P-glycoprotein expression (encoded by MDR1) was observed in parallel with a decline in mRNA expression in vincristine-resistant HCT (HCT-8/VCR) cells treated with 6-O-angeloylplenolin. In addition, 6-O-angeloylplenolin suppressed the activity of the MDR1 gene promoter. Treatment with 6-O-angeloylplenolin also decreased the amount of the specific protein complex that interacted with the MDR1 gene promoter in HCT-8/VCR cells, potentially leading to the suppression of MDR1 expression. Treatment with 6-O-angeloylplenolin inhibited the nuclear translocation of Y-box binding protein-1 in HCT-8/VCR cells treated with 6-O-angeloylplenolin, contributing to the negative regulation of MDR1. Finally, 6-O-angeloylplenolin reversed VCR resistance in an HCT/VCR xenograft model. In conclusion, 6-O-angeloylplenolin exhibited a MDR-reversing effect by downregulating MDR1 expression and could represent a novel adjuvant agent for chemotherapy.
Collapse
Affiliation(s)
- Changlong Li
- School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Hezhen Wu
- Key Laboratory of Resources and Chemistry of Chinese Medicine of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Yanfang Yang
- Key Laboratory of Resources and Chemistry of Chinese Medicine of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Jianwen Liu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Zhenwen Chen
- School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
30
|
Hou H, Li H, Han Y, Yan C. Synthesis of visible-light mediated tryptanthrin derivatives from isatin and isatoic anhydride under transition metal-free conditions. Org Chem Front 2018. [DOI: 10.1039/c7qo00740j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light mediated transition metal-free protocol for synthesis of tryptanthrin from isatin and isatoic anhydride in mild reaction conditions.
Collapse
Affiliation(s)
- Hong Hou
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Hengxue Li
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Ying Han
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Chaoguo Yan
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| |
Collapse
|
31
|
Cao B, Yang S, Li W, Chen H, Chen Y, Liu Y, Liu B. GMZ-1 is a podophyllotoxin derivative that suppresses growth and induces apoptosis in adriamycin-resistant K562/A02 cells through modulation of MDR1 expression. Mol Med Rep 2017; 17:474-478. [PMID: 29115592 DOI: 10.3892/mmr.2017.7862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 08/08/2017] [Indexed: 11/05/2022] Open
Abstract
The incidence of multidrug resistance (MDR) during cancer chemotherapy is a major challenge for treatment. With the aim of identifying drugs that are capable of targeting treatment‑resistant cancer cells, the present study evaluated the efficacy of GMZ‑1 in cancer chemotherapy using K562/A02, an MDR leukemia cell line. Cell viability and apoptosis were measured by MTT assay and flow cytometry/Giemsa staining, respectively. The expression levels of the MDR protein 1 (MDR1) gene transcript and protein in K562/A02 cells were determined by reverse transcription‑quantitative polymerase chain reaction and western blot analyses, respectively. GMZ‑1 suppressed the viability of various human cancer cell lines and induced apoptosis in the K562/A02 cell line in a time‑ and concentration‑dependent manner. GMZ‑1 toxicity may be associated with a decrease in MDR gene expression. These findings demonstrated that GMZ‑1 may have efficacy as a potential antitumor drug to overcome leukemia cell resistance to apoptosis induced by chemotherapy.
Collapse
Affiliation(s)
- Bo Cao
- Department of Pharmacognosy, Logistics University of Chinese People's Armed Police Forces, Tianjin 300309, P.R. China
| | - Shuwang Yang
- Department of Pharmacognosy, Logistics University of Chinese People's Armed Police Forces, Tianjin 300309, P.R. China
| | - Wuwei Li
- Department of Pharmacology, School of Basic Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Hong Chen
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin 300162, P.R. China
| | - Yaze Chen
- Department of Pharmacognosy, Logistics University of Chinese People's Armed Police Forces, Tianjin 300309, P.R. China
| | - Yongfeng Liu
- Department of Pharmacognosy, Logistics University of Chinese People's Armed Police Forces, Tianjin 300309, P.R. China
| | - Bin Liu
- Department of Pharmacognosy, Logistics University of Chinese People's Armed Police Forces, Tianjin 300309, P.R. China
| |
Collapse
|
32
|
Guda R, Korra R, Balaji S, Palabindela R, Eerla R, Lingabathula H, Yellu NR, Kumar G, Kasula M. Design, synthesis and biological evaluation of 8-substituted-6-hydrazonoindolo[2,1- b ]quinazolin-12(6 H )-one scaffolds as potential cytotoxic agents: IDO-1 targeting molecular docking studies. Bioorg Med Chem Lett 2017; 27:4741-4748. [DOI: 10.1016/j.bmcl.2017.08.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/20/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
|
33
|
Kaur R, Manjal SK, Rawal RK, Kumar K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg Med Chem 2017; 25:4533-4552. [DOI: 10.1016/j.bmc.2017.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/19/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
|
34
|
Joshi P, Vishwakarma RA, Bharate SB. Natural alkaloids as P-gp inhibitors for multidrug resistance reversal in cancer. Eur J Med Chem 2017; 138:273-292. [PMID: 28675836 DOI: 10.1016/j.ejmech.2017.06.047] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/19/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022]
Abstract
The biggest challenge associated with cancer chemotherapy is the development of cross multi-drug resistance to almost all anti-cancer agents upon chronic treatment. The major contributing factor for this resistance is efflux of the drugs by the p-glycoprotein pump. Over the years, inhibitors of this pump have been discovered to administer them in combination with chemotherapeutic agents. The clinical failure of first and second generation P-gp inhibitors (such as verapamil and cyclosporine analogs) has led to the discovery of third generation potent P-gp inhibitors (tariquidar, zosuquidar, laniquidar). Most of these inhibitors are nitrogenous compounds and recently a natural alkaloid CBT-01® (tetrandrine) has advanced to the clinical phase. CBT-01 demonstrated positive results in Phase-I study in combination with paclitaxel, which warranted conducting it's Phase II/III trial. Apart from this, there exist a large number of natural alkaloids possessing potent inhibition of P-gp efflux pump and other related pumps responsible for the development of resistance. Despite the extensive contribution of alkaloids in this area, has never been reviewed. The present review provides a comprehensive account on natural alkaloids possessing P-gp inhibition activity and their potential for multidrug resistance reversal in cancer.
Collapse
Affiliation(s)
- Prashant Joshi
- Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy and Scientific & Innovative Research (AcSIR), CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy and Scientific & Innovative Research (AcSIR), CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy and Scientific & Innovative Research (AcSIR), CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
35
|
Sundarrajan S, Lulu S, Arumugam M. Deciphering the Mechanism of Action of Wrightia tinctoria for Psoriasis Based on Systems Pharmacology Approach. J Altern Complement Med 2017; 23:866-878. [PMID: 28604055 DOI: 10.1089/acm.2016.0248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Psoriasis is a chronic immune-mediated disorder of the skin. The disease manifests itself with red or silvery scaly plaques distributing over the lower back, scalp, and extensor aspects of limbs. Several medications are available for the treatment of psoriasis; however, high rates of remission and side-effects still persist as a major concern. Siddha, one of the traditional systems of Indian medicine offers cure to many dermatological conditions, including psoriasis. The oil prepared from the leaves of Wrightia tinctoria is prescribed by many healers for the treatment of psoriasis. This work aims to decipher the mechanism of action of the W. tinctoria in curing psoriasis and its associated comorbidities. DESIGN The work integrates various pharmacology approaches such as drug-likeness evaluation, oral bioavailability predictions, and network pharmacology approaches to understand the roles of various bioactive components of the herb. RESULTS This work identified 67 compounds of W. tinctoria interacting with 238 protein targets. The compounds were found to act through synergistic mechanism in reviving the disrupted process in the diseased state. CONCLUSION The results of this work not only shed light on the pharmacological action of the herb but also validate the usage of safe herbal drugs.
Collapse
Affiliation(s)
- Sudharsana Sundarrajan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore, Tamil Nadu, India
| | - Sajitha Lulu
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore, Tamil Nadu, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore, Tamil Nadu, India
| |
Collapse
|
36
|
Reversal of P-glycoprotein-mediated multidrug resistance is induced by saikosaponin D in breast cancer MCF-7/adriamycin cells. Pathol Res Pract 2017; 213:848-853. [PMID: 28554760 DOI: 10.1016/j.prp.2017.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 11/20/2022]
Abstract
Multidrug resistance (MDR) cells over expressing P-glycoprotein (P-gp) encoded by the MDR1 gene is major obstacles for successful cancer chemotherapy. P-gp could extrude anti-cancer drugs out of cancer cells and decrease effective intracellular drug concentrations. MDR reversal agents for P-gp can restore the sensitivity of MDR cells to such drugs. Saikosaponin D (SSd), one of the major triterpenoid saponins derived from Bupleurum chinense DC (BCDC), has been shown to possess anti-inflammatory, anti-infectious and anti-tumor properties. The aim of the present study was to investigate the reversal effect of SSd on MDR in MCF-7/adriamycin (ADR) human breast cancer cells and investigate the underlying mechanisms of SSd. The results demonstrated that SSd inhibited the proliferation of MCF-7/ADR and MCF-7 cells in a dose-dependent manner. Moreover, SSd increased the cytotoxicity of ADR on MCF-7/ADR cells and the resistance fold of SSd treatment was demonstrated to be significantly higher when compared with that of the group without SSd treatment. Additionally, the effects of the drug combination showed that SSd and ADR combination were synergistic. Accumulation and efflux studies with the P-gp substrate, rhodamine 123 (Rh123), demonstrated that SSd restored Rh123 accumulation and inhibited P-gp-mediated drug efflux. Importantly, we found that SSd could enhance the sensitivity of MCF-7/ADR cells towards ADR by down-regulating MDR1 and P-gp expression. In conclusion, the results of the present study indicated that SSd may represent a potent reversal agent for P-gp-mediated MDR in breast cancer therapy.
Collapse
|
37
|
Kwon YW, Cheon SY, Park SY, Song J, Lee JH. Tryptanthrin Suppresses the Activation of the LPS-Treated BV2 Microglial Cell Line via Nrf2/HO-1 Antioxidant Signaling. Front Cell Neurosci 2017; 11:18. [PMID: 28210215 PMCID: PMC5288339 DOI: 10.3389/fncel.2017.00018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/20/2017] [Indexed: 12/31/2022] Open
Abstract
Microglia are the resident macrophages in the central nervous system (CNS) and play essential roles in neuronal homeostasis and neuroinflammatory pathologies. Recently, microglia have been shown to contribute decisively to neuropathologic processes after ischemic stroke. Furthermore, natural compounds have been reported to attenuate inflammation and pathologies associated with neuroinflammation. Tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) is a phytoalkaloid with known anti-inflammatory effects in cells. In present study, the authors confirmed middle cerebral artery occlusion (MCAO) injury triggers the activation of microglia in brain tissue, and investigated whether tryptanthrin influences the function of mouse murine BV2 microglia under LPS-induced inflammatory conditions in vitro. It was found tryptanthrin protected BV2 microglia cells against LPS-induced inflammation and inhibited the induction of M1 phenotype microglia under inflammatory conditions. In addition, tryptanthrin reduced the production of pro-inflammatory cytokines in BV2 microglia cells via nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling and NF-κB signaling. The authors suggest that tryptanthrin might alleviate the progress of neuropathologies by controlling microglial functions under neuroinflammatory conditions.
Collapse
Affiliation(s)
- Young-Won Kwon
- College of Korean Medicine, Dongguk University Goyang, South Korea
| | - So Yeong Cheon
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine Seoul, South Korea
| | - Sung Yun Park
- College of Korean Medicine, Dongguk University Goyang, South Korea
| | - Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University Gwangju, South Korea
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University Goyang, South Korea
| |
Collapse
|
38
|
Guda R, Narsimha S, Babu R, Muthadi S, Lingabathula H, Palabindela R, Yellu NR, Kumar G, Kasula M. Novel substituted hydrazono indolo[2,1- b ]quinazoline-6,12-dione analogues as cytostatic agents: Synthesis, crystal structure, biological evaluation and molecular docking studies. Bioorg Med Chem Lett 2016; 26:5517-5523. [DOI: 10.1016/j.bmcl.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/16/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
|
39
|
Wu X, Chen X, Dan J, Cao Y, Gao S, Guo Z, Zerbe P, Chai Y, Diao Y, Zhang L. Characterization of anti-leukemia components from Indigo naturalis using comprehensive two-dimensional K562/cell membrane chromatography and in silico target identification. Sci Rep 2016; 6:25491. [PMID: 27150638 PMCID: PMC4858665 DOI: 10.1038/srep25491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/18/2016] [Indexed: 12/30/2022] Open
Abstract
Traditional Chinese Medicine (TCM) has been developed for thousands of years and has formed an integrated theoretical system based on a large amount of clinical practice. However, essential ingredients in TCM herbs have not been fully identified, and their precise mechanisms and targets are not elucidated. In this study, a new strategy combining comprehensive two-dimensional K562/cell membrane chromatographic system and in silico target identification was established to characterize active components from Indigo naturalis, a famous TCM herb that has been widely used for the treatment of leukemia in China, and their targets. Three active components, indirubin, tryptanthrin and isorhamnetin, were successfully characterized and their anti-leukemia effects were validated by cell viability and cell apoptosis assays. Isorhamnetin, with undefined cancer related targets, was selected for in silico target identification. Proto-oncogene tyrosine-protein kinase (Src) was identified as its membrane target and the dissociation constant (Kd) between Src and isorhamnetin was 3.81 μM. Furthermore, anti-leukemia effects of isorhamnetin were mediated by Src through inducing G2/M cell cycle arrest. The results demonstrated that the integrated strategy could efficiently characterize active components in TCM and their targets, which may bring a new light for a better understanding of the complex mechanism of herbal medicines.
Collapse
Affiliation(s)
- Xunxun Wu
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China.,School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Xiaofei Chen
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Jia Dan
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yan Cao
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Shouhong Gao
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Zhiying Guo
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China.,School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yifeng Chai
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yong Diao
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Lei Zhang
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| |
Collapse
|
40
|
Tsou SH, Hou MH, Hsu LC, Chen TM, Chen YH. Gain-of-function p53 mutant with 21-bp deletion confers susceptibility to multidrug resistance in MCF-7 cells. Int J Mol Med 2015; 37:233-42. [PMID: 26572087 DOI: 10.3892/ijmm.2015.2406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/30/2015] [Indexed: 11/06/2022] Open
Abstract
The majority of p53 mutations, which are responsible for gain of oncogenic function, are missense mutations in hotspot codons. However, in our previous study, we demonstrated that a deletion spanning codons 127-133 in the p53 gene (designated as del p53) was detected in doxorubicin-resistant MCF-7 cell lines following various induction processes. In the present study, we aimed to investigate the role of del p53 and its association with the proliferation, metastasis and drug resistance of MCF-7 cells. The MCF-7/del p53 cell line is a representative of the del p53 stably expressed clones which were constructed by transfection of the del p53-containing construct into MCF-7/wt cells. Markers of multidrug resistance (MDR), epithelial-mesenchymal transition (EMT) and stem cell-like properties were examined in the MCF-7/del p53 cells. The results revealed that the MCF-7/del p53 cells expressed full-length p53 and del p53 mRNA and protein, as well as P-glycoprotein (P-gp). The MCF-7/del p53 cells acquired resistance to doxorubicin with increased P-gp efflux function. Using a transient expression assay, the mdr1 promoter was found to be significantly activated by external or integrated del p53 (P<0.001). The inhibition of nuclear factor (NF)-κB by cyclosporine sensitized the MCF-7/del p53 cells to doxorubicin toxicity. In addition, the morphological characteristics of the MCF-7/del p53 and MCF-7/adr were similar. EMT was observed in the MCF-7/del p53 cells as demonstrated by the presence of the mesenchymal markers, Slug and vimentin, and the decrease in the epithelial marker, cadherin 1, type 1, E-cadherin (CDH1), as well as an enhanced migration ability (P<0.001). Furthermore, the number of cells expressing the cancer stem cell-like marker, CD44, increased, accompanied by mammosphere formation. Taken together, these findings indicate that the expression of del p53 in MCF-7/del p53 cells enables the cells to partially acquire doxorubicin resistance characteristics of the MCF-7/adr cells. Thus, del p53 may be an important factor in non-invasive MCF-7 cells, activating NF-κB signaling and the mdr1 promoter and partially attributing to EMT; the cells thus acquire stem cell‑like properties, which facilitates drug resistance. Therefore, the 21-bp deletion of p53 may prove to be a therapeutic strategy with which to prevent cancer cells from acquiring resistance to drugs.
Collapse
Affiliation(s)
- Shang-Hsun Tsou
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Ming-Hung Hou
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Lih-Ching Hsu
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Tzer-Ming Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Yen-Hui Chen
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| |
Collapse
|
41
|
Kamal A, Reddy BS, Sridevi B, Ravikumar A, Venkateswarlu A, Sravanthi G, Sridevi JP, Yogeeswari P, Sriram D. Synthesis and biological evaluation of phaitanthrin congeners as anti-mycobacterial agents. Bioorg Med Chem Lett 2015; 25:3867-72. [DOI: 10.1016/j.bmcl.2015.07.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/13/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
|
42
|
Quercetin and Tryptanthrin: Two Broad Spectrum Anticancer Agents for Future Chemotherapeutic Interventions. Enzymes 2015; 37:43-72. [PMID: 26298455 DOI: 10.1016/bs.enz.2015.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The idea and practice of developing or identifying compounds capable of eliminating the transformed cells or cancer cells without being nontoxic to their normal counterparts deserves much importance. Since ages, plants have been considered and proven to be repertoires of chemicals possessing immense therapeutic potential. A proportion of these plant-derived compounds or phytochemicals were shown to be highly competent anticancer agents besides being effective against many other diseases. Representative compounds of different classes of phytochemicals are in clinical use against cancer. In this chapter, we discuss the anticancer potential of two compounds: quercetin, a flavonoid and tryptanthrin, an indoloquinazoline alkaloid, and the mechanisms behind their cytotoxic effects on cancers of different origin. The chapter also gives a brief mention of their properties that make them effective against cancer.
Collapse
|
43
|
Antony J, Saikia M, V V, Nath LR, Katiki MR, Murty M, Paul A, A S, Chandran H, Joseph SM, S NK, Panakkal EJ, V SI, V SI, Ran S, S S, Rajan E, Anto RJ. DW-F5: A novel formulation against malignant melanoma from Wrightia tinctoria. Sci Rep 2015; 5:11107. [PMID: 26061820 PMCID: PMC4650611 DOI: 10.1038/srep11107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/08/2015] [Indexed: 02/08/2023] Open
Abstract
Wrightia tinctoria is a constituent of several ayurvedic preparations against skin disorders including psoriasis and herpes, though not yet has been explored for anticancer potential. Herein, for the first time, we report the significant anticancer properties of a semi-purified fraction, DW-F5, from the dichloromethane extract of W. tinctoria leaves against malignant melanoma. DW-F5 exhibited anti-melanoma activities, preventing metastasis and angiogenesis in NOD-SCID mice, while being non-toxic in vivo. The major pathways in melanoma signaling mediated through BRAF, WNT/β-catenin and Akt-NF-κB converging in MITF-M, the master regulator of melanomagenesis, were inhibited by DW-F5, leading to complete abolition of MITF-M. Purification of DW-F5 led to the isolation of two cytotoxic components, one being tryptanthrin and the other being an unidentified aliphatic fraction. The overall study predicts Wrightia tinctoria as a candidate plant to be further explored for anticancer properties and DW-F5 as a forthcoming drug formulation to be evaluated as a chemotherapeutic agent against malignant melanoma.
Collapse
Affiliation(s)
- Jayesh Antony
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Minakshi Saikia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Vinod. V
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Lekshmi. R. Nath
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Mohana Rao Katiki
- Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - M.S.R. Murty
- Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Anju Paul
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Shabna A
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Harsha Chandran
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Sophia Margaret Joseph
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Nishanth Kumar. S
- Agroprocessing and Natural Products Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Thiruvanathapuram 695 019, Kerala, India
| | - Elizabeth Jayex Panakkal
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Sriramya I. V
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Sridivya I. V
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Sophia Ran
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, P.O. Box 19626, Springfield, Illinois, USA
| | - Sankar S
- Department of Pathology, Government Medical College, Thiruvananthapuram 695 011, Kerala, India
| | - Easwary Rajan
- Department of Chemistry, Sree Kerala Varma College, Thrissur 680011, Kerala, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| |
Collapse
|
44
|
Onambele LA, Riepl H, Fischer R, Pradel G, Prokop A, Aminake MN. Synthesis and evaluation of the antiplasmodial activity of tryptanthrin derivatives. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:48-57. [PMID: 25949928 PMCID: PMC4417838 DOI: 10.1016/j.ijpddr.2015.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/26/2022]
Abstract
We report the synthesis of tryptanthrin derivatives. We report the activity of tryptanthrin derivatives against Plasmodium falciparum. We discuss the potential of tryptanthrin derivatives as multi-stage drugs. We recommend the formulation and testing of tryptanthrins in in vivo studies.
Malaria remains one of the most deadly diseases threatening humankind and is still affecting a significant proportion of the world population, especially in Africa. Chemotherapy is a vital component of the fight against the disease and new antimalarial agents are urgently needed to curb the spread of malaria parasites that are resistant to existing drugs. The natural product tryptanthrin is known for its wide range of activities, including antiplasmodial activity, but its poor solubility has undermined its development as potent antimicrobial and antiprotozoan agent. The aim of this work was to synthesize analogues of tryptanthrin and to evaluate their antiplasmodial activity against the asexual and sexual blood stages of Plasmodium falciparum. Our results suggest that most tryptanthrin analogues retained their antiplasmodial activity against chloroquine-sensitive and chloroquine-resistant malaria parasites in the nanomolar range (30–100 nM). The antiplasmodial activity of the most active compound NT1 (IC50: 30 nM; SI: 155.9) was similar in both strains and close to that of chloroquine (IC50: 20 nM) on the sensitive strain. The antiplasmodial activity was improved with derivatization, thus pointing out the necessity to explore tryptanthrin using medicinal chemistry approaches. Ten (10) of the tested derivatives met the criteria, allowing for advancement to animal testing, i.e., SI > 100 and IC50 < 100 nM. In addition to their activity on the asexual stages, tryptanthrin and two selected derivatives (NT1 and T8) prevented the maturation of gametocytes at their IC90 concentrations, indicating a transmission-blocking potential. Moreover, NT1 was able to impair gametogenesis by reducing the exflagellation of microgametes by 20% at IC90, while tryptanthrin and T8 had no influence on exflagellation. The results of this study confirm that tryptanthrin and its derivatives are potential antimalarial candidates with abilities to kill the intraerythrocytic asexual stages and prevent the formation of sexual stages of the parasite.
Collapse
Affiliation(s)
| | - Herbert Riepl
- HochschuleWeihenstephan-Triesdorf, Organic-analytical Chemistry, 94315 Straubing, Germany
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Gabriele Pradel
- Institute of Molecular Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Aram Prokop
- Department of Paediatric Oncology, Children's Hospital Cologne, 50735 Köln, Germany
| | - Makoah Nigel Aminake
- Institute of Molecular Biotechnology, RWTH Aachen University, 52074 Aachen, Germany ; Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
45
|
Jun KY, Park SE, Liang JL, Jahng Y, Kwon Y. Benzo[b]tryptanthrin Inhibits MDR1, Topoisomerase Activity, and Reverses Adriamycin Resistance in Breast Cancer Cells. ChemMedChem 2015; 10:827-35. [DOI: 10.1002/cmdc.201500068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/09/2022]
|
46
|
Tsou SH, Chen TM, Hsiao HT, Chen YH. A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance. PLoS One 2015; 10:e0116747. [PMID: 25635866 PMCID: PMC4312059 DOI: 10.1371/journal.pone.0116747] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/12/2014] [Indexed: 01/08/2023] Open
Abstract
Cellular mechanisms of multidrug resistance (MDR) are related to ABC transporters, apoptosis, antioxidation, drug metabolism, DNA repair and cell proliferation. It remains unclear whether the process of resistance development is programmable. We aimed to study gene expression profiling circumstances in MCF-7 during MDR development. Eleven MCF-7 sublines with incremental doxorubicin resistance were established as a valued tool to study resistance progression. MDR marker P-gp was overexpressed only in cells termed MCF-7/ADR-1024 under the selection dose approaching 1024 nM. MCF-7/ADR-1024 and authentic MCF-7/ADR shared common features in cell morphology and DNA ploidy status. MCF-7/ADR-1024 and authentic MCF-7/ADR down regulated repair genes BRCA1/2 and wild type p53, apoptosis-related gene Bcl-2 and epithelial-mesenchymal transition (EMT) epithelial marker gene E-cadherin. While detoxifying enzymes glutathione-S transferase-π and protein kinase C-α were up-regulated. The genes involving in EMT mesenchymal formation were also overexpressed, including N-cadherin, vimentin and the E-cadherin transcription reppressors Slug, Twist and ZEB1/2. PI3K/AKT inhibitor wortmannin suppressed expression of Slug, Twist and mdr1. Mutant p53 with a deletion at codons 127-133 markedly appeared in MCF-7/ADR-1024 and authentic MCF-7/ADR as well. In addition, MCF-7/ADR-1024 cells exerted CSC-like cell surface marker CD44 high/CD24 low and form mammospheres. Overall, results suggest that resistance marker P-gp arises owing to turn on/off or mutation of the genes involved in DNA repair, apoptosis, detoxifying enzymes, EMT and ABC transporters at a turning point (1.024 μM doxorubicin challenge). Behind this point, no obvious alterations were found in most tested genes. Selection for CSC-like cells under this dose may importantly attribute to propagation of the population presenting invasive properties and drug resistance. We thereby suggest two models in the induction of drug resistance. Model 1: Selection for CSC-like cells. Model 2: Mutations for gain-of resistance. Either model 1 or model 2 requires doxorubicin dose approaching 1 μM to alter gene regulation.
Collapse
Affiliation(s)
- Shang-Hsun Tsou
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzer-Ming Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Ting Hsiao
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Hui Chen
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Pharmacy, School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Pathania AS, Kumar S, Guru SK, Bhushan S, Sharma PR, Aithagani SK, Singh PP, Vishwakarma RA, Kumar A, Malik F. The synthetic tryptanthrin analogue suppresses STAT3 signaling and induces caspase dependent apoptosis via ERK up regulation in human leukemia HL-60 cells. PLoS One 2014; 9:e110411. [PMID: 25383546 PMCID: PMC4226462 DOI: 10.1371/journal.pone.0110411] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/20/2014] [Indexed: 01/05/2023] Open
Abstract
Tryptanthrin is a natural product which has been reported to have several medicinal properties. In this study, we tried to investigate the detailed molecular mechanism of its bromo analogue (TBr), a potent cytotoxic agent in the induction of cancer cell death. It was found that TBr primarily targets STAT3 and ERK signaling during the induction of apoptosis in several human leukemia cell lines. In HL-60 cells, TBr treatment caused early down regulation of p-STAT3 with concomitant up regulation of p-ERK which led to the activation of intrinsic and extrinsic pathways of apoptosis. The mechanism of TBr mediated inhibition of p-STAT3 was found to be due to the activation of ubiquitin dependent degradation of tyrosine 705 and serine 727 p-STAT3. As IL-6 is the main driver of the STAT3 pathway, the effect of TBr on cell death was subdued when treated in the combination with IL-6 in HL60 cells. Interestingly, PD98059 significantly reduced the apoptotic effects of TBr, thus showing the direct involvement of p-ERK in TBr mediated cell death. It was further shown that apoptotic protein Bax silencing in HL-60 cells resists TBr mediated ERK dependent apoptosis. In summary, for the first time we report the mechanism of TBr mediated cell death in human leukemia cell lines by targeting STAT3 and ERK pathways.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Cancer Pharmacology, Indian Institute of Integrative Medicine, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Suresh Kumar
- Department of Cancer Pharmacology, Indian Institute of Integrative Medicine, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Santosh K. Guru
- Department of Cancer Pharmacology, Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Shashi Bhushan
- Department of Cancer Pharmacology, Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Parduman R. Sharma
- Department of Cancer Pharmacology, Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Sravan K. Aithagani
- Medicinal chemistry division, Indian institute of Integrative Medicine, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Parvinder P. Singh
- Medicinal chemistry division, Indian institute of Integrative Medicine, Jammu and Kashmir, India
| | - Ram A. Vishwakarma
- Medicinal chemistry division, Indian institute of Integrative Medicine, Jammu and Kashmir, India
| | - Ajay Kumar
- Department of Cancer Pharmacology, Indian Institute of Integrative Medicine, Jammu and Kashmir, India
- * E-mail: (AK); (FM)
| | - Fayaz Malik
- Department of Cancer Pharmacology, Indian Institute of Integrative Medicine, Jammu and Kashmir, India
- Experimental Breast Cancer Research Laboratory, University of Michigan North Campus Research Complex, Ann Arbor, Michigan, United States of America
- * E-mail: (AK); (FM)
| |
Collapse
|
48
|
Madhusudhan A, Reddy GB, Venkatesham M, Veerabhadram G, Kumar DA, Natarajan S, Yang MY, Hu A, Singh SS. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci 2014; 15:8216-34. [PMID: 24821542 PMCID: PMC4057728 DOI: 10.3390/ijms15058216] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/11/2014] [Accepted: 04/30/2014] [Indexed: 02/01/2023] Open
Abstract
Doxorubicin (DOX) was immobilized on gold nanoparticles (AuNPs) capped with carboxymethyl chitosan (CMC) for effective delivery to cancer cells. The carboxylic group of carboxymethyl chitosan interacts with the amino group of the doxorubicin (DOX) forming stable, non-covalent interactions on the surface of AuNPs. The carboxylic group ionizes at acidic pH, thereby releasing the drug effectively at acidic pH suitable to target cancer cells. The DOX loaded gold nanoparticles were effectively absorbed by cervical cancer cells compared to free DOX and their uptake was further increased at acidic conditions induced by nigericin, an ionophore that causes intracellular acidification. These results suggest that DOX loaded AuNPs with pH-triggered drug releasing properties is a novel nanotheraputic approach to overcome drug resistance in cancer.
Collapse
Affiliation(s)
- Alle Madhusudhan
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Gangapuram Bhagavanth Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Maragoni Venkatesham
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Guttena Veerabhadram
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Dudde Anil Kumar
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Sumathi Natarajan
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| | - Ming-Yeh Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien City 970, Taiwan.
| | - Anren Hu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien City 970, Taiwan.
| | - Surya S Singh
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh 500007, India.
| |
Collapse
|
49
|
Zhang N, Hua Y, Wang C, Sun Y, Wang Z, Liu Z, Liu J. Distribution study of tryptanthrin in rat tissues by HPLC and its relationship with meridian tropism of indigo naturalis in traditional Chinese medicine. Biomed Chromatogr 2014; 28:1701-6. [DOI: 10.1002/bmc.3203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/20/2014] [Accepted: 03/11/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Ning Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| | - Ying Hua
- Department of Pharmacy Shaanxi Provincial Cancer Hospital; Xi'an 710061 People's Republic of China
| | - Cuiling Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| | - Yanni Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| | - Zheng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| | - Zhulan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| | - Jianli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| |
Collapse
|
50
|
Cohen K, Emmanuel R, Kisin-Finfer E, Shabat D, Peer D. Modulation of drug resistance in ovarian adenocarcinoma using chemotherapy entrapped in hyaluronan-grafted nanoparticle clusters. ACS NANO 2014; 8:2183-2195. [PMID: 24494862 DOI: 10.1021/nn500205b] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Resistance to anticancer drugs is considered a major cause of chemotherapy failure. One of the major mediators of resistance is the multidrug extrusion pump protein, P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter with broad substrate specificity. In order to bypass this drug resistance mechanism, we have devised phospholipid-based nanoparticle clusters coated with the glycosaminoglycan hyaluronan, the major ligand of CD44, which is upregulated and undergoes different splice variations in many types of cancer cells. These particles, termed glycosaminoglycan particle nanoclusters or gagomers (GAGs), were self-assembled into ∼500 nm diameter clusters, with zeta-potential values of ∼-70 mV. Flow cytometry analysis provided evidence that, unlike free doxorubicin (DOX), a model chemotherapy, DOX entrapped in the GAGs (DOX-GAGs) accumulated in P-gp-overexpressing human ovarian adenocarcinoma cell line and dramatically decreased cell viability, while drug-free GAGs and the commercially available drug DOXIL (PEGylated liposomal DOX) did not produce therapeutic benefit. Furthermore, by using RNA interference strategy, we showed that DOX-GAGs were able to overcome the P-gp-mediated resistant mechanism of these cells. Most importantly, DOX-GAGs showed a superior therapeutic effect over free DOX in a resistant human ovarian adenocarcinoma mouse xenograft model. Taken together, these results demonstrated that GAGs might serve as an efficient platform for delivery of therapeutic payloads by bypassing P-gp-mediated multidrug resistance.
Collapse
Affiliation(s)
- Keren Cohen
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, ‡Department of Materials Sciences and Engineering, Faculty of Engineering, §Center for Nanoscience and Nanotechnology, and ⊥School of Chemistry, Tel Aviv University , Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|