1
|
Uematsu R, Sakamoto I, Manabe N, Yamaguchi Y. Complete assignment of 1H and 13C NMR signals of monoglucosylated high-mannose type glycan attached to asparagine. Carbohydr Res 2025; 552:109468. [PMID: 40168794 DOI: 10.1016/j.carres.2025.109468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Glc1Man9GlcNAc2 (G1M9) glycan and other high mannose-type glycans play key roles in the quality control mechanisms of glycoprotein synthesis. The lectin-like proteins calnexin (CNX) and calreticulin (CRT) specifically recognize G1M9 glycan and assist newly synthesized glycoproteins to achieving correct folding. Nuclear magnetic resonance (NMR) spectroscopy is a unique method for analyzing the conformation, dynamics and interactions of glycans like G1M9 glycan and CNX/CRT. Accurate assignment of 1H and 13C signals is a prerequisite for such analyses. Here, we present the complete assignment of 1H and 13C signals for the Asn-linked G1M9 glycan, modified at its N-terminus with a 9-fluorenylmethyloxycarbonyl (Fmoc) group (Fmoc-Asn-G1M9). Using conventional two-dimensional NMR techniques including 1H-1H COSY, 1H-1H NOESY, 1H-13C HSQC, 1H-13C HMBC and 1H-13C HSQC-TOCSY, we achieved a comprehensive spectral assignment. Our results are consistent with previously reported assignments of the partial pentasaccharide structure of G1M9 glycan. This complete assessment of G1M9 glycan signals provides a foundation for detailed studies of its interactions with CNX/CRT, which will advance our understanding of the molecular mechanisms underlying glycoprotein quality control.
Collapse
Affiliation(s)
- Ryohei Uematsu
- GlyTech, Inc., 134, Chudoji minamimachi, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Izumi Sakamoto
- GlyTech, Inc., 134, Chudoji minamimachi, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan.
| |
Collapse
|
2
|
Kurfiřt M, Dračínský M, Červenková Šťastná L, Cuřínová P, Hamala V, Hovorková M, Bojarová P, Karban J. Selectively Deoxyfluorinated N-Acetyllactosamine Analogues as 19 F NMR Probes to Study Carbohydrate-Galectin Interactions. Chemistry 2021; 27:13040-13051. [PMID: 34216419 DOI: 10.1002/chem.202101752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 01/12/2023]
Abstract
Galectins are widely expressed galactose-binding lectins implied, for example, in immune regulation, metastatic spreading, and pathogen recognition. N-Acetyllactosamine (Galβ1-4GlcNAc, LacNAc) and its oligomeric or glycosylated forms are natural ligands of galectins. To probe substrate specificity and binding mode of galectins, we synthesized a complete series of six mono-deoxyfluorinated analogues of LacNAc, in which each hydroxyl has been selectively replaced by fluorine while the anomeric position has been protected as methyl β-glycoside. Initial evaluation of their binding to human galectin-1 and -3 by ELISA and 19 F NMR T2 -filter revealed that deoxyfluorination at C3, C4' and C6' completely abolished binding to galectin-1 but very weak binding to galectin-3 was still detectable. Moreover, deoxyfluorination of C2' caused an approximately 8-fold increase in the binding affinity towards galectin-1, whereas binding to galectin-3 was essentially not affected. Lipophilicity measurement revealed that deoxyfluorination at the Gal moiety affects log P very differently compared to deoxyfluorination at the GlcNAc moiety.
Collapse
Affiliation(s)
- Martin Kurfiřt
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic.,University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Lucie Červenková Šťastná
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| | - Petra Cuřínová
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| | - Vojtěch Hamala
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic.,University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Michaela Hovorková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jindřich Karban
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| |
Collapse
|
3
|
Traverssi MG, Peñéñory AB, Varela O, Colomer JP. Photooxidation of thiosaccharides mediated by sensitizers in aerobic and environmentally friendly conditions. RSC Adv 2021; 11:9262-9273. [PMID: 35423421 PMCID: PMC8695230 DOI: 10.1039/d0ra09534f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
A series of β-d-glucopyranosyl derivates have been synthesized and evaluated in photooxidation reactions promoted by visible light and mediated by organic dyes under aerobic conditions. Among the different photocatalysts employed, tetra-O-acetyl riboflavin afforded chemoselectively the respective sulfoxides, without over-oxidation to sulfones, in good to excellent yields and short reaction times. This new methodology for the preparation of synthetically useful glycosyl sulfoxides constitutes a catalytic, efficient, economical, and environmentally friendly oxidation process not reported so far for carbohydrates.
Collapse
Affiliation(s)
- Miqueas G Traverssi
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina .,Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC Argentina
| | - Alicia B Peñéñory
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina .,Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC Argentina
| | - Oscar Varela
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Ciudad Universitaria Pab. 2, C1428EHA Buenos Aires Argentina.,Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UBA Argentina
| | - Juan P Colomer
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina .,Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC Argentina
| |
Collapse
|
4
|
Ito Y, Kajihara Y, Takeda Y. Chemical‐Synthesis‐Based Approach to Glycoprotein Functions in the Endoplasmic Reticulum. Chemistry 2020; 26:15461-15470. [DOI: 10.1002/chem.202004158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yukishige Ito
- Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
- RIKEN Cluster for Pioneering Research Wako Saitama 3510198 Japan
| | - Yasuhiro Kajihara
- Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
| | - Yoichi Takeda
- Department of Biotechnology Ritsumeikan University Kusatsu Shiga 5258577 Japan
| |
Collapse
|
5
|
Richards SJ, Keenan T, Vendeville JB, Wheatley DE, Chidwick H, Budhadev D, Council CE, Webster CS, Ledru H, Baker AN, Walker M, Galan MC, Linclau B, Fascione MA, Gibson MI. Introducing affinity and selectivity into galectin-targeting nanoparticles with fluorinated glycan ligands. Chem Sci 2020; 12:905-910. [PMID: 34163856 PMCID: PMC8179109 DOI: 10.1039/d0sc05360k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022] Open
Abstract
Galectins are potential biomarkers and therapeutic targets. However, galectins display broad affinity towards β-galactosides meaning glycan-based (nano)biosensors lack the required selectivity and affinity. Using a polymer-stabilized nanoparticle biosensing platform, we herein demonstrate that the specificity of immobilised lacto-N-biose towards galectins can be 'turned on/off' by using site-specific glycan fluorination and in some cases reversal of specificity can be achieved. The panel of fluoro-glycans were obtained by a chemoenzymatic approach, exploiting BiGalK and BiGalHexNAcP enzymes from Bifidobacterium infantis which are shown to tolerate fluorinated glycans, introducing structural diversity which would be very laborious by chemical methods alone. These results demonstrate that integrating non-natural, fluorinated glycans into nanomaterials can encode unprecedented selectivity with potential applications in biosensing.
Collapse
Affiliation(s)
| | - Tessa Keenan
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | | | - David E Wheatley
- School of Chemistry, University of Southampton Highfield Southampton SO171BJ UK
| | - Harriet Chidwick
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Darshita Budhadev
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Claire E Council
- School of Chemistry, University of Southampton Highfield Southampton SO171BJ UK
| | - Claire S Webster
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Helene Ledru
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Marc Walker
- Department of Physics, University of Warwick CV4 7AL UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Bruno Linclau
- School of Chemistry, University of Southampton Highfield Southampton SO171BJ UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick CV4 7AL UK
- Warwick Medical School, University of Warwick CV4 7AL UK
| |
Collapse
|
6
|
Chao Q, Ding Y, Chen ZH, Xiang MH, Wang N, Gao XD. Recent Progress in Chemo-Enzymatic Methods for the Synthesis of N-Glycans. Front Chem 2020; 8:513. [PMID: 32612979 PMCID: PMC7309569 DOI: 10.3389/fchem.2020.00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Asparagine (N)-linked glycosylation is one of the most common co- and post-translational modifications of both intra- and extracellularly distributing proteins, which directly affects their biological functions, such as protein folding, stability and intercellular traffic. Production of the structural well-defined homogeneous N-glycans contributes to comprehensive investigation of their biological roles and molecular basis. Among the various methods, chemo-enzymatic approach serves as an alternative to chemical synthesis, providing high stereoselectivity and economic efficiency. This review summarizes some recent advances in the chemo-enzymatic methods for the production of N-glycans, including the preparation of substrates and sugar donors, and the progress in the glycosyltransferases characterization which leads to the diversity of N-glycan synthesis. We discuss the bottle-neck and new opportunities in exploiting the chemo-enzymatic synthesis of N-glycans based on our research experiences. In addition, downstream applications of the constructed N-glycans, such as automation devices and homogeneous glycoproteins synthesis are also described.
Collapse
Affiliation(s)
| | | | | | | | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Massaeli H, Viswanathan D, Pillai DG, Mesaeli N. Endoplasmic reticulum stress enhances endocytosis in calreticulin deficient cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:727-736. [PMID: 30529231 DOI: 10.1016/j.bbamcr.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/18/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
Calreticulin an endoplasmic reticulum (ER) chaperone that is involved in the quality control process and plays an important role as a regulator of intracellular calcium homeostasis. Previously, we illustrated that loss of calreticulin (crt-/-) results in the activation of ubiquitin-proteasome pathway facilitating the increased resistance to apoptosis. Our preliminary data illustrated a significant increase in the endocytosis in the calreticulin knockout mouse embryonic fibroblast cells (crt-/-). Therefore, we hypothesized that the mechanism for this increased endocytosis in the crt-/- cells is due to onset of ER stress. To test this hypothesis, we measured endocytosis in the wild type (wt) and crt-/- cells using uptake of fluorescent dextran and showed a significant increase in the rate of its uptake in crt-/- cells as compared to wt cells. To determine the endocytic pathway involved we examined both clathrin and caveolin-1 dependent endocytosis. Our results illustrated no change in the expression of clathrin heavy chain while there was a significant increase in the expression of caveolin-1 in the crt-/- cells as compared to the wt cells. Furthermore, using shRNA we illustrated that knockdown of clathrin heavy chain had no effect on endocytosis in the crt-/- cells. While knock-down of caveolin-1 significantly reduced endocytosis in the crt-/- cells. Finally, we illustrated that a chemical chaperone, 4‑phenylbutyrate significantly reduced both the endoplasmic reticulum stress and endocytosis in the crt-/- cells. Our data shows for the first time, that ER stress led to enhanced caveolin-1 mediated endocytosis and reversal of ER stress reduces endocytosis.
Collapse
Affiliation(s)
- Hamid Massaeli
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Divya Viswanathan
- Department of Biochemistry, Weill Cornell Medicine in Qatar, Doha, Qatar
| | | | - Nasrin Mesaeli
- Department of Biochemistry, Weill Cornell Medicine in Qatar, Doha, Qatar.
| |
Collapse
|
8
|
Feng M, Marjon KD, Zhu F, Weissman-Tsukamoto R, Levett A, Sullivan K, Kao KS, Markovic M, Bump PA, Jackson HM, Choi TS, Chen J, Banuelos AM, Liu J, Gip P, Cheng L, Wang D, Weissman IL. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat Commun 2018; 9:3194. [PMID: 30097573 PMCID: PMC6086865 DOI: 10.1038/s41467-018-05211-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 06/19/2018] [Indexed: 02/05/2023] Open
Abstract
Macrophage-mediated programmed cell removal (PrCR) is a process essential for the clearance of unwanted (damaged, dysfunctional, aged, or harmful) cells. The detection and recognition of appropriate target cells by macrophages is a critical step for successful PrCR, but its molecular mechanisms have not been delineated. Here using the models of tissue turnover, cancer immunosurveillance, and hematopoietic stem cells, we show that unwanted cells such as aging neutrophils and living cancer cells are susceptible to "labeling" by secreted calreticulin (CRT) from macrophages, enabling their clearance through PrCR. Importantly, we identified asialoglycans on the target cells to which CRT binds to regulate PrCR, and the availability of such CRT-binding sites on cancer cells correlated with the prognosis of patients in various malignancies. Our study reveals a general mechanism of target cell recognition by macrophages, which is the key for the removal of unwanted cells by PrCR in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Mingye Feng
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| | - Kristopher D Marjon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Fangfang Zhu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Rachel Weissman-Tsukamoto
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Aaron Levett
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Katie Sullivan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Kevin S Kao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Maxim Markovic
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Paul A Bump
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Hannah M Jackson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Timothy S Choi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Allison M Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Jie Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Phung Gip
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Denong Wang
- SRI International, Menlo Park, CA, 94025, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, 94305, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Baumann A, Marchner S, Daum M, Hoffmann-Röder A. Synthesis of Fluorinated Leishmania
Cap Trisaccharides for Diagnostic Tool and Vaccine Development. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Andreas Baumann
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Stefan Marchner
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Markus Daum
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Anja Hoffmann-Röder
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
10
|
Daum M, Broszeit F, Hoffmann-Röder A. Synthesis of a Fluorinated Sialophorin Hexasaccharide-Threonine Conjugate for Fmoc Solid-Phase Glycopeptide Synthesis. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Markus Daum
- Center for Integrated Protein Science Munich (CIPS ) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Frederik Broszeit
- Center for Integrated Protein Science Munich (CIPS ) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Anja Hoffmann-Röder
- Center for Integrated Protein Science Munich (CIPS ) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
11
|
Beshr G, Sommer R, Hauck D, Siebert DCB, Hofmann A, Imberty A, Titz A. Development of a competitive binding assay for the Burkholderia cenocepacia lectin BC2L-A and structure activity relationship of natural and synthetic inhibitors. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00557d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Burkholderia cenocepacia is an opportunistic Gram-negative pathogen and especially hazardous for cystic fibrosis patients.
Collapse
Affiliation(s)
- Ghamdan Beshr
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- D-66123 Saarbrücken
- Germany
- Deutsches Zentrum für Infektionsforschung (DZIF)
| | - Roman Sommer
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- D-66123 Saarbrücken
- Germany
- Deutsches Zentrum für Infektionsforschung (DZIF)
| | - Dirk Hauck
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- D-66123 Saarbrücken
- Germany
- Deutsches Zentrum für Infektionsforschung (DZIF)
| | - David Chan Bodin Siebert
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- D-66123 Saarbrücken
- Germany
- Deutsches Zentrum für Infektionsforschung (DZIF)
| | - Anna Hofmann
- Department of Chemistry and Graduate School Chemical Biology
- University of Konstanz
- D-78457 Konstanz
- Germany
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS and Université Grenoble Alpes
- F-38041 Grenoble
- France
| | - Alexander Titz
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- D-66123 Saarbrücken
- Germany
- Deutsches Zentrum für Infektionsforschung (DZIF)
| |
Collapse
|
12
|
Fujikawa K, Seko A, Takeda Y, Ito Y. Approaches toward High-Mannose-Type Glycan Libraries. CHEM REC 2015; 16:35-46. [DOI: 10.1002/tcr.201500222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Kohki Fujikawa
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- SUNTORY Bioorganic Research Institute; 8-1-1 Seikadai Seika-cho Soraku-gun Kyoto 619-0284 Japan
| | - Akira Seko
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yoichi Takeda
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Biotechnology, College of Life Sciences; Ritsumeikan University; 1-1-1 Noji-higashi Kusatsu Shiga 525-8577 Japan
| | - Yukishige Ito
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Synthetic Cellular Chemistry Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
13
|
Fujikawa K, Koizumi A, Hachisu M, Seko A, Takeda Y, Ito Y. Construction of a High‐Mannose‐Type Glycan Library by a Renewed Top‐Down Chemo‐Enzymatic Approach. Chemistry 2015; 21:3224-33. [DOI: 10.1002/chem.201405781] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Kohki Fujikawa
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
| | - Akihiko Koizumi
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
| | - Masakazu Hachisu
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
| | - Akira Seko
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
| | - Yoichi Takeda
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
| | - Yukishige Ito
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| |
Collapse
|
14
|
Ueda K, Higashi K, Yamamoto K, Moribe K. Inhibitory effect of hydroxypropyl methylcellulose acetate succinate on drug recrystallization from a supersaturated solution assessed using nuclear magnetic resonance measurements. Mol Pharm 2013; 10:3801-11. [PMID: 24025080 DOI: 10.1021/mp400278j] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We examined the inhibitory effect of hydroxypropyl methylcellulose acetate succinate (HPMC-AS) on drug recrystallization from a supersaturated solution using carbamazepine (CBZ) and phenytoin (PHT) as model drugs. HPMC-AS HF grade (HF) inhibited the recrystallization of CBZ more strongly than that by HPMC-AS LF grade (LF). 1D-1H NMR measurements showed that the molecular mobility of CBZ was clearly suppressed in the HF solution compared to that in the LF solution. Interaction between CBZ and HF in a supersaturated solution was directly detected using nuclear Overhauser effect spectroscopy (NOESY). The cross-peak intensity obtained using NOESY of HF protons with CBZ aromatic protons was greater than that with the amide proton, which indicated that CBZ had hydrophobic interactions with HF in a supersaturated solution. In contrast, no interaction was observed between CBZ and LF in the LF solution. Saturation transfer difference NMR measurement was used to determine the interaction sites between CBZ and HF. Strong interaction with CBZ was observed with the acetyl substituent of HPMC-AS although the interaction with the succinoyl substituent was quite small. The acetyl groups played an important role in the hydrophobic interaction between HF and CBZ. In addition, HF appeared to be more hydrophobic than LF because of the smaller ratio of the succinoyl substituent. This might be responsible for the strong hydrophobic interaction between HF and CBZ. The intermolecular interactions between CBZ and HPMC-AS shown by using NMR spectroscopy clearly explained the strength of inhibition of HPMC-AS on drug recrystallization.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | |
Collapse
|
15
|
Koizumi A, Matsuo I, Takatani M, Seko A, Hachisu M, Takeda Y, Ito Y. Top-Down Chemoenzymatic Approach to a High-Mannose-Type Glycan Library: Synthesis of a Common Precursor and Its Enzymatic Trimming. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Koizumi A, Matsuo I, Takatani M, Seko A, Hachisu M, Takeda Y, Ito Y. Top-Down Chemoenzymatic Approach to a High-Mannose-Type Glycan Library: Synthesis of a Common Precursor and Its Enzymatic Trimming. Angew Chem Int Ed Engl 2013; 52:7426-31. [DOI: 10.1002/anie.201301613] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/01/2013] [Indexed: 01/20/2023]
|
17
|
Chemoenzymatic synthesis and lectin recognition of a selectively fluorinated glycoprotein. Bioorg Med Chem 2013; 21:4768-77. [PMID: 23566760 DOI: 10.1016/j.bmc.2013.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/25/2013] [Accepted: 03/06/2013] [Indexed: 11/22/2022]
Abstract
A chemoenzymatic glycosylation remodeling method for the synthesis of selectively fluorinated glycoproteins is described. The method consists of chemical synthesis of a fluoroglycan oxazoline and its use as donor substrate for endoglycosidase (ENGase)-catalyzed transglycosylation to a GlcNAc-protein to form a homogeneous fluoroglycoprotein. The approach was exemplified by the synthesis of fluorinated glycoforms of ribonuclease B (RNase B). An interesting finding was that fluorination at the C-6 of the 6-branched mannose moiety in the Man3GlcNAc core resulted in significantly enhanced reactivity of the substrate in enzymatic transglycosylation. A structural analysis suggests that the enhancement in reactivity may come from favorable hydrophobic interactions between the fluorine and a tyrosine residue in the catalytic site of the enzyme (Endo-A). SPR analysis of the binding of the fluorinated glycoproteins with lectin concanavalin A (con A) revealed the importance of the 6-hydroxyl group on the α-1,6-branched mannose moiety in con A recognition. The present study establishes a facile method for preparation of selectively fluorinated glycoproteins that can serve as valuable probes for elucidating specific carbohydrate-protein interactions.
Collapse
|
18
|
Amin MN, Huang W, Mizanur RM, Wang LX. Convergent synthesis of homogeneous Glc1Man9GlcNAc2-protein and derivatives as ligands of molecular chaperones in protein quality control. J Am Chem Soc 2011; 133:14404-17. [PMID: 21819116 DOI: 10.1021/ja204831z] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A detailed understanding of the molecular mechanism of chaperone-assisted protein quality control is often hampered by the lack of well-defined homogeneous glycoprotein probes. We describe here a highly convergent chemoenzymatic synthesis of the monoglucosylated glycoforms of bovine ribonuclease (RNase) as specific ligands of lectin-like chaperones calnexin (CNX) and calreticulin (CRT) that are known to recognize the monoglucosylated high-mannose oligosaccharide component of glycoproteins in protein folding. The synthesis of a selectively modified glycoform Gal(1)Glc(1)Man(9)GlcNAc(2)-RNase was accomplished by chemical synthesis of a large N-glycan oxazoline and its subsequent enzymatic ligation to GlcNAc-RNase under the catalysis of a glycosynthase. Selective removal of the terminal galactose by a β-galactosidase gave the Glc(1)Man(9)GlcNAc(2)-RNase glycoform in excellent yield. CD spectroscopic analysis and RNA-hydrolyzing assay indicated that the synthetic RNase glycoforms maintained essentially the same global conformations and were fully active as the natural bovine ribonuclease B. SPR binding studies revealed that the Glc(1)Man(9)GlcNAc(2)-RNase had high affinity to lectin CRT, while the synthetic Man(9)GlcNAc(2)-RNase glycoform and natural RNase B did not show CRT-binding activity. These results confirmed the essential role of the glucose moiety in the chaperone molecular recognition. Interestingly, the galactose-masked glycoform Gal(1)Glc(1)Man(9)GlcNAc(2)-RNase also showed significant affinity to lectin CRT, suggesting that a galactose β-1,4-linked to the key glucose moiety does not significantly block the lectin binding. These synthetic homogeneous glycoprotein probes should be valuable for a detailed mechanistic study on how molecular chaperones work in concert to distinguish between misfolded and folded glycoproteins in the protein quality control cycle.
Collapse
Affiliation(s)
- Mohammed N Amin
- Institute of Human Virology, Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
19
|
Boutureira O, Bernardes GJL, D'Hooge F, Davis BG. Direct radiolabelling of proteins at cysteine using [18F]-fluorosugars. Chem Commun (Camb) 2011; 47:10010-2. [PMID: 21833430 DOI: 10.1039/c1cc13524d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A strategy for the site-specific attachment of 2-deoxy-2-fluorosugars to cysteine and dehydroalanine tagged proteins is reported. When combined with thionation of fluorosugars, such as the widely available (18)F probe 2-deoxy-2-[(18)F]fluoroglucose ([(18)F]FDG), this methodology allows fast and direct access to site-specific [(18)F]FDG-labelled proteins.
Collapse
Affiliation(s)
- Omar Boutureira
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | |
Collapse
|
20
|
Becker B, Cooper MA. A survey of the 2006-2009 quartz crystal microbalance biosensor literature. J Mol Recognit 2011; 24:754-87. [DOI: 10.1002/jmr.1117] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Boutureira O, D'Hooge F, Fernández-González M, Bernardes GJL, Sánchez-Navarro M, Koeppe JR, Davis BG. Fluoroglycoproteins: ready chemical site-selective incorporation of fluorosugars into proteins. Chem Commun (Camb) 2010; 46:8142-4. [PMID: 20714547 DOI: 10.1039/c0cc01576h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tag-and-modify strategy allows the practical synthesis of homogenous fluorinated glyco-amino acids, peptides and proteins carrying a fluorine label in the sugar and allows access to first examples of directly radiolabelled ([(18)F]-glyco)proteins.
Collapse
Affiliation(s)
- Omar Boutureira
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Totani K, Ihara Y, Tsujimoto T, Matsuo I, Ito Y. The recognition motif of the glycoprotein-folding sensor enzyme UDP-Glc:glycoprotein glucosyltransferase. Biochemistry 2009; 48:2933-40. [PMID: 19222173 DOI: 10.1021/bi8020586] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The folding of glycoproteins is primarily mediated by a quality control system in the ER, in which UDP-Glc:glycoprotein glucosyltransferase (UGGT) serves as a "folding sensor". In this system, client glycoproteins are delivered to UGGT after the trimming of their innermost glucose residue by glucosidase II, which releases them from the lectin chaperones calnexin (CNX) and calreticulin (CRT). UGGT is inactive against folded proteins, allowing them to proceed to the Golgi apparatus for further processing to complex- or hybrid-type glycoforms. On the other hand, this enzyme efficiently glucosylates incompletely folded glycoproteins to monoglucosylated structures, providing them with an opportunity to interact with CNX/CRT. In order to clarify the mode of this enzyme's substrate recognition, we conducted a structure-activity relationship study using a series of synthetic probes. The inhibitory activities of various glycans suggest that UGGT has a strong affinity for the core pentasaccharide (Man3GlcNAc2) of high-mannose-type glycans. Our comparison of the reactivity of acceptors that have been modified by various aglycons supports the hypothesis that UGGT recognizes the hydrophobic region of client glycoproteins. Moreover, we discovered fluorescently labeled substrates that will be valuable for highly sensitive detection of UGGT activity.
Collapse
Affiliation(s)
- Kiichiro Totani
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
24
|
Allman SA, Jensen HH, Vijayakrishnan B, Garnett JA, Leon E, Liu Y, Anthony DC, Sibson NR, Feizi T, Matthews S, Davis BG. Potent Fluoro-oligosaccharide Probes of Adhesion inToxoplasmosis. Chembiochem 2009; 10:2522-9. [DOI: 10.1002/cbic.200900425] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Identification of trimannoside-recognizing peptide sequences from a T7 phage display screen using a QCM device. Bioorg Med Chem 2008; 17:195-202. [PMID: 19027303 DOI: 10.1016/j.bmc.2008.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 01/17/2023]
Abstract
Here, we report on the identification of trimannoside-recognizing peptide sequences from a T7 phage display screen using a quartz-crystal microbalance (QCM) device. A trimannoside derivative that can form a self-assembled monolayer (SAM) was synthesized and used for immobilization on the gold electrode surface of a QCM sensor chip. After six sets of one-cycle affinity selection, T7 phage particles displaying PSVGLFTH (8-mer) and SVGLGLGFSTVNCF (14-mer) were found to be enriched at a rate of 17/44, 9/44, respectively, suggesting that these peptides specifically recognize trimannoside. Binding checks using the respective single T7 phage and synthetic peptide also confirmed the specific binding of these sequences to the trimannoside-SAM. Subsequent analysis revealed that these sequences correspond to part of the primary amino acid sequence found in many mannose- or hexose-related proteins. Taken together, these results demonstrate the effectiveness of our T7 phage display environment for affinity selection of binding peptides. We anticipate this screening result will also be extremely useful in the development of inhibitors or drug delivery systems targeting polysaccharides as well as further investigations into the function of carbohydrates in vivo.
Collapse
|
26
|
Defining substrate interactions with calreticulin: an isothermal titration calorimetric study. Glycoconj J 2008; 25:797-802. [DOI: 10.1007/s10719-008-9151-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 11/26/2022]
|