1
|
Worley TK, Asal AH, Cooper L, Courcelle CT, Courcelle J. The complex development of psoralen-interstrand crosslink resistance in Escherichia coli requires AcrR inactivation, retention of a marbox sequence, and one of three MarA, SoxS, or Rob global regulators. Mutat Res 2025; 830:111898. [PMID: 39903998 PMCID: PMC12103280 DOI: 10.1016/j.mrfmmm.2025.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Crosslinking agents, such as psoralen and UVA radiation, can be effectively used as antimicrobials and for treating several dysplastic conditions in humans, including some cancers. Yet, both cancer cells and bacteria can become resistant to these compounds, making it important to understand how resistance develops. Recently, several mutants were isolated that developed high levels of resistance to these compounds through upregulation of components of the AcrAB-TolC efflux pump. Here, we characterized these mutants and found that resistance specifically requires inactivating mutations of the acrR transcriptional repressor which also retain the marbox sequence found within this coding region. In addition, the presence of any one of three global regulators, MarA, SoxS, or Rob, is necessary and sufficient to bind to the marbox sequence and activate resistance. Notably, although psoralen is a substrate for the efflux pump, these regulators are not naturally responsive to this stress as neither psoralen, UVA, nor crosslink induction upregulates acrAB expression in the absence of mutation.
Collapse
Affiliation(s)
- Travis K Worley
- Department of Biology, Portland State University, Portland OR, United States.
| | - Ayah H Asal
- Department of Biology, Portland State University, Portland OR, United States
| | - Lo Cooper
- Department of Biology, Portland State University, Portland OR, United States
| | | | - Justin Courcelle
- Department of Biology, Portland State University, Portland OR, United States
| |
Collapse
|
2
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
3
|
Worley TK, Asal AH, Cooper L, Courcelle CT, Courcelle J. The complex development of psoralen-interstrand crosslink resistance in Escherichia coli requires AcrR inactivation, retention of a marbox sequence, and one of three MarA, SoxS, or Rob global regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626702. [PMID: 39677732 PMCID: PMC11642870 DOI: 10.1101/2024.12.03.626702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Crosslinking agents, such as psoralen and UVA radiation, can be effectively used as antimicrobials and for treating several dysplastic conditions in humans, including some cancers. Yet, both cancer cells and bacteria can become resistant to these compounds, making it important to understand how resistance develops. Recently, several mutants were isolated that developed high-levels of resistance to these compounds through upregulation of components of the AcrAB-TolC-efflux pump. Here, we characterized these mutants and found that resistance specifically requires inactivating mutations of the acrR transcriptional repressor which also retain the marbox sequence found within this coding region. In addition, the presence of any one of three global regulators, MarA, SoxS, or Rob, is necessary and sufficient to bind to the marbox sequence and activate resistance. Notably, although psoralen is a substrate for the efflux pump, these regulators are not naturally responsive to this stress as neither psoralen, UVA, nor crosslink induction upregulates acrAB expression in the absence of mutation.
Collapse
|
4
|
Silva TO, Bulla ACS, Teixeira BA, Gomes VMS, Raposo T, Barbosa LS, da Silva ML, Moreira LO, Olsen PC. Bacterial efflux pump OMPs as vaccine candidates against multidrug-resistant Gram-negative bacteria. J Leukoc Biol 2024; 116:1237-1253. [PMID: 39011942 DOI: 10.1093/jleuko/qiae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
The emergence and propagation of bacteria resistant to antimicrobial drugs is a serious public health threat worldwide. The current antibacterial arsenal is becoming obsolete, and the pace of drug development is decreasing, highlighting the importance of investment in alternative approaches to treat or prevent infections caused by antimicrobial-resistant bacteria. A significant mechanism of antimicrobial resistance employed by Gram-negative bacteria is the overexpression of efflux pumps that can extrude several compounds from the bacteria, including antimicrobials. The overexpression of efflux pump proteins has been detected in several multidrug-resistant Gram-negative bacteria, drawing attention to these proteins as potential targets against these pathogens. This review will focus on the role of outer membrane proteins from efflux pumps as potential vaccine candidates against clinically relevant multidrug-resistant Gram-negative bacteria, discussing advantages and pitfalls. Additionally, we will explore the relevance of efflux pump outer membrane protein diversity and the possible impact of vaccination on microbiota.
Collapse
Affiliation(s)
- Thaynara O Silva
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ana Carolina S Bulla
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Bárbara A Teixeira
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Vinnicius Machado Schelk Gomes
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764. Centro, Macaé, RJ, 27965-045, Brazil
| | - Thiago Raposo
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luiza S Barbosa
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Manuela Leal da Silva
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764. Centro, Macaé, RJ, 27965-045, Brazil
| | - Lilian O Moreira
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Priscilla C Olsen
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
5
|
Crow JC, Geng H, Sullivan TJ, Soucy SM, Schultz D. Dynamics of drug delivery determines course of evolution of antibiotic responses in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569327. [PMID: 38076825 PMCID: PMC10705423 DOI: 10.1101/2023.11.29.569327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
To adjust to sudden shifts in conditions, microbes possess regulated genetic mechanisms that sense environmental challenges and induce the appropriate responses. The initial evolution of microbes in new environments is thought to be driven by regulatory mutations, but it is not clear how this evolution is affected by how quickly conditions change (i.e. dynamics). Here, we perform experimental evolution on continuous cultures of tetracycline resistant E. coli in different dynamical regimens of drug administration. We find that cultures evolved under gradually increasing drug concentrations acquire fine-tuning mutations adapting an alternative efflux pump to tetracycline. However, cultures that are instead periodically exposed to large drug doses evolve transposon insertions resulting in loss of regulation of the main mechanism of tetracycline resistance. A mathematical model shows that sudden drug exposures overwhelm regulated responses, which cannot induce resistance fast enough. These results help explain the frequent loss of regulation of resistance in clinical pathogens.
Collapse
Affiliation(s)
- John C. Crow
- Department of Microbiology & Immunology, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Hao Geng
- Department of Microbiology & Immunology, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Timothy J. Sullivan
- Department of Biomedical Data Science, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Shannon M. Soucy
- Department of Biomedical Data Science, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Daniel Schultz
- Department of Microbiology & Immunology, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| |
Collapse
|
6
|
Di Marcantonio S, Perilli M, Alloggia G, Segatore B, Miconi G, Bruno G, Frascaria P, Piccirilli A. Coexistence of bla NDM-5, bla CTX-M-15, bla OXA-232, bla SHV-182 genes in multidrug-resistant K. pneumoniae ST437-carrying OmpK36 and OmpK37 porin mutations: First report in Italy. J Glob Antimicrob Resist 2024; 37:24-27. [PMID: 38408564 DOI: 10.1016/j.jgar.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVES K. pneumoniae is a common cause of severe hospital-acquired infections. In the present study, we have characterised the whole-genome of two K. pneumoniae ST437 belonging to the clonal complex CC258. METHODS The whole-genome sequencing was performed by MiSeq Illumina, with a 2 × 300bp paired-end run. ResFinder 4.4.2 was used to detect acquired antimicrobial resistance genes (ARGs) and chromosomal mutations. Mobile genetic elements (plasmids and ISs) were identified by MobileElementFinder v1.0.3. The genome was also assigned to ST using MLST 2.0.9. Virulence factors were detected using the Virulence Factor Database (VFDB). RESULTS K. pneumoniae KPNAQ_1/23 and KPNAQ_2/23 strains, isolated from urine samples of hospitalised patients, showed resistance to most antibiotics, including ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam combinations. Both strains were susceptible only to cefiderocol. Multiple mechanisms of resistance were identified. Resistance to β-lactams was due to the presence of NDM-5, OXA-232, CTX-M-15, SHV-182 β-lactamases, and OmpK36 and OmpK37 porin mutations. Resistance to fluoroquinolones was mediated by chromosomal mutations in acrR, oqxAB efflux pumps, and the bifunctional gene aac(6')-Ib-cr. CONCLUSION The presence of different virulence genes makes these KPNAQ_1/23 and KPNAQ_2/23 high-risk clones.
Collapse
Affiliation(s)
- Sascia Di Marcantonio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giovanni Alloggia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy; Medicine Laboratory, San Salvatore Hospital, L'Aquila, Italy
| | - Bernardetta Segatore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | | | | | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
7
|
Novelli M, Bolla JM. RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:501. [PMID: 38927168 PMCID: PMC11200565 DOI: 10.3390/antibiotics13060501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The rise of multi-drug-resistant (MDR) pathogenic bacteria presents a grave challenge to global public health, with antimicrobial resistance ranking as the third leading cause of mortality worldwide. Understanding the mechanisms underlying antibiotic resistance is crucial for developing effective treatments. Efflux pumps, particularly those of the resistance-nodulation-cell division (RND) superfamily, play a significant role in expelling molecules from bacterial cells, contributing to the emergence of multi-drug resistance. These are transmembrane transporters naturally produced by Gram-negative bacteria. This review provides comprehensive insights into the modulation of RND efflux pump expression in bacterial pathogens by numerous and common molecules (bile, biocides, pharmaceuticals, additives, plant extracts, etc.). The interplay between these molecules and efflux pump regulators underscores the complexity of antibiotic resistance mechanisms. The clinical implications of efflux pump induction by non-antibiotic compounds highlight the challenges posed to public health and the urgent need for further investigation. By addressing antibiotic resistance from multiple angles, we can mitigate its impact and preserve the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Marine Novelli
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France;
- Université Paris Cité, CNRS, Biochimie des Protéines Membranaires, F-75005 Paris, France
| | | |
Collapse
|
8
|
Wetzel D, Carter ZA, Monteiro MP, Edwards AN, Scharer CD, McBride SM. The pH-responsive SmrR-SmrT system modulates C. difficile antimicrobial resistance, spore formation, and toxin production. Infect Immun 2024; 92:e0046123. [PMID: 38345371 PMCID: PMC10929453 DOI: 10.1128/iai.00461-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance.IMPORTANCEClostridioides difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT, on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.
Collapse
Affiliation(s)
- Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Zavier A. Carter
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Marcos P. Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Leyn SA, Kent JE, Zlamal JE, Elane ML, Vercruysse M, Osterman AL. Two classes of DNA gyrase inhibitors elicit distinct evolutionary trajectories toward resistance in gram-negative pathogens. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:5. [PMID: 39843513 PMCID: PMC11702832 DOI: 10.1038/s44259-024-00021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2025]
Abstract
Comprehensive knowledge of mechanisms driving the acquisition of antimicrobial resistance is essential for the development of new drugs with minimized resistibility. To gain this knowledge, we combine experimental evolution in a continuous culturing device, the morbidostat, with whole genome sequencing of evolving cultures followed by characterization of drug-resistant isolates. Here, this approach was used to assess evolutionary dynamics of resistance acquisition against DNA gyrase/topoisomerase TriBE inhibitor GP6 in Escherichia coli and Acinetobacter baumannii. The evolution of GP6 resistance in both species was driven by a combination of two classes of mutational events: (i) amino acid substitutions near the ATP-binding site of the GyrB subunit of the DNA gyrase target; and (ii) various mutations and genomic rearrangements leading to upregulation of efflux pumps, species-specific (AcrAB/TolC in E. coli and AdeIJK in A. baumannii) and shared by both species (MdtK). A comparison with the experimental evolution of resistance to ciprofloxacin (CIP), previously performed using the same workflow and strains, revealed fundamental differences between these two distinct classes of compounds. Most notable were non-overlapping spectra of target mutations and distinct evolutionary trajectories that, in the case of GP6, were dominated by upregulation of efflux machinery prior to (or even in lieu) of target modification. Most of the efflux-driven GP6-resistant isolates of both species displayed a robust cross-resistance to CIP, while CIP-resistant clones showed no appreciable increase in GP6-resistance.
Collapse
Affiliation(s)
- Semen A Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - James E Kent
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jaime E Zlamal
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Marinela L Elane
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maarten Vercruysse
- Roche Pharma Research and Early Development, Immunology, Inflammation, and Infectious Diseases, Basel, Switzerland
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
10
|
Ghoshal M, Bechtel TD, Gibbons JG, McLandsborough L. Transcriptomic analysis using RNA sequencing and phenotypic analysis of Salmonella enterica after acid exposure for different time durations using adaptive laboratory evolution. Front Microbiol 2024; 15:1348063. [PMID: 38476938 PMCID: PMC10929716 DOI: 10.3389/fmicb.2024.1348063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction This study is the final part of a two-part series that delves into the molecular mechanisms driving adaptive laboratory evolution (ALE) of Salmonella enterica in acid stress. The phenotypic and transcriptomic alterations in the acid-evolved lineages (EL) of Salmonella enterica serovar Enteritidis after 70 days of acid stress exposure were analyzed. Materials and methods The stability of phenotypic changes observed after 70 days in acetic acid was explored after stress removal using a newly developed evolutionary lineage EL5. Additionally, the impact of short-term acid stress on the previously adapted lineage EL4 was also examined. Results The results indicate that the elevated antibiotic minimum inhibitory concentration (MIC) observed after exposure to acetic acid for 70 days was lost when acid stress was removed. This phenomenon was observed against human antibiotics such as meropenem, ciprofloxacin, gentamicin, and streptomycin. The MIC of meropenem in EL4 on day 70 was 0.094 mM, which dropped to 0.032 mM when removed from acetic acid stress after day 70. However, after stress reintroduction, the MIC swiftly elevated, and within 4 days, it returned to 0.094 mM. After 20 more days of adaptation in acetic acid, the meropenem MIC increased to 0.125 mM. The other human antibiotics that were tested exhibited a similar trend. The MIC of acetic acid in EL4 on day 70 was observed to be 35 mM, which remained constant even after the removal of acetic acid stress. Readaptation of EL4 in acetic acid for 20 more days caused the acetic acid MIC to increase to 37 mM. Bacterial whole genome sequencing of EL5 revealed base substitutions in several genes involved in pathogenesis, such as the phoQ and wzc genes. Transcriptomic analysis of EL5 revealed upregulation of virulence, drug resistance, toxin-antitoxin, and iron metabolism genes. Unstable Salmonella small colony variants (SSCV) of S. Enteritidis were also observed in EL5 as compared to the wild-type unevolved S. Enteritidis. Discussion This study presents a comprehensive understanding of the evolution of the phenotypic, genomic, and transcriptomic changes in S. Enteritidis due to prolonged acid exposure through ALE.
Collapse
Affiliation(s)
- Mrinalini Ghoshal
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Tyler D. Bechtel
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Lynne McLandsborough
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
11
|
Salgado H, Gama-Castro S, Lara P, Mejia-Almonte C, Alarcón-Carranza G, López-Almazo AG, Betancourt-Figueroa F, Peña-Loredo P, Alquicira-Hernández S, Ledezma-Tejeida D, Arizmendi-Zagal L, Mendez-Hernandez F, Diaz-Gomez AK, Ochoa-Praxedis E, Muñiz-Rascado LJ, García-Sotelo JS, Flores-Gallegos FA, Gómez L, Bonavides-Martínez C, del Moral-Chávez VM, Hernández-Alvarez AJ, Santos-Zavaleta A, Capella-Gutierrez S, Gelpi JL, Collado-Vides J. RegulonDB v12.0: a comprehensive resource of transcriptional regulation in E. coli K-12. Nucleic Acids Res 2024; 52:D255-D264. [PMID: 37971353 PMCID: PMC10767902 DOI: 10.1093/nar/gkad1072] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
RegulonDB is a database that contains the most comprehensive corpus of knowledge of the regulation of transcription initiation of Escherichia coli K-12, including data from both classical molecular biology and high-throughput methodologies. Here, we describe biological advances since our last NAR paper of 2019. We explain the changes to satisfy FAIR requirements. We also present a full reconstruction of the RegulonDB computational infrastructure, which has significantly improved data storage, retrieval and accessibility and thus supports a more intuitive and user-friendly experience. The integration of graphical tools provides clear visual representations of genetic regulation data, facilitating data interpretation and knowledge integration. RegulonDB version 12.0 can be accessed at https://regulondb.ccg.unam.mx.
Collapse
Affiliation(s)
- Heladia Salgado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Paloma Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Citlalli Mejia-Almonte
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Gabriel Alarcón-Carranza
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Andrés G López-Almazo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Felipe Betancourt-Figueroa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Pablo Peña-Loredo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | | | - Daniela Ledezma-Tejeida
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Lizeth Arizmendi-Zagal
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Francisco Mendez-Hernandez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Ana K Diaz-Gomez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Elizabeth Ochoa-Praxedis
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Luis J Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Jair S García-Sotelo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro 76230, Querétaro, Mexico
| | - Fanny A Flores-Gallegos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Laura Gómez
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, 14610 Ciudad de México, Mexico
- Escuela de Medicina, Tecnológico de Monterrey, Campus Ciudad de México, CDMX 14380, Meéxico
| | - César Bonavides-Martínez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Víctor M del Moral-Chávez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | | | - Alberto Santos-Zavaleta
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos 62580, Meéxico
| | | | - Josep Lluis Gelpi
- Department of Biochemistry and Molecular Biomedicine. Univ. of Barcelona. Av. Diagonal 643, 08028, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra(UPF), Dr. Aiguader 88, Barcelona, 08003, Barcelona, Spain
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra(UPF), Dr. Aiguader 88, Barcelona, 08003, Barcelona, Spain
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall. Boston, MA 02215, USA
| |
Collapse
|
12
|
Wetzel D, Carter ZA, Monteiro MP, Edwards AN, McBride SM. The pH-responsive SmrR-SmrT system modulates C. difficile antimicrobial resistance, spore formation, and toxin production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565354. [PMID: 37961610 PMCID: PMC10635087 DOI: 10.1101/2023.11.02.565354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT ) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance. IMPORTANCE C. difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.
Collapse
|
13
|
Kyung SM, Lee JH, Lee ES, Hwang CY, Yoo HS. Whole genome structure and resistance genes in carbapenemase-producing multidrug resistant ST378 Klebsiella pneumoniae. BMC Microbiol 2023; 23:323. [PMID: 37924028 PMCID: PMC10623767 DOI: 10.1186/s12866-023-03074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Carbapenemase-producing Klebsiella pneumoniae (CPKP) is one of the most dangerous multidrug-resistant (MDR) pathogens in human health due to its widespread circulation in the nosocomial environment. CPKP carried by companion dogs, which are close to human beings, should be considered a common threat to public health. However, CPKP dissemination through companion animals is still under consideration of major diagnosis and surveillance systems. METHODS Two CPKP isolates which were genotyped to harbor bla NDM-5-encoding IncX3 plasmids, were subjected to the whole-genome study. Whole bacterial DNA was isolated, sequenced, and assembled with Oxford Nanopore long reads and corrected with short reads from the Illumina NovaSeq 6000 platform. The whole-genome structure and positions of antimicrobial resistance (AMR) genes were identified and visualized using CGView. Worldwide datasets were downloaded from the NCBI GenBank database for whole-genome comparative analysis. The whole-genome phylogenetic analysis was constructed using the identified whole-chromosome SNP sites from K. pneumoniae HS11286. RESULTS As a result of the whole-genome identification, 4 heterogenous plasmids and a single chromosome were identified, each carrying various AMR genes. Multiple novel structures were identified from the AMR genes, coupled with mobile gene elements (MGE). The comparative whole-genome epidemiology revealed that ST378 K. pneumoniae is a novel type of CPKP, carrying a higher prevalence of AMR genes. CONCLUSIONS The characterized whole-genome analysis of this study shows the emergence of a novel type of CPKP strain carrying various AMR genes with variated genomic structures. The presented data in this study show the necessity to develop additional surveillance programs and control measures for a novel type of CPKP strain.
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Seo Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Yong Hwang
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Maldonado J, Czarnecka B, Harmon DE, Ruiz C. The multidrug efflux pump regulator AcrR directly represses motility in Escherichia coli. mSphere 2023; 8:e0043023. [PMID: 37787551 PMCID: PMC10597343 DOI: 10.1128/msphere.00430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 10/04/2023] Open
Abstract
Efflux and motility are two key biological functions in bacteria. Recent findings have shown that efflux impacts flagellum biosynthesis and motility in Escherichia coli and other bacteria. AcrR is known to be the major transcriptional repressor of AcrAB-TolC, the main multidrug efflux pump in E. coli and other Enterobacteriaceae. However, the underlying molecular mechanisms of how efflux and motility are co-regulated remain poorly understood. Here, we have studied the role of AcrR in direct regulation of motility in E. coli. By combining bioinformatics, electrophoretic mobility shift assays (EMSAs), gene expression, and motility experiments, we have found that AcrR represses motility in E. coli by directly repressing transcription of the flhDC operon, but not the other flagellum genes/operons tested. flhDC encodes the master regulator of flagellum biosynthesis and motility genes. We found that such regulation primarily occurs by direct binding of AcrR to the flhDC promoter region containing the first of the two predicted AcrR-binding sites identified in this promoter. This is the first report of direct regulation by AcrR of genes unrelated to efflux or detoxification. Moreover, we report that overexpression of AcrR restores to parental levels the increased swimming motility previously observed in E. coli strains without a functional AcrAB-TolC pump, and that such effect by AcrR is prevented by the AcrR ligand and AcrAB-TolC substrate ethidium bromide. Based on these and prior findings, we provide a novel model in which AcrR senses efflux and then co-regulates efflux and motility in E. coli to maintain homeostasis and escape hazards. IMPORTANCE Efflux and motility play a major role in bacterial growth, colonization, and survival. In Escherichia coli, the transcriptional repressor AcrR is known to directly repress efflux and was later found to also repress flagellum biosynthesis and motility by Kim et al. (J Microbiol Biotechnol 26:1824-1828, 2016, doi: 10.4014/jmb.1607.07058). However, it remained unknown whether AcrR represses flagellum biosynthesis and motility directly and through which target genes, or indirectly because of altering the amount of efflux. This study reveals that AcrR represses flagellum biosynthesis and motility by directly repressing the expression of the flhDC master regulator of flagellum biosynthesis and motility genes, but not the other flagellum genes tested. We also show that the antimicrobial, efflux pump substrate, and AcrR ligand ethidium bromide regulates motility via AcrR. Overall, these findings support a novel model of direct co-regulation of efflux and motility mediated by AcrR in response to stress in E. coli.
Collapse
Affiliation(s)
- Jessica Maldonado
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Barbara Czarnecka
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Dana E. Harmon
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Cristian Ruiz
- Department of Biology, California State University Northridge, Northridge, California, USA
| |
Collapse
|
15
|
Leyn SA, Kent JE, Zlamal JE, Elane ML, Vercruysse M, Osterman AL. Two Classes of DNA Gyrase Inhibitors Elicit Distinct Evolutionary Trajectories Toward Resistance in Gram-Negative Pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546596. [PMID: 37425702 PMCID: PMC10327078 DOI: 10.1101/2023.06.26.546596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Comprehensive knowledge of mechanisms driving the acquisition of antimicrobial resistance is essential for the development of new drugs with minimized resistibility. To gain this knowledge, we combine experimental evolution in a continuous culturing device, the morbidostat, with whole genome sequencing of evolving cultures followed by characterization of drug-resistant isolates. Here, this approach was used to assess evolutionary dynamics of resistance acquisition against DNA gyrase/topoisomerase TriBE inhibitor GP6 in Escherichia coli and Acinetobacter baumannii. The evolution of GP6 resistance in both species was driven by a combination of two classes of mutational events: (i) amino acid substitutions near the ATP-binding site of the GyrB subunit of the DNA gyrase target; and (ii) various mutations and genomic rearrangements leading to upregulation of efflux pumps, species-specific (AcrAB/TolC in E. coli and AdeIJK in A. baumannii) and shared by both species (MdtK). A comparison with the experimental evolution of resistance to ciprofloxacin (CIP), previously performed using the same workflow and strains, revealed fundamental differences between these two distinct classes of compounds. Most notable were non-overlapping spectra of target mutations and distinct evolutionary trajectories that, in the case of GP6, were dominated by upregulation of efflux machinery prior to (or even in lieu) of target modification. Most of efflux-driven GP6-resistant isolates of both species displayed a robust cross-resistance to CIP, while CIP-resistant clones showed no appreciable increase in GP6-resistance.
Collapse
Affiliation(s)
- Semen A Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - James E Kent
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jaime E Zlamal
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Marinela L Elane
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maarten Vercruysse
- Roche Pharma Research and Early Development, Immunology, Inflammation, and Infectious Diseases, Basel, Switzerland
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
16
|
Gao WL, Fang JL, Zhu CY, Xu WF, Lyu ZY, Chan XA, Zhao QW, Li YQ. Identification and Characterization of a New Regulator, TagR, for Environmental Stress Resistance Based on the DNA Methylome of Streptomyces roseosporus. Microbiol Spectr 2023; 11:e0038023. [PMID: 37154757 PMCID: PMC10269677 DOI: 10.1128/spectrum.00380-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
DNA methylation is a defense that microorganisms use against extreme environmental stress, and improving resistance against environmental stress is essential for industrial actinomycetes. However, research on strain optimization utilizing DNA methylation for breakthroughs is rare. Based on DNA methylome analysis and KEGG pathway assignment in Streptomyces roseosporus, we discovered an environmental stress resistance regulator, TagR. A series of in vivo and in vitro experiments identified TagR as a negative regulator, and it is the first reported regulator of the wall teichoic acid (WTA) ABC transport system. Further study showed that TagR had a positive self-regulatory loop and m4C methylation in the promoter improved its expression. The ΔtagR mutant exhibited better hyperosmotic resistance and higher decanoic acid tolerance than the wild type, which led to a 100% increase in the yield of daptomycin. Moreover, enhancing the expression of the WTA transporter resulted in better osmotic stress resistance in Streptomyces lividans TK24, indicating the potential for wide application of the TagR-WTA transporter regulatory pathway. This research confirmed the feasibility and effectiveness of mining regulators of environmental stress resistance based on the DNA methylome, characterized the mechanism of TagR, and improved the resistance and daptomycin yield of strains. Furthermore, this research provides a new perspective on the optimization of industrial actinomycetes. IMPORTANCE This study established a novel strategy for screening regulators of environmental stress resistance based on the DNA methylome and discovered a new regulator, TagR. The TagR-WTA transporter regulatory pathway improved the resistance and antibiotic yield of strains and has the potential for wide application. Our research provides a new perspective on the optimization and reconstruction of industrial actinomycetes.
Collapse
Affiliation(s)
- Wen-Li Gao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Institute of Pharmaceutical Biotechnology, Hangzhou, China
| | - Jiao-Le Fang
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Institute of Pharmaceutical Biotechnology, Hangzhou, China
| | - Chen-Yang Zhu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Institute of Pharmaceutical Biotechnology, Hangzhou, China
| | - Wei-Feng Xu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Institute of Pharmaceutical Biotechnology, Hangzhou, China
| | - Zhong-Yuan Lyu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Institute of Pharmaceutical Biotechnology, Hangzhou, China
| | - Xin-Ai Chan
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Institute of Pharmaceutical Biotechnology, Hangzhou, China
| | - Qing-Wei Zhao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Institute of Pharmaceutical Biotechnology, Hangzhou, China
| |
Collapse
|
17
|
The Multidrug Efflux Regulator AcrR of Escherichia coli Responds to Exogenous and Endogenous Ligands To Regulate Efflux and Detoxification. mSphere 2022; 7:e0047422. [PMID: 36416552 PMCID: PMC9769551 DOI: 10.1128/msphere.00474-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The transcriptional repressor AcrR is the main regulator of the multidrug efflux pump AcrAB-TolC, which plays a major role in antibiotic resistance and cell physiology in Escherichia coli and other Enterobacteriaceae. However, it remains unknown which ligands control the function of AcrR. To address this gap in knowledge, this study tested whether exogenous and/or endogenous molecules identified as potential AcrR ligands regulate the activity of AcrR. Using electrophoretic mobility shift assays (EMSAs) with purified AcrR and the acrAB promoter and in vivo gene expression experiments, we found that AcrR responds to both exogenous molecules and cellular metabolites produced by E. coli. In total, we identified four functional ligands of AcrR, ethidium bromide (EtBr), an exogenous antimicrobial known to be effluxed by the AcrAB-TolC pump and previously shown to bind to AcrR, and three polyamines produced by E. coli, namely, putrescine, cadaverine, and spermidine. We found that EtBr and polyamines bind to AcrR both in vitro and in vivo, which prevents the binding of AcrR to the acrAB promoter and, ultimately, induces the expression of acrAB. Finally, we also found that AcrR contributes to mitigating the toxicity produced by excess polyamines by directly regulating the expression of AcrAB-TolC and two previously unknown AcrR targets, the MdtJI spermidine efflux pump and the putrescine degradation enzyme PuuA. Overall, these findings significantly expand our understanding of the function of AcrR by revealing that this regulator responds to different exogenous and endogenous ligands to regulate the expression of multiple genes involved in efflux and detoxification. IMPORTANCE Multidrug efflux pumps can remove antibiotics and other toxic molecules from cells and are major contributors to antibiotic resistance and bacterial physiology. Therefore, it is essential to better understand their function and regulation. AcrAB-TolC is the main multidrug efflux pump in the Enterobacteriaceae family, and AcrR is its major transcriptional regulator. However, little is known about which ligands control the function of AcrR or which other genes are controlled by this regulator. This study contributes to addressing these gaps in knowledge by showing that (i) the activity of AcrR is controlled by the antimicrobial ethidium bromide and by polyamines produced by E. coli, and (ii) AcrR directly regulates the expression of AcrAB-TolC and genes involved in detoxification and efflux of excess polyamines. These findings significantly advance our understanding of the biological role of AcrR by identifying four ligands that control its function and two novel targets of this regulator.
Collapse
|
18
|
Kotecka K, Kawalek A, Modrzejewska-Balcerek M, Gawor J, Zuchniewicz K, Gromadka R, Bartosik AA. Functional Characterization of TetR-like Transcriptional Regulator PA3973 from Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:ijms232314584. [PMID: 36498910 PMCID: PMC9736018 DOI: 10.3390/ijms232314584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa, a human opportunistic pathogen, is a common cause of nosocomial infections. Its ability to survive under different conditions relies on a complex regulatory network engaging transcriptional regulators controlling metabolic pathways and capabilities to efficiently use the available resources. P. aeruginosa PA3973 encodes an uncharacterized TetR family transcriptional regulator. In this study, we applied a transcriptome profiling (RNA-seq), genome-wide identification of binding sites using ChIP-seq, as well as the phenotype analyses to unravel the biological role of PA3973. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3973 showed changes in the mRNA level of 648 genes. Concomitantly, ChIP-seq analysis identified more than 300 PA3973 binding sites in the P. aeruginosa genome. A 13 bp sequence motif was indicated as the binding site of PA3973. The PA3973 regulon encompasses the PA3972-PA3971 genes encoding a probable acyl-CoA dehydrogenase and a thioesterase. In vitro analysis showed PA3973 binding to PA3973p. Accordingly, the lack of PA3973 triggered increased expression of PA3972 and PA3971. The ∆PA3972-71 PAO1161 strain demonstrated impaired growth in the presence of stress-inducing agents hydroxylamine or hydroxyurea, thus suggesting the role of PA3972-71 in pathogen survival upon stress. Overall our results showed that TetR-type transcriptional regulator PA3973 has multiple binding sites in the P. aeruginosa genome and influences the expression of diverse genes, including PA3972-PA3971, encoding proteins with a proposed role in stress response.
Collapse
|
19
|
Thänert R, Choi J, Reske KA, Hink T, Thänert A, Wallace MA, Wang B, Seiler S, Cass C, Bost MH, Struttmann EL, Iqbal ZH, Sax SR, Fraser VJ, Baker AW, Foy KR, Williams B, Xu B, Capocci-Tolomeo P, Lautenbach E, Burnham CAD, Dubberke ER, Kwon JH, Dantas G. Persisting uropathogenic Escherichia coli lineages show signatures of niche-specific within-host adaptation mediated by mobile genetic elements. Cell Host Microbe 2022; 30:1034-1047.e6. [PMID: 35545083 PMCID: PMC10365138 DOI: 10.1016/j.chom.2022.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
Large-scale genomic studies have identified within-host adaptation as a hallmark of bacterial infections. However, the impact of physiological, metabolic, and immunological differences between distinct niches on the pathoadaptation of opportunistic pathogens remains elusive. Here, we profile the within-host adaptation and evolutionary trajectories of 976 isolates representing 119 lineages of uropathogenic Escherichia coli (UPEC) sampled longitudinally from both the gastrointestinal and urinary tracts of 123 patients with urinary tract infections. We show that lineages persisting in both niches within a patient exhibit increased allelic diversity. Habitat-specific selection results in niche-specific adaptive mutations and genes, putatively mediating fitness in either environment. Within-lineage inter-habitat genomic plasticity mediated by mobile genetic elements (MGEs) provides the opportunistic pathogen with a mechanism to adapt to the physiological conditions of either habitat, and reduced MGE richness is associated with recurrence in gut-adapted UPEC lineages. Collectively, our results establish niche-specific adaptation as a driver of UPEC within-host evolution.
Collapse
Affiliation(s)
- Robert Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - JooHee Choi
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly A Reske
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiffany Hink
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meghan A Wallace
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sondra Seiler
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Candice Cass
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Margaret H Bost
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily L Struttmann
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Zainab Hassan Iqbal
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven R Sax
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Victoria J Fraser
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Arthur W Baker
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA; Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, NC, USA
| | - Katherine R Foy
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA; Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, NC, USA
| | - Brett Williams
- Division of Infectious Diseases, Department of Internal Medicine, Rush Medical College, Chicago, IL, USA
| | - Ben Xu
- Division of Infectious Diseases, Department of Internal Medicine, Rush Medical College, Chicago, IL, USA
| | - Pam Capocci-Tolomeo
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ebbing Lautenbach
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| | - Jennie H Kwon
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
20
|
Tsugita A, Uehara S, Matsui T, Yokoyama T, Ostash I, Deneka M, Yalamanchili S, Bennett CS, Tanaka Y, Ostash B. The carbohydrate tail of landomycin A is responsible for its interaction with the repressor protein LanK. FEBS J 2022; 289:6038-6057. [DOI: 10.1111/febs.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Atsushi Tsugita
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Shiro Uehara
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Takashi Matsui
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Takeshi Yokoyama
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Iryna Ostash
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| | - Maksym Deneka
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| | | | | | - Yoshikazu Tanaka
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Bohdan Ostash
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| |
Collapse
|
21
|
Kerr R, Jabbari S, Blair JMA, Johnston IG. Dynamic Boolean modelling reveals the influence of energy supply on bacterial efflux pump expression. J R Soc Interface 2022; 19:20210771. [PMID: 35078338 PMCID: PMC8790346 DOI: 10.1098/rsif.2021.0771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global health issue. One key factor contributing to AMR is the ability of bacteria to export drugs through efflux pumps, which relies on the ATP-dependent expression and interaction of several controlling genes. Recent studies have shown that significant cell-to-cell ATP variability exists within clonal bacterial populations, but the contribution of intrinsic cell-to-cell ATP heterogeneity is generally overlooked in understanding efflux pumps. Here, we consider how ATP variability influences gene regulatory networks controlling expression of efflux pump genes in two bacterial species. We develop and apply a generalizable Boolean modelling framework, developed to incorporate the dependence of gene expression dynamics on available cellular energy supply. Theoretical results show that differences in energy availability can cause pronounced downstream heterogeneity in efflux gene expression. Cells with higher energy availability have a superior response to stressors. Furthermore, in the absence of stress, model bacteria develop heterogeneous pulses of efflux pump gene expression which contribute to a sustained sub-population of cells with increased efflux expression activity, potentially conferring a continuous pool of intrinsically resistant bacteria. This modelling approach thus reveals an important source of heterogeneity in cell responses to antimicrobials and sheds light on potentially targetable aspects of efflux pump-related antimicrobial resistance.
Collapse
Affiliation(s)
- Ryan Kerr
- School of Mathematics, University of Birmingham, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Sara Jabbari
- School of Mathematics, University of Birmingham, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Iain G Johnston
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway.,CAMRIA Centre for Antimicrobial Resistance, Vestland, Norway
| |
Collapse
|
22
|
Van Loi V, Busche T, Fritsch VN, Weise C, Gruhlke MCH, Slusarenko AJ, Kalinowski J, Antelmann H. The two-Cys-type TetR repressor GbaA confers resistance under disulfide and electrophile stress in Staphylococcus aureus. Free Radic Biol Med 2021; 177:120-131. [PMID: 34678418 PMCID: PMC8693949 DOI: 10.1016/j.freeradbiomed.2021.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus has to cope with oxidative and electrophile stress during host-pathogen interactions. The TetR-family repressor GbaA was shown to sense electrophiles, such as N-ethylmaleimide (NEM) via monothiol mechanisms of the two conserved Cys55 or Cys104 residues in vitro. In this study, we further investigated the regulation and function of the GbaA repressor and its Cys residues in S. aureus COL. The GbaA-controlled gbaAB-SACOL2595-97 and SACOL2592-nmrA-2590 operons were shown to respond only weakly 3-10-fold to oxidants, electrophiles or antibiotics in S. aureus COL, but are 57-734-fold derepressed in the gbaA deletion mutant, indicating that the physiological inducer is still unknown. Moreover, the gbaA mutant remained responsive to disulfide and electrophile stress, pointing to additional redox control mechanisms of both operons. Thiol-stress induction of the GbaA regulon was strongly diminished in both single Cys mutants, supporting that both Cys residues are required for redox-sensing in vivo. While GbaA and the single Cys mutants are reversible oxidized under diamide and allicin stress, these thiol switches did not affect the DNA binding activity. The repressor activity of GbaA could be only partially inhibited with NEM in vitro. Survival assays revealed that the gbaA mutant confers resistance under diamide, allicin, NEM and methylglyoxal stress, which was mediated by the SACOL2592-90 operon encoding for a putative glyoxalase and oxidoreductase. Altogether, our results support that the GbaA repressor functions in the defense against oxidative and electrophile stress in S. aureus. GbaA represents a 2-Cys-type redox sensor, which requires another redox-sensing regulator and an unknown thiol-reactive ligand for full derepression of the GbaA regulon genes.
Collapse
Affiliation(s)
- Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, D-14195, Berlin, Germany
| | | | - Alan John Slusarenko
- Department of Plant Physiology, RWTH Aachen University, D-52056, Aachen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
23
|
Rodríguez-Esperón MC, Eastman G, Sandes L, Garabato F, Eastman I, Iriarte A, Fabiano E, Sotelo-Silveira JR, Platero R. Genomics and transcriptomics insights into luteolin effects on the beta-rhizobial strain Cupriavidus necator UYPR2.512. Environ Microbiol 2021; 24:240-264. [PMID: 34811861 DOI: 10.1111/1462-2920.15845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Cupriavidus necator UYPR2.512 is a rhizobial strain that belongs to the Beta-subclass of proteobacteria, able to establish successful symbiosis with Mimosoid legumes. The initial steps of rhizobium-legumes symbioses involve the reciprocal recognition by chemical signals, being luteolin one of the molecules involved. However, there is a lack of information on the effect of luteolin in beta-rhizobia. In this work, we used long-read sequencing to complete the genome of UYPR2.512 providing evidence for the existence of four closed circular replicons. We used an RNA-Seq approach to analyse the response of UYPR2.512 to luteolin. One hundred and forty-five genes were differentially expressed, with similar numbers of downregulated and upregulated genes. Most repressed genes were mapped to the main chromosome, while the upregulated genes were overrepresented among pCne512e, containing the symbiotic genes. Induced genes included the nod operon and genes implicated in exopolysaccharides and flagellar biosynthesis. We identified many genes involved in iron, copper and other heavy metals metabolism. Among repressed genes, we identified genes involved in basal carbon and nitrogen metabolism. Our results suggest that in response to luteolin, C. necator strain UYPR2.512 reshapes its metabolism in order to be prepared for the forthcoming symbiotic interaction.
Collapse
Affiliation(s)
- M C Rodríguez-Esperón
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - G Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - L Sandes
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - F Garabato
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - I Eastman
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Montevideo, Uruguay
| | - E Fabiano
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - J R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - R Platero
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
24
|
Hadchity L, Lanois A, Kiwan P, Nassar F, Givaudan A, Khattar ZA. AcrAB, the major RND-type efflux pump of Photorhabdus laumondii, confers intrinsic multidrug-resistance and contributes to virulence in insects. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:637-648. [PMID: 34002534 DOI: 10.1111/1758-2229.12974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The resistance-nodulation-division (RND)-type efflux pumps AcrAB and MdtABC contribute to multidrug-resistance (MDR) in Gram-negative bacteria. Photorhabdus is a symbiotic bacterium of soil nematodes that also produces virulence factors killing insects by septicaemia. We previously showed that mdtA deletion in Photorhabdus laumondii TT01 resulted in no detrimental phenotypes. Here, we investigated the roles of the last two putative RND transporters in TT01 genome, AcrAB and AcrAB-like (Plu0759-Plu0758). Only ΔacrA and ΔmdtAΔacrA mutants were multidrug sensitive, even to triphenyltetrazolium chloride and bromothymol blue used for Photorhabdus isolation from nematodes on the nutrient bromothymol blue-triphenyltetrazolium chloride agar (NBTA) medium. Both mutants also displayed slightly attenuated virulence after injection into Spodoptera littoralis. Transcriptional analysis revealed intermediate levels of acrAB expression in vitro, in vivo and post-mortem, whereas its putative transcriptional repressor acrR was weakly expressed. Yet, plasmid-mediated acrR overexpression did not decrease acrAB transcript levels neither MDR in TT01 WT. While no pertinent mutations were detected in acrR of the same P. laumondii strain grown either on NBTA or nutrient agar, we suggest that AcrR-mediated repression of acrAB is not physiologically required under conditions tested. Finally, we propose that AcrAB is the primary RND-efflux pump, which is essential for MDR in Photorhabdus and may confer adaptive advantages during insect infection.
Collapse
Affiliation(s)
- Linda Hadchity
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
- DGIMI, Université Montpellier, INRAE, Montpellier, France
| | - Anne Lanois
- DGIMI, Université Montpellier, INRAE, Montpellier, France
| | - Paloma Kiwan
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
| | - Fida Nassar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
| | - Alain Givaudan
- DGIMI, Université Montpellier, INRAE, Montpellier, France
| | - Ziad Abi Khattar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
| |
Collapse
|
25
|
Kim C, Latif I, Neupane DP, Lee GY, Kwon RS, Batool A, Ahmed Q, Qamar MU, Song J. The molecular basis of extensively drug-resistant Salmonella Typhi isolates from pediatric septicemia patients. PLoS One 2021; 16:e0257744. [PMID: 34582469 PMCID: PMC8478237 DOI: 10.1371/journal.pone.0257744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022] Open
Abstract
Sepsis is a syndromic response to infections and is becoming an emerging threat to the public health sector, particularly in developing countries. Salmonella Typhi (S. Typhi), the cause of typhoid fever, is one primary cause of pediatric sepsis in typhoid endemic areas. Extensively drug-resistant (XDR) S. Typhi is more common among pediatric patients, which is responsible for over 90% of the reported XDR typhoid cases, but the majority of antibiotic resistance studies available have been carried out using S. Typhi isolates from adult patients. Here, we characterized antibiotic-resistance profiles of XDR S. Typhi isolates from a medium size cohort of pediatric typhoid patients (n = 45, 68.89% male and 31.11% female) and determined antibiotic-resistance-related gene signatures associated with common treatment options to typhoid fever patients of 18 XDR S. Typhi representing all 45 isolates. Their ages were 1–13 years old: toddlers aging 1–2 years old (n = 9, 20%), pre-schoolers aging 3–5 years old (n = 17, 37.78%), school-age children aging 6–12 years old (n = 17, 37.78%), and adolescents aging 13–18 years old (n = 2, 4.44%). Through analyzing blaTEM1, dhfR7, sul1, and catA1genes for multidrug-resistance, qnrS, gyrA, gyrB, parC, and parE for fluoroquinolone-resistance, blaCTX-M-15 for XDR, and macAB and acrAB efflux pump system-associated genes, we showed the phenotype of the XDR S. Typhi isolates matches with their genotypes featured by the acquisitions of the genes blaTEM1, dhfR7, sul1, catA1, qnrS, and blaCTX-M-15 and a point mutation on gyrA. This study informs the molecular basis of antibiotic-resistance among recent S. Typhi isolates from pediatric septicemia patients, therefore providing insights into the development of molecular detection methods and treatment strategies for XDR S. Typhi.
Collapse
Affiliation(s)
- Chanmi Kim
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Iqra Latif
- Faculty of Life Sciences, Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Durga P. Neupane
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gi Young Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ryan S. Kwon
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alia Batool
- Department of Pathology, Fatima Memorial Hospital, Lahore, Pakistan
| | - Qasim Ahmed
- Department of Pathology, Fatima Memorial Hospital, Lahore, Pakistan
| | - Muhammad Usman Qamar
- Faculty of Life Sciences, Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- * E-mail: (JS); (MUQ)
| | - Jeongmin Song
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (JS); (MUQ)
| |
Collapse
|
26
|
Chittrakanwong J, Charoenlap N, Vanitshavit V, Sowatad A, Mongkolsuk S, Vattanaviboon P. The role of MfsR, a TetR-type transcriptional regulator, in adaptive protection of Stenotrophomonas maltophilia against benzalkonium chloride via the regulation of mfsQ. FEMS Microbiol Lett 2021; 368:6332283. [PMID: 34329426 DOI: 10.1093/femsle/fnab098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
A gene encoding the TetR-type transcriptional regulator mfsR is located immediately downstream of mfsQ and is transcribed in the same transcriptional unit. mfsQ encodes a major facilitator superfamily (MFS) efflux transporter contributing to the resistance of Stenotrophomonas maltophilia towards disinfectants belonging to quaternary ammonium compounds (QACs), which include benzalkonium chloride (BAC). Phylogenetic analysis revealed that MfsR is closely related to CgmR, a QAC-responsive transcriptional regulator belonging to the TetR family. MfsR regulated the expression of the mfsQR operon in a QAC-inducible manner. The constitutively high transcript level of mfsQ in an mfsR mutant indicated that MfsR functions as a transcriptional repressor of the mfsQR operon. Electrophoretic mobility shift assays showed that purified MfsR specifically bound to the putative promoter region of mfsQR, and in vitro treatments with QACs led to the release of MfsR from binding complexes. DNase I protection assays revealed that the MfsR binding box comprises inverted palindromic sequences located between motifs -35 and -10 of the putative mfsQR promoter. BAC-induced adaptive protection was abolished in the mfsR mutant and was restored in the complemented mutant. Overall, MfsR is a QACs-sensing regulator that controls the expression of mfsQ. In the absence of QACs, MfsR binds to the box located in the mfsQR promoter and represses its transcription. The presence of QACs derepresses MfsR activity, allowing RNA polymerase binding and transcription of mfsQR. This MfsR-MsfQ system enables S. maltophilia to withstand high levels of QACs.
Collapse
Affiliation(s)
- Jurairat Chittrakanwong
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Nisanart Charoenlap
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, EHT, Ministry of Education, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Veerakit Vanitshavit
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Apinya Sowatad
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, EHT, Ministry of Education, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, EHT, Ministry of Education, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
27
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
28
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
29
|
Beggs GA, Ayala JC, Kavanaugh LG, Read T, Hooks G, Schumacher M, Shafer W, Brennan R. Structures of Neisseria gonorrhoeae MtrR-operator complexes reveal molecular mechanisms of DNA recognition and antibiotic resistance-conferring clinical mutations. Nucleic Acids Res 2021; 49:4155-4170. [PMID: 33784401 PMCID: PMC8053128 DOI: 10.1093/nar/gkab213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations within the mtrR gene are commonly found amongst multidrug resistant clinical isolates of Neisseria gonorrhoeae, which has been labelled a superbug by the Centers for Disease Control and Prevention. These mutations appear to contribute to antibiotic resistance by interfering with the ability of MtrR to bind to and repress expression of its target genes, which include the mtrCDE multidrug efflux transporter genes and the rpoH oxidative stress response sigma factor gene. However, the DNA-recognition mechanism of MtrR and the consensus sequence within these operators to which MtrR binds has remained unknown. In this work, we report the crystal structures of MtrR bound to the mtrCDE and rpoH operators, which reveal a conserved, but degenerate, DNA consensus binding site 5'-MCRTRCRN4YGYAYGK-3'. We complement our structural data with a comprehensive mutational analysis of key MtrR-DNA contacts to reveal their importance for MtrR-DNA binding both in vitro and in vivo. Furthermore, we model and generate common clinical mutations of MtrR to provide plausible biochemical explanations for the contribution of these mutations to multidrug resistance in N. gonorrhoeae. Collectively, our findings unveil key biological mechanisms underlying the global stress responses of N. gonorrhoeae.
Collapse
Affiliation(s)
- Grace A Beggs
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julio C Ayala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Logan G Kavanaugh
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Timothy D Read
- Department of Medicine, and the Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Grace M Hooks
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Laboratories of Bacterial Pathogenesis, VA Medical Center, Decatur, GA 30033, USA
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
30
|
Limited Multidrug Resistance Efflux Pump Overexpression among Multidrug-Resistant Escherichia coli Strains of ST131. Antimicrob Agents Chemother 2021; 65:AAC.01735-20. [PMID: 33468485 DOI: 10.1128/aac.01735-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022] Open
Abstract
Gram-negative bacteria partly rely on efflux pumps to facilitate growth under stressful conditions and to increase resistance to a wide variety of commonly used drugs. In recent years, Escherichia coli sequence type 131 (ST131) has emerged as a major cause of extraintestinal infection frequently exhibiting a multidrug resistance (MDR) phenotype. The contribution of efflux to MDR in emerging E. coli MDR clones, however, is not well studied. We characterized strains from an international collection of clinical MDR E. coli isolates by MIC testing with and without the addition of the AcrAB-TolC efflux inhibitor 1-(1-naphthylmethyl)-piperazine (NMP). MIC data for 6 antimicrobial agents and their reversion by NMP were analyzed by principal-component analysis (PCA). PCA revealed a group of 17 MDR E. coli isolates (n = 34) exhibiting increased susceptibility to treatment with NMP, suggesting an enhanced contribution of efflux pumps to antimicrobial resistance in these strains (termed enhanced efflux phenotype [EEP] strains). Only 1/17 EEP strains versus 12/17 non-EEP MDR strains belonged to the ST131 clonal group. Whole-genome sequencing revealed marked differences in efflux-related genes between EEP and control strains, with the majority of notable amino acid substitutions occurring in AcrR, MarR, and SoxR. Quantitative reverse transcription-PCR (qRT-PCR) of multiple efflux-related genes showed significant overexpression of the AcrAB-TolC system in EEP strains, whereas in the remaining strains, we found enhanced expression of alternative efflux proteins. We conclude that a proportion of MDR E. coli strains exhibit an EEP, which is linked to an overexpression of the AcrAB-TolC efflux pump and a distinct array of genomic variations. Members of ST131, although highly successful, are less likely to exhibit the EEP.
Collapse
|
31
|
Pushparajan AR, Ramachandran R, Gopi Reji J, Ajay Kumar R. Mycobacterium
tuberculosis
TetR family transcriptional regulator Rv1019 is a negative regulator of the
mfd‐mazG
operon encoding DNA repair proteins. FEBS Lett 2020; 594:2867-2880. [DOI: 10.1002/1873-3468.13861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Akhil Raj Pushparajan
- Mycobacterium Research Laboratory Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram Kerala India
- Department of Biotechnology Faculty of Applied Sciences and Technology University of Kerala Thiruvananthapuram Kerala India
| | - Ranjit Ramachandran
- Mycobacterium Research Laboratory Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram Kerala India
- Department of Biotechnology Faculty of Applied Sciences and Technology University of Kerala Thiruvananthapuram Kerala India
| | - Jijimole Gopi Reji
- Mycobacterium Research Laboratory Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram Kerala India
- Department of Biotechnology Faculty of Applied Sciences and Technology University of Kerala Thiruvananthapuram Kerala India
| | - Ramakrishnan Ajay Kumar
- Mycobacterium Research Laboratory Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram Kerala India
| |
Collapse
|
32
|
Subhadra B, Surendran S, Lim BR, Yim JS, Kim DH, Woo K, Kim HJ, Oh MH, Choi CH. Regulation of the AcrAB efflux system by the quorum-sensing regulator AnoR in Acinetobacter nosocomialis. J Microbiol 2020; 58:507-518. [PMID: 32462488 DOI: 10.1007/s12275-020-0185-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Multidrug efflux pumps play an important role in antimicrobial resistance and pathogenicity in bacteria. Here, we report the functional characterization of the RND (resistance-nodulation- division) efflux pump, AcrAB, in Acinetobacter nosocomialis. An in silico analysis revealed that homologues of the AcrAB efflux pump, comprising AcrA and AcrB, are widely distributed among different bacterial species. Deletion of acrA and/or acrB genes led to decreased biofilm/pellicle formation and reduced antimicrobial resistance in A. nosocomialis. RNA sequencing and mRNA expression analyses showed that expression of acrA/B was downregulated in a quorum sensing (QS) regulator (anoR)-deletion mutant, indicating transcriptional activation of the acrAB operon by AnoR in A. nosocomialis. Bioassays showed that secretion of N-acyl homoserine lactones (AHLs) was unaffected in acrA and acrB deletion mutants; however, AHL secretion was limited in a deletion mutant of acrR, encoding the acrAB regulator, AcrR. An in silico analysis indicated the presence of AcrR-binding motifs in promoter regions of anoI (encoding AHL synthase) and anoR. Specific binding of AcrR was confirmed by electrophoretic mobility shift assays, which revealed that AcrR binds to positions -214 and -217 bp upstream of the translational start sites of anoI and anoR, respectively, demonstrating transcriptional regulation of these QS genes by AcrR. The current study further addresses the possibility that AcrAB is controlled by the osmotic stress regulator, OmpR, in A. nosocomialis. Our data demonstrate that the AcrAB efflux pump plays a crucial role in biofilm/pellicle formation and antimicrobial resistance in A. nosocomialis, and is under the transcriptional control of a number of regulators. In addition, the study emphasizes the interrelationship of QS and AcrAB efflux systems in A. nosocomialis.
Collapse
Affiliation(s)
- Bindu Subhadra
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Surya Surendran
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Bo Ra Lim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Sung Yim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dong Ho Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyungho Woo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Chul Hee Choi
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
33
|
Yu L, Li W, Li Q, Chen X, Ni J, Shang F, Xue T. Role of LsrR in the regulation of antibiotic sensitivity in avian pathogenic Escherichia coli. Poult Sci 2020; 99:3675-3687. [PMID: 32616264 PMCID: PMC7597812 DOI: 10.1016/j.psj.2020.03.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/02/2020] [Accepted: 03/30/2020] [Indexed: 01/12/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a specific group of extraintestinal pathogenic E. coli that causes a variety of extraintestinal diseases in chickens, ducks, pigeons, turkeys, and other avian species. These diseases lead to significant economic losses in the poultry industry worldwide. However, owing to excessive use of antibiotics in the treatment of infectious diseases, bacteria have developed antibiotic resistance. The development of multidrug efflux pumps is one important bacterial antibiotic resistance mechanism. A multidrug efflux pump, MdtH, which belongs to the major facilitator superfamily of transporters, confers resistance to quinolone antibiotics such as norfloxacin and enoxacin. LsrR regulates hundreds of genes that participate in myriad biological processes, including mobility, biofilm formation, and antibiotic susceptibility. However, whether LsrR regulates mdtH transcription and then affects bacterial resistance to various antibiotics in APEC has not been reported. In the present study, the lsrR mutant was constructed from its parent strain APECX40 (WT), and high-throughput sequencing was performed to analyze the transcriptional profile of the WT and mutant XY10 strains. The results showed that lsrR gene deletion upregulated the mdtH transcript level. Furthermore, we also constructed the lsrR- and mdtH-overexpressing strains and performed antimicrobial susceptibility testing, antibacterial activity assays, real-time reverse transcription PCR, and electrophoretic mobility shift assays to investigate the molecular regulatory mechanism of LsrR on the MdtH multidrug efflux pump. The lsrR mutation and the mdtH-overexpressing strain decreased cell susceptibility to norfloxacin, ofloxacin, ciprofloxacin, and tetracycline by upregulating mdtH transcript levels. In addition, the lsrR-overexpressing strain increased cell susceptibility to norfloxacin, ofloxacin, ciprofloxacin, and tetracycline by downregulating mdtH transcript levels. Electrophoretic mobility shift assays indicated that LsrR directly binds to the mdtH promoter. Therefore, this study is the first to demonstrate that LsrR inhibits mdtH transcription by directly binding to its promoter region. This action subsequently increases susceptibility to the aforementioned four antibiotics in APECX40.
Collapse
Affiliation(s)
- Lumin Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wenchang Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qian Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jingtian Ni
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
34
|
Kim YJ, Park JY, Balusamy SR, Huo Y, Nong LK, Thi Le H, Yang DC, Kim D. Comprehensive Genome Analysis on the Novel Species Sphingomonas panacis DCY99 T Reveals Insights into Iron Tolerance of Ginseng. Int J Mol Sci 2020; 21:E2019. [PMID: 32188055 PMCID: PMC7139845 DOI: 10.3390/ijms21062019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 11/18/2022] Open
Abstract
Plant growth-promoting rhizobacteria play vital roles not only in plant growth, but also in reducing biotic/abiotic stress. Sphingomonas panacis DCY99T is isolated from soil and root of Panax ginseng with rusty root disease, characterized by raised reddish-brown root and this is seriously affects ginseng cultivation. To investigate the relationship between 159 sequenced Sphingomonas strains, pan-genome analysis was carried out, which suggested genomic diversity of the Sphingomonas genus. Comparative analysis of S. panacis DCY99T with Sphingomonas sp. LK11 revealed plant growth-promoting potential of S. panacis DCY99T through indole acetic acid production, phosphate solubilizing, and antifungal abilities. Detailed genomic analysis has shown that S. panacis DCY99T contain various heavy metals resistance genes in its genome and the plasmid. Functional analysis with Sphingomonas paucimobilis EPA505 predicted that S. panacis DCY99T possess genes for degradation of polyaromatic hydrocarbon and phenolic compounds in rusty-ginseng root. Interestingly, when primed ginseng with S. panacis DCY99T during high concentration of iron exposure, iron stress of ginseng was suppressed. In order to detect S. panacis DCY99T in soil, biomarker was designed using spt gene. This study brings new insights into the role of S. panacis DCY99T as a microbial inoculant to protect ginseng plants against rusty root disease.
Collapse
Affiliation(s)
- Yeon-Ju Kim
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | | | - Yue Huo
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | - Hoa Thi Le
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | - Deok Chun Yang
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Korean Genomics Industrialization and Commercialization Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
35
|
Al-Kandari F, Al-Temaimi R, van Vliet AHM, Woodward MJ. Thymol tolerance in Escherichia coli induces morphological, metabolic and genetic changes. BMC Microbiol 2019; 19:294. [PMID: 31842755 PMCID: PMC6915861 DOI: 10.1186/s12866-019-1663-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/26/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Thymol is a phenolic compound used for its wide spectrum antimicrobial activity. There is a limited understanding of the antimicrobial mechanisms underlying thymol activity. To investigate this, E. coli strain JM109 was exposed to thymol at sub-lethal concentrations and after 16 rounds of exposure, isolates with a 2-fold increased minimal inhibitory concentration (MIC) were recovered (JM109-Thyr). The phenotype was stable after multiple sub-cultures without thymol. RESULTS Cell morphology studies by scanning electron microscopy (SEM) suggest that thymol renders bacterial cell membranes permeable and disrupts cellular integrity. 1H Nuclear magnetic resonance (NMR) data showed an increase in lactate and the lactic acid family amino acids in the wild type and JM109-Thyr in the presence of thymol, indicating a shift from aerobic respiration to fermentation. Sequencing of JM109-Thyr defined multiple mutations including a stop mutation in the acrR gene resulting in a truncation of the repressor of the AcrAB efflux pump. AcrAB is a multiprotein complex traversing the cytoplasmic and outer membrane, and is involved in antibiotic clearance. CONCLUSIONS Our data suggests that thymol tolerance in E. coli induces morphological, metabolic and genetic changes to adapt to thymol antimicrobial activity.
Collapse
Affiliation(s)
- Fatemah Al-Kandari
- Department of Food and Nutrition Science, School of Chemistry, University of Reading, Reading, RG6 6AP UK
- Department of Plant Protection, Public Authority Of Agriculture Affairs & Fish Resources, Al-Rabia, Kuwait
| | - Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Arnoud H. M. van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL UK
| | - Martin J. Woodward
- Department of Food and Nutrition Science, School of Chemistry, University of Reading, Reading, RG6 6AP UK
| |
Collapse
|
36
|
Beggs GA, Zalucki YM, Brown NG, Rastegari S, Phillips RK, Palzkill T, Shafer WM, Kumaraswami M, Brennan RG. Structural, Biochemical, and In Vivo Characterization of MtrR-Mediated Resistance to Innate Antimicrobials by the Human Pathogen Neisseria gonorrhoeae. J Bacteriol 2019; 201:e00401-19. [PMID: 31331979 PMCID: PMC6755732 DOI: 10.1128/jb.00401-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Neisseria gonorrhoeae responds to host-derived antimicrobials by inducing the expression of the mtrCDE-encoded multidrug efflux pump, which expels microbicides, such as bile salts, fatty acids, and multiple extrinsically administered drugs, from the cell. In the absence of these cytotoxins, the TetR family member MtrR represses the mtrCDE genes. Although antimicrobial-dependent derepression of mtrCDE is clear, the physiological inducers of MtrR are unknown. Here, we report the crystal structure of an induced form of MtrR. In the binding pocket of MtrR, we observed electron density that we hypothesized was N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), a component of the crystallization reagent. Using the MtrR-CAPS structure as an inducer-bound template, we hypothesized that bile salts, which bear significant chemical resemblance to CAPS, are physiologically relevant inducers. Indeed, characterization of MtrR-chenodeoxycholate and MtrR-taurodeoxycholate interactions, both in vitro and in vivo, revealed that these bile salts, but not glyocholate or taurocholate, bind MtrR tightly and can act as bona fide inducers. Furthermore, two residues, W136 and R176, were shown to be important in binding chenodeoxycholate but not taurodeoxycholate, suggesting different binding modes of the bile salts. These data provide insight into a crucial mechanism utilized by the pathogen to overcome innate human defenses.IMPORTANCENeisseria gonorrhoeae causes a significant disease burden worldwide, and a meteoric rise in its multidrug resistance has reduced the efficacy of antibiotics previously or currently approved for therapy of gonorrheal infections. The multidrug efflux pump MtrCDE transports multiple drugs and host-derived antimicrobials from the bacterial cell and confers survival advantage on the pathogen within the host. Transcription of the pump is repressed by MtrR but relieved by the cytosolic influx of antimicrobials. Here, we describe the structure of induced MtrR and use this structure to identify bile salts as physiological inducers of MtrR. These findings provide a mechanistic basis for antimicrobial sensing and gonococcal protection by MtrR through the derepression of mtrCDE expression after exposure to intrinsic and clinically applied antimicrobials.
Collapse
Affiliation(s)
- Grace A Beggs
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yaramah M Zalucki
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas Gene Brown
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sheila Rastegari
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital Research Institute, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital System, Houston, Texas, USA
| | - Rebecca K Phillips
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital System, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital System, Houston, Texas, USA
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
37
|
Colclough AL, Scadden J, Blair JMA. TetR-family transcription factors in Gram-negative bacteria: conservation, variation and implications for efflux-mediated antimicrobial resistance. BMC Genomics 2019; 20:731. [PMID: 31606035 PMCID: PMC6790063 DOI: 10.1186/s12864-019-6075-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background TetR-family transcriptional regulators (TFTRs) are DNA binding factors that regulate gene expression in bacteria. Well-studied TFTRs, such as AcrR, which regulates efflux pump expression, are usually encoded alongside target operons. Recently, it has emerged that there are many TFTRs which act as global multi-target regulators. Our classical view of TFTRs as simple, single-target regulators therefore needs to be reconsidered. As some TFTRs regulate essential processes (e.g. metabolism) or processes which are important determinants of resistance and virulence (e.g. biofilm formation and efflux gene expression) and as TFTRs are present throughout pathogenic bacteria, they may be good drug discovery targets for tackling antimicrobial resistant infections. However, the prevalence and conservation of individual TFTR genes in Gram-negative species, has to our knowledge, not yet been studied. Results Here, a wide-scale search for TFTRs in available proteomes of clinically relevant pathogens Salmonella and Escherichia species was performed and these regulators further characterised. The majority of identified TFTRs are involved in efflux regulation in both Escherichia and Salmonella. The percentage variance in TFTR genes of these genera was found to be higher in those regulating genes involved in efflux, bleach survival or biofilm formation than those regulating more constrained processes. Some TFTRs were found to be present in all strains and species of these two genera, whereas others (i.e. TetR) are only present in some strains and some (i.e. RamR) are genera-specific. Two further pathogens on the WHO priority pathogen list (K. pneumoniae and P. aeruginosa) were then searched for the presence of the TFTRs conserved in Escherichia and Salmonella. Conclusions Through bioinformatics and literature analyses, we present that TFTRs are a varied and heterogeneous family of proteins required for the regulation of numerous important processes, with consequences to antimicrobial resistance and virulence, and that the roles and responses of these proteins are frequently underestimated. Electronic supplementary material The online version of this article (10.1186/s12864-019-6075-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A L Colclough
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J Scadden
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J M A Blair
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
38
|
Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Organisms can respond to varying light conditions using a wide range of sensory photoreceptors. These photoreceptors can be standalone proteins or represent a module in multidomain proteins, where one or more modules sense light as an input signal which is converted into an output response via structural rearrangements in these receptors. The output signals are utilized downstream by effector proteins or multiprotein clusters to modulate their activity, which could further affect specific interactions, gene regulation or enzymatic catalysis. The blue-light using flavin (BLUF) photosensory module is an autonomous unit that is naturally distributed among functionally distinct proteins. In this study, we identified 34 BLUF photoreceptors of prokaryotic and eukaryotic origin from available bioinformatics sequence databases. Interestingly, our analysis shows diverse BLUF-effector arrangements with a functional association that was previously unknown or thought to be rare among the BLUF class of sensory proteins, such as endonucleases, tet repressor family (tetR), regulators of G-protein signaling, GAL4 transcription family and several other previously unidentified effectors, such as RhoGEF, Phosphatidyl-Ethanolamine Binding protein (PBP), ankyrin and leucine-rich repeats. Interaction studies and the indexing of BLUF domains further show the diversity of BLUF-effector combinations. These diverse modular architectures highlight how the organism’s behaviour, cellular processes, and distinct cellular outputs are regulated by integrating BLUF sensing modules in combination with a plethora of diverse signatures. Our analysis highlights the modular diversity of BLUF containing proteins and opens the possibility of creating a rational design of novel functional chimeras using a BLUF architecture with relevant cellular effectors. Thus, the BLUF domain could be a potential candidate for the development of powerful novel optogenetic tools for its application in modulating diverse cell signaling.
Collapse
|
39
|
SCO3129, a TetR family regulator, is responsible for osmotic stress in Streptomyces coelicolor. Synth Syst Biotechnol 2018; 3:261-267. [PMID: 30417142 PMCID: PMC6223229 DOI: 10.1016/j.synbio.2018.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023] Open
Abstract
Streptomyces are the soil-dwelling bacteria with a complex lifecycle and a considerable ability to produce a variety of secondary metabolites. Osmoregulation is important for their lifecycle in nature. In the genome of Streptomyces coelicolor M145, SCO3128 (encodes a putative fatty acid desaturase), SCO3129 (encodes a putative TetR family regulator) and SCO3130 (encodes a putative l-carnitine dehydratase) constitute a transcriptional unit, and its transcript was found to be in response to osmotic stress. Disruption of SCO3130 led to a bald phenotype on MMG medium and the mycelia lysis on the edge of the colony when KCl/NaCl was added to the medium. These results indicated that SCO3130 is important for the osmotic stress resistance in S. coelicolor. Transcriptional analysis and electrophoretic mobility shift assays (EMSA) demonstrated that SCO3129 repressed the transcription of SCO3128-3130 operon through directly binding to the promoter region of SCO3128, indicating that SCO3129 regulates the transcription of SCO3128-3130 in response to osmotic stress.
Collapse
|
40
|
Temporal dynamics of bacteria-plasmid coevolution under antibiotic selection. ISME JOURNAL 2018; 13:559-562. [PMID: 30209344 PMCID: PMC6330079 DOI: 10.1038/s41396-018-0276-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 11/12/2022]
Abstract
Horizontally acquired genes can be costly to express even if they encode useful traits, such as antibiotic resistance. We previously showed that when selected with tetracycline, Escherichia coli carrying the tetracycline-resistance plasmid RK2 evolved mutations on both replicons that together provided increased tetracycline resistance at reduced cost. Here we investigate the temporal dynamics of this intragenomic coevolution. Using genome sequencing we show that the order of adaptive mutations was highly repeatable across three independently evolving populations. Each population first gained a chromosomal mutation in ompF which shortened lag phase and increased tetracycline resistance. This was followed by mutations impairing the plasmid-encoded tetracycline efflux pump, and finally, additional resistance-associated chromosomal mutations. Thus, reducing the cost of the horizontally acquired tetracycline resistance was contingent on first evolving a degree of chromosomally encoded resistance. We conclude therefore that the trajectory of bacteria-plasmid coevolution was constrained to a single repeatable path.
Collapse
|
41
|
Subhadra B, Kim J, Kim DH, Woo K, Oh MH, Choi CH. Local Repressor AcrR Regulates AcrAB Efflux Pump Required for Biofilm Formation and Virulence in Acinetobacter nosocomialis. Front Cell Infect Microbiol 2018; 8:270. [PMID: 30131944 PMCID: PMC6090078 DOI: 10.3389/fcimb.2018.00270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022] Open
Abstract
Multidrug efflux systems contribute to antimicrobial resistance and pathogenicity in bacteria. Here, we report the identification and characterization of a transcriptional regulator AcrR controlling the yet uncharacterized multidrug efflux pump, AcrAB in Acinetobacter nosocomialis. In silico analysis revealed that the homologs of AcrR and AcrAB are reported in the genomes of many other bacterial species. We confirmed that the genes encoding the AcrAB efflux pump, acrA and acrB forms a polycistronic operon which is under the control of acrR gene upstream of acrA. Bioinformatic analysis indicated the presence of AcrR binding motif in the promoter region of acrAB operon and the specific binding of AcrR was confirmed by electrophoretic mobility shift assay (EMSA). The EMSA data showed that AcrR binds to −89 bp upstream of the start codon of acrA. The mRNA expression analysis depicted that the expression of acrA and acrB genes are elevated in the deletion mutant compared to that in the wild type confirming that AcrR acts as a repressor of acrAB operon in A. nosocomialis. The deletion of acrR resulted in increased motility, biofilm/pellicle formation and invasion in A. nosocomialis. We further analyzed the role of AcrR in A. nosocomialis pathogenesis in vivo using murine model and it was shown that acrR mutant is highly virulent inducing severe infection in mouse leading to host death. In addition, the intracellular survival rate of acrR mutant was higher compared to that of wild type. Our data demonstrates that AcrR functions as an important regulator of AcrAB efflux pump and is associated with several phenotypes such as motility, biofilm/pellicle formation and pathogenesis in A. nosocomialis.
Collapse
Affiliation(s)
- Bindu Subhadra
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jaeseok Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong Ho Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Kyungho Woo
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, South Korea
| | - Chul Hee Choi
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
42
|
Nuonming P, Khemthong S, Dokpikul T, Sukchawalit R, Mongkolsuk S. Characterization and regulation of AcrABR, a RND-type multidrug efflux system, in Agrobacterium tumefaciens C58. Microbiol Res 2018; 214:146-155. [PMID: 30031477 DOI: 10.1016/j.micres.2018.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/11/2018] [Accepted: 06/30/2018] [Indexed: 10/28/2022]
Abstract
Agrobacterium tumefaciens AcrR is the transcriptional repressor of the acrABR operon. The AcrAB efflux pump confers resistance to various toxic compounds, including antibiotics [ciprofloxacin (CIP), nalidixic acid (NAL), novobiocin (NOV) and tetracycline (TET)], a detergent [sodium dodecyl sulfate (SDS)] and a biocide [triclosan (TRI)]. The sequence to which AcrR specifically binds in the acrA promoter region was determined by EMSA and DNase I footprinting. The AcrR-DNA interaction was abolished by adding NAL, SDS and TRI. Quantitative real time-PCR analysis showed that induction of the acrA transcript occurred when wild-type cells were exposed to NAL, SDS and TRI. Indole is a signaling molecule that increases the antibiotic resistance of bacteria, at least in part, through activation of efflux pumps. Expression of the A. tumefaciens acrA transcript was also inducible by indole in a dose-dependent manner. Indole induced protection against CIP, NAL and SDS but enhanced susceptibility to NOV and TRI. Additionally, the TET resistance of A. tumefaciens was not apparently modulated by indole. A. tumefaciens AcrAB played a dominant role and was required for tolerance to high levels of the toxic compounds. Understanding the regulation of multidrug efflux pumps and bacterial adaptive responses to intracellular and extracellular signaling molecules for antibiotic resistance is essential. This information will be useful for the rational design of effective treatments for bacterial infection to overcome possible multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Puttamas Nuonming
- Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Sasimaporn Khemthong
- Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Thanittra Dokpikul
- Environmental Toxicology, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Rojana Sukchawalit
- Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand; Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
43
|
A Complex Mechanism Involving LysR and TetR/AcrR That Regulates Iron Scavenger Biosynthesis in Pseudomonas donghuensis HYS. J Bacteriol 2018; 200:JB.00087-18. [PMID: 29686142 DOI: 10.1128/jb.00087-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022] Open
Abstract
7-Hydroxytropolone (7-HT) is a symmetrical seven-membered heteroatomic ring with a carboxyl group and two hydroxyl groups and was recently reported to be an iron scavenger of Pseudomonas donghuensis HYS. Cluster 1 includes 12 genes related to the synthesis of 7-HT; among these genes, those for two regulators, Orf1 and Orf12, were predicted to regulate 7-HT biosynthesis and to be LysR-type transcriptional regulators (LTTRs) and TetR/AcrR family transcriptional regulators, respectively. Data from real-time quantitative PCR and β-galactosidase and classical siderophore assays indicated that the transcription levels of orf1 and orf12, as well as those of crucial genes orf6 to orf9, were repressed under high-iron conditions. The deletion of orf1 and orf12 led to an absence of 7-HT and a decrease in orf6-orf9 expression. Orf1 and Orf12 were essential for the production of 7-HT through orf6-orf9 These two regulators are regulated by the Gac/Rsm system; Orf1 facilitates the expression of Orf12, and Orf12 concomitantly stimulates the expression of orf6-orf9 to synthesize 7-HT. The overexpression of Orf12 decreased 7-HT yields, possibly through decreased orf6-orf9 expression. This work thus outlines a complex mechanism regulating the biosynthesis of the iron scavenger 7-HT in P. donghuensis HYS. The synergy between Orf1 and Orf12 ensures that 7-HT acts as an iron chelator despite being toxic to bacteria and provides new ideas for the novel regulation of dual-functional secondary metabolism and research on 7-HT and its derivates in other bacteria.IMPORTANCE A complex regulation mechanism including two regulators, LysR and TetR/AcrR, in the biosynthesis of the novel iron scavenger 7-hydroxytropolone (7-HT) was verified in Pseudomonas donghuensis HYS. The coaction of LysR Orf1 and TetR/AcrR Orf12 may balance the toxicity and iron chelation of 7-HT in P. donghuensis HYS to overcome iron deficiency, as well as improve the bacterial competitiveness under iron-scarce conditions because of the toxicity of 7-HT toward other bacteria, making the accurate regulation of 7-HT biosynthesis indispensable. This regulation mechanism may be ubiquitous in the Pseudomonas putida group but may better explain the group's strong adaptability.
Collapse
|
44
|
Aboulnaga EA, Zou H, Selmer T, Xian M. Development of a plasmid-based, tunable, tolC-derived expression system for application in Cupriavidus necator H16. J Biotechnol 2018; 274:15-27. [PMID: 29549002 DOI: 10.1016/j.jbiotec.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/24/2018] [Accepted: 03/11/2018] [Indexed: 12/13/2022]
Abstract
Cupriavidus necator H16 gains increasing attention in microbial research and biotechnological application due to its diverse metabolic features. Here we present a tightly controlled gene expression system for C. necator including the pBBR1-vector that contains hybrid promoters originating from C. necator native tolC-promoter in combination with a synthetic tetO-operator. The expression of the reporter gene from these plasmids relies on the addition of the exogenous inducer doxycycline (dc). The novel expression system offers a combination of advantageous features as; (i) high and dose-dependent recombinant protein production, (ii) tight control with a high dynamic range (On/Off ratio), which makes it applicable for harmful pathways or for toxic protein production, (iii) comparable cheap inducer (doxycycline, dc), (iv) effective at low inducer concentration, that makes it useful for large scale application, (v) rapid, diffusion controlled induction, and (vi) the inducer does not interfere within the cell metabolism. As applications of the expression system in C. necator H16, the growth ability on glycerol was enhanced by constitutively expressing the E. coli glpk gene-encoding for glycerol kinase. Likewise, we used the system to overcome the expression toxicity of mevalonate pathway in C. necator H16. With this system, the mevalonate-genes were successfully introduced in the host and the recombinant strains could produce about 200 mg/l mevalonate.
Collapse
Affiliation(s)
- Elhussiny A Aboulnaga
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China; Mansoura University, Faculty of Agriculture, 35516 Mansoura, Egypt.
| | - Huibin Zou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Thorsten Selmer
- Aachen University of Applied Sciences, Campus Juelich, Department of Chemistry and Biotechnology, Heinrich-Mussmann-Str.1, D-52428 Juelich, Germany
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China.
| |
Collapse
|
45
|
Prediction of Fluoroquinolone Susceptibility Directly from Whole-Genome Sequence Data by Using Liquid Chromatography-Tandem Mass Spectrometry To Identify Mutant Genotypes. Antimicrob Agents Chemother 2018; 62:AAC.01814-17. [PMID: 29263066 DOI: 10.1128/aac.01814-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/29/2017] [Indexed: 02/05/2023] Open
Abstract
Fluoroquinolone resistance in Gram-negative bacteria is multifactorial, involving target site mutations, reductions in fluoroquinolone entry due to reduced porin production, increased fluoroquinolone efflux, enzymes that modify fluoroquinolones, and Qnr, a DNA mimic that protects the drug target from fluoroquinolone binding. Here we report a comprehensive analysis, using transformation and in vitro mutant selection, of the relative importance of each of these mechanisms for fluoroquinolone nonsusceptibility using Klebsiella pneumoniae as a model system. Our improved biological understanding was then used to generate 47 rules that can predict fluoroquinolone susceptibility in K. pneumoniae clinical isolates. Key to the success of this predictive process was the use of liquid chromatography-tandem mass spectrometry to measure the abundance of proteins in extracts of cultured bacteria, identifying which sequence variants seen in the whole-genome sequence data were functionally important in the context of fluoroquinolone susceptibility.
Collapse
|
46
|
Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2017; 169:425-431. [PMID: 29128373 DOI: 10.1016/j.resmic.2017.10.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.
Collapse
Affiliation(s)
- Natasha Weston
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vito Ricci
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
47
|
Nagy YI, Hussein MMM, Ragab YM, Attia AS. Isogenic mutations in the Moraxella catarrhalis CydDC system display pleiotropic phenotypes and reveal the role of a palindrome sequence in its transcriptional regulation. Microbiol Res 2017. [PMID: 28647125 DOI: 10.1016/j.micres.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Moraxella catarrhalis is becoming an important human respiratory tract pathogen affecting significant proportions from the population. However, still little is known about its physiology and molecular regulation. To this end, the CydDC, which is a heterodimeric ATP binding cassette transporter that has been shown to contribute to the maintenance of the redox homeostasis across the periplasm in other Gram-negative bacteria, is studied here. Amino acids multiple sequence alignments indicated that M. catarrhalis CydC is different from the CydC proteins of the bacterial species in which this system has been previously studied. These findings prompted further interest in studying this system in M. catarrhalis. Isogenic mutant in the CydDC system showed suppression in growth rate, hypersensitivity to oxidative and reductive stress and increased accumulation of intracellular cysteine levels. In addition, the growth of cydC- mutant exhibited hypersensitivity to exogenous cysteine; however, it did not display a significant difference from its wild-type counterpart in the murine pulmonary clearance model. Moreover, a palindrome was detected 94bp upstream of the cydD ORF suggesting it might act as a potential regulatory element. Real-time reverse transcription-PCR analysis showed that deletion/change in the palindrome resulted into alterations in the transcription levels of cydC. A better understanding of such system and its regulation helps in developing better ways to combat M. catarrhalis infections.
Collapse
Affiliation(s)
- Yosra I Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Manal M M Hussein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
48
|
Yamanaka Y, Shimada T, Yamamoto K, Ishihama A. Transcription factor CecR (YbiH) regulates a set of genes affecting the sensitivity of Escherichia coli against cefoperazone and chloramphenicol. Microbiology (Reading) 2016; 162:1253-1264. [DOI: 10.1099/mic.0.000292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yuki Yamanaka
- Research Center for Micro-Nano Technology, Nano Technology, Koganei, Tokyo 184-8584, Japan
| | - Tomohiro Shimada
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Nano Technology, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
49
|
Gunio D, Froehlig J, Pappas K, Ferguson U, Wade H. Solution-Binding and Molecular Docking Approaches Combine to Provide an Expanded View of Multidrug Recognition in the MDR Gene Regulator BmrR. J Chem Inf Model 2016; 56:377-89. [DOI: 10.1021/acs.jcim.5b00704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Drew Gunio
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - John Froehlig
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Katerina Pappas
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Uneeke Ferguson
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Herschel Wade
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
50
|
Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity. J Struct Biol 2016; 194:18-28. [PMID: 26796657 DOI: 10.1016/j.jsb.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 01/13/2023]
Abstract
Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.
Collapse
|