1
|
Shen J, Jiang Y, Bu W, Yu M, Huang R, Tang C, Yang Z, Gao H, Su L, Cheng D, Zhao X. Protein Ubiquitination Modification in Pulmonary Fibrosis. Compr Physiol 2025; 15:e70013. [PMID: 40312137 DOI: 10.1002/cph4.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive fibrotic interstitial lung disease characterized by a high incidence and mortality rate, which encompasses features, such as diffuse alveolar inflammation, invasive fibroblast activation, and uncontrolled extracellular matrix (ECM) deposition. Beyond the local pathological processes, PF can be better understood in light of interorgan communication networks that are involved in its progression. Notably, pulmonary inflammation can affect cardiovascular, renal, hepatic, and neural functions, highlighting the importance of understanding these systemic interactions. Posttranslational modifications play a crucial role in regulating protein function, localization, stability, and activity. Specifically, protein ubiquitination modifications are involved in PF induced by various stimuli, involving a range of ubiquitin-modifying enzymes and substrates. In this review, we provide an overview of how E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) modulate PF through several signaling pathways, such as TGF-β, Wnt, metabolic activity, aging, ferroptosis, endoplasmic reticulum stress, and inflammatory responses. This perspective includes the role of ubiquitin-proteasome systems in interorgan communication, affecting the progression of PF and related systemic conditions. Additionally, we also summarize the currently available therapeutic compounds targeting protein ubiquitination-related enzymes or ubiquitination substrates for the treatment of PF. Understanding the interplay between ubiquitination and interorgan communication may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Jinping Shen
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Yuling Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Wenxia Bu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Mengjiao Yu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong, China
| | - Can Tang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Zeyun Yang
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Haiping Gao
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China
| | - Demin Cheng
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
2
|
Li L, Gao PP, Chen TT, Li N, Zhang HJ, Li MQ, Chen YN, Wei W, Wang H, Sun WY. SUMO: A new perspective to decipher fibrosis. Acta Physiol (Oxf) 2024; 240:e14240. [PMID: 39404508 DOI: 10.1111/apha.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 11/10/2024]
Abstract
Fibrosis is characterized by excessive extracellular matrix (ECM) deposition resulting from dysregulated wound healing and connective tissue repair mechanisms. Excessive accumulation of ECM leads to fibrous tissue formation, impairing organ function and driving the progression of various fibrotic diseases. Recently, the role of small ubiquitin-like modifiers (SUMO) in fibrotic diseases has attracted significant attention. SUMO-mediated SUMOylation, a highly conserved posttranslational modification, participates in a variety of biological processes, including nuclear-cytosolic transport, cell cycle progression, DNA damage repair, and cellular metabolism. Conversely, SUMO-specific proteases cleave the isopeptide bond of SUMO conjugates, thereby regulating the deSUMOylation process. Mounting evidence indicates that SUMOylation and deSUMOylation regulate the functions of several proteins, such as Smad3, NF-κB, and promyelocytic leukemia protein, which are implicated in fibrotic diseases like liver fibrosis, myocardial fibrosis, and pulmonary fibrosis. This review summarizes the role of SUMO in fibrosis-related pathways and explores its pathological relevance in various fibrotic diseases. All evidence suggest that the SUMO pathway is important targets for the development of treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hui-Juan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Meng-Qi Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ya-Ning Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hua Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| |
Collapse
|
3
|
Wang J, Zhang R, Wu C, Wang L, Liu P, Li P. Exploring potential targets for natural product therapy of DN: the role of SUMOylation. Front Pharmacol 2024; 15:1432724. [PMID: 39431155 PMCID: PMC11486755 DOI: 10.3389/fphar.2024.1432724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetic nephropathy (DN) is a common and serious micro-vascular complication of diabetes and a leading cause of end-stage renal disease globally. This disease primarily affects middle-aged and elderly individuals, especially those with a diabetes history of over 10 years and poor long-term blood glucose control. Small ubiquitin-related modifiers (SUMOs) are a group of reversible post-translational modifications of proteins that are widely expressed in eukaryotes. SUMO proteins intervene in the progression of DN by modulating various signaling cascades, such as Nrf2-mediated oxidative stress, NF-κB, TGF-β, and MAPK pathways. Recent advancements indicate that natural products regulating SUMOylation hold promise as targets for intervening in DN. In a previous article published in 2022, we reviewed the mechanisms by which SUMOylation intervenes in renal fibrosis and presented a summary of some natural products with therapeutic potential. Therefore, this paper will focus on DN. The aim of this review is to elucidate the mechanism of action of SUMOylation in DN and related natural products with therapeutic potential, thereby summarising the targets and candidate natural products for the treatment of DN through the modulation of SUMOylation, such as ginkgolic acid, ginkgolide B, resveratrol, astragaloside IV, etc., and highlighting that natural product-mediated modulation of SUMOylation is a potential therapeutic strategy for the treatment of DN as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jingjing Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
5
|
Su Q, Chen X, Ling X, Li D, Ren X, Zhao Y, Yang Y, Liu Y, He A, Zhu X, Yang X, Lu W, Wu H, Qi Y. SUMOylation of Smad2 mediates TGF-β-regulated endothelial-mesenchymal transition. J Biol Chem 2023; 299:105244. [PMID: 37690680 PMCID: PMC10570702 DOI: 10.1016/j.jbc.2023.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Endothelial-mesenchymal transition (EndoMT) is a complex biological process in which endothelial cells are transformed into mesenchymal cells, and dysregulated EndoMT causes a variety of pathological processes. Transforming growth factor beta (TGF-β) signaling effectively induces the EndoMT process in endothelial cells, and Smad2 is the critical protein of the TGF-β signaling pathway. However, whether small ubiquitin-like modifier modification (SUMOylation) is involved in EndoMT remains unclear. Here, we show that Smad2 is predominantly modified by SUMO1 at two major SUMOylation sites with PIAS2α as the primary E3 ligase, whereas SENP1 (sentrin/SUMO-specific protease 1) mediates the deSUMOylation of Smad2. In addition, we identified that SUMOylation significantly enhances the transcriptional activity and protein stability of Smad2, regulating the expression of downstream target genes. SUMOylation increases the phosphorylation of Smad2 and the formation of the Smad2-Smad4 complex, thus promoting the nuclear translocation of Smad2. Ultimately, the wildtype, but not SUMOylation site mutant Smad2 facilitated the EndoMT process. More importantly, TGF-β enhances the nuclear translocation of Smad2 by enhancing its SUMOylation and promoting the EndoMT process. These results demonstrate that SUMOylation of Smad2 plays a critical role in the TGF-β-mediated EndoMT process, providing a new theoretical basis for the treatment and potential drug targets of EndoMT-related clinical diseases.
Collapse
Affiliation(s)
- Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Ling
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Danqing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiang Ren
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yang Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhang Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Anqi He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinjie Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Zheng X, Wang L, Zhang Z, Tang H. The emerging roles of SUMOylation in pulmonary diseases. Mol Med 2023; 29:119. [PMID: 37670258 PMCID: PMC10478458 DOI: 10.1186/s10020-023-00719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Small ubiquitin-like modifier mediated modification (SUMOylation) is a critical post-translational modification that has a broad spectrum of biological functions, including genome replication and repair, transcriptional regulation, protein stability, and cell cycle progression. Perturbation or deregulation of a SUMOylation and deSUMOylation status has emerged as a new pathophysiological feature of lung diseases. In this review, we highlighted the link between SUMO pathway and lung diseases, especially the sumoylated substrate such as C/EBPα in bronchopulmonary dysplasia (BDP), PPARγ in pneumonia, TFII-I in asthma, HDAC2 in chronic obstructive pulmonary disease (COPD), KLF15 in hypoxic pulmonary hypertension (HPH), SMAD3 in idiopathic pulmonary fibrosis (IPF), and YTHDF2 in cancer. By exploring the impact of SUMOylation in pulmonary diseases, we intend to shed light on its potential to inspire the development of innovative diagnostic and therapeutic strategies, holding promise for improving patient outcomes and overall respiratory health.
Collapse
Affiliation(s)
- Xuyang Zheng
- Department of pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, P.R. China.
| | - Lingqiao Wang
- Department of pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, P.R. China
| | - Zhen Zhang
- Department of Orthopedics Surgery, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, P.R. China
| | - Huifang Tang
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medicial Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, P.R. China.
| |
Collapse
|
7
|
Cao Y, Huang C, Zhao X, Yu J. Regulation of SUMOylation on RNA metabolism in cancers. Front Mol Biosci 2023; 10:1137215. [PMID: 36911524 PMCID: PMC9998694 DOI: 10.3389/fmolb.2023.1137215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Post-translational modifications of proteins play very important roles in regulating RNA metabolism and affect many biological pathways. Here we mainly summarize the crucial functions of small ubiquitin-like modifier (SUMO) modification in RNA metabolism including transcription, splicing, tailing, stability and modification, as well as its impact on the biogenesis and function of microRNA (miRNA) in particular. This review also highlights the current knowledge about SUMOylation regulation in RNA metabolism involved in many cellular processes such as cell proliferation and apoptosis, which is closely related to tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Yingting Cao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Lv J, Xiao J, Jia Q, Meng X, Yang Z, Pu S, Li M, Yu T, Zhang Y, Wang H, Liu L, Li Z, Chen X, Yang H, Li Y, Qiao M, Duan A, Shao H, Li B. Identification of key pathways and genes in the progression of silicosis based on WGCNA. Inhal Toxicol 2022; 34:304-318. [PMID: 35913820 DOI: 10.1080/08958378.2022.2102700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Silicosis, induced by inhaling silica particles in workplaces, is one of the most common occupational diseases. The prognosis of silicosis and its consequent fibrosis is extremely poor due to limited treatment modalities and lack of understanding of the disease mechanisms. In this study, a Wistar rat model for silicosis fibrosis was established by intratracheal instillation of silica (0, 50, 100 and 200 mg/mL, 1 mL) with the evidence of Hematoxylin and Eosin (HE) and Masson staining and the expressions of inflammatory and fibrotic proteins of rats' lung tissues. RNA of lung tissues of rats exposed to 200 mg/mL silica particles and normal saline for 14 d and 28 d was extracted and sequenced to detect differentially expressed genes (DEGs) and to identify silicosis fibrosis-associated modules and hub genes by Weighted gene co-expression network analysis (WGCNA). Predictions of gene functions and signaling pathways were conducted using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In this study, it has been demonstrated the promising role of the Hippo signaling pathway in silicosis fibrosis, which will be conducive to elucidating the specific mechanism of pulmonary fibrosis induced by silica and to determining molecular initiating event (MIE) and adverse outcome pathway (AOP) of silicosis fibrosis.
Collapse
Affiliation(s)
- Jiaqi Lv
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingwei Xiao
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiang Jia
- Department of Toxicology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Xiangjing Meng
- Department of Toxicology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Zhifeng Yang
- Department of Toxicology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Shuangshuang Pu
- Department of Toxicology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Ming Li
- Department of Toxicology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Tao Yu
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zhang
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haihua Wang
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Liu
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhongsheng Li
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao Chen
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haitao Yang
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yulu Li
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengyun Qiao
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Airu Duan
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua Shao
- Department of Toxicology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Bin Li
- Department of Toxicology, Key Lab of Chemical Safety and health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Fan L, Yang X, Zheng M, Yang X, Ning Y, Gao M, Zhang S. Regulation of SUMOylation Targets Associated With Wnt/β-Catenin Pathway. Front Oncol 2022; 12:943683. [PMID: 35847921 PMCID: PMC9280480 DOI: 10.3389/fonc.2022.943683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Wnt/β-catenin signaling is a delicate and complex signal transduction pathway mediated by multiple signaling molecules, which plays a significant role in regulating human physiology and pathology. Abnormally activated Wnt/β-catenin signaling pathway plays a crucial role in promoting malignant tumor occurrence, development, recurrence, and metastasis, particularly in cancer stem cells. Studies have shown that the Wnt/β-catenin signaling pathway controls cell fate and function through the transcriptional and post-translational regulation of omics networks. Therefore, precise regulation of Wnt/β-catenin signaling as a cancer-targeting strategy may contribute to the treatment of some malignancies. SUMOylation is a post-translational modification of proteins that has been found to play a major role in the Wnt/β-catenin signaling pathway. Here, we review the complex regulation of Wnt/β-catenin signaling by SUMOylation and discuss the potential targets of SUMOylation therapy.
Collapse
Affiliation(s)
- Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Ming Gao
- Department of Thyroid Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
10
|
Liu P, Zhang J, Wang Y, Wang C, Qiu X, Chen DQ. Natural Products Against Renal Fibrosis via Modulation of SUMOylation. Front Pharmacol 2022; 13:800810. [PMID: 35308200 PMCID: PMC8931477 DOI: 10.3389/fphar.2022.800810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Renal fibrosis is the common and final pathological process of kidney diseases. As a dynamic and reversible post-translational modification, SUMOylation and deSUMOylation of transcriptional factors and key mediators significantly affect the development of renal fibrosis. Recent advances suggest that SUMOylation functions as the promising intervening target against renal fibrosis, and natural products prevent renal fibrosis via modulating SUMOylation. Here, we introduce the mechanism of SUMOylation in renal fibrosis and therapeutic effects of natural products. This process starts by summarizing the key mediators and enzymes during SUMOylation and deSUMOylation and its regulation role in transcriptional factors and key mediators in renal fibrosis, then linking the mechanism findings of SUMOylation and natural products to develop novel therapeutic candidates for treating renal fibrosis, and concludes by commenting on promising therapeutic targets and candidate natural products in renal fibrosis via modulating SUMOylation, which highlights modulating SUMOylation as a promising strategy for natural products against renal fibrosis.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jing Zhang
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Yun Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chen Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Xinping Qiu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dan-Qian Chen,
| |
Collapse
|
11
|
Wang X, Liu T, Huang Y, Dai Y, Lin H. Regulation of transforming growth factor-β signalling by SUMOylation and its role in fibrosis. Open Biol 2021; 11:210043. [PMID: 34753319 PMCID: PMC8580444 DOI: 10.1098/rsob.210043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is an abnormal healing process that only repairs the structure of an organ after injury and does not address damaged functions. The pathogenesis of fibrosis is multifactorial and highly complex; numerous signalling pathways are involved in this process, with the transforming growth factor-β (TGF-β) signalling pathway playing a central role. TGF-β regulates the generation of myofibroblasts and the epithelial-mesenchymal transition by regulating transcription and translation of downstream genes and precisely regulating fibrogenesis. The TGF-β signalling pathway can be modulated by various post-translational modifications, of which SUMOylation has been shown to play a key role. In this review, we focus on the function of SUMOylation in canonical and non-canonical TGF-β signalling and its role in fibrosis, providing promising therapeutic strategies for fibrosis.
Collapse
Affiliation(s)
- Xinyi Wang
- First Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Ting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yifeng Dai
- Second Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
12
|
Robinson NJ, Miyagi M, Scarborough JA, Scott JG, Taylor DJ, Schiemann WP. SLX4IP promotes RAP1 SUMOylation by PIAS1 to coordinate telomere maintenance through NF-κB and Notch signaling. Sci Signal 2021; 14:eabe9613. [PMID: 34187905 PMCID: PMC8353884 DOI: 10.1126/scisignal.abe9613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The maintenance of telomere length supports repetitive cell division and therefore plays a central role in cancer development and progression. Telomeres are extended by either the enzyme telomerase or the alternative lengthening of telomeres (ALT) pathway. Here, we found that the telomere-associated protein SLX4IP dictates telomere proteome composition by recruiting and activating the E3 SUMO ligase PIAS1 to the SLX4 complex. PIAS1 SUMOylated the telomere-binding protein RAP1, which disrupted its interaction with the telomere-binding protein TRF2 and facilitated its nucleocytoplasmic shuttling. In the cytosol, RAP1 bound to IκB kinase (IKK), resulting in activation of the transcription factor NF-κB and its induction of Jagged-1 expression, which promoted Notch signaling and the institution of ALT. This axis could be targeted therapeutically in ALT-driven cancers and in tumor cells that develop resistance to antitelomerase therapies. Our results illuminate the mechanisms underlying SLX4IP-dependent telomere plasticity and demonstrate the role of telomere proteins in directly coordinating intracellular signaling and telomere maintenance dynamics.
Collapse
Affiliation(s)
- Nathaniel J Robinson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jessica A Scarborough
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jacob G Scott
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Motejunas MW, Bonneval L, Carter C, Reed D, Ehrhardt K. Biologic Therapy in Chronic Pain Management: a Review of the Clinical Data and Future Investigations. Curr Pain Headache Rep 2021; 25:30. [PMID: 33761016 DOI: 10.1007/s11916-021-00947-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE With the aging population, it is clear that the demand for future chronic pain treatment modalities is at an all-time high. One of the newest treatment modalities that is gaining popularity with both practitioners and patients alike is that of regenerative medicine and the use of stem cells to treat chronic painful conditions. This article aims to distill the most recent, available data from both laboratory research and clinical trials to better illuminate the potentials for these therapies in the treatment of chronic pain. RECENT FINDINGS There are numerous investigations underway using mesenchymal stem cells (MSCs) to treat painful, largely degenerative conditions. A large majority of these investigations focus on osteoarthritis of the knee and have demonstrated significantly improved pain scores. Some of these investigations have demonstrated significantly increased articular cartilage and meniscus growth as well as improved function. These studies have been smaller (n, 18) and need to be corroborated on a macrolevel. Platelet-rich plasma (PRP)-based therapies have been most extensively studied in the treatment of knee osteoarthritis. Multiple prospective and randomized trials and meta-analyses have afforded level I evidence in support of PRP's safety and efficacy in chronic knee pain demonstrating both decreased pain (via VAS) and increased functional status (via WOMAC and IKDC). There have been randomized controlled trials examining PRP therapies in treatment degenerative disc disease (intradiscal treatment), facet arthropathy (intra-facet injections), and sacroiliitis (SIJ) which have all yielded similar positive results. Each RTC demonstrated decreased pain scores and increased function but lacks the scale to derive concrete guidelines. Newer investigations are underway examining modified PRP formulas with increased fibrin (PRF) or various growth factors (PRGF) and have shown positive outcomes with respect to osteoarthritic conditions in small trials. Animal trials are underway further investigating these therapies as well as specific gene modulation therapies. This review of the most recent investigations into the application and uses of biologic stem cell-derived treatments for chronic painful conditions should act to illustrate the growing, favorable data for these types of modalities both with respect to pain control and functional improvement.
Collapse
Affiliation(s)
| | | | | | | | - Ken Ehrhardt
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Yang N, Liu S, Qin T, Liu X, Watanabe N, Mayo KH, Li J, Li X. SUMO3 modification by PIAS1 modulates androgen receptor cellular distribution and stability. Cell Commun Signal 2019; 17:153. [PMID: 31752909 PMCID: PMC6868827 DOI: 10.1186/s12964-019-0457-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/10/2019] [Indexed: 01/14/2023] Open
Abstract
Background Abnormal reactivation of androgen receptor (AR) signaling in castration-resistant prostate cancer (CRPC) mainly results from overexpression and down-regulation of AR. Sumoylation of AR can influence its function. However, regulation of AR sumoylation by SUMO E3 ligases PIASs to modify AR distribution and stability are not well understood. Methods We assessed the potential effect of SUMO3 modification on AR intracellular localization by immunostaining in AR-negative prostate cancer DU145 cells, and detected the effect of PIAS1/SUMO3 overexpression on AR sumoylation related degradation. Then we characterized AR sumoylation sites involved modified by SUMO3, and the key residue of PIAS1 involved in itself sumoylation and further mediated AR sumoylation (sumo3-conjugated), translocation and degradation. Finally we detected the recognition of PIAS1 (sumoylation ligase) to MDM2, a ubiquin ligase mediated AR degradation. Results We demonstrate that SUMO E3 ligase PIAS1, along with SUMO3, mediates AR cytosolic translocation and subsequent degradation via a ubiquitin-proteasome pathway. Although AR sumoylation occurs prior to ubiquitination, the SUMO-acceptor lysine 386 on AR, together with ubiquitin-acceptor lysine 845, contribute to PIAS1/SUMO3-induced AR nuclear export, ubiquitination and subsequent degradation. Moreover, PIAS1 itself is modified by SUMO3 overexpression, and mutation of SUMO-acceptor lysine 117 on PIAS1 can impair AR cytoplasmic distribution, demonstrating the essential role of sumoylated PIAS1 in AR translocation. We further determine that sumoylated PIAS1 interacts with AR lysine 386 and 845 to form a binary complex. Consistent with the effect on AR distribution, SUMO3 modification of PIAS1 is also required for AR ubiquitination and degradation by recruiting ubiquitin E3 ligase MDM2. Conclusion Taken together, SUMO3 modification of PIAS1 modulates AR cellular distribution and stability. Our study provided the evidence the crosstalk between AR sumoylation and ubquitination mediated by PIAS1 and SUMO3.
Collapse
Affiliation(s)
- Nanyang Yang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, 5268 People's Street, Changchun, Jilin, 130024, People's Republic of China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cytology and Genetics, Hengyang School of Medicine, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Sitong Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, 5268 People's Street, Changchun, Jilin, 130024, People's Republic of China.,College of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Tian Qin
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, 5268 People's Street, Changchun, Jilin, 130024, People's Republic of China
| | - Xintong Liu
- Dental Hospital, Jilin University, Changchun, 130021, China.,Bioprobe Application Research Unit, RIKEN-Max Planck Joint Research Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.,Graduate School of Medical & Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobumoto Watanabe
- Bioprobe Application Research Unit, RIKEN-Max Planck Joint Research Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.,Graduate School of Medical & Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kevin H Mayo
- Biochemistry, Molecular Biology, and Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun, 130021, China.
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, 5268 People's Street, Changchun, Jilin, 130024, People's Republic of China.
| |
Collapse
|
15
|
Sha Z, Blyszcz T, González-Prieto R, Vertegaal ACO, Goldberg AL. Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem 2019; 294:15218-15234. [PMID: 31285264 PMCID: PMC6802522 DOI: 10.1074/jbc.ra119.009147] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Protein ubiquitination and SUMOylation are required for the maintenance of cellular protein homeostasis, and both increase in proteotoxic conditions (e.g. heat shock or proteasome inhibition). However, we found that when ubiquitination was blocked in several human cell lines by inhibiting the ubiquitin-activating enzyme with TAK243, there was an unexpected, large accumulation of proteins modified by SUMO2/3 chains or SUMO1, but not by several other ubiquitin-like proteins. This buildup of SUMOylated proteins was evident within 3–4 h. It required the small ubiquitin-like modifier (SUMO)-conjugating enzyme, UBC9, and the promyelocytic leukemia protein (PML) and thus was not due to nonspecific SUMO conjugation by ubiquitination enzymes. The SUMOylated proteins accumulated predominantly bound to chromatin and were localized to PML nuclear bodies. Because blocking protein synthesis with cycloheximide prevented the buildup of SUMOylated proteins, they appeared to be newly-synthesized proteins. The proteins SUMOylated after inhibition of ubiquitination were purified and analyzed by MS. In HeLa and U2OS cells, there was a cycloheximide-sensitive increase in a similar set of SUMOylated proteins (including transcription factors and proteins involved in DNA damage repair). Surprisingly, the inhibition of ubiquitination also caused a cycloheximide-sensitive decrease in a distinct set of SUMOylated proteins (including proteins for chromosome modification and mRNA splicing). More than 80% of the SUMOylated proteins whose levels rose or fell upon inhibiting ubiquitination inhibition underwent similar cycloheximide-sensitive increases or decreases upon proteasome inhibition. Thus, when nuclear substrates of the ubiquitin–proteasome pathway are not efficiently degraded, many become SUMO-modified and accumulate in PML bodies.
Collapse
Affiliation(s)
- Zhe Sha
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tamara Blyszcz
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
16
|
Yang Z, Zhang Y, Sun S. Deciphering the SUMO code in the kidney. J Cell Mol Med 2018; 23:711-719. [PMID: 30506859 PMCID: PMC6349152 DOI: 10.1111/jcmm.14021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/08/2018] [Accepted: 10/20/2018] [Indexed: 01/18/2023] Open
Abstract
SUMOylation of proteins is an important regulatory element in modulating protein function and has been implicated in the pathogenesis of numerous human diseases such as cancers, neurodegenerative diseases, brain injuries, diabetes, and familial dilated cardiomyopathy. Growing evidence has pointed to a significant role of SUMO in kidney diseases such as DN, RCC, nephritis, AKI, hypertonic stress and nephrolithiasis. Recently, emerging studies in podocytes demonstrated that SUMO might have a protective role against podocyte apoptosis. However, the SUMO code responsible for beneficial outcome in the kidney remains to be decrypted. Our recent experiments have revealed that the expression of both SUMO and SUMOylated proteins is appreciably elevated in hypoxia‐induced tubular epithelial cells (TECs) as well as in the unilateral ureteric obstruction (UUO) mouse model, suggesting a role of SUMO in TECs injury and renal fibrosis. In this review, we attempt to decipher the SUMO code in the development of kidney diseases by summarizing the defined function of SUMO and looking forward to the potential role of SUMO in kidney diseases, especially in the pathology of renal fibrosis and CKD, with the goal of developing strategies that maximize correct interpretation in clinical therapy and prognosis.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Yuming Zhang
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Shiren Sun
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Zhao C, Shen Q. Overexpression of small ubiquitin‑like modifier 2 ameliorates high glucose‑induced reductions in cardiomyocyte proliferation via the transforming growth factor‑β/Smad pathway. Mol Med Rep 2018; 18:4877-4885. [PMID: 30280191 PMCID: PMC6236294 DOI: 10.3892/mmr.2018.9522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Hyperglycemia may induce diabetic cardiomyopathy (DC). In the current study, the mechanism underlying the alleviation of high glucose (HG)-induced impairments in the proliferation of H9c2 embryo cardiomyocyte proliferation by small ubiquitin-like modifier 2 (SUMO2) overexpression was investigated. H9c2 cell morphology was identified as classical long shuttle type by optical microscopy. The viability of HG-injured H9c2 cells was evaluated by a Cell Counting Kit-8 assay and the results indicated that viability was inhibited in a dose-dependent (5.6, 10, 20 and 30 mmol/l) and time-dependent (6, 12 and 24 h) manner. H9c2 cells treated with 20 mmol/l HG for 24 h were selected for subsequent experiments due to the extent of injury caused at a low density. Flow cytometry was conducted to confirm cell cycle arrest between G1/S phases and apoptosis promotion in HG-injured H9c2 cells, and the subsequent alleviating effect of SUMO2 overexpression on these HG-induced effects. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were performed to detect mRNA and protein expression levels of cell cycle-and apoptosis-associated factors. The results indicated that the expression ofthe cell cycle-associated factors CyclinA2 and C-Myc was upregulated, and cyclin-dependent kinase inhibitor 1a was downregulated. The expression of the apoptosis-associated factor Bcl-2 was upregulated, while Bcl-2-associated X and caspase-3 expression was downregulated, by SUMO2 overexpression. Furthermore, the effect of SUMO2 overexpression on the transforming growth factor (TGF)-β/Smad pathway was also determined using RT-qPCR and western blot analysis. The results indicated the mRNA and protein levels of TGF-β1 and Smad3 in HG-injured H9c2 cells were significantly decreased following SUMO2 overexpression. Thus, the results demonstrated that overexpression of SUMO2 may alleviate H9c2 cardiomyocyte cell cycle arrest and apoptosis promotion induced by HG via regulation of cell cycle- and apoptosis-associated factors, as well as inhibition of the TGF-β/Smad pathway. These results may therefore provide a novel strategy for the protection of cardiomyocytes and may aid the diagnosis and prognosis of patients with DC.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Geriatric, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| | - Qile Shen
- Department of Geriatric, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
18
|
Ran M, Huang J, Liang H, Jiang J, Liang B, Ning C, Zang N, Liao W, Liu H, Qin F, Yang Q, Ho W, Ye L, Chen H. Alcohol attenuates anti-HCV function of IFN-λ1 through up-regulation of PLASy expression in human hepatic cells. J Med Virol 2018; 90:1112-1120. [PMID: 29446489 DOI: 10.1002/jmv.25053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/12/2018] [Indexed: 12/23/2022]
Abstract
Alcohol could compromise the anti-hepatitis C virus (HCV) function of interferon-alpha (IFN-α). However, little information is available about the effect of alcohol on interferon-lambda (IFN-λ, type III IFN), a novel candidate for development of therapy for HCV infection. Huh7 cells were infected with HCV JFH-1 virus, then treated with alcohol, and/or IFN-λ1. RT-PCR and Western blot were used to detect the levels of HCV and key cellular factors. Overexpression or silencing expression was performed to verify the role of key factors in alcohol-attenuated anti-HCV function of IFN-λ1. Alcohol treatment compromised anti-HCV effect of IFN-λ1 in HCV JFH-1-infected Huh7 cells, evidenced by the significantly increased levels of HCV RNA, and HCV core protein in alcohol-/IFN-λ1-treated cells compared to cells with IFN-λ1 treatment alone. Investigation of the mechanisms responsible for the alcohol action revealed that alcohol enhanced the expression of protein inhibitor of activated STAT (PIASy). Overexpression of PIASy compromised anti-HCV ability of IFN-λ1, whereas silencing expression of PIASy partly restored the alcohol-attenuated anti-HCV effect of IFN-λ1. More importantly, overexpression of PIASy significantly down-regulated the level of IFN-λ1-indcued phosphorylation of STAT1 (p-STAT1), an important adaptor in IFN-λ pathway, as well as reduced the expression of IFN-λ1-induced IFN-stimulated genes 56 (ISG56), and myxovirus resistance 1 (Mx1), two antiviral effectors in in IFN-λ pathway. These findings indicate that alcohol, through inducing the expression of negative regulator in IFN-λ pathway, inhibits IFN-λ-mediated anti-HCV action in human hepatic cells, which may lead to the poor efficacy of IFN-λ-based therapy against HCV infection.
Collapse
Affiliation(s)
- Meihua Ran
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Ning Zang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Weibo Liao
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Huifang Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Fengxiang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Quanlue Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenzhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Chen
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
19
|
Li S, Zhao J, Shang D, Kass DJ, Zhao Y. Ubiquitination and deubiquitination emerge as players in idiopathic pulmonary fibrosis pathogenesis and treatment. JCI Insight 2018; 3:120362. [PMID: 29769446 DOI: 10.1172/jci.insight.120362] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease that is associated with aberrant activation of TGF-β, myofibroblast differentiation, and abnormal extracellular matrix (ECM) production. Proper regulation of protein stability is important for maintenance of intracellular protein homeostasis and signaling. Ubiquitin E3 ligases mediate protein ubiquitination, and deubiquitinating enzymes (DUBs) reverse the process. The role of ubiquitin E3 ligases and DUBs in the pathogenesis of IPF is relatively unexplored. In this review, we provide an overview of how ubiquitin E3 ligases and DUBs modulate pulmonary fibrosis through regulation of both TGF-β-dependent and -independent pathways. We also summarize currently available small-molecule inhibitors of ubiquitin E3 ligases and DUBs as potential therapeutic strategies for the treatment of IPF.
Collapse
Affiliation(s)
- Shuang Li
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jing Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Acute Lung Injury Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Shang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Daniel J Kass
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Acute Lung Injury Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Liu J, Tao X, Zhang J, Wang P, Sha M, Ma Y, Geng X, Feng L, Shen Y, Yu Y, Wang S, Fang S, Shen Y. Small ubiquitin-related modifier 1 is involved in hepatocellular carcinoma progression via mediating p65 nuclear translocation. Oncotarget 2017; 7:22206-18. [PMID: 26993772 PMCID: PMC5008356 DOI: 10.18632/oncotarget.8066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/23/2016] [Indexed: 12/23/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) proteins participate in a post-translational modification called SUMOylation and regulate a variety of intracellular processes, such as targeting proteins for nuclear import. The nuclear transport of p65 results in the activation of NF-κB, and p65 contains several SUMO interacting motifs (SIMs). However, the relationship between p65 and SUMO1 in hepatocellular carcinoma (HCC) remains unclear. In this study, we demonstrated the potential roles of SUMO1 in HCC via the regulation of p65 subcellular localization. We found that either SUMO1- or p65-positive immunoreactivity was remarkably increased in the nuclei of tumor tissues in HCC patients compared with non-tumor tissues, and further analysis suggested a correlation between SUMO1- and nuclear p65-positive immunoreactivities (R = 0.851, P = 0.002). We also verified the interaction between p65 and SUMO1 in HCC by co-immunoprecipitation. TNF-α and hypoxia increased SUMO1 protein levels and enhanced SUMO1-modified p65 SUMOylation. Moreover, the knockdown of SUMO1 decreased p65 nuclear translocation and inhibited NF-κB transcriptional activity. Further the results of this study revealed that the knockdown of SUMO1 suppressed the proliferation and migration of hepatoma cells. These results suggest that SUMO1 contributes to HCC progression by promoting p65 nuclear translocation and regulating NF-κB activity.
Collapse
Affiliation(s)
- Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Xiaofang Tao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Jin Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Peng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Manqi Sha
- School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yong Ma
- Chinese People's Liberation Army 123 Hospital, Bengbu, China
| | - Xiaoping Geng
- The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yifan Yu
- Actuarial Science, School of Continuing Education, Columbia University, New York, NY, USA
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shengyun Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China.,Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
SUMO and Nucleocytoplasmic Transport. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:111-126. [DOI: 10.1007/978-3-319-50044-7_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Abstract
The pathogenetic heterogeneity of pulmonary fibrosis yields both challenges and opportunities for therapy. Its complexity implicates a variety of cellular processes, signaling pathways, and genetics as drivers of disease. TGF-β stimulation is one avenue, and is central to pro-fibrotic protein expression, leading to decreased pulmonary function. Here we report our recent findings, introducing the E3 ligase Fibrosis Inducing E3 Ligase 1 (FIEL1) as an important regulator of TGF-β signaling through the selective degradation of PIAS4. FIEL1 exacerbates bleomycin-induced murine pulmonary fibrosis, while its silencing attenuates the fibrotic phenotype. Further, we developed a small molecule inhibitor of FIEL1 (BC-1485) that inhibits the degradation of PIAS4, and ameliorates fibrosis in murine models. New understanding of this pathway illustrates the many targeting opportunities among the complexity of pulmonary fibrosis in the continuing search for therapy.
Collapse
|
23
|
Liebelt F, Vertegaal ACO. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 2016; 311:C284-96. [PMID: 27335169 PMCID: PMC5129774 DOI: 10.1152/ajpcell.00091.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
Abstract
Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
24
|
Wang F, Cai F, Shi R, Wei JN, Wu XT. Hypoxia regulates sumoylation pathways in intervertebral disc cells: implications for hypoxic adaptations. Osteoarthritis Cartilage 2016; 24:1113-24. [PMID: 26826302 DOI: 10.1016/j.joca.2016.01.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore the hypoxic regulation of sumoylation pathways and cell viability in nucleus pulposus (NP) and annulus fibrosus (AF) cells. DESIGN Expression of small ubiquitin-like modifier (SUMO) molecules, SUMO E1 activating enzymes SAE1 and SAE2, SUMO E2 conjugating enzyme UBC9, and de-sumoylation enzyme sentrin/SUMO-specific proteases (SENP)1 was immunolocalized in rat intervertebral disc (IVD) cells. NP and AF cells were cultured in hypoxia and cell viability was evaluated by quantifying cell proliferation, cellular senescence, apoptosis, and cell cycle distribution. Hypoxic regulation of sumoylation pathways was studied by analyzing the transcription and expression of SUMO molecules and sumoylation enzymes. Loss of function study using SENP1 siRNA was performed to investigate the regulatory role of sumoylation on the function of hypoxia inducible factor 1α (HIF-1α) and the hypoxic tolerance of IVD cells. RESULTS Sumoylation pathways were expressed in IVD cells and localized predominantly in nuclei. Both NP and AF cells maintained viability under hypoxia and upregulated the expression of SENP1. In NP cells hypoxia transiently increased the expression of SUMO-1, SUMO-2/3, SAE2, and UBC9, whereas SUMO-1 was elevated while SUMO-2/3, SAE1, SAE2, and UBC9 were reduced by low oxygen tensions in AF cells. Although downregulation of SENP1 decreased the transcriptional activity of HIF-1α, the viability of disc cells showed no significant loss under hypoxia. CONCLUSIONS NP and AF cells equally tolerate oxygen deficiency, but differently regulate the sumoylation pathways under hypoxia. The distinct sumoylation dynamics may help extend our understanding of the cell-specific regulation of the molecular basis that promotes cell survival in the hypoxic IVD.
Collapse
Affiliation(s)
- F Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - F Cai
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - R Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - J-N Wei
- Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - X-T Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| |
Collapse
|
25
|
Lear T, McKelvey AC, Rajbhandari S, Dunn SR, Coon TA, Connelly W, Zhao JY, Kass DJ, Zhang Y, Liu Y, Chen BB. Ubiquitin E3 ligase FIEL1 regulates fibrotic lung injury through SUMO-E3 ligase PIAS4. J Exp Med 2016; 213:1029-46. [PMID: 27162139 PMCID: PMC4886359 DOI: 10.1084/jem.20151229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/31/2016] [Indexed: 01/19/2023] Open
Abstract
Lear et al. report a novel molecular pathway in which Fibrosis Inducing E3 Ligase 1 (FIEL1) regulates TGFβ and fibrosis pathway through SUMO-E3 ligase PIAS4. They also develop a small molecule inhibitor toward FIEL1 that is highly effective in ameliorating fibrosis in mice. The E3 small ubiquitin-like modifier (SUMO) protein ligase protein inhibitor of activated STAT 4 (PIAS4) is a pivotal protein in regulating the TGFβ pathway. In this study, we discovered a new protein isoform encoded by KIAA0317, termed fibrosis-inducing E3 ligase 1 (FIEL1), which potently stimulates the TGFβ signaling pathway through the site-specific ubiquitination of PIAS4. FIEL1 targets PIAS4 using a double locking mechanism that is facilitated by the kinases PKCζ and GSK3β. Specifically, PKCζ phosphorylation of PIAS4 and GSK3β phosphorylation of FIEL1 are both essential for the degradation of PIAS4. FIEL1 protein is highly expressed in lung tissues from patients with idiopathic pulmonary fibrosis (IPF), whereas PIAS4 protein levels are significantly reduced. FIEL1 overexpression significantly increases fibrosis in a bleomycin murine model, whereas FIEL1 knockdown attenuates fibrotic conditions. Further, we developed a first-in-class small molecule inhibitor toward FIEL1 that is highly effective in ameliorating fibrosis in mice. This study provides a basis for IPF therapeutic intervention by modulating PIAS4 protein abundance.
Collapse
Affiliation(s)
- Travis Lear
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261 Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213
| | - Alison C McKelvey
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213
| | - Shristi Rajbhandari
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213
| | - Sarah R Dunn
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213
| | - Tiffany A Coon
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213
| | - William Connelly
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213
| | - Joe Y Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniel J Kass
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213 Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yingze Zhang
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213 Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yuan Liu
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213
| | - Bill B Chen
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261 Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213 Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
26
|
Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response. J Virol 2016; 90:4807-4826. [PMID: 26937035 PMCID: PMC4836348 DOI: 10.1128/jvi.03055-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of innate immune signaling. We now identify a unique and contrasting role for PIAS proteins as positive regulators of the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1) infection. We show that PIAS4 relocalizes to nuclear domains that contain viral DNA throughout infection. Depletion of PIAS4, either alone or in combination with the intrinsic antiviral factor promyelocytic leukemia protein, significantly impairs the intrinsic antiviral immune response to HSV-1 infection. Our data reveal a novel and dynamic role for PIAS4 in the cellular-mediated restriction of herpesviruses and establish a new functional role for the PIAS family of SUMO ligases in the intrinsic antiviral immune response to DNA virus infection.
Collapse
|
27
|
Liu X, Chen Z, Ouyang G, Song T, Liang H, Liu W, Xiao W. ELL Protein-associated Factor 2 (EAF2) Inhibits Transforming Growth Factor β Signaling through a Direct Interaction with Smad3. J Biol Chem 2015; 290:25933-45. [PMID: 26370086 DOI: 10.1074/jbc.m115.663542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 12/29/2022] Open
Abstract
A series of in vitro and in vivo studies has shown that EAF2 can affect multiple signaling pathways involved in cellular processes. However, the molecular mechanisms underlying its effects have remained elusive. Here we report the discovery of a new functional link between EAF2 and TGF-β signaling. Promoter reporter assays indicated that EAF2 suppresses Smad3 transcriptional activity, resulting in inhibition of TGF-β signaling. Coimmunoprecipitation assays showed that EAF2 specifically interacts with Smad3 in vitro and in vivo but not with other Smad proteins. In addition, we observed that EAF2 binding does not alter Smad3 phosphorylation but causes Smad3 cytoplasmic retention, competes with Smad4 for binding to Smad3, and prevents p300-Smad3 complex formation. Furthermore, we demonstrated that EAF2 suppresses both TGF-β-induced G1 cell cycle arrest and TGF-β-induced cell migration. This study identifies and characterizes a novel repressor of TGF-β signaling.
Collapse
Affiliation(s)
- Xing Liu
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhu Chen
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China
| | - Gang Ouyang
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tieshan Song
- Hubei University of Science and Technology, Xianning 437100, China, and
| | - Huageng Liang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Liu
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wuhan Xiao
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,
| |
Collapse
|
28
|
Cabasso O, Pekar O, Horowitz M. SUMOylation of EHD3 Modulates Tubulation of the Endocytic Recycling Compartment. PLoS One 2015; 10:e0134053. [PMID: 26226295 PMCID: PMC4520680 DOI: 10.1371/journal.pone.0134053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/03/2015] [Indexed: 11/18/2022] Open
Abstract
Endocytosis defines the entry of molecules or macromolecules through the plasma membrane as well as membrane trafficking in the cell. It depends on a large number of proteins that undergo protein-protein and protein-phospholipid interactions. EH Domain containing (EHDs) proteins formulate a family, whose members participate in different stages of endocytosis. Of the four mammalian EHDs (EHD1-EHD4) EHD1 and EHD3 control traffic to the endocytic recycling compartment (ERC) and from the ERC to the plasma membrane, while EHD2 modulates internalization. Recently, we have shown that EHD2 undergoes SUMOylation, which facilitates its exit from the nucleus, where it serves as a co-repressor. In the present study, we tested whether EHD3 undergoes SUMOylation and what is its role in endocytic recycling. We show, both in-vitro and in cell culture, that EHD3 undergoes SUMOylation. Localization of EHD3 to the tubular structures of the ERC depends on its SUMOylation on lysines 315 and 511. Absence of SUMOylation of EHD3 has no effect on its dimerization, an important factor in membrane localization of EHD3, but has a dominant negative effect on its appearance in tubular ERC structures. Non-SUMOylated EHD3 delays transferrin recycling from the ERC to the cell surface. Our findings indicate that SUMOylation of EHD3 is involved in tubulation of the ERC membranes, which is important for efficient recycling.
Collapse
Affiliation(s)
- Or Cabasso
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | - Olga Pekar
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | - Mia Horowitz
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
- * E-mail:
| |
Collapse
|
29
|
Lee SH, Kim PH, Oh SM, Park JH, Yoo YC, Lee J, Park SR. SUMO Proteins are not Involved in TGF-β1-induced, Smad3/4-mediated Germline α Transcription, but PIASy Suppresses it in CH12F3-2A B Cells. Immune Netw 2014; 14:321-7. [PMID: 25550698 PMCID: PMC4275389 DOI: 10.4110/in.2014.14.6.321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022] Open
Abstract
TGF-β induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-β signal-transducing transcription factors, mediate germline (GL) α transcription induced by TGF-β1, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-β-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-β1-induced, Smad3/4-mediated GLα transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-β1-induced, Smad3/4-mediated GLα promoter activity, expression of endogenous GLα transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-β1-induced, Smad3/4-mediated GLα promoter activity. We found that PIASy overexpression suppresses the GLα promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of GLα transcription and IgA switching induced by TGF-β1/Smad3/4, while PIASy acts as a repressor.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Jung-Hwan Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Junglim Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| |
Collapse
|
30
|
Wasik U, Filipek A. Non-nuclear function of sumoylated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2878-2885. [PMID: 25110347 DOI: 10.1016/j.bbamcr.2014.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/11/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022]
Abstract
Post-translational modification by the SUMO moiety is now regarded as one of the key regulatory modifications in eukaryotic cells. Up to now, plenty of sumoylated proteins have been found to be involved in nuclear processes such as chromatin organization, transcription and DNA repair as well as in other cellular functions. Since the number of data concerning sumoylated proteins and their function outside the nucleus has grown rapidly, in this review we summarized the results describing the non-nuclear role of SUMO substrates. In particular, we focused on the role of sumoylation in the regulation of channel activity, receptor function, G-protein signaling, activity of enzymes, cytoskeletal organization, exocytosis, autophagy and mitochondrial dynamics.
Collapse
Affiliation(s)
- Urszula Wasik
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
31
|
The role of ubiquitination and sumoylation in diabetic nephropathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:160692. [PMID: 24991536 PMCID: PMC4065738 DOI: 10.1155/2014/160692] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/19/2014] [Indexed: 01/14/2023]
Abstract
Diabetic nephropathy (DN) is a common and characteristic microvascular complication of diabetes; the mechanisms that cause DN have not been clarified, and the epigenetic mechanism was promised in the pathology of DN. Furthermore, ubiquitination and small ubiquitin-like modifier (SUMO) were involved in the progression of DN. MG132, as a ubiquitin proteasome, could improve renal injury by regulating several signaling pathways, such as NF-κB, TGF-β, Nrf2-oxidative stress, and MAPK. In this review, we summarize how ubiquitination and sumoylation may contribute to the pathology of DN, which may be a potential treatment strategy of DN.
Collapse
|
32
|
Fattet L, Ay AS, Bonneau B, Jallades L, Mikaelian I, Treilleux I, Gillet G, Hesling C, Rimokh R. TIF1γ requires sumoylation to exert its repressive activity on TGFβ signaling. J Cell Sci 2013; 126:3713-23. [PMID: 23788427 DOI: 10.1242/jcs.126748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TIF1γ, a new regulator of TGFβ signaling, inhibits the Smad4-mediated TGFβ response by interaction with Smad2/3 or ubiquitylation of Smad4. We have shown that TIF1γ participates in TGFβ signaling as a negative regulator of Smad4 during the TGFβ-induced epithelial-to-mesenchymal transition (EMT) in mammary epithelial cells, and during terminal differentiation of mammary alveolar epithelial cells and lactation. We demonstrate here that TIF1γ is sumoylated and interacts with Ubc9, the only known SUMO-conjugating enzyme. Four functional sumoylation sites lie within the middle domain of TIF1γ, the Smad interaction domain. We show that a sumoylation-defective TIF1γ mutant significantly reduces TIF1γ inhibition of Smad complexes and that of the Smad-mediated TGFβ transcriptional response. Moreover, chromatin immunoprecipitation experiments indicate that TIF1γ sumoylation is required to limit Smad4 binding on the PAI-1 TGFβ target gene promoter. Ectopic expression of TIF1γ in mammary epithelial cells inhibits TGFβ-induced EMT, an effect relieved by expression of non-sumoylated TIF1γ. Taken together, our results identify a new TGFβ regulatory layer, whereby sumoylation strengthens the TIF1γ repressive action on canonical TGFβ signaling.
Collapse
Affiliation(s)
- Laurent Fattet
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69373 Lyon, Cedex 08, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dangoumau A, Veyrat-Durebex C, Blasco H, Praline J, Corcia P, Andres CR, Vourc'h P. Protein SUMOylation, an emerging pathway in amyotrophic lateral sclerosis. Int J Neurosci 2013; 123:366-74. [PMID: 23289752 DOI: 10.3109/00207454.2012.761984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The covalent attachment of SUMO proteins (small ubiquitin-like modifier) to specific proteins or SUMOylation regulates their functional properties in the nucleus and cytoplasm of neurons. Recent studies reported dysfunction of the SUMO pathway in molecular and cellular abnormalities associated with amyotrophic lateral sclerosis (ALS). Furthermore, several observations support a direct role for SUMOylation in diverse pathogenic mechanisms involved in ALS, such as response to hypoxia, oxidative stress, glutamate excitotoxicity and proteasome impairment. Recent results also suggest that SUMO modifications of superoxide dismutase 1, transactive response DNA-binding protein 43, CTE (COOH terminus of EAAT2) (proteolytic C-terminal fragment of the glutamate transporter excitatory amino acid transporter 2, EAAT2) and proteins regulating the turnover of ALS-related proteins can participate in the pathogenesis of ALS. Moreover, the fused in sarcoma (FUS) gene, mutated in ALS, encodes a protein with a SUMO E3 ligase activity. In this review, we summarize the functioning of the SUMO pathway in normal conditions and in response to stresses, its action on ALS-related proteins and discuss the need for further research on this pathway in ALS.
Collapse
|
34
|
Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2. Nat Rev Neurosci 2013; 13:819-31. [PMID: 23165259 DOI: 10.1038/nrn3386] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The basic helix-loop-helix transcription factors oligodendrocyte transcription factor 1 (OLIG1) and OLIG2 are structurally similar and, to a first approximation, coordinately expressed in the developing CNS and postnatal brain. Despite these similarities, it was apparent from early on after their discovery that OLIG1 and OLIG2 have non-overlapping developmental functions in patterning, neuron subtype specification and the formation of oligodendrocytes. Here, we summarize more recent insights into the separate roles of these transcription factors in the postnatal brain during repair processes and in neurological disease states, including multiple sclerosis and malignant glioma. We discuss how the unique functions of OLIG1 and OLIG2 may reflect their distinct genetic targets, co-regulator proteins and/or post-translational modifications.
Collapse
|
35
|
Khodzhigorova A, Distler A, Lang V, Dees C, Schneider H, Beyer C, Gelse K, Distler O, Schett G, Distler JHW. Inhibition of sumoylation prevents experimental fibrosis. Ann Rheum Dis 2012; 71:1904-8. [PMID: 22904261 DOI: 10.1136/annrheumdis-2012-201746] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Fibrosis is a predominant cause of death in systemic sclerosis (SSc). First epigenetic modifications have recently been shown to contribute to activation of SSc fibroblasts. Here, we investigated inhibition of sumoylation as a novel antifibrotic approach. METHODS Sumoylation was inhibited by siRNA-mediated knockdown of the Small Ubiquitin-like MOdifiers (SUMO) E2-conjugating enzyme Ubc9, which is essential for sumoylation. The effects of knockdown of Ubc9 were analysed in bleomycin-induced dermal fibrosis, and in the model of fibrosis induced by overexpression of a constitutively active TGF-beta receptor type I (TBR). SUMO-1 and phosphorylated Smad3 were detected by immunohistochemistry. RESULTS Increased staining for SUMO-1 was detected in patients with SSc and in experimental fibrosis. Inhibition of sumoylation exerted potent antifibrotic effects and prevented dermal thickening, myofibroblast differentiation and accumulation of collagen induced by bleomycin, or by overexpression of constitutively active TBR. Moreover, knockdown of Ubc9 reduced the accumulation of phosphorylated Smad3 in experimental fibrosis indicating that inhibition of sumoylation may normalise canonical TGF-β signalling in vivo. CONCLUSIONS We demonstrate that inhibition of sumoylation reduces canonical TGF-β signalling and prevents experimental fibrosis in different preclinical models. These data provide first evidence that targeting of aberrant sumoylation may be a novel therapeutic approach for fibrotic diseases.
Collapse
Affiliation(s)
- Aisa Khodzhigorova
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
EHD {EH [Eps15 (epidermal growth factor receptor substrate 15) homology]-domain-containing} proteins participate in several endocytic events, such as the internalization and the recycling processes. There are four EHD proteins in mammalian cells, EHD1–EHD4, each with diverse roles in the recycling pathway of endocytosis. EHD2 is a plasma-membrane-associated member of the EHD family that regulates internalization. Since several endocytic proteins have been shown to undergo nucleocytoplasmic shuttling and have been assigned roles in regulation of gene expression, we tested the possibility that EHD proteins also shuttle to the nucleus. Our results showed that, among the three EHD proteins (EHD1–EHD3) that were tested, only EHD2 accumulates in the nucleus under nuclear export inhibition treatment. Moreover, the presence of a NLS (nuclear localization signal) was essential for its entry into the nucleus. Nuclear exit of EHD2 depended partially on its NES (nuclear export signal). Elimination of a potential SUMOylation site in EHD2 resulted in a major accumulation of the protein in the nucleus, indicating the involvement of SUMOylation in the nuclear exit of EHD2. We confirmed the SUMOylation of EHD2 by employing co-immunoprecipitation and the yeast two-hybrid system. Using GAL4-based transactivation assay as well as a KLF7 (Krüppel-like factor 7)-dependent transcription assay of the p21WAF1/Cip1 [CDKN1A (cyclin-dependent kinase inhibitor 1A)] gene, we showed that EHD2 represses transcription. qRT-PCR (quantitative real-time PCR) of RNA from cells overexpressing EHD2 or of RNA from cells knocked down for EHD2 confirmed that EHD2 represses transcription of the p21WAF1/Cip1 gene.
Collapse
|
37
|
Wang YE, Pernet O, Lee B. Regulation of the nucleocytoplasmic trafficking of viral and cellular proteins by ubiquitin and small ubiquitin-related modifiers. Biol Cell 2011; 104:121-38. [PMID: 22188262 PMCID: PMC3625690 DOI: 10.1111/boc.201100105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/22/2011] [Indexed: 12/29/2022]
Abstract
Nucleocytoplasmic trafficking of many cellular proteins is regulated by nuclear import/export signals as well as post-translational modifications such as covalent conjugation of ubiquitin and small ubiquitin-related modifiers (SUMOs). Ubiquitination and SUMOylation are rapid and reversible ways to modulate the intracellular localisation and function of substrate proteins. These pathways have been co-opted by some viruses, which depend on the host cell machinery to transport their proteins in and out of the nucleus. In this review, we will summarise our current knowledge on the ubiquitin/SUMO-regulated nuclear/subnuclear trafficking of cellular proteins and describe examples of viral exploitation of these pathways.
Collapse
Affiliation(s)
- Yao E Wang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
38
|
Fuhs SR, Insel PA. Caveolin-3 undergoes SUMOylation by the SUMO E3 ligase PIASy: sumoylation affects G-protein-coupled receptor desensitization. J Biol Chem 2011; 286:14830-41. [PMID: 21362625 DOI: 10.1074/jbc.m110.214270] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin (Cav) proteins in the plasma membrane have numerous binding partners, but the determinants of these interactions are poorly understood. We show here that Cav-3 has a small ubiquitin-like modifier (SUMO) consensus motif (ΨKX(D/E, where Ψ is a hydrophobic residue)) near the scaffolding domain and that Cav-3 is SUMOylated in a manner that is enhanced by the SUMO E3 ligase PIASy (protein inhibitor of activated STAT-y). Site-directed mutagenesis revealed that the consensus site lysine is the preferred SUMOylation site but that mutation of all lysines is required to abolish SUMOylation. Co-expression of a SUMOylation-deficient mutant of Cav-3 with β-adrenergic receptors (βARs) alters the expression level of β(2)ARs but not β(1)ARs following agonist stimulation, thus implicating Cav-3 SUMOylation in the mechanisms for β(2)AR but not β(1)AR desensitization. Expression of endothelial nitric-oxide synthase (NOS3) was not altered by the SUMOylation-deficient mutant. Thus, SUMOylation is a covalent modification of caveolins that influence the regulation of certain signaling partners.
Collapse
Affiliation(s)
- Stephen R Fuhs
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
39
|
Proteasome activator REGgamma enhances coxsackieviral infection by facilitating p53 degradation. J Virol 2010; 84:11056-66. [PMID: 20719955 DOI: 10.1128/jvi.00008-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is a small RNA virus associated with diseases such as myocarditis, meningitis, and pancreatitis. We have previously demonstrated that proteasome inhibition reduces CVB3 replication and attenuates virus-induced myocarditis. However, the underlying mechanisms by which the ubiquitin/proteasome system regulates CVB replication remain unclear. In this study, we investigated the role of REGγ, a member of the 11S proteasome activator, in CVB3 replication. We showed that overexpression of REGγ promoted CVB3 replication but that knockdown of REGγ led to reduced CVB3 replication. We further demonstrated that REGγ-mediated p53 proteolysis contributes, as least in part, to the proviral function of REGγ. Although total protein levels of REGγ remained unaltered after CVB3 infection, virus infection induced a redistribution of REGγ from the nucleus to the cytoplasm, rendering an opportunity for a direct interaction of REGγ with viral proteins and/or host proteins (e.g., p53), which controls viral growth and thereby enhances viral infectivity. Further analyses suggested a potential modification of REGγ by SUMO following CVB3 infection, which was verified by both in vitro and in vivo sumoylation assays. Sumoylation of REGγ may play a role in its nuclear export during CVB3 infection. Taken together, our results present the first evidence that the host REGγ pathway is utilized and modified during CVB3 infection to promote efficient viral replication.
Collapse
|
40
|
Yan D, Davis FJ, Sharrocks AD, Im HJ. Emerging roles of SUMO modification in arthritis. Gene 2010; 466:1-15. [PMID: 20627123 DOI: 10.1016/j.gene.2010.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/07/2010] [Indexed: 12/31/2022]
Abstract
Dynamic modification involving small ubiquitin-like modifier (SUMO) has emerged as a new mechanism of protein regulation in mammalian biology. Sumoylation is an ATP-dependent, reversible post-translational modification which occurs under both basal and stressful cellular conditions. Sumoylation profoundly influences protein functions and pertinent biological processes. For example, sumoylation modulates multiple components in the NFkappaB pathway and exerts an anti-inflammatory effect. Likewise, sumoylation of peroxisome proliferator-activated receptor gamma (PPARgamma) augments its anti-inflammatory activity. Current evidence suggests a role of sumoylation for resistance to apoptosis in synovial fibroblasts. Dynamic SUMO regulation controls the biological outcomes initiated by various growth factors involved in cartilage homeostasis, including basic fibroblast growth factors (bFGF or FGF-2), transforming growth factor-beta (TGF-beta) and insulin-like growth factor-1 (IGF-1). The impact of these growth factors on cartilage are through sumoylation-dependent control of the transcription factors (e.g., Smad, Elk-1, HIF-1) that are key regulators of matrix components (e.g., aggrecan, collagen) or cartilage-degrading enzymes (e.g., MMPs, aggrecanases). Thus, SUMO modification appears to profoundly affect chondrocyte and synovial fibroblast biology, including cell survival, inflammatory responses, matrix metabolism and hypoxic responses. More recently, evidence suggests that, in addition to their nuclear roles, the SUMO pathways play crucial roles in mitochondrial activity, cellular senescence, and autophagy. With an increasing number of reports linking SUMO to human diseases like arthritis, it is probable that novel and equally important functions of the sumoylation pathway will be elucidated in the near future.
Collapse
Affiliation(s)
- Dongyao Yan
- Department of Biochemistry, Rush University Medical Center, USA
| | | | | | | |
Collapse
|
41
|
Xiao ZH, Guo WH, Zhang JX. Role of small ubiquitin-related modifier-1 in the pathogenesis of hepatic fibrosis in rats. Shijie Huaren Xiaohua Zazhi 2010; 18:1422-1427. [DOI: 10.11569/wcjd.v18.i14.1422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the changes in the expression of small ubiquitin-related modifier-1 (SUMO-1) during the formation of hepatic fibrosis in rats and to investigate the role of SUMO-1 in the pathogenesis of hepatic fibrosis.
METHODS: Ninety male Sprague-Dawley rats were divided into two groups: model group and control group. The model group was subcutaneously injected with 40% carbon tetrachloride at a dose of 0.3 mL/100 g of body weight, while the control group was given equivalent volume of normal saline. Liver tissue samples were taken at weeks 2, 4, 6, 8, 10 and 12 after carbon tetrachloride injection. Hepatic fibrosis was pathologically evaluated. The expression of SUMO-1 mRNA and protein in liver tissue was detected by RT-PCR and Western blot, respectively.
RESULTS: During the formation of hepatic fibrosis, the expression of SUMO-1 mRNA was gradually up-regulated from week 2 to 12 (0.725 ± 0.017, 0.786 ± 0.018, 0.803 ± 0.023, 0.831 ± 0.020, 0.863 ± 0.016 and 0.892 ± 0.008, respectively; P < 0.01). Similarly, SUMO-1 protein expression was also gradually up-regulated from week 2 to 12 (0.810 ± 0.059, 0.873 ± 0.049, 0.923 ± 0.055, 0.959 ± 0.032, 0.988 ± 0.011 and 0.998 ± 0.004, respectively; P < 0.01).
CONCLUSION: The expression of both SUMO-1 mRNA and protein is gradually up-regulated during the formation of hepatic fibrosis, suggesting an important role of SUMO-1 in the pathogenesis of hepatic fibrosis.
Collapse
|
42
|
Van Damme E, Laukens K, Dang TH, Van Ostade X. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 2010; 6:51-67. [PMID: 20087442 PMCID: PMC2808052 DOI: 10.7150/ijbs.6.51] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/09/2010] [Indexed: 12/22/2022] Open
Abstract
Promyelocytic Leukaemia Protein nuclear bodies (PML-NBs) are dynamic nuclear protein aggregates. To gain insight in PML-NB function, reductionist and high throughput techniques have been employed to identify PML-NB proteins. Here we present a manually curated network of the PML-NB interactome based on extensive literature review including database information. By compiling 'the PML-ome', we highlighted the presence of interactors in the Small Ubiquitin Like Modifier (SUMO) conjugation pathway. Additionally, we show an enrichment of SUMOylatable proteins in the PML-NBs through an in-house prediction algorithm. Therefore, based on the PML network, we hypothesize that PML-NBs may function as a nuclear SUMOylation hotspot.
Collapse
Affiliation(s)
- Ellen Van Damme
- Laboratory of Protein Chemistry, Proteomics and Signal Transduction, Department of Biomedical Sciences, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1 - Building T, Wilrijk, Belgium.
| | | | | | | |
Collapse
|
43
|
Abstract
Transforming growth factor beta (TGFbeta) pathways are implicated in metazoan development, adult homeostasis and disease. TGFbeta ligands signal via receptor serine/threonine kinases that phosphorylate, and activate, intracellular Smad effectors as well as other signaling proteins. Oligomeric Smad complexes associate with chromatin and regulate transcription, defining the biological response of a cell to TGFbeta family members. Signaling is modulated by negative-feedback regulation via inhibitory Smads. We review here the mechanisms of TGFbeta signal transduction in metazoans and emphasize events crucial for embryonic development.
Collapse
|
44
|
Leavenworth JW, Ma X, Mo YY, Pauza ME. SUMO conjugation contributes to immune deviation in nonobese diabetic mice by suppressing c-Maf transactivation of IL-4. THE JOURNAL OF IMMUNOLOGY 2009; 183:1110-9. [PMID: 19553542 DOI: 10.4049/jimmunol.0803671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is not clear why the development of protective Th2 cells is poor in type 1 diabetes (T1D). c-Maf transactivates the IL-4 gene promoting Th2 cell development; therefore, abnormalities in c-Maf may contribute to reduced IL-4 production by CD4 cells from nonobese diabetic (NOD) mice. In this study we demonstrate that despite normal expression, c-Maf binds poorly to the IL-4 promoter (IL-4p) in NOD CD4 cells. Immunoblotting demonstrates that c-Maf can be modified at lysine 33 by SUMO-1 (small ubiquitin-like modifier 1). Sumoylation is facilitated by direct interaction with the E2-conjugating enzyme Ubc9 and increases following T cell stimulation. In transfected cells, sumoylation decreases c-Maf transactivation of IL-4p-driven luciferase reporter activity, reduces c-Maf binding to the IL-4p in chromatin immunoprecipitation assays, and enhances c-Maf localization into promyelocytic leukemia nuclear bodies. Sumoylation of c-Maf is increased in NOD CD4 cells as compared with CD4 cells from diabetes-resistant B10.D2 mice, suggesting that increased c-Maf sumoylation contributes to immune deviation in T1D by reducing c-Maf access to and transactivation of the IL-4 gene.
Collapse
Affiliation(s)
- Jianmei W Leavenworth
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Transforming growth factor beta (TGFbeta) controls cellular behavior in embryonic and adult tissues. TGFbeta binding to serine/threonine kinase receptors on the plasma membrane activates Smad molecules and additional signaling proteins that together regulate gene expression. In this review, mechanisms and models that aim at explaining the coordination between several components of the signaling network downstream of TGFbeta are presented. We discuss how the activity and duration of TGFbeta receptor/Smad signaling can be regulated by post-translational modifications that affect the stability of key proteins in the pathway. We highlight links between these mechanisms and human diseases, such as tissue fibrosis and cancer.
Collapse
|