1
|
Arrigo A, Cremona O, Aragona E, Casoni F, Consalez G, Dogru RM, Hauck SM, Antropoli A, Bianco L, Parodi MB, Bandello F, Grosche A. Müller cells trophism and pathology as the next therapeutic targets for retinal diseases. Prog Retin Eye Res 2025; 106:101357. [PMID: 40254246 DOI: 10.1016/j.preteyeres.2025.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Müller cells are a crucial retinal cell type involved in multiple regulatory processes and functions that are essential for retinal health and functionality. Acting as structural and functional support for retinal neurons and photoreceptors, Müller cells produce growth factors, regulate ion and fluid homeostasis, and facilitate neuronal signaling. They play a pivotal role in retinal morphogenesis and cell differentiation, significantly contributing to macular development. Due to their radial morphology and unique cytoskeletal organization, Müller cells act as optical fibers, efficiently channeling photons directly to the photoreceptors. In response to retinal damage, Müller cells undergo specific gene expression and functional changes that serve as a first line of defense for neurons, but can also lead to unwarranted cell dysfunction, contributing to cell death and neurodegeneration. In some species, Müller cells can reactivate their developmental program, promoting retinal regeneration and plasticity-a remarkable ability that holds promising therapeutic potential if harnessed in mammals. The crucial and multifaceted roles of Müller cells-that we propose to collectively call "Müller cells trophism"-highlight the necessity of maintaining their functionality. Dysfunction of Müller cells, termed "Müller cells pathology," has been associated with a plethora of retinal diseases, including age-related macular degeneration, diabetic retinopathy, vitreomacular disorders, macular telangiectasia, and inherited retinal dystrophies. In this review, we outline how even subtle disruptions in Müller cells trophism can drive the pathological cascade of Müller cells pathology, emphasizing the need for targeted therapies to preserve retinal health and prevent disease progression.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Ottavio Cremona
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Emanuela Aragona
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Casoni
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Consalez
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rüya Merve Dogru
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, 80939, Germany
| | - Alessio Antropoli
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesco Bandello
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Lee EJ, Kim M, Park S, Shim JH, Cho HJ, Park JA, Park K, Lee D, Kim JH, Jeong H, Matsuzaki F, Kim SY, Kim J, Yang H, Lee JS, Kim JW. Restoration of retinal regenerative potential of Müller glia by disrupting intercellular Prox1 transfer. Nat Commun 2025; 16:2928. [PMID: 40133314 PMCID: PMC11937340 DOI: 10.1038/s41467-025-58290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Individuals with retinal degenerative diseases struggle to restore vision due to the inability to regenerate retinal cells. Unlike cold-blooded vertebrates, mammals lack Müller glia (MG)-mediated retinal regeneration, indicating the limited regenerative capacity of mammalian MG. Here, we identify prospero-related homeobox 1 (Prox1) as a key factor restricting this process. Prox1 accumulates in MG of degenerating human and mouse retinas but not in regenerating zebrafish. In mice, Prox1 in MG originates from neighboring retinal neurons via intercellular transfer. Blocking this transfer enables MG reprogramming into retinal progenitor cells in injured mouse retinas. Moreover, adeno-associated viral delivery of an anti-Prox1 antibody, which sequesters extracellular Prox1, promotes retinal neuron regeneration and delays vision loss in a retinitis pigmentosa model. These findings establish Prox1 as a barrier to MG-mediated regeneration and highlight anti-Prox1 therapy as a promising strategy for restoring retinal regeneration in mammals.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Celliaz Ltd., Daejeon, South Korea
| | - Museong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sooyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Celliaz Ltd., Daejeon, South Korea
| | | | - Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School, University of Science and Technology, Daejeon, South Korea
| | | | - Kihyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dongeun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong Hwan Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Haeun Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Centre for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hanseul Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School, University of Science and Technology, Daejeon, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- Celliaz Ltd., Daejeon, South Korea.
| |
Collapse
|
3
|
Russo B, D'Addato G, Salvatore G, Menduni M, Frontoni S, Carbone L, Camaioni A, Klinger FG, De Felici M, Picconi F, La Sala G. Gliotic Response and Reprogramming Potential of Human Müller Cell Line MIO-M1 Exposed to High Glucose and Glucose Fluctuations. Int J Mol Sci 2024; 25:12877. [PMID: 39684590 DOI: 10.3390/ijms252312877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Retinal neurodegeneration (RN), an early marker of diabetic retinopathy (DR), is closely associated with Müller glia cells (MGs) in diabetic subjects. MGs play a pivotal role in maintaining retinal homeostasis, integrity, and metabolic support and respond to diabetic stress. In lower vertebrates, MGs have a strong regenerative response and can completely repair the retina after injuries. However, this ability diminishes as organisms become more complex. The aim of this study was to investigate the gliotic response and reprogramming potential of the human Müller cell line MIO-M1 cultured in normoglycemic (5 mM glucose, NG) and hyperglycemic (25 mM glucose, HG) conditions and then exposed to sustained high-glucose and glucose fluctuation (GF) treatments to mimic the human diabetic conditions. The results showed that NG MIO-M1 cells exhibited a dynamic activation to sustained high-glucose and GF treatments by increasing GFAP and Vimentin expression together, indicative of gliotic response. Increased expression of SHH and SOX2 were also observed, foreshadowing reprogramming potential. Conversely, HG MIO-M1 cells showed increased levels of the indexes reported above and adaptation/desensitization to sustained high-glucose and GF treatments. These findings indicate that MIO-M1 cells exhibit a differential response under various glucose treatments, which is dependent on the metabolic environment. The in vitro model used in this study, based on a well-established cell line, enables the exploration of how these responses occur in a controlled, reproducible system and the identification of strategies to promote neurogenesis over neurodegeneration. These findings contribute to the understanding of MGs responses under diabetic conditions, which may have implications for future therapeutic approaches to diabetes-associated retinal neurodegeneration.
Collapse
Affiliation(s)
- Benedetta Russo
- Unit of Endocrinology and Diabetology, Isola Tiberina-Gemelli Isola Hospital, 00186 Rome, Italy
| | - Giorgia D'Addato
- Section of Histology and Embryology, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Giulia Salvatore
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marika Menduni
- Unit of Endocrinology and Diabetology, Isola Tiberina-Gemelli Isola Hospital, 00186 Rome, Italy
| | - Simona Frontoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Carbone
- Unit of Emergency Room, Emergency Medicine and Internal Medicine, Isola Tiberina-Gemelli Isola Hospital, 00186 Rome, Italy
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Gioia Klinger
- Section of Histology and Embryology, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Fabiana Picconi
- Unit of Endocrinology and Diabetology, Isola Tiberina-Gemelli Isola Hospital, 00186 Rome, Italy
| | - Gina La Sala
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- CNR Institute of Biochemistry and Cell Biology, 00015 Rome, Italy
| |
Collapse
|
4
|
Guo YM, Jiang X, Min J, Huang J, Huang XF, Ye L. Advances in the study of Müller glia reprogramming in mammals. Front Cell Neurosci 2023; 17:1305896. [PMID: 38155865 PMCID: PMC10752929 DOI: 10.3389/fncel.2023.1305896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Müller cells play an integral role in the development, maintenance, and photopic signal transmission of the retina. While lower vertebrate Müller cells can differentiate into various types of retinal neurons to support retinal repair following damage, there is limited neurogenic potential of mammalian Müller cells. Therefore, it is of great interest to harness the neurogenic potential of mammalian Müller cells to achieve self-repair of the retina. While multiple studies have endeavored to induce neuronal differentiation and proliferation of mammalian Müller cells under defined conditions, the efficiency and feasibility of these methods often fall short, rendering them inadequate for the requisites of retinal repair. As the mechanisms and methodologies of Müller cell reprogramming have been extensively explored, a summary of the reprogramming process of unlocking the neurogenic potential of Müller cells can provide insight into Müller cell fate development and facilitate their therapeutic use in retinal repair. In this review, we comprehensively summarize the progress in reprogramming mammalian Müller cells and discuss strategies for optimizing methods and enhancing efficiency based on the mechanisms of fate regulation.
Collapse
Affiliation(s)
- Yi-Ming Guo
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xinyi Jiang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Min
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Juan Huang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Ye
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| |
Collapse
|
5
|
Motoyoshi A, Saitoh F, Iida T, Fujieda H. Nestin Regulates Müller Glia Proliferation After Retinal Injury. Invest Ophthalmol Vis Sci 2023; 64:8. [PMID: 37934159 PMCID: PMC10631512 DOI: 10.1167/iovs.64.14.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023] Open
Abstract
Purpose The proliferative and neurogenic potential of retinal Müller glia after injury varies widely across species. To identify the endogenous mechanisms regulating the proliferative response of mammalian Müller glia, we comparatively analyzed the expression and function of nestin, an intermediate filament protein established as a neural stem cell marker, in the mouse and rat retinas after injury. Methods Nestin expression in the retinas of C57BL/6 mice and Wistar rats after methyl methanesulfonate (MMS)-induced photoreceptor injury was examined by immunofluorescence and Western blotting. Adeno-associated virus (AAV)-delivered control and nestin short hairpin RNA (shRNA) were intravitreally injected to rats and Müller glia proliferation after MMS-induced injury was analyzed by BrdU incorporation and immunofluorescence. Photoreceptor removal and microglia/macrophage infiltration were also analyzed by immunofluorescence. Results Rat Müller glia re-entered the cell cycle and robustly upregulated nestin after injury whereas Müller glia proliferation and nestin upregulation were not observed in mice. In vivo knockdown of nestin in the rat retinas inhibited Müller glia proliferation while transiently stimulating microglia/macrophage infiltration and phagocytic removal of dead photoreceptors. Conclusions Our findings suggest a critical role for nestin in the regulation of Müller glia proliferation after retinal injury and highlight the importance of cross species analysis to identify the molecular mechanisms regulating the injury responses of the mammalian retina.
Collapse
Affiliation(s)
- Aya Motoyoshi
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Department of Ophthalmology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Fuminori Saitoh
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomohiro Iida
- Department of Ophthalmology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroki Fujieda
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Grigoryan EN. Cell Sources for Retinal Regeneration: Implication for Data Translation in Biomedicine of the Eye. Cells 2022; 11:cells11233755. [PMID: 36497013 PMCID: PMC9738527 DOI: 10.3390/cells11233755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential use of retinal regeneration cell sources (RRCSs) containing retinal pigment epithelium, ciliary body, Müller glia, and retinal ciliary region. RRCSs in lower vertebrates in vivo and in mammals mostly in vitro are able to proliferate and exhibit gene expression and epigenetic characteristics typical for neural/retinal cell progenitors. Here, we review research on the factors controlling the RRCSs' properties, such as the cell microenvironment, growth factors, cytokines, hormones, etc., that determine the regenerative responses and alterations underlying the RRCS-associated pathologies. We also discuss how the current data on molecular features and regulatory mechanisms of RRCSs could be translated in retinal biomedicine with a special focus on (1) attempts to obtain retinal neurons de novo both in vivo and in vitro to replace damaged retinal cells; and (2) investigations of the key molecular networks stimulating regenerative responses and preventing RRCS-related pathologies.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Age- and cell cycle-related expression patterns of transcription factors and cell cycle regulators in Müller glia. Sci Rep 2022; 12:19584. [PMID: 36379991 PMCID: PMC9666513 DOI: 10.1038/s41598-022-23855-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mammalian Müller glia express transcription factors and cell cycle regulators essential for the function of retinal progenitors, indicating the latent neurogenic capacity; however, the role of these regulators remains unclear. To gain insights into the role of these regulators in Müller glia, we analyzed expression of transcription factors (Pax6, Vsx2 and Nfia) and cell cycle regulators (cyclin D1 and D3) in rodent Müller glia, focusing on their age- and cell cycle-related expression patterns. Expression of Pax6, Vsx2, Nfia and cyclin D3, but not cyclin D1, increased in Müller glia during development. Photoreceptor injury induced cell cycle-associated increase of Vsx2 and cyclin D1, but not Pax6, Nfia, and cyclin D3. In dissociated cultures, cell cycle-associated increase of Pax6 and Vsx2 was observed in Müller glia from P10 mice but not from P21 mice. Nfia levels were highly correlated with EdU incorporation suggesting their activation during S phase progression. Cyclin D1 and D3 were transiently upregulated in G1 phase but downregulated after S phase entry. Our findings revealed previously unknown links between cell cycle progression and regulator protein expression, which likely affect the cell fate decision of proliferating Müller glia.
Collapse
|
8
|
Lechner J, Medina RJ, Lois N, Stitt AW. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina. Stem Cell Res Ther 2022; 13:388. [PMID: 35907890 PMCID: PMC9338609 DOI: 10.1186/s13287-022-03073-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Diabetic retinopathy, a major complication of diabetes mellitus, is a leading cause of sigh-loss in working age adults. Progressive loss of integrity of the retinal neurovascular unit is a central element in the disease pathogenesis. Retinal ischemia and inflammatory processes drive interrelated pathologies such as blood retinal barrier disruption, fluid accumulation, gliosis, neuronal loss and/or aberrant neovascularisation. Current treatment options are somewhat limited to late-stages of the disease where there is already significant damage to the retinal architecture arising from degenerative, edematous and proliferative pathology. New preventive and interventional treatments to target early vasodegenerative and neurodegenerative stages of the disease are needed to ensure avoidance of sight-loss. MAIN BODY Historically, diabetic retinopathy has been considered a primarily microvascular disease of the retina and clinically it is classified based on the presence and severity of vascular lesions. It is now known that neurodegeneration plays a significant role during the pathogenesis. Loss of neurons has been documented at early stages in pre-clinical models as well as in individuals with diabetes and, in some, even prior to the onset of clinically overt diabetic retinopathy. Recent studies suggest that some patients have a primarily neurodegenerative phenotype. Retinal pigment epithelial cells and the choroid are also affected during the disease pathogenesis and these tissues may also need to be addressed by new regenerative treatments. Most stem cell research for diabetic retinopathy to date has focused on addressing vasculopathy. Pre-clinical and clinical studies aiming to restore damaged vasculature using vasoactive progenitors including mesenchymal stromal/stem cells, adipose stem cells, CD34+ cells, endothelial colony forming cells and induced pluripotent stem cell derived endothelial cells are discussed in this review. Stem cells that could replace dying neurons such as retinal progenitor cells, pluripotent stem cell derived photoreceptors and ganglion cells as well as Müller stem cells are also discussed. Finally, challenges of stem cell therapies relevant to diabetic retinopathy are considered. CONCLUSION Stem cell therapies hold great potential to replace dying cells during early and even late stages of diabetic retinopathy. However, due to the presence of different phenotypes, selecting the most suitable stem cell product for individual patients will be crucial for successful treatment.
Collapse
Affiliation(s)
- Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| | - Reinhold J Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
9
|
Hanna J, David LA, Touahri Y, Fleming T, Screaton RA, Schuurmans C. Beyond Genetics: The Role of Metabolism in Photoreceptor Survival, Development and Repair. Front Cell Dev Biol 2022; 10:887764. [PMID: 35663397 PMCID: PMC9157592 DOI: 10.3389/fcell.2022.887764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
Vision commences in the retina with rod and cone photoreceptors that detect and convert light to electrical signals. The irreversible loss of photoreceptors due to neurodegenerative disease leads to visual impairment and blindness. Interventions now in development include transplanting photoreceptors, committed photoreceptor precursors, or retinal pigment epithelial (RPE) cells, with the latter protecting photoreceptors from dying. However, introducing exogenous human cells in a clinical setting faces both regulatory and supply chain hurdles. Recent work has shown that abnormalities in central cell metabolism pathways are an underlying feature of most neurodegenerative disorders, including those in the retina. Reversal of key metabolic alterations to drive retinal repair thus represents a novel strategy to treat vision loss based on cell regeneration. Here, we review the connection between photoreceptor degeneration and alterations in cell metabolism, along with new insights into how metabolic reprogramming drives both retinal development and repair following damage. The potential impact of metabolic reprogramming on retinal regeneration is also discussed, specifically in the context of how metabolic switches drive both retinal development and the activation of retinal glial cells known as Müller glia. Müller glia display latent regenerative properties in teleost fish, however, their capacity to regenerate new photoreceptors has been lost in mammals. Thus, re-activating the regenerative properties of Müller glia in mammals represents an exciting new area that integrates research into developmental cues, central metabolism, disease mechanisms, and glial cell biology. In addition, we discuss this work in relation to the latest insights gleaned from other tissues (brain, muscle) and regenerative species (zebrafish).
Collapse
Affiliation(s)
- Joseph Hanna
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Luke Ajay David
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Yacine Touahri
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Taylor Fleming
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
| | - Robert A. Screaton
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- *Correspondence: Carol Schuurmans,
| |
Collapse
|
10
|
Sherpa RD, Hui SP. An insight on established retinal injury mechanisms and prevalent retinal stem cell activation pathways in vertebrate models. Animal Model Exp Med 2021; 4:189-203. [PMID: 34557646 PMCID: PMC8446703 DOI: 10.1002/ame2.12177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Implementing different tools and injury mechanisms in multiple animal models of retina regeneration, researchers have discovered the existence of retinal stem/progenitor cells. Although they appear to be distributed uniformly across the vertebrate lineage, the reparative potential of the retina is mainly restricted to lower vertebrates. Regenerative repair post-injury requires the creation of a proliferative niche, vital for proper stem cell activation, propagation, and lineage differentiation. This seems to be lacking in mammals. Hence, in this review, we first discuss the many forms of retinal injuries that have been generated using animal models. Next, we discuss how they are utilized to stimulate regeneration and mimic eye disease pathologies. The key to driving stem cell activation in mammals relies on the information we can gather from these models. Lastly, we present a brief update about the genes, growth factors, and signaling pathways that have been brought to light using these models.
Collapse
Affiliation(s)
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for NeurosciencesUniversity of CalcuttaKolkataIndia
| |
Collapse
|
11
|
Insights on the Regeneration Potential of Müller Glia in the Mammalian Retina. Cells 2021; 10:cells10081957. [PMID: 34440726 PMCID: PMC8394255 DOI: 10.3390/cells10081957] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Müller glia, the major glial cell types in the retina, maintain retinal homeostasis and provide structural support to retinal photoreceptors. They also possess regenerative potential that might be used for retinal repair in response to injury or disease. In teleost fish (such as zebrafish), the Müller glia response to injury involves reprogramming events that result in a population of proliferative neural progenitors that can regenerate the injured retina. Recent studies have revealed several important mechanisms for the regenerative capacity of Müller glia in fish, which may shed more light on the mechanisms of Müller glia reprogramming and regeneration in mammals. Mammalian Müller glia can adopt stem cell characteristics, and in response to special conditions, be persuaded to proliferate and regenerate, although their native regeneration potential is limited. In this review, we consider the work to date revealing the regenerative potential of the mammalian Müller glia and discuss whether they are a potential source for cell regeneration therapy in humans.
Collapse
|
12
|
Zhu RL, Fang Y, Yu HH, Chen DF, Yang L, Cho KS. Absence of ephrin-A2/A3 increases retinal regenerative potential for Müller cells in Rhodopsin knockout mice. Neural Regen Res 2021; 16:1317-1322. [PMID: 33318411 PMCID: PMC8284269 DOI: 10.4103/1673-5374.301034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Müller cells (MC) are considered dormant retinal progenitor cells in mammals. Previous studies demonstrated ephrin-As act as negative regulators of neural progenitor cells in the retina and brain. It remains unclear whether the lack of ephrin-A2/A3 is sufficient to promote the neurogenic potential of MC. Here we investigated whether the MC is the primary retinal cell type expressing ephrin-A2/A3 and their role on the neurogenic potential of Müller cells. In this study, we showed that ephrin-A2/A3 and their receptor EphA4 were expressed in retina and especially enriched in MC. The level of ephrinAs/EphA4 expression increased as the retina matured that is correlated with the reduced proliferative and progenitor cell potential of MC. Next, we investigated the proliferation in primary MC cultures isolated from wild-type and A2-/- A3-/- mice by 5-ethynyl-2'-deoxyuridine (EdU) incorporation. We detected a significant increase of EdU+ cells in MC derived from A2-/- A3-/- mice. Next, we investigated the role of ephrin-A2/A3 in mice undergoing photoreceptor degeneration such as Rhodopsin knockout (Rho-/-) mice. To further evaluate the role of ephrin-A2/A3 in MC proliferation in vivo, EdU was injected intraperitoneally to adult wild-type, A2-/- A3-/- , Rho-/- and Rho-/- A2-/- A3-/- mice and the numbers of EdU+ cells distributed among different layers of the retina. EphrinAs/EphA4 expression was upregulated in the retina of Rho-/- mice compared to the wild-type mice. In addition, cultured MC derived from ephrin-A2-/- A3-/- mice also expressed higher levels of progenitor cell markers and exhibited higher proliferation potential than those from wild-type mice. Interestingly, we detected a significant increase of EdU+ cells in the retinas of adult ephrin-A2-/- A3-/- mice mainly in the inner nuclear layer; and these EdU+ cells were co-localized with MC marker, cellular retinaldehyde-binding protein, suggesting some proliferating cells are from MC. In Rhodopsin knockout mice (Rho-/- A2-/- A3-/- mice), a significantly greater amount of EdU+ cells were located in the ciliary body, retina and RPE than that of Rho-/- mice. Comparing between 6 and 12 weeks old Rho-/- A2-/- A3-/- mice, we recorded more EdU+ cells in the outer nuclear layer in the 12-week-old mice undergoing severe retinal degeneration. Taken together, Ephrin-A2/A3 are negative regulators of the proliferative and neurogenic potentials of MC. Absence of ephrin-A2/A3 promotes the migration of proliferating cells into the outer nuclear layer and may lead to retinal cell regeneration. All experimental procedures were approved by the Animal Care and Use Committee at Schepens Eye Research Institute, USA (approval No. S-353-0715) on October 24, 2012.
Collapse
Affiliation(s)
- Rui-Lin Zhu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Yuan Fang
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Hua Yu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Dong F. Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Prospects for the application of Müller glia and their derivatives in retinal regenerative therapies. Prog Retin Eye Res 2021; 85:100970. [PMID: 33930561 DOI: 10.1016/j.preteyeres.2021.100970] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Neural cell death is the main feature of all retinal degenerative disorders that lead to blindness. Despite therapeutic advances, progression of retinal disease cannot always be prevented, and once neuronal cell damage occurs, visual loss cannot be reversed. Recent research in the stem cell field, and the identification of Müller glia with stem cell characteristics in the human eye, have provided hope for the use of these cells in retinal therapies to restore vision. Müller glial cells, which are the major structural cells of the retina, play a very important role in retinal homeostasis during health and disease. They are responsible for the spontaneous retinal regeneration observed in zebrafish and lower vertebrates during early postnatal life, and despite the presence of Müller glia with stem cell characteristics in the adult mammalian retina, there is no evidence that they promote regeneration in humans. Like many other stem cells and neurons derived from pluripotent stem cells, Müller glia with stem cell potential do not differentiate into retinal neurons or integrate into the retina when transplanted into the vitreous of experimental animals with retinal degeneration. However, despite their lack of integration, grafted Müller glia have been shown to induce partial restoration of visual function in spontaneous or induced experimental models of photoreceptor or retinal ganglion cell damage. This improvement in visual function observed after Müller cell transplantation has been ascribed to the release of neuroprotective factors that promote the repair and survival of damaged neurons. Due to the development and availability of pluripotent stem cell lines for therapeutic uses, derivation of Müller cells from retinal organoids formed by iPSC and ESC has provided more realistic prospects for the application of these cells to retinal therapies. Several opportunities for research in the regenerative field have also been unlocked in recent years due to a better understanding of the genomic and proteomic profiles of the developing and regenerating retina in zebrafish, providing the basis for further studies of the human retina. In addition, the increased interest on the nature and function of cellular organelle release and the characterization of molecular components of exosomes released by Müller glia, may help us to design new approaches that could be applied to the development of more effective treatments for retinal degenerative diseases.
Collapse
|
14
|
Völkner M, Kurth T, Schor J, Ebner LJA, Bardtke L, Kavak C, Hackermüller J, Karl MO. Mouse Retinal Organoid Growth and Maintenance in Longer-Term Culture. Front Cell Dev Biol 2021; 9:645704. [PMID: 33996806 PMCID: PMC8114082 DOI: 10.3389/fcell.2021.645704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Using retinal organoid systems, organ-like 3D tissues, relies implicitly on their robustness. However, essential key parameters, particularly retinal growth and longer-term culture, are still insufficiently defined. Here, we hypothesize that a previously optimized protocol for high yield of evenly-sized mouse retinal organoids with low variability facilitates assessment of such parameters. We demonstrate that these organoids reliably complete retinogenesis, and can be maintained at least up to 60 days in culture. During this time, the organoids continue to mature on a molecular and (ultra)structural level: They develop photoreceptor outer segments and synapses, transiently maintain its cell composition for about 5-10 days after completing retinogenesis, and subsequently develop pathologic changes - mainly of the inner but also outer retina and reactive gliosis. To test whether this organoid system provides experimental access to the retina during and upon completion of development, we defined and stimulated organoid growth by activating sonic hedgehog signaling, which in patients and mice in vivo with a congenital defect leads to enlarged eyes. Here, a sonic hedgehog signaling activator increased retinal epithelia length in the organoid system when applied during but not after completion of development. This experimentally supports organoid maturation, stability, and experimental reproducibility in this organoid system, and provides a potential enlarged retina pathology model, as well as a protocol for producing larger organoids. Together, our study advances the understanding of retinal growth, maturation, and maintenance, and further optimizes the organoid system for future utilization.
Collapse
Affiliation(s)
- Manuela Völkner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Electron Microscopy and Histology Facility, Technische Universität Dresden, Dresden, Germany
| | - Jana Schor
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lynn J A Ebner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lara Bardtke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Cagri Kavak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Jörg Hackermüller
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Mike O Karl
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.,CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Koeniger A, Brichkina A, Nee I, Dempwolff L, Hupfer A, Galperin I, Finkernagel F, Nist A, Stiewe T, Adhikary T, Diederich W, Lauth M. Activation of Cilia-Independent Hedgehog/GLI1 Signaling as a Novel Concept for Neuroblastoma Therapy. Cancers (Basel) 2021; 13:cancers13081908. [PMID: 33921042 PMCID: PMC8071409 DOI: 10.3390/cancers13081908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Elevated GLI1 expression levels are associated with improved survival in NB patients and GLI1 overexpression exerts tumor-suppressive traits in cultured NB cells. However, NB cells are protected from increased GLI1 levels as they have lost the ability to form primary cilia and transduce Hedgehog signals. This study identifies an isoxazole (ISX) molecule with primary cilia-independent GLI1-activating properties, which blocks NB cell growth. Mechanistically, ISX combines the removal of GLI3 repressor and the inhibition of class I HDACs, providing proof-of-principle evidence that small molecule-mediated activation of GLI1 could be harnessed therapeutically in the future. Abstract Although being rare in absolute numbers, neuroblastoma (NB) represents the most frequent solid tumor in infants and young children. Therapy options and prognosis are comparably good for NB patients except for the high risk stage 4 class. Particularly in adolescent patients with certain genetic alterations, 5-year survival rates can drop below 30%, necessitating the development of novel therapy approaches. The developmentally important Hedgehog (Hh) pathway is involved in neural crest differentiation, the cell type being causal in the etiology of NB. However, and in contrast to its function in some other cancer types, Hedgehog signaling and its transcription factor GLI1 exert tumor-suppressive functions in NB, rendering GLI1 an interesting new candidate for anti-NB therapy. Unfortunately, the therapeutic concept of pharmacological Hh/GLI1 pathway activation is difficult to implement as NB cells have lost primary cilia, essential organelles for Hh perception and activation. In order to bypass this bottleneck, we have identified a GLI1-activating small molecule which stimulates endogenous GLI1 production without the need for upstream Hh pathway elements such as Smoothened or primary cilia. This isoxazole compound potently abrogates NB cell proliferation and might serve as a starting point for the development of a novel class of NB-suppressive molecules.
Collapse
Affiliation(s)
- Anke Koeniger
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Anna Brichkina
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Iris Nee
- Department of Medicinal Chemistry and Center for Tumor- and Immune Biology, Philipps University Marburg, 35043 Marburg, Germany; (I.N.); (L.D.); (W.D.)
| | - Lukas Dempwolff
- Department of Medicinal Chemistry and Center for Tumor- and Immune Biology, Philipps University Marburg, 35043 Marburg, Germany; (I.N.); (L.D.); (W.D.)
| | - Anna Hupfer
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Ilya Galperin
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Florian Finkernagel
- Center for Tumor- and Immune Biology, Bioinformatics Core Facility, Philipps University Marburg, 35043 Marburg, Germany;
| | - Andrea Nist
- Member of the German Center for Lung Research (DZL), Center for Tumor- and Immune Biology, Genomics Core Facility, Institute of Molecular Oncology, Philipps University Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Thorsten Stiewe
- Member of the German Center for Lung Research (DZL), Center for Tumor- and Immune Biology, Genomics Core Facility, Institute of Molecular Oncology, Philipps University Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Till Adhikary
- Institute for Biomedical Informatics and Biostatistics, Philipps University Marburg, 35043 Marburg, Germany;
| | - Wibke Diederich
- Department of Medicinal Chemistry and Center for Tumor- and Immune Biology, Philipps University Marburg, 35043 Marburg, Germany; (I.N.); (L.D.); (W.D.)
- Core Facility Medicinal Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
- Correspondence:
| |
Collapse
|
16
|
Huang J, Xian B, Peng Y, Zeng B, Li W, Li Z, Xie Y, Zhao M, Zhang H, Zhou M, Yu H, Wu P, Liu X, Huang B. Migration of pre-induced human peripheral blood mononuclear cells from the transplanted to contralateral eye in mice. Stem Cell Res Ther 2021; 12:168. [PMID: 33691753 PMCID: PMC7945672 DOI: 10.1186/s13287-021-02180-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background Retina diseases may lead to blindness as they often afflict both eyes. Stem cell transplantation into the affected eye(s) is a promising therapeutic strategy for certain retinal diseases. Human peripheral blood mononuclear cells (hPBMCs) are a good source of stem cells, but it is unclear whether pre-induced hPBMCs can migrate from the injected eye to the contralateral eye for bilateral treatment. We examine the possibility of bilateral cell transplantation from unilateral cell injection. Methods One hundred and sixty-one 3-month-old retinal degeneration 1 (rd1) mice were divided randomly into 3 groups: an untreated group (n = 45), a control group receiving serum-free Dulbecco’s modified Eagle’s medium (DMEM) injection into the right subretina (n = 45), and a treatment group receiving injection of pre-induced hPBMCs into the right subretina (n = 71). Both eyes were examined by full-field electroretinogram (ERG), immunofluorescence, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) at 1 and 3 months post-injection. Results At both 1 and 3 months post-injection, labeled pre-induced hPBMCs were observed in the retinal inner nuclear layer of the contralateral (left untreated) eye as well as the treated eye as evidenced by immunofluorescence staining for a human antigen. Flow cytometry of fluorescently label cells and qRT-PCR of hPBMCs genes confirmed that transplanted hPBMCs migrated from the treated to the contralateral untreated eye and remained viable for up to 3 months. Further, full-field ERG showed clear light-evoked a and b waves in both treated and untreated eyes at 3 months post-transplantation. Labeled pre-induced hPBMCs were also observed in the contralateral optic nerve but not in the blood circulation, suggesting migration via the optic chiasm. Conclusion It may be possible to treat binocular eye diseases by unilateral stem cell injection. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02180-5.
Collapse
Affiliation(s)
- Jianfa Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bikun Xian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.,The Second People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Yuting Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.,Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Baozhu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhiquan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yaojue Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Hening Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Minyi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Peixin Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
17
|
Gao H, A L, Huang X, Chen X, Xu H. Müller Glia-Mediated Retinal Regeneration. Mol Neurobiol 2021; 58:2342-2361. [PMID: 33417229 DOI: 10.1007/s12035-020-02274-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Müller glia originate from neuroepithelium and are the principal glial cells in the retina. During retinal development, Müller glia are one of the last cell types to be born. In lower vertebrates, such as zebrafish, Müller glia possess a remarkable capacity for retinal regeneration following various forms of injury through a reprogramming process in which endogenous Müller glia proliferate and differentiate into all types of retinal cells. In mammals, Müller glia become reactive in response to damage to protect or to further impair retinal function. Although mammalian Müller glia have regenerative potential, it is limited as far as repairing damaged retina. Lessons learned from zebrafish will help reveal the critical mechanisms involved in Müller glia reprogramming. Progress has been made in triggering Müller glia to reprogram and generate functional neurons to restore vision in mammals indicating that Müller glia reprogramming may be a promising therapeutic strategy for human retinal diseases. This review comprehensively summarizes the mechanisms related to retinal regeneration in model animals and the critical advanced progress made in Müller glia reprogramming in mammals.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
18
|
Niu L, Fang Y, Yao X, Zhang Y, Wu J, Chen DF, Sun X. TNFα activates MAPK and Jak-Stat pathways to promote mouse Müller cell proliferation. Exp Eye Res 2020; 202:108353. [PMID: 33171193 DOI: 10.1016/j.exer.2020.108353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
Mouse Müller cells, considered as dormant retinal progenitors, often respond to retinal injury by undergoing reactive gliosis rather than displaying neural regenerative responses. Tumor necrosis factor alpha (TNFα) is a key cytokines induced after injury and implicated in mediating inflammatory and neural regenerative responses in zebrafish. To investigate the involvement of TNFα in mouse retinal injury, adult C57BL/6J mice were subjected to light damage for 14 consecutive days. TNFα was elevated in the retina of mice exposed to light damage, which induced Müller cell proliferation in vitro. Affymetrix microarray showed that, in Müller cells, TNFα induces up-regulation of inflammatory and proliferation-related genes, including NFKB2, leukemia inhibitory factor, interleukin-6, janus kinase (Jak) 1, Jak2, signal transducer and activator of transcription (Stat) 1, Stat2, mitogen-activated protein kinase (MAPK) 7, and MAP4K4 but down-regulation of neuroprogenitor genes, including Sox9, Ascl1, Wnt2 and Hes1. Blocking the Jak/Stat and MAPK pathways attenuated TNFα-induced Müller cell proliferation. These results suggest that TNFα may drive the proliferation and inflammatory response, rather than the neural regenerative potential, of mouse Müller cells.
Collapse
Affiliation(s)
- Liangliang Niu
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Yuan Fang
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Xiaoqian Yao
- Department of Ophthalmology, Jin Shan Hospital, Fudan University, Shanghai 200540, China
| | - Yi Zhang
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Jihong Wu
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Zhang CJ, Ma Y, Jin ZB. The road to restore vision with photoreceptor regeneration. Exp Eye Res 2020; 202:108283. [PMID: 33010290 DOI: 10.1016/j.exer.2020.108283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Neuroretinal diseases are the predominant cause of irreversible blindness worldwide, mainly due to photoreceptor loss. Currently, there are no radical treatments to fully reverse the degeneration or even stop the disease progression. Thus, it is urgent to develop new biological therapeutics for these diseases on the clinical side. Stem cell-based treatments have become a promising therapeutic for neuroretinal diseases through the replacement of damaged cells with photoreceptors and some allied cells. To date, considerable efforts have been made to regenerate the diseased retina based on stem cell technology. In this review, we overview the current status of stem cell-based treatments for photoreceptor regeneration, including the major cell sources derived from different stem cells in pre-clinical or clinical trial stages. Additionally, we discuss herein the major challenges ahead for and potential new strategy toward photoreceptor regeneration.
Collapse
Affiliation(s)
- Chang-Jun Zhang
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
20
|
Grigoryan EN. Potential Endogenous Cell Sources for Retinal Regeneration in Vertebrates and Humans: Progenitor Traits and Specialization. Biomedicines 2020; 8:E208. [PMID: 32664635 PMCID: PMC7400588 DOI: 10.3390/biomedicines8070208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Retinal diseases often cause the loss of photoreceptor cells and, consequently, impairment of vision. To date, several cell populations are known as potential endogenous retinal regeneration cell sources (RRCSs): the eye ciliary zone, the retinal pigment epithelium, the iris, and Müller glia. Factors that can activate the regenerative responses of RRCSs are currently under investigation. The present review considers accumulated data on the relationship between the progenitor properties of RRCSs and the features determining their differentiation. Specialized RRCSs (all except the ciliary zone in low vertebrates), despite their differences, appear to be partially "prepared" to exhibit their plasticity and be reprogrammed into retinal neurons due to the specific gene expression and epigenetic landscape. The "developmental" characteristics of RRCS gene expression are predefined by the pathway by which these cell populations form during eye morphogenesis; the epigenetic features responsible for chromatin organization in RRCSs are under intracellular regulation. Such genetic and epigenetic readiness is manifested in vivo in lower vertebrates and in vitro in higher ones under conditions permissive for cell phenotype transformation. Current studies on gene expression in RRCSs and changes in their epigenetic landscape help find experimental approaches to replacing dead cells through recruiting cells from endogenous resources in vertebrates and humans.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
21
|
Ahmad I, Teotia P, Erickson H, Xia X. Recapitulating developmental mechanisms for retinal regeneration. Prog Retin Eye Res 2019; 76:100824. [PMID: 31843569 DOI: 10.1016/j.preteyeres.2019.100824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Degeneration of specific retinal neurons in diseases like glaucoma, age-related macular degeneration, and retinitis pigmentosa is the leading cause of irreversible blindness. Currently, there is no therapy to modify the disease-associated degenerative changes. With the advancement in our knowledge about the mechanisms that regulate the development of the vertebrate retina, the approach to treat blinding diseases through regenerative medicine appears a near possibility. Recapitulation of developmental mechanisms is critical for reproducibly generating cells in either 2D or 3D culture of pluripotent stem cells for retinal repair and disease modeling. It is the key for unlocking the neurogenic potential of Müller glia in the adult retina for therapeutic regeneration. Here, we examine the current status and potential of the regenerative medicine approach for the retina in the backdrop of developmental mechanisms.
Collapse
Affiliation(s)
- Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Pooja Teotia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Helen Erickson
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
22
|
Abstract
Retinal degeneration is a leading cause of untreatable blindness in the industrialised world. It is typically irreversible and there are few curative treatments available. The use of stem cells to generate new retinal neurons for transplantation purposes has received significant interest in recent years and is beginning to move towards clinical trials. However, such approaches are likely to be most effective for relatively focal areas of repair. An intriguing complementary approach is endogenous self-repair. Retinal cells from the ciliary marginal zone (CMZ), retinal pigment epithelium (RPE) and Müller glial cells (MG) have all been shown to play a role in retinal repair, typically in lower vertebrates. Among them, MG have received renewed interest, due to their distribution throughout (centre to periphery) the neural retina and their potential to re-acquire a progenitor-like state following retinal injury with the ability to proliferate and generate new neurons. Triggering these innate self-repair mechanisms represents an exciting therapeutic option in treating retinal degeneration. However, these cells behave differently in mammalian and non-mammalian species, with a considerably restricted potential in mammals. In this short review, we look at some of the recent progress made in our understanding of the signalling pathways that underlie MG-mediated regeneration in lower vertebrates, and some of the challenges that have been revealed in our attempts to reactivate this process in the mammalian retina.
Collapse
Affiliation(s)
- Rahul Langhe
- Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
23
|
Grigoryan EN. Endogenous Cell Sources for Eye Retina Regeneration in Vertebrate Animals and Humans. Russ J Dev Biol 2019. [DOI: 10.1134/s106236041901003x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Devoldere J, Peynshaert K, De Smedt SC, Remaut K. Müller cells as a target for retinal therapy. Drug Discov Today 2019; 24:1483-1498. [PMID: 30731239 DOI: 10.1016/j.drudis.2019.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/28/2022]
Abstract
Müller cells are specialized glial cells that span the entire retina from the vitreous cavity to the subretinal space. Their functional diversity and unique radial morphology render them particularly interesting targets for new therapeutic approaches. In this review, we reflect on various possibilities for selective Müller cell targeting and describe how some of their cellular mechanisms can be used for retinal neuroprotection. Intriguingly, cross-species investigation of their properties has revealed that Müller cells also have an essential role in retinal regeneration. Although many questions regarding this subject remain, it is clear that Müller cells have unique characteristics that make them suitable targets for the prevention and treatment of numerous retinal diseases.
Collapse
Affiliation(s)
- Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
25
|
Ranaei Pirmardan E, Soheili ZS, Samiei S, Ahmadieh H, Mowla SJ, Naseri M, Daftarian N. In Vivo Evaluation of PAX6 Overexpression and NMDA Cytotoxicity to Stimulate Proliferation in the Mouse Retina. Sci Rep 2018; 8:17700. [PMID: 30531887 PMCID: PMC6286369 DOI: 10.1038/s41598-018-35884-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/13/2018] [Indexed: 02/08/2023] Open
Abstract
Retinal degenerative diseases, due to the lack of regeneration systems and self-renewable cells, often lead to visual impairment. Pax6 is a pleiotropic transcription factor and its expression level determines self-renewal status or differentiation of retinal cells. Here, we investigated the fate of simultaneous induction of retinal ganglion cell death and Pax6 overexpression in retro-differentiation of retinal cells and their commitment to re-enter into the cell cycle. Induction of acute retinal ganglion cell death and generation of mouse experimental model was performed by N-methyl D-aspartic acid (NMDA) injection. Recombinant AAV2 virus harboring PAX6 cDNA and reporter gene was injected into untreated and model mouse eyes. Histological analyses, including IHC and retinal flatmounts immunostaining were performed. The number of Ki67+ cells was clearly increased in model mice, presumably due to NMDA treatment and regardless of Pax6 over-expression. Unlike previous studies, Ki67+ cells were found in GCL layer and interestingly ONL cells expressed Sox2 stemness marker after NMDA cytotoxicity. The potential of retinal cells for robust Ki67 expression, after injury, and expression of Sox2, confirmed their intrinsic plasticity and made a vivid prospect for retinal regenerative medicine.
Collapse
Affiliation(s)
- Ehsan Ranaei Pirmardan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Shahram Samiei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Naseri
- Department of Molecular Medicine, Faculty of Advanced Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Narsis Daftarian
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8374647. [PMID: 29484106 PMCID: PMC5816845 DOI: 10.1155/2018/8374647] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/06/2017] [Indexed: 12/03/2022]
Abstract
Age-related macular degeneration (AMD) is a well-characterized and extensively studied disease. It is currently considered the leading cause of visual disability among patients over 60 years. The hallmark of early AMD is the formation of drusen, pigmentary changes at the macula, and mild to moderate vision loss. There are two forms of AMD: the “dry” and the “wet” form that is less frequent but is responsible for 90% of acute blindness due to AMD. Risk factors have been associated with AMD progression, and they are taking relevance to understand how AMD develops: (1) advanced age and the exposition to environmental factors inducing high levels of oxidative stress damaging the macula and (2) this damage, which causes inflammation inducing a vicious cycle, altogether causing central vision loss. There is neither a cure nor treatment to prevent AMD. However, there are some treatments available for the wet form of AMD. This article will review some molecular and cellular mechanisms associated with the onset of AMD focusing on feasible treatments for each related factor in the development of this pathology such as vascular endothelial growth factor, oxidative stress, failure of the clearance of proteins and organelles, and glial cell dysfunction in AMD.
Collapse
|
27
|
Thomas JL, Morgan GW, Dolinski KM, Thummel R. Characterization of the pleiotropic roles of Sonic Hedgehog during retinal regeneration in adult zebrafish. Exp Eye Res 2018; 166:106-115. [PMID: 29030175 PMCID: PMC5756498 DOI: 10.1016/j.exer.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 08/25/2017] [Accepted: 10/08/2017] [Indexed: 01/12/2023]
Abstract
In contrast to the mammalian retina, the zebrafish retina possesses the ability to regenerate. This is primarily accomplished through Müller glial cells, which, upon damage, re-enter the cell cycle to form retinal progenitors. The progenitors continue to proliferate as they migrate to the area of damage and ultimately differentiate into new neurons. The purpose of this study was to characterize the expression and function of Sonic Hedgehog (Shh) during regeneration of the adult zebrafish retina. Expression profiling of Shh pathway genes showed a significant upregulation of expression associated with stages of progenitor proliferation and neuronal differentiation. Activation of Shh signaling during early stages of retinal regeneration using intraocular injections of the recombinant human SHH (SHH-N) resulted in increased Müller cell gliosis, proliferation, and neuroprotection of damaged retinal neurons. Continued activation of Shh resulted in a greater number of differentiated amacrine and ganglion cells in the fully regenerated retina. Conversely, inhibition of Shh signaling using intraocular injections of cyclopamine resulted in decreased Müller glial cell proliferation and a fewer number of regenerated amacrine and ganglion cells. These data suggest that Shh signaling plays pleiotropic roles in proliferation and differentiation during adult zebrafish retinal regeneration.
Collapse
Affiliation(s)
- Jennifer L Thomas
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| | - Gregory W Morgan
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| | - Kaylee M Dolinski
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| | - Ryan Thummel
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA; Department of Ophthalmology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| |
Collapse
|
28
|
Yao K, Qiu S, Tian L, Snider WD, Flannery JG, Schaffer DV, Chen B. Wnt Regulates Proliferation and Neurogenic Potential of Müller Glial Cells via a Lin28/let-7 miRNA-Dependent Pathway in Adult Mammalian Retinas. Cell Rep 2017; 17:165-178. [PMID: 27681429 DOI: 10.1016/j.celrep.2016.08.078] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/04/2016] [Accepted: 08/23/2016] [Indexed: 10/20/2022] Open
Abstract
In cold-blooded vertebrates such as zebrafish, Müller glial cells (MGs) readily proliferate to replenish lost retinal neurons. In mammals, however, MGs lack regenerative capability as they do not spontaneously re-enter the cell cycle unless the retina is injured. Here, we show that gene transfer of β-catenin in adult mouse retinas activates Wnt signaling and MG proliferation without retinal injury. Upstream of Wnt, deletion of GSK3β stabilizes β-catenin and activates MG proliferation. Downstream of Wnt, β-catenin binds to the Lin28 promoter and activates transcription. Deletion of Lin28 abolishes β-catenin-mediated effects on MG proliferation, and Lin28 gene transfer stimulates MG proliferation. We further demonstrate that let-7 miRNAs are critically involved in Wnt/Lin28-regulated MG proliferation. Intriguingly, a subset of cell-cycle-reactivated MGs express markers for amacrine cells. Together, these results reveal a key role of Wnt-Lin28-let7 miRNA signaling in regulating proliferation and neurogenic potential of MGs in the adult mammalian retina.
Collapse
Affiliation(s)
- Kai Yao
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Suo Qiu
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - William D Snider
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David V Schaffer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, Bioengineering, Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bo Chen
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
29
|
Abstract
Retinal Müller glial cells have been shown to undergo reactive gliosis in a variety of retinal diseases. Upregulation of glial fibrillary acidic protein (GFAP) is a hallmark of Müller cell activation. Reactive gliosis after retinal detachment or ischemia/reperfusion is characterized by hypertrophy and downregulation of inwardly rectifying K+ (Kir) currents. However, this kind of physiological alteration could not be detected in slowly progressing retinal degenerations. The photoreceptor toxin N-methyl-N-nitrosourea (MNU) leads to the rapid loss of cells in the outer nuclear layer and subsequent Müller cell activation. Here, we investigated whether Müller cells from MNU-treated mice exhibit reactive gliosis. We found that Müller cells showed increased GFAP expression and increased membrane capacitance, indicating hypertrophy. Membrane potential and Kir channel-mediated K+ currents were not significantly altered whereas Kir4.1 mRNA expression and Kir-mediated inward current densities were markedly decreased. This suggests that MNU-induced Müller cell gliosis is characterized by plasma membrane increase without alteration in the membrane content of Kir channels. Taken together, our findings show that Müller cells of MNU-treated mice are reactive and respond with a form of gliosis which is characterized by cellular hypertrophy but no changes in Kir current amplitudes.
Collapse
|
30
|
Gu D, Wang S, Zhang S, Zhang P, Zhou G. Directed transdifferentiation of Müller glial cells to photoreceptors using the sonic hedgehog signaling pathway agonist purmorphamine. Mol Med Rep 2017; 16:7993-8002. [PMID: 28983586 PMCID: PMC5779882 DOI: 10.3892/mmr.2017.7652] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/28/2017] [Indexed: 01/08/2023] Open
Abstract
Specification of distinct cell types from Müller glial cells is key to the potential application of endogenous repair in retinal regeneration. Sonic hedgehog (SHH) has been established as a potent mitogen for rat Müller glial cells, which also induces Müller glial cells to dedifferentiate and adopt the phenotype of rod photoreceptors. The present study investigated the effects of purmorphamine, a small molecule that activates the SHH‑pathway, in the proliferation, dedifferentiation and transdifferentiation of Müller glial cells, as determined by several methods including immunofluorescence, polymerase chain reaction and western blotting. It was demonstrated that it may be able to replace SHH for the regeneration of retinal neurons. Purmorphamine was revealed to stimulate the proliferation of Müller glial cells by increasing the expression of cyclin D1 and cyclin D3. In addition, purmorphamine‑treated Müller glial cells were induced to dedifferentiate by inducing the expression of progenitor‑specific markers; subsequently differentiating into rod‑like photoreceptors. Intraocular injection of purmorphamine promoted the activation of Müller glial cells, and in turn, the production of rod‑like photoreceptors in acute damaged retina. These results suggested that the endogenous neurogenic capacity of retinal Müller glial cells may be enhanced by this small molecular agonist of the SHH signaling pathway.
Collapse
Affiliation(s)
- Dandan Gu
- Department of Anatomy, Histology and Embryology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Songtao Wang
- Department of Integrative Medicine and Neurobiology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Shuai Zhang
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai 200032, P.R. China
| | - Peng Zhang
- Department of Integrative Medicine and Neurobiology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
31
|
Boudreau-Pinsonneault C, Cayouette M. Cell lineage tracing in the retina: Could material transfer distort conclusions? Dev Dyn 2017. [PMID: 28643368 DOI: 10.1002/dvdy.24535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies reported the transfer of fluorescent labels between grafted and host cells after transplantation of photoreceptor precursor cells in the mouse retina. While clearly impacting the interpretation of transplantation studies in the retina, the potential impact of material transfer in other experimental paradigms using cell-specific labels remains uncertain. Here, we briefly review the evidence supporting material transfer in transplantation studies and discuss whether it might influence retinal cell lineage tracing experiments in developmental and regeneration studies. We also propose ways to control for the possible confounding occurrence of label exchange in such experiments. Developmental Dynamics 247:10-17, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Camille Boudreau-Pinsonneault
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, QC, Canada.,Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Boda E, Nato G, Buffo A. Emerging pharmacological approaches to promote neurogenesis from endogenous glial cells. Biochem Pharmacol 2017. [PMID: 28647491 DOI: 10.1016/j.bcp.2017.06.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders are emerging as leading contributors to the global disease burden. While some drug-based approaches have been designed to limit or prevent neuronal loss following acute damage or chronic neurodegeneration, regeneration of functional neurons in the adult Central Nervous System (CNS) still remains an unmet need. In this context, the exploitation of endogenous cell sources has recently gained an unprecedented attention, thanks to the demonstration that, in some CNS regions or under specific circumstances, glial cells can activate spontaneous neurogenesis or can be instructed to produce neurons in the adult mammalian CNS parenchyma. This field of research has greatly advanced in the last years and identified interesting molecular and cellular mechanisms guiding the neurogenic activation/conversion of glia. In this review, we summarize the evolution of the research devoted to understand how resident glia can be directed to produce neurons. We paid particular attention to pharmacologically-relevant approaches exploiting the modulation of niche-associated factors and the application of selected small molecules.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy.
| | - Giulia Nato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| |
Collapse
|
33
|
Sifuentes CJ, Kim JW, Swaroop A, Raymond PA. Rapid, Dynamic Activation of Müller Glial Stem Cell Responses in Zebrafish. Invest Ophthalmol Vis Sci 2017; 57:5148-5160. [PMID: 27699411 PMCID: PMC5054728 DOI: 10.1167/iovs.16-19973] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose Zebrafish neurons regenerate from Müller glia following retinal lesions. Genes and signaling pathways important for retinal regeneration in zebrafish have been described, but our understanding of how Müller glial stem cell properties are regulated is incomplete. Mammalian Müller glia possess a latent neurogenic capacity that might be enhanced in regenerative therapies to treat degenerative retinal diseases. Methods To identify transcriptional changes associated with stem cell properties in zebrafish Müller glia, we performed a comparative transcriptome analysis from isolated cells at 8 and 16 hours following an acute photic lesion, prior to the asymmetric division that produces retinal progenitors. Results We report a rapid, dynamic response of zebrafish Müller glia, characterized by activation of pathways related to stress, nuclear factor–κB (NF-κB) signaling, cytokine signaling, immunity, prostaglandin metabolism, circadian rhythm, and pluripotency, and an initial repression of Wnt signaling. When we compared publicly available transcriptomes of isolated mouse Müller glia from two retinal degeneration models, we found that mouse Müller glia showed evidence of oxidative stress, variable responses associated with immune regulation, and repression of pathways associated with pluripotency, development, and proliferation. Conclusions Categories of biological processes/pathways activated following photoreceptor loss in regeneration-competent zebrafish Müller glia, which distinguished them from mouse Müller glia in retinal degeneration models, included cytokine signaling (notably NF-κB), prostaglandin E2 synthesis, expression of core clock genes, and pathways/metabolic states associated with pluripotency. These regulatory mechanisms are relatively unexplored as potential mediators of stem cell properties likely to be important in Müller glial cells for successful retinal regeneration.
Collapse
Affiliation(s)
- Christopher J Sifuentes
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Korea 3Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Pamela A Raymond
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
34
|
Schäfer P, Karl MO. Prospective purification and characterization of Müller glia in the mouse retina regeneration assay. Glia 2017; 65:828-847. [PMID: 28220544 DOI: 10.1002/glia.23130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/06/2023]
Abstract
Reactive gliosis is an umbrella term for various glia functions in neurodegenerative diseases and upon injury. Specifically, Müller glia (MG) in some species readily regenerate retinal neurons to restore vision loss after insult, whereas mammalian MG respond by reactive gliosis-a heterogeneous response which frequently includes cell hypertrophy and proliferation. Limited regeneration has been stimulated in mammals, with a higher propensity in young MG, and in vitro compared to in vivo, but the underlying processes are unknown. To facilitate studies on the mechanisms regulating and limiting glia functions, we developed a strategy to purify glia and their progeny by fluorescence-activated cell sorting. Dual-transgenic nuclear reporter mice, which label neurons and glia with red and green fluorescent proteins, respectively, have enabled MG enrichment up to 93% purity. We applied this approach to MG in a mouse retina regeneration ex vivo assay. Combined cell size and cell cycle analysis indicates that most MG hypertrophy and a subpopulation proliferates which, over time, become even larger in cell size than the ones that do not proliferate. MG undergo timed differential genomic changes in genes controlling stemness and neurogenic competence; and glial markers are downregulated. Genes that are potentially required for, or associated with, regeneration and reactive gliosis are differentially regulated by retina explant culture time, epidermal growth factor stimulation, and animal age. Thus, MG enrichment facilitates cellular and molecular studies which, in combination with the mouse retina regeneration assay, provide an experimental approach for deciphering mechanisms that possibly regulate reactive gliosis and limit regeneration in mammals.
Collapse
Affiliation(s)
- Patrick Schäfer
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| | - Mike O Karl
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| |
Collapse
|
35
|
Lin28b stimulates the reprogramming of rat Müller glia to retinal progenitors. Exp Cell Res 2017; 352:164-174. [PMID: 28189638 DOI: 10.1016/j.yexcr.2017.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 02/08/2017] [Indexed: 11/22/2022]
Abstract
In lower-order vertebrates, Müller glia exhibit characteristics of retinal progenitor cells, while in higher vertebrates, such as mammals, the regenerative capacity of Müller glia is limited. Recently, we reported that Lin28b promoted the trans-differentiation of Müller cells to rod photoreceptor and bipolar cells in the retina of retinitis pigmentosa rat model, whereas it is unclear whether Lin28b can stimulate the reprogramming of Müller glia in vitro for transplantation into a damaged retina. In the present study, Long-Evens rat Müller glia were infected with Adeno-Lin28b or Adeno-GFP. Over-expression of Lin28b in isolated rat Müller glia resulted in the suppression of GFAP expression, enhancement of cell proliferation and a significant increase of the expression of retinal progenitor markers 5 days after infection. Moreover, Lin28b caused a significant reduction of the Let-7 family of microRNAs. Following sub-retinal space transplantation, Müller glia-derived retinal progenitors improved b-wave amplification of 30d Royal College of Surgeons retinitis pigmentosa model (RCS-P+) rats, as detected by electroretinography (ERG) recordings. Taken together, these data suggest that the up-regulation of Lin28b expression facilitated the reprogramming of Müller cells toward characteristics of retinal progenitors.
Collapse
|
36
|
Chohan A, Singh U, Kumar A, Kaur J. Müller stem cell dependent retinal regeneration. Clin Chim Acta 2017; 464:160-164. [PMID: 27876464 DOI: 10.1016/j.cca.2016.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022]
Abstract
Müller Stem cells to treat ocular diseases has triggered enthusiasm across all medical and scientific communities. Recent development in the field of stem cells has widened the prospects of applying cell based therapies to regenerate ocular tissues that have been irreversibly damaged by disease or injury. Ocular tissues such as the lens and the retina are now known to possess cell having remarkable regenerative abilities. Recent studies have shown that the Müller glia, a cell found in all vertebrate retinas, is the primary source of new neurons, and therefore are considered as the cellular basis for retinal regeneration in mammalian retinas. Here, we review the current status of retinal regeneration of the human eye by Müller stem cells. This review elucidates the current status of retinal regeneration by Müller stem cells, along with major retinal degenerative diseases where these stem cells play regenerative role in retinal repair and replacement.
Collapse
Affiliation(s)
- Annu Chohan
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Usha Singh
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Kumar
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Jasbir Kaur
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
37
|
Xia X, Ahmad I. Unlocking the Neurogenic Potential of Mammalian Müller Glia. Int J Stem Cells 2016; 9:169-175. [PMID: 27572710 PMCID: PMC5155712 DOI: 10.15283/ijsc16020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2016] [Indexed: 12/23/2022] Open
Abstract
Müller glia (MG) are the primary support cells in the vertebrate retina, regulating homeostasis in one of the most metabolically active tissues. In lower vertebrates such as fish, they respond to injury by proliferating and reprogramming to regenerate retinal neurons. In mammals, MG may also react to injury by proliferating, but they fail to initiate regeneration. The barriers to regeneration could be intrinsic to mammalian MG or the function of the niche that cannot support the MG reprogramming required for lineage conversion or both. Understanding these mechanisms in light of those being discovered in fish may lead to the formulation of strategies to unlock the neurogenic potential of MG and restore regeneration in the mammalian retina.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
38
|
Wilken MS, Reh TA. Retinal regeneration in birds and mice. Curr Opin Genet Dev 2016; 40:57-64. [PMID: 27379897 DOI: 10.1016/j.gde.2016.05.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/19/2016] [Accepted: 05/29/2016] [Indexed: 11/28/2022]
Abstract
Retinal regeneration from resident Müller glia cells is robust in teleost fish, but is severely limited in birds and mammals. After neurotoxic injury, chick Müller glia can proliferate, and activate neurogenic genes, but they display limited capacity to differentiate into neurons. Developmental signaling molecules enhance this process. Regeneration of retinal neurons in rodents is even more limited. However, studies show evidence of proliferation and neurogenic gene expression after injury, with stronger effects in rats than mice, and differences between mouse strains. Mitogenic growth factors and Wnt signaling potentiate the proliferative response, while misexpression of the proneural transcription factor, Ascl1, reprograms to generate neurons from Müller glial in vitro, and stimulates neuronal regeneration in young mice, in vivo.
Collapse
Affiliation(s)
- Matthew S Wilken
- Department of Biological Structure, Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, United States
| | - Thomas A Reh
- Department of Biological Structure, Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
39
|
Abstract
The mammalian retina has the potential to regenerate rod cells, bipolar cells, and amacrine cells in vivo to repair damaged nervous tissue through the Müller glial cell (MGC)-mediated response. Both horizontal cell (HC) and amacrine cell are interneurons in the inner nuclear layer (INL) and are generated under the control of some common transcription factors during retinal development. However, to date, the ability of HC regeneration in vivo in mammals remains unclear. Here, ouabain (a Na/K-ATPase inhibitor) was injected into rat eyes to induce an obvious cell loss in the INL. The proliferation, dedifferentiation of MGC and production of new neurons after ouabain injection were examined by BrdU incorporation and immunohistochemistry. Our results showed that 2 days after ouabain treatment, MGCs incorporated BrdU and upregulated the expression of Nestin, which is a marker for retinal progenitor cells. Several weeks after ouabain injection, the BrdU-positive cells in the outer border of the INL expressed Prox1 and Calbindin D-28k, which are specific markers for HC. Taken together, these results suggest that the mammalian retina can regenerate new type of interneurons (HC) in vivo, which advances our understanding of mammalian retinal regeneration after damage.
Collapse
|
40
|
Ringuette R, Atkins M, Lagali PS, Bassett EA, Campbell C, Mazerolle C, Mears AJ, Picketts DJ, Wallace VA. A Notch-Gli2 axis sustains Hedgehog responsiveness of neural progenitors and Müller glia. Dev Biol 2016; 411:85-100. [PMID: 26795056 DOI: 10.1016/j.ydbio.2016.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 11/18/2022]
Abstract
Neurogenesis is regulated by the dynamic and coordinated activity of several extracellular signalling pathways, but the basis for crosstalk between these pathways remains poorly understood. Here we investigated regulatory interactions between two pathways that are each required for neural progenitor cell maintenance in the postnatal retina; Hedgehog (Hh) and Notch signalling. Both pathways are activated in progenitor cells in the postnatal retina based on the co-expression of fluorescent pathway reporter transgenes at the single cell level. Disrupting Notch signalling, genetically or pharmacologically, induces a rapid downregulation of all three Gli proteins and inhibits Hh-induced proliferation. Ectopic Notch activation, while not sufficient to promote Hh signalling or proliferation, increases Gli2 protein. We show that Notch regulation of Gli2 in Müller glia renders these cells competent to proliferate in response to Hh. These data suggest that Notch signalling converges on Gli2 to prime postnatal retinal progenitor cells and Müller glia to proliferate in response to Hh.
Collapse
Affiliation(s)
- Randy Ringuette
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Michael Atkins
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Pamela S Lagali
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Erin A Bassett
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Charles Campbell
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Chantal Mazerolle
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Alan J Mears
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Valerie A Wallace
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5; Vision Research Division, Krembil Research Institute, University Health Network and Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Hamon A, Roger JE, Yang XJ, Perron M. Müller glial cell-dependent regeneration of the neural retina: An overview across vertebrate model systems. Dev Dyn 2016; 245:727-38. [PMID: 26661417 PMCID: PMC4900950 DOI: 10.1002/dvdy.24375] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/12/2015] [Accepted: 11/22/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal dystrophies are a major cause of blindness for which there are currently no curative treatments. Transplantation of stem cell‐derived neuronal progenitors to replace lost cells has been widely investigated as a therapeutic option. Another promising strategy would be to trigger self‐repair mechanisms in patients, through the recruitment of endogenous cells with stemness properties. Accumulating evidence in the past 15 year0s has revealed that several retinal cell types possess neurogenic potential, thus opening new avenues for regenerative medicine. Among them, Müller glial cells have been shown to be able to undergo a reprogramming process to re‐acquire a stem/progenitor state, allowing them to proliferate and generate new neurons for repair following retinal damages. Although Müller cell–dependent spontaneous regeneration is remarkable in some species such as the fish, it is extremely limited and ineffective in mammals. Understanding the cellular events and molecular mechanisms underlying Müller cell activities in species endowed with regenerative capacities could provide knowledge to unlock the restricted potential of their mammalian counterparts. In this context, the present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field. Developmental Dynamics 245:727–738, 2016. © 2015 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. The present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Annaïg Hamon
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Xian-Jie Yang
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France.,Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
42
|
Reactive gliosis in the adult zebrafish retina. Exp Eye Res 2015; 143:98-109. [PMID: 26492821 DOI: 10.1016/j.exer.2015.09.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 09/02/2015] [Accepted: 09/28/2015] [Indexed: 01/10/2023]
Abstract
In contrast to mammals, zebrafish posses the remarkable ability to regenerate retinal neurons. Damage to the zebrafish retina induces Müller glia to act as stem cells, generating retinal progenitors for regeneration. In contrast, injury in the mammalian retina results in Müller glial reactive gliosis, a characteristic gliotic response that is normally detrimental to vision. Understanding the signaling pathways that determine how Müller glia respond to injury is a critical step toward promoting regeneration in the mammalian retina. Here we report that zebrafish Müller glia exhibit signs of reactive gliosis even under normal regenerative conditions and that cell cycle inhibition increases this response. Persistently reactive Müller glia increase their neuroprotective functions, temporarily saving photoreceptors from a cytotoxic light lesion. However, the absence of a sustained proliferation response results in a significant inhibition of retinal regeneration. Interestingly, when cell cycle inhibition is released, a partial recovery of regeneration is observed. Together, these data demonstrate that zebrafish Müller glia possess both gliotic and regenerative potential.
Collapse
|
43
|
Todd L, Fischer AJ. Hedgehog signaling stimulates the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development 2015; 142:2610-22. [PMID: 26116667 DOI: 10.1242/dev.121616] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/15/2015] [Indexed: 12/29/2022]
Abstract
Müller glia can be stimulated to de-differentiate and become proliferating progenitor cells that regenerate neurons in the retina. The signaling pathways that regulate the formation of proliferating Müller glia-derived progenitor cells (MGPCs) are beginning to be revealed. The purpose of this study was to investigate whether Hedgehog (Hh) signaling influences the formation of MGPCs in the chick retina. We find that Hh signaling is increased in damaged retinas where MGPCs are known to form. Sonic Hedgehog (Shh) is normally present in the axons of ganglion cells, but becomes associated with Müller glia and MGPCs following retinal damage. Activation of Hh signaling with recombinant human SHH (rhShh) or smoothened agonist (SAG) increased levels of Ptch1, Gli1, Gli2, Gli3, Hes1 and Hes5, and stimulated the formation of proliferating MGPCs in damaged retinas. In undamaged retinas, SAG or rhShh had no apparent effect upon the Müller glia. However, SAG combined with FGF2 potentiated the formation of MGPCs, whereas SAG combined with IGF1 stimulated the nuclear migration of Müller glia, but not the formation of MGPCs. Conversely, inhibition of Hh signaling with KAAD-cyclopamine, Gli antagonists or antibody to Shh reduced numbers of proliferating MGPCs in damaged and FGF2-treated retinas. Hh signaling potentiates Pax6, Klf4 and cFos expression in Müller glia during the formation of MGPCs. We find that FGF2/MAPK signaling recruits Hh signaling into the signaling network that drives the formation of proliferating MGPCs. Our findings implicate Hh signaling as a key component of the network of signaling pathways that promote the de-differentiation of Müller glia and proliferation of MGPCs.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|
44
|
Zhou PY, Peng GH, Xu H, Yin ZQ. c-Kit+ cells isolated from human fetal retinas represent a new population of retinal progenitor cells. J Cell Sci 2015; 128:2169-78. [PMID: 25918122 DOI: 10.1242/jcs.169086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/20/2015] [Indexed: 12/26/2022] Open
Abstract
ABSTRACT
Definitive surface markers for retinal progenitor cells (RPCs) are still lacking. Therefore, we sorted c-Kit+ and stage-specific embryonic antigen-4− (SSEA4−) retinal cells for further biological characterization. RPCs were isolated from human fetal retinas (gestational age of 12–14 weeks). c-Kit+/SSEA4− RPCs were sorted by fluorescence-activated cell sorting, and their proliferation and differentiation capabilities were evaluated by using immunocytochemistry and flow cytometry. The effectiveness and safety were assessed following injection of c-Kit+/SSEA4− cells into the subretina of Royal College of Surgeons (RCS) rats. c-Kit+ cells were found in the inner part of the fetal retina. Sorted c-Kit+/SSEA4− cells expressed retinal stem cell markers. Our results clearly demonstrate the proliferative potential of these cells. Moreover, c-Kit+/SSEA4− cells differentiated into retinal cells that expressed markers of photoreceptor cells, ganglion cells and glial cells. These cells survived for at least 3 months after transplantation into the host subretinal space. Teratomas were not observed in the c-Kit+/SSEA4−-cell group. Thus, c-Kit can be used as a surface marker for RPCs, and c-Kit+/SSEA4− RPCs exhibit the ability to self-renew and differentiate into retinal cells.
Collapse
Affiliation(s)
- Peng-Yi Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450003, China
| | - Guang-Hua Peng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450003, China
- Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
- Key Lab of Ophthalmology of Chinese People's Liberation Army, Chongqing 400038, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
- Key Lab of Ophthalmology of Chinese People's Liberation Army, Chongqing 400038, China
| |
Collapse
|
45
|
Löffler K, Schäfer P, Völkner M, Holdt T, Karl MO. Age-dependent Müller glia neurogenic competence in the mouse retina. Glia 2015; 63:1809-24. [PMID: 25943952 DOI: 10.1002/glia.22846] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/08/2015] [Indexed: 11/10/2022]
Abstract
The mechanisms limiting neuronal regeneration in mammals and their relationship with reactive gliosis are unknown. Müller glia (MG), common to all vertebrate retinas, readily regenerate neuron loss in some species, but normally not in mammals. However, experimental stimulation of limited mammalian retina regeneration has been reported. Here, we use a mouse retina organ culture approach to investigate the MG responses at different mouse ages. We found that MG undergo defined spatio-temporal changes upon stimulation. In EGF-stimulated juvenile postmitotic retinas, most MG upregulate cell-cycle regulators (Mcm6, Pcna, Ki67, Ccnd1) within 48 h ex vivo; some also express the neurogenic factors Ascl1, Pax6, and Vsx2; up to 60% re-enter the cell cycle, some of which delaminate to divide mostly apically; and the majority cease to proliferate after stimulation. A subpopulation of MG progeny starts to express transcription factors (Ptf1a, Nr4a2) and neuronal (Calb1, Calb2, Rbfox3), but not glial, markers, indicating neurogenesis. BrdU-tracking, genetic lineage-tracing, and transgenic-reporter experiments suggest that MG reprogram to a neurogenic stage and proliferate; and that some MG progeny differentiate into neuronal-like cells, most likely amacrines, no photoreceptors; most others remain in a de-differentiated state. The mouse MG regeneration potential becomes restricted, dependent on the age of the animal, as observed by limited activation of the cell cycle and neurogenic factors. The stage-dependent analysis of mouse MG revealed similarities and differences when compared with MG-derived regeneration in fish and chicks. Therefore, the mouse retina ex vivo approach is a potential assay for understanding and overcoming the limitations of mammalian MG-derived neuronal regeneration. Postmitotic MG in mouse retina ex vivo can be stimulated to proliferate, express neurogenic factors, and generate progeny expressing neuronal or glial markers. This potential regenerative competence becomes limited with increasing mouse age.
Collapse
Affiliation(s)
- Kati Löffler
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| | - Patrick Schäfer
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| | - Manuela Völkner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| | - Tina Holdt
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| | - Mike O Karl
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| |
Collapse
|
46
|
Ferraro S, Gomez-Montalvo AI, Olmos R, Ramirez M, Lamas M. Primary cilia in rat mature Müller glia: downregulation of IFT20 expression reduces sonic hedgehog-mediated proliferation and dedifferentiation potential of Müller glia primary cultures. Cell Mol Neurobiol 2015; 35:533-42. [PMID: 25504432 PMCID: PMC11486219 DOI: 10.1007/s10571-014-0149-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022]
Abstract
Primary cilia are specialized organelles that extend from the cell surface and concentrate signal transduction components. In the nervous system, primary cilia-associated signals, such as sonic hedgehog (Shh), regulate cell proliferation and neuronal fate. Primary cilia assembly and maintenance require a multi-subunit intraflagellar transport (IFT) protein complex. Defects in primary cilia and IFT proteins are associated to severe pathological phenotypes. In the retina, the study of primary cilia has been mainly restricted to the specialized photoreceptor outer segment. The presence and physiological role of primary cilia in other retinal cells have not been clearly elucidated. Müller cells are the main glia of the retina where they exert distinct functions to maintain homeostasis. In pathological conditions, Müller cells mount a unique regenerative response through the processes of dedifferentiation, proliferation, and differentiation into neuronal lineages. The involvement of IFT proteins or a primary cilium in these processes has not been explored. In this study, we used mature Müller glia primary cultures to reveal the presence of the primary cilia by immunoreactivity to acetylated α-tubulin and γ-tubulin, which localize to the axoneme and ciliar basal body, respectively. We demonstrate that si-RNA-mediated downregulation of IFT20 gene expression, a main component of the IFT machinery, blocks Shh-induced Müller cell proliferation. We present evidence that IFT20 ablation impairs the dedifferentiation capacity of Müller cells induced by Shh and by glutamate. Our demonstration that Müller glia expresses IFT20 and harbors primary cilia, and opens new venues of research on the role of primary cilia in the retina.
Collapse
Affiliation(s)
- Silene Ferraro
- Departamento de Farmacobiología, CINVESTAV Sede Sur, Calzada de los Tenorios 235, Mexico, DF Mexico
- Present Address: Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, C.P. 04510 Mexico, Mexico
| | - Ana I. Gomez-Montalvo
- Departamento de Farmacobiología, CINVESTAV Sede Sur, Calzada de los Tenorios 235, Mexico, DF Mexico
| | - Ruth Olmos
- Departamento de Farmacobiología, CINVESTAV Sede Sur, Calzada de los Tenorios 235, Mexico, DF Mexico
| | - Monica Ramirez
- Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero Mexico
| | - Monica Lamas
- Departamento de Farmacobiología, CINVESTAV Sede Sur, Calzada de los Tenorios 235, Mexico, DF Mexico
| |
Collapse
|
47
|
Acute retinal injury and the relationship between nerve growth factor, Notch1 transcription and short-lived dedifferentiation transient changes of mammalian Müller cells. Vision Res 2015; 110:107-17. [PMID: 25817714 DOI: 10.1016/j.visres.2015.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/10/2015] [Accepted: 01/23/2015] [Indexed: 11/22/2022]
Abstract
Our aim is to define related molecular events on how dormant Müller glia cells re-enter the cell cycle, proliferate and produce new retinal neurons from initial injury to glial scar formation. Sodium iodate (NaIO3) was used to induce acute retinal injury. Long-Evans rats were administered with NaIO3 or phosphate-buffered saline by intraperitoneal injection. The proliferation, dedifferentiation and neurogenesis of Müller cells were analyzed by double-labeled fluorescence immunohistochemistry with primary antibodies - against Müller cells and specific cell markers. Possible molecules that limit the regenerative potential of Müller cells were also determined by immunofluorescence staining, quantitative RT-PCR, protein array, ELISA and Western blot. In the first 3-7days after NaIO3 administration, Müller cells were activated and underwent a fate switch, including transient proliferation, dedifferentiation and neurogenesis. Nerve growth factor (NGF) signaling concomitantly increased with the downregulation of p27(Kip1) in Müller cells, which may promote Müller cells to re-enter the cell cycle. The transient increase of NGF signaling and the transient decrease of Notch signaling inhibited Hes1, which might enhance the neuronal differentiation of dedifferentiated Müller cells and suppress gliosis. Upregulated Notch and decreased NGF expressions limit dedifferentiation and neurogenesis, but induces retinal Müller cell gliosis at a later stage. We conclude that transient NGF upregulation and Notch1 downregulation may activate the transient proliferation, dedifferentiation and neurogenesis of Müller cells during NaIO3-induced acute retinal injury; which could be a therapeutic target for overcoming Müller cell gliosis. Such therapy could be potentially used for treating retinal-related diseases.
Collapse
|
48
|
|
49
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|
50
|
Osakada F, Takahashi M. Challenges in retinal circuit regeneration: linking neuronal connectivity to circuit function. Biol Pharm Bull 2015; 38:341-57. [PMID: 25757915 DOI: 10.1248/bpb.b14-00771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tremendous progress has been made in retinal regeneration, as exemplified by successful transplantation of retinal pigment epithelia and photoreceptor cells in the adult retina, as well as by generation of retinal tissue from embryonic stem cells and induced pluripotent cells. However, it remains unknown how new photoreceptors integrate within retinal circuits and contribute to vision restoration. There is a large gap in our understanding, at both the cellular and behavioral levels, of the functional roles of new neurons in the adult retina. This gap largely arises from the lack of appropriate methods for analyzing the organization and function of new neurons at the circuit level. To bridge this gap and understand the functional roles of new neurons in living animals, it will be necessary to identify newly formed connections, correlate them with function, manipulate their activity, and assess the behavioral outcome of these manipulations. Recombinant viral vectors are powerful tools not only for controlling gene expression and reprogramming cells, but also for tracing cell fates and neuronal connectivity, monitoring biological functions, and manipulating the physiological state of a specific cell population. These virus-based approaches, combined with electrophysiology and optical imaging, will provide circuit-level insight into neural regeneration and facilitate new strategies for achieving vision restoration in the adult retina. Herein, we discuss challenges and future directions in retinal regeneration research.
Collapse
Affiliation(s)
- Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University; Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, California 92037, USA; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| | | |
Collapse
|