1
|
Lian S, Lu M, Jiajing L, Zhang B, Fang Y, Wang X, Zheng M, Ni Y, Xu G, Yang Y, Jiang R. Conjugated Lithocholic Acid Activates Hepatic TGR5 to Promote Lipotoxicity and MASLD-MASH Transition by Disrupting Carnitine Biosynthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410602. [PMID: 40344326 DOI: 10.1002/advs.202410602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Conjugated lithocholic acid (LCA) plays a critical role in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). In this process, hepatocyte inflammation-caused upregulation of its receptor, Takeda G protein-coupled receptor 5 (TGR5) is a crucial factor. Serum bile acid profiling shows an increase in conjugated LCA, which correlates with disease severity. Depletion of Gpbar1 in hepatocytes significantly protects against the progression from MASLD to metabolic dysfunction-associated steatohepatitis (MASH) that is related to conjugated LCA. In vivo and in vitro experiments indicate that TGR5 activation in hepatocytes promotes lipotoxicity-induced cell death and inflammation by suppressing de novo carnitine biosynthesis. Mechanistically, TGR5 binding to CD36 facilitates E3 ubiquitin ligase TRIM21 recruitment, leading to the degradation of BBOX1, a crucial enzyme in de novo carnitine biosynthesis. Targeting TGR5 therapeutically can restore carnitine biosynthesis, which may offer a potent strategy to prevent or reverse the transition from MASLD to MASH.
Collapse
Affiliation(s)
- Senlin Lian
- Department of Lab Medicine, The First Affiliated Hospital of Anhui Medical University. MOE Innovation Center for Basic Research in Tumor Immunotherapy, and Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, 230022, China
| | - Meixi Lu
- Medical School of Nanjing University, Nanjing, Jiangsu Province, 210993, China
| | - Luo Jiajing
- Medical School of Nanjing University, Nanjing, Jiangsu Province, 210993, China
| | - Bin Zhang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, and Medical School of Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, and Medical School of Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Xuran Wang
- Medical School of Nanjing University, Nanjing, Jiangsu Province, 210993, China
| | - Minghua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yan Ni
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Guifang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yonglin Yang
- Department of Infectious Diseases, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Runqiu Jiang
- Department of Lab Medicine, The First Affiliated Hospital of Anhui Medical University. MOE Innovation Center for Basic Research in Tumor Immunotherapy, and Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, 230022, China
| |
Collapse
|
2
|
Jiménez-González C, Alonso-Peña M, Argos Vélez P, Crespo J, Iruzubieta P. Unraveling MASLD: The Role of Gut Microbiota, Dietary Modulation, and AI-Driven Lifestyle Interventions. Nutrients 2025; 17:1580. [PMID: 40362889 PMCID: PMC12073168 DOI: 10.3390/nu17091580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Gut microbiota has a crucial role in the pathophysiology of metabolic-associated steatotic liver disease (MASLD), influencing various metabolic mechanisms and contributing to the development of the disease. Dietary interventions targeting gut microbiota have shown potential in modulating microbial composition and mitigating MASLD progression. In this context, the integration of multi-omics analysis and artificial intelligence (AI) in personalized nutrition offers new opportunities for tailoring dietary strategies based on individual microbiome profiles and metabolic responses. The use of chatbots and other AI-based health solutions offers a unique opportunity to democratize access to health interventions due to their low cost, accessibility, and scalability. Future research should focus on the clinical validation of AI-powered dietary strategies, integrating microbiome-based therapies and precision nutrition approaches. Establishing standardized protocols and ethical guidelines will be crucial for implementing AI in MASLD management, paving the way for a more personalized, data-driven approach to disease prevention and treatment.
Collapse
Affiliation(s)
- Carolina Jiménez-González
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Marta Alonso-Peña
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
| | - Paula Argos Vélez
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| |
Collapse
|
3
|
Ma H, Li R, Qu B, Liu Y, Li P, Zhao J. The Role of Bile Acid in Immune-Mediated Skin Diseases. Exp Dermatol 2025; 34:e70108. [PMID: 40302108 DOI: 10.1111/exd.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/07/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
Immune-mediated skin disorders arise from dysfunctional immune responses, instigating inflammatory dermatoses and a reduced quality of life. The complex pathogenesis likely involves genetic risks, environmental triggers and aberrant immune activation. An emerging body of evidence suggests that bile acid disturbances may critically promote immune pathology in certain skin conditions. Bile acids synthesised from cholesterol regulate nutrient metabolism and immune cell function via nuclear receptors and G protein-coupled receptors (GPCRs). Altered bile acid profiles and receptor expression have been identified in psoriasis, atopic dermatitis (AD) and autoimmune blistering diseases. Disruptions in bile acid signalling affect the inflammatory and metabolic pathways linked to these disorders. Targeting components of the bile acid axis represents a promising therapeutic strategy. This review elucidates the intricate links between bile acid homeostasis and immune dysfunction in inflammatory skin diseases, synthesising evidence that targeting bile acid pathways may unlock innovative therapeutic avenues. This study compiles clinical and experimental data revealing disrupted bile acid signalling and composition in various immune-mediated dermatoses, highlighting the emerging significance of bile acids in cutaneous immune regulation.
Collapse
Affiliation(s)
- Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Ruonan Li
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Baoquan Qu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuchen Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Perhal AF, Schwarz PF, Linder T, Mihovilovic MD, Schnürch M, Dirsch VM. Identification and Characterization of a Leoligin-Inspired Synthetic Lignan as a TGR5 Agonist. JOURNAL OF NATURAL PRODUCTS 2025; 88:985-995. [PMID: 40146132 PMCID: PMC12038849 DOI: 10.1021/acs.jnatprod.5c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025]
Abstract
The G-protein coupled bile acid receptor 1 (GPBAR1 or TGR5) is the major cell membrane receptor for bile acids regulating metabolic and immunological functions. Its pharmacological modulation has been shown to alleviate inflammatory diseases, such as type 2 diabetes and atherosclerosis. The naturally occurring lignan leoligin and structural analogues have shown anti-inflammatory effects in vitro. However, the underlying molecular targets are still unknown. In this study, we identify the natural product-inspired synthetic structural analogue of leoligin, LT-188A (1), as a novel nonsteroidal TGR5 agonist. LT-188A (1) induced cyclic adenosine monophosphate (cAMP) accumulation and cAMP response element (CRE)-dependent luciferase activity in a concentration- and TGR5-dependent manner. Consistently, LT-188A (1) inhibited activation of the pro-inflammatory transcription factor nuclear factor κB (NFκB) only in TGR5 expressing cells. In macrophages, LT-188A (1) reduced the expression levels of pro-inflammatory cytokines and the production of nitric oxide (NO) as determined by qPCR and the Griess assay, respectively. We showed that LT-188A (1) decreased the levels of production of these inflammatory mediators in macrophages. In conclusion, we demonstrate that LT-188A (1) is a novel natural product-inspired TGR5 agonist with promising anti-inflammatory in vitro bioactivity in relevant cellular assays representing a promising tool compound with potential for further development.
Collapse
Affiliation(s)
- Alexander F. Perhal
- Department
of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Patrik F. Schwarz
- Department
of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Thomas Linder
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Marko D. Mihovilovic
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Michael Schnürch
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Verena M. Dirsch
- Department
of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
5
|
Urbani G, Rondini E, Distrutti E, Marchianò S, Biagioli M, Fiorucci S. Phenotyping the Chemical Communications of the Intestinal Microbiota and the Host: Secondary Bile Acids as Postbiotics. Cells 2025; 14:595. [PMID: 40277921 PMCID: PMC12025480 DOI: 10.3390/cells14080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
The current definition of a postbiotic is a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics can be mainly classified as metabolites, derived from intestinal bacterial fermentation, or structural components, as intrinsic constituents of the microbial cell. Secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) are bacterial metabolites generated by the enzymatic modifications of primary bile acids by microbial enzymes. Secondary bile acids function as receptor ligands modulating the activity of a family of bile-acid-regulated receptors (BARRs), including GPBAR1, Vitamin D (VDR) receptor and RORγT expressed by various cell types within the entire human body. Secondary bile acids integrate the definition of postbiotics, exerting potential beneficial effects on human health given their ability to regulate multiple biological processes such as glucose metabolism, energy expenditure and inflammation/immunity. Although there is evidence that bile acids might be harmful to the intestine, most of this evidence does not account for intestinal dysbiosis. This review examines this novel conceptual framework of secondary bile acids as postbiotics and how these mediators participate in maintaining host health.
Collapse
Affiliation(s)
- Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Elena Rondini
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| |
Collapse
|
6
|
Yakut A. Gut microbiota in the development and progression of chronic liver diseases: Gut microbiota-liver axis. World J Hepatol 2025; 17:104167. [PMID: 40177197 PMCID: PMC11959663 DOI: 10.4254/wjh.v17.i3.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
The gut microbiota (GM) is a highly dynamic ecology whose density and composition can be influenced by a wide range of internal and external factors. Thus, "How do GM, which can have commensal, pathological, and mutualistic relationships with us, affect human health?" has become the most popular research issue in recent years. Numerous studies have demonstrated that the trillions of microorganisms that inhabit the human body can alter host physiology in a variety of systems, such as metabolism, immunology, cardiovascular health, and neurons. The GM may have a role in the development of a number of clinical disorders by producing bioactive peptides, including neurotransmitters, short-chain fatty acids, branched-chain amino acids, intestinal hormones, and secondary bile acid conversion. These bioactive peptides enter the portal circulatory system through the gut-liver axis and play a role in the development of chronic liver diseases, cirrhosis, and hepatic encephalopathy. This procedure is still unclear and quite complex. In this study, we aim to discuss the contribution of GM to the development of liver diseases, its effects on the progression of existing chronic liver disease, and to address the basic mechanisms of the intestinal microbiota-liver axis in the light of recent publications that may inspire the future.
Collapse
Affiliation(s)
- Aysun Yakut
- Department of Gastroenterology, İstanbul Medipol University Sefakoy Health Practice Research Center, İstanbul 38000, Türkiye.
| |
Collapse
|
7
|
Kiaei N, Malik A, Idahosa SO, Lee KK, Endo-Umeda K, Makishima M, Kawamura A, Higuchi S. Python-derived 16α-Hydroxylated Bile Acid, Pythocholic Acid is a ligand for TGR5, not farnesoid X receptors and vitamin D receptors. Biochem Biophys Res Commun 2025; 751:151453. [PMID: 39923459 DOI: 10.1016/j.bbrc.2025.151453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Bile acids (BAs) are signaling molecules involved in energy expenditure, glucose homeostasis, and immune system regulation via activation of BA receptors, such as Takeda G-Protein-Coupled Receptor 5 (TGR5), Farnesoid X Receptor (FXR), and Vitamin D Receptor (VDR). The structure of BA, especially the hydroxyl group position, plays an important role in exerting its function. Previously, we reported that 16α-hydroxylated BA, also known as pythocholic acid (PCA), has beneficial effects on metabolic function and lipid metabolism in mammals. However, the molecular mechanism of PCA in mammals is yet to be explored because 16α-hydroxylated BA has not been seen in mammals. This study aims to investigate the binding interaction of PCA to human bile acid receptors, TGR5, FXR, and VDR, using a luciferase reporter assay. Luciferase reporter assay showed that PCA and tauro-conjugated-PCA (TPCA) activated TGR5, but did not activate FXR or VDR. Additionally, PCA and TPCA did not show an antagonistic effect on any of the BA receptors. TPCA treatment significantly decreased lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) expression in mouse peritoneal macrophages, and inhibition of TGR5 by SBI-115 canceled the anti-inflammatory effect of TPCA. Our data suggests that PCA and TPCA are ligands for mammalian TGR5 receptors.
Collapse
Affiliation(s)
- Nicole Kiaei
- John L. Miller Great Neck North High School, Great Neck, NY, 11023, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Afsin Malik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sydney O Idahosa
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Kevin K Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Akira Kawamura
- Department of Chemistry, Hunter College of CUNY, New York, NY, 10065, USA
| | - Sei Higuchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
8
|
Fiorucci S, Marchianò S, Distrutti E, Biagioli M. Bile acids and their receptors in hepatic immunity. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:1-16. [PMID: 40206435 PMCID: PMC11977286 DOI: 10.1016/j.livres.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025]
Abstract
Similarly to conventional steroids, bile acids function as signaling molecules, acting on a family of membrane and nuclear receptors. The best-characterized bile acid-regulated receptors are the farnesoid X receptor, activated by primary bile acids, and the G-protein-coupled bile acid receptor 1 (also known as Takeda G protein-coupled receptor 5), which is activated by secondary bile acids, such as lithocholic acid (LCA) and deoxycholic acid. Both the farnesoid X receptor and G-protein-coupled bile acid receptor 1 are expressed in cells of innate immunity, monocytes/macrophages, and natural killer cells. Their activation in these cells provides counter-regulatory signals that are inhibitory in nature and attenuate inflammation. In recent years, however, it has been increasingly appreciated that bile acids biotransformations by intestinal microbiota result in the formation of chemically different secondary bile acids that potently regulate adaptive immunity. The 3-oxoLCA and isoalloLCA, two LCA derivatives, bind receptors such as the retinoic acid receptor-related orphan receptor gamma t (RORγt) and the vitamin D receptor (VDR) that are expressed only by lymphoid cells, extending the regulatory role of bile acids to T cells, including T-helper 17 cells and type 3 innate lymphoid cells (ILC3). In this novel conceptual framework, bile acids have emerged as one of the main components of the postbiota, the waste array of chemical mediators generated by the intestinal microbiota. Deciphering the interaction of these mediators with the immune system in the intestine and liver is a novel and fascinating area of bile acid renaissance.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Lang H, Xiang J, Chen X, Tong D, Wang L, Mou A, Liu D, Gao P, Lu Z, Zhu Z. Roux-en-Y gastric bypass alleviates kidney inflammation and improves kidney function in db/db mice by activating TLCA/TGR5 pathway. Am J Physiol Endocrinol Metab 2025; 328:E148-E160. [PMID: 39681344 DOI: 10.1152/ajpendo.00248.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Diabetic kidney disease (DKD) is a severe diabetic microvascular complication featured by chronic low-grade inflammation. Roux-en-Y gastric bypass (RYGB) surgery has gained importance as a safe and effective surgery to treat DKD. Bile acids significantly change after RYGB, which brings a series of metabolic benefits, but the relationship with the improvement of DKD is unclear. Therefore, this study performed RYGB surgery on db/db mice to observe the beneficial effects of the surgery on the kidneys and performed bile acid-targeted metabolomics analysis to explore bile acid changes. We found that RYGB significantly reduced albuminuria in db/db mice, improved renal function, reversed renal structural lesions, and attenuated podocyte injury and inflammation. Notably, bile acid metabolomic analysis revealed taurolithocholic acid (TLCA) as the most significantly altered bile acid after RYGB. Furthermore, in vitro and in vivo validation experiments revealed that TLCA supplementation improved renal function and reduced renal inflammatory damage in db/db mice. In addition, TLCA inhibited high glucose-induced inflammatory damage in MPC-5 cells, and its mechanism of action may be related to activating Takeda G protein-coupled receptor 5 (TGR5), inhibiting NF-κB phosphorylation, and thus inhibiting inflammatory response. In conclusion, RYGB may play a protective role in the kidneys of diabetic mice by activating the TLCA/TGR5 pathway.NEW & NOTEWORTHY This study determined that the renal protective effect of Roux-en-Y gastric bypass (RYGB) in db/db mice was associated with elevated serum TLCA. Notably, TLCA supplementation improved renal function and alleviated podocyte inflammatory injury in db/db mice, which was associated with the TGR5/NF-κB pathway.
Collapse
Affiliation(s)
- Hongmei Lang
- Department of General Medicine, Chengdu Second People's Hospital, Chengdu, People's Republic of China
| | - Jie Xiang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Xiaorong Chen
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Dan Tong
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Aidi Mou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
- Chongqing Institute for Brain and Intelligence, Chongqing, People's Republic of China
| |
Collapse
|
10
|
Fuchs CD, Simbrunner B, Baumgartner M, Campbell C, Reiberger T, Trauner M. Bile acid metabolism and signalling in liver disease. J Hepatol 2025; 82:134-153. [PMID: 39349254 DOI: 10.1016/j.jhep.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Bile acids (BAs) serve as signalling molecules, efficiently regulating their own metabolism and transport, as well as key aspects of lipid and glucose homeostasis. BAs shape the gut microbial flora and conversely are metabolised by microbiota. Disruption of BA transport, metabolism and physiological signalling functions contribute to the pathogenesis and progression of a wide range of liver diseases including cholestatic disorders and MASLD (metabolic dysfunction-associated steatotic liver disease), as well as hepatocellular and cholangiocellular carcinoma. Additionally, impaired BA signalling may also affect the intestine and kidney, thereby contributing to failure of gut integrity and driving the progression and complications of portal hypertension, cholemic nephropathy and the development of extrahepatic malignancies such as colorectal cancer. In this review, we will summarise recent advances in the understanding of BA signalling, metabolism and transport, focusing on transcriptional regulation and novel BA-focused therapeutic strategies for cholestatic and metabolic liver diseases.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Clarissa Campbell
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Li W, Gao W, Yan S, Yang L, Zhu Q, Chu H. Gut Microbiota as Emerging Players in the Development of Alcohol-Related Liver Disease. Biomedicines 2024; 13:74. [PMID: 39857657 PMCID: PMC11761646 DOI: 10.3390/biomedicines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The global incidence and mortality rates of alcohol-related liver disease are on the rise, reflecting a growing health concern worldwide. Alcohol-related liver disease develops due to a complex interplay of multiple reasons, including oxidative stress generated during the metabolism of ethanol, immune response activated by immunogenic substances, and subsequent inflammatory processes. Recent research highlights the gut microbiota's significant role in the progression of alcohol-related liver disease. In patients with alcohol-related liver disease, the relative abundance of pathogenic bacteria, including Enterococcus faecalis, increases and is positively correlated with the level of severity exhibited by alcohol-related liver disease. Supplement probiotics like Lactobacillus, as well as Bifidobacterium, have been found to alleviate alcohol-related liver disease. The gut microbiota is speculated to trigger specific signaling pathways, influence metabolite profiles, and modulate immune responses in the gut and liver. This research aimed to investigate the role of gut microorganisms in the onset and advancement of alcohol-related liver disease, as well as to uncover the underlying mechanisms by which the gut microbiota may contribute to its development. This review outlines current treatments for reversing gut dysbiosis, including probiotics, fecal microbiota transplantation, and targeted phage therapy. Particularly, targeted therapy will be a vital aspect of future alcohol-related liver disease treatment. It is to be hoped that this article will prove beneficial for the treatment of alcohol-related liver disease.
Collapse
Affiliation(s)
- Wei Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Shengqi Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Qingjing Zhu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| |
Collapse
|
12
|
Zheng XQ, Wu DM, Chen X, Lin JX, Wang XC, Ren KH, Liu HQ, Xu RL, Yan JY. Analysis of the clinical diagnosis and treatment of fetal meconium peritonitis. J Matern Fetal Neonatal Med 2024; 37:2250045. [PMID: 38403928 DOI: 10.1080/14767058.2023.2250045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/15/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND The purpose of this study was to improve diagnostic and therapeutic standards by examining the clinical features, treatment, and prognosis of fetal meconium peritonitis (FMP), as well as the diagnostic efficacy of ultrasound for FMP. METHODS The clinical data of 41 infants and pregnant women diagnosed with meconium peritonitis (MP) and treated at the Fujian Maternal and Child Health Hospital from January 2013 to January 2020 were analyzed retrospectively. Clinical data, imaging data, complications, treatment strategies, pregnancy outcomes, neonatal prognoses, and follow-up outcomes were all analyzed. RESULTS The MP prenatal diagnosis rate was 56.1% (23/41), the neonatal surgery rate was 53.7% (22/41), and the survival rate was 85.4% (35/41). Intraperitoneal calcification (23 pregnant women, 56.1%), intestinal dilatation (13 pregnant women, 31.7%), peritoneal effusion (22 pregnant women, 53.7%), intraperitoneal pseudocyst (7 pregnant women, 17.1%), and polyhydramnios were diagnosed via prenatal ultrasound (18 pregnant women, 43.9%). Twenty-two pregnant women were assigned to the surgical treatment (operation) group, while 18 were assigned to the conservative treatment group. In the operation group, there were 9 cases of ileal atresia (40.9%), 7 cases of jejunal atresia (31.8%), 2 cases of atresia at the jejunum-ileum junction (9.1%), 2 cases of ileal perforation (9.1%), 1 case of ileal necrosis (4.5%), and 1 case of adhesive obstruction (4.5%). There was no statistically significant difference (p > .05) in the occurrence of various prenatal ultrasound findings by etiology. CONCLUSION Multiple prenatal ultrasound markers have been identified for MP. To improve the efficacy of newborn treatment for FMP and reduce neonatal mortality, dynamic monitoring of ultrasound image alterations and strengthened integrated perinatal management are necessary.
Collapse
Affiliation(s)
- Xiu-Qiong Zheng
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- Department of Obstetrics, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Dao-Ming Wu
- Department of Ultrasonography, Clinical Medical School of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xian Chen
- Department of Obstetrics, Fujian Obstetrics and Gynecology Hospital, Fuzhou, China
| | - Jin-Xiao Lin
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- Department of Obstetrics, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Xue-Chun Wang
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- Department of Obstetrics, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Kun-Hai Ren
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- Department of Obstetrics, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Hong-Qing Liu
- Department of Obstetrics, Fujian Obstetrics and Gynecology Hospital, Fuzhou, China
| | - Rong-Li Xu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- Department of Obstetrics, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Jian-Ying Yan
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- Department of Obstetrics, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| |
Collapse
|
13
|
Li J, Yao S, Zimny S, Koob D, Jin H, Wimmer R, Denk G, Tuo B, Hohenester S. The acidic microenvironment in the perisinusoidal space critically determines bile salt-induced activation of hepatic stellate cells. Commun Biol 2024; 7:1591. [PMID: 39609606 PMCID: PMC11605060 DOI: 10.1038/s42003-024-07192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Cholestatic liver diseases, accompanied by the hepatic accumulation of bile salts, frequently lead to liver fibrosis, while underlying profibrogenic mechanisms remain incompletely understood. Here, we evaluated the role of extracellular pH (pHe) on bile salt entry and hepatic stellate cell (HSC) activation and proliferation. As modulators of intracellular pH (pHi), various proton pump inhibitors (PPI) were tested for their ability to prevent bile salt entry and HSC activation. Lastly, the PPI pantoprazole was employed in the 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine (DDC)-diet model of cholestatic liver fibrosis. We found in vitro, that slightly acidic pHe (7.2-7.3) enhanced bile salt accumulation in HSC and was a prerequisite to bile salt-induced HSC activation. Pantoprazole in the DDC model exhibited antifibrotic effects. We conclude that bile salt-induced activation of HSC may depend on the slightly acidic microenvironment present in the perisinusoidal space and modulation of pHi in HSC may offer a novel pharmacological target in cholestatic disease.
Collapse
Affiliation(s)
- Jingguo Li
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shun Yao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sebastian Zimny
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Dennis Koob
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ralf Wimmer
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gerald Denk
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Simon Hohenester
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
14
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
15
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Current Landscape and Evolving Therapies for Primary Biliary Cholangitis. Cells 2024; 13:1580. [PMID: 39329760 PMCID: PMC11429758 DOI: 10.3390/cells13181580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
16
|
Zhuang L, Jia N, Zhang L, Zhang Q, Antwi SO, Sartorius K, Wu K, Sun D, Xi D, Lu Y. Gpbar-1/cAMP/PKA signaling mitigates macrophage-mediated acute cholestatic liver injury via antagonizing NLRP3-ASC inflammasome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167266. [PMID: 38806072 DOI: 10.1016/j.bbadis.2024.167266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Acute cholestatic liver injury (ACLI) is a disease associated with bile duct obstruction that causes liver inflammation and apoptosis. Although G protein-coupled bile acid receptor1 (Gpbar-1) has diverse metabolic roles, its involvement in ACLI-associated immune activation remains unclear. Liver tissues and blood samples from 20 patients with ACLI and 20 healthy individuals were analyzed using biochemical tests, H&E staining, western blotting, and immunohistochemistry to verify liver damage and expression of Gpbar-1. The expression of Gpbar-1, cAMP/PKA signaling, and the NLRP3 inflammasome was tested in wild-type (WT) and Gpbar-1 knockdown (si-Gpbar-1) mice with ACLI induced by bile duct ligation (BDL) and in primary Kupffer cells (KCs) with or without Gpbar-1-siRNA. The results showed that total bile acids and Gpbar-1 expressions were elevated in patients with ACLI. Gpbar-1 knockdown significantly worsened BDL-induced acute hepatic damage, inflammation, and liver apoptosis in vivo. Knockdown of Gpbar-1 heightened KC sensitivity to lipopolysaccharide (LPS) stimulation. Gpbar-1 activation inhibited LPS-induced pro-inflammatory responses in normal KCs but not in Gpbar-1-knockdown KCs. Notably, NLRP3-ASC inflammasome expression was effectively enhanced by Gpbar-1 deficiency. Additionally, Gpbar-1 directly increased intracellular cAMP levels and PKA phosphorylation, thus disrupting the NLRP3-ASC inflammasome. The pro-inflammatory characteristic of Gpbar-1 deficiency was almost neutralized by the NLRP3 inhibitor CY-09. In vitro, M1 polarization was accelerated in LPS-stimulated Gpbar-1-knockdown KCs. Therapeutically, Gpbar-1 deficiency exacerbated BDL-induced ACLI, which could be rescued by inhibition of the NLRP3-ASC inflammasome. Our study reveal that Gpbar-1 may act as a novel immune-mediated regulator of ACLI by inhibiting the NLRP3-ASC inflammasome.
Collapse
Affiliation(s)
- Lin Zhuang
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China; Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou medical university, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China
| | - Naixin Jia
- Department of Hepatobiliary Surgery, Kunshan First People's Hospital affiliated to Jiangsu University, Kunshan, Jiangsu 215300, China
| | - Li Zhang
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Qi Zhang
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou Medical University, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China
| | - Samuel O Antwi
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA; The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kurt Sartorius
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA; School of Laboratory Medicine and Molecular Sciences, College of Health Sciences, University of Kwazulu-Natal, Durban 4041, South Africa; UKZN Gastrointestinal Cancer Research Unit, University of Kwazulu-Natal, Durban 4041, South Africa
| | - Kejia Wu
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Donglin Sun
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China.
| | - Dong Xi
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou Medical University, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China.
| | - Yunjie Lu
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou medical university, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China; The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA; Department of Hepatopancreatobiliary surgery, The First Affiliated Hospital of Soochow University, Suzhou 215100, China.
| |
Collapse
|
17
|
Igarashi N, Kasai K, Tada Y, Kani K, Kato M, Takano S, Goto K, Matsuura Y, Ichimura-Shimizu M, Watanabe S, Tsuneyama K, Furusawa Y, Nagai Y. Impacts of liver macrophages, gut microbiota, and bile acid metabolism on the differences in iHFC diet-induced MASH progression between TSNO and TSOD mice. Inflamm Res 2024; 73:1081-1098. [PMID: 38619583 DOI: 10.1007/s00011-024-01884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Tsumura-Suzuki non-obese (TSNO) mice exhibit a severe form of metabolic dysfunction-associated steatohepatitis (MASH) with advanced liver fibrosis upon feeding a high-fat/cholesterol/cholate-based (iHFC) diet. Another ddY strain, Tsumura-Suzuki diabetes obese (TSOD) mice, are impaired in the progression of iHFC diet-induced MASH. AIM To elucidate the underlying mechanisms contributing to the differences in MASH progression between TSNO and TSOD mice. METHODS We analyzed differences in the immune system, gut microbiota, and bile acid metabolism in TSNO and TSOD mice fed with a normal diet (ND) or an iHFC diet. RESULTS TSOD mice had more anti-inflammatory macrophages in the liver than TSNO mice under ND feeding, and were impaired in the iHFC diet-induced accumulation of fibrosis-associated macrophages and formation of histological hepatic crown-like structures in the liver. The gut microbiota of TSOD mice also exhibited a distinct community composition with lower diversity and higher abundance of Akkermansia muciniphila compared with that in TSNO mice. Finally, TSOD mice had lower levels of bile acids linked to intestinal barrier disruption under iHFC feeding. CONCLUSIONS The dynamics of liver macrophage subsets, and the compositions of the gut microbiota and bile acids at steady state and post-onset of MASH, had major impacts on MASH development.
Collapse
Affiliation(s)
- Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yuki Tada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Miyuna Kato
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kana Goto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yudai Matsuura
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shiro Watanabe
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
18
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
19
|
Rochoń J, Kalinowski P, Szymanek-Majchrzak K, Grąt M. Role of gut-liver axis and glucagon-like peptide-1 receptor agonists in the treatment of metabolic dysfunction-associated fatty liver disease. World J Gastroenterol 2024; 30:2964-2980. [PMID: 38946874 PMCID: PMC11212696 DOI: 10.3748/wjg.v30.i23.2964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a hepatic manifestation of the metabolic syndrome. It is one of the most common liver diseases worldwide and shows increasing prevalence rates in most countries. MAFLD is a progressive disease with the most severe cases presenting as advanced fibrosis or cirrhosis with an increased risk of hepatocellular carcinoma. Gut microbiota play a significant role in the pathogenesis and progression of MAFLD by disrupting the gut-liver axis. The mechanisms involved in maintaining gut-liver axis homeostasis are complex. One critical aspect involves preserving an appropriate intestinal barrier permeability and levels of intestinal lumen metabolites to ensure gut-liver axis functionality. An increase in intestinal barrier permeability induces metabolic endotoxemia that leads to steatohepatitis. Moreover, alterations in the absorption of various metabolites can affect liver metabolism and induce liver steatosis and fibrosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are a class of drugs developed for the treatment of type 2 diabetes mellitus. They are also commonly used to combat obesity and have been proven to be effective in reversing hepatic steatosis. The mechanisms reported to be involved in this effect include an improved regulation of glycemia, reduced lipid synthesis, β-oxidation of free fatty acids, and induction of autophagy in hepatic cells. Recently, multiple peptide receptor agonists have been introduced and are expected to increase the effectiveness of the treatment. A modulation of gut microbiota has also been observed with the use of these drugs that may contribute to the amelioration of MAFLD. This review presents the current understanding of the role of the gut-liver axis in the development of MAFLD and use of members of the GLP-1 RA family as pleiotropic agents in the treatment of MAFLD.
Collapse
Affiliation(s)
- Jakub Rochoń
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| | | | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
20
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
21
|
Guo Z, He K, Pang K, Yang D, Lyu C, Xu H, Wu D. Exploring Advanced Therapies for Primary Biliary Cholangitis: Insights from the Gut Microbiota-Bile Acid-Immunity Network. Int J Mol Sci 2024; 25:4321. [PMID: 38673905 PMCID: PMC11050225 DOI: 10.3390/ijms25084321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease characterized by immune-mediated injury to small bile ducts. Although PBC is an autoimmune disease, the effectiveness of conventional immunosuppressive therapy is disappointing. Nearly 40% of PBC patients do not respond to the first-line drug UDCA. Without appropriate intervention, PBC patients eventually progress to liver cirrhosis and even death. There is an urgent need to develop new therapies. The gut-liver axis emphasizes the interconnection between the gut and the liver, and evidence is increasing that gut microbiota and bile acids play an important role in the pathogenesis of cholestatic diseases. Dysbiosis of gut microbiota, imbalance of bile acids, and immune-mediated bile duct injury constitute the triad of pathophysiology in PBC. Autoimmune cholangitis has the potential to be improved through immune system modulation. Considering the failure of conventional immunotherapies and the involvement of gut microbiota and bile acids in the pathogenesis, targeting immune factors associated with them, such as bile acid receptors, microbial-derived molecules, and related specific immune cells, may offer breakthroughs. Understanding the gut microbiota-bile acid network and related immune dysfunctions in PBC provides a new perspective on therapeutic strategies. Therefore, we summarize the latest advances in research of gut microbiota and bile acids in PBC and, for the first time, explore the possibility of related immune factors as novel immunotherapy targets. This article discusses potential therapeutic approaches focusing on regulating gut microbiota, maintaining bile acid homeostasis, their interactions, and related immune factors.
Collapse
Affiliation(s)
- Ziqi Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Z.G.); (K.P.); (D.Y.)
| | - Kun He
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (K.H.); (C.L.)
| | - Ke Pang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Z.G.); (K.P.); (D.Y.)
| | - Daiyu Yang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Z.G.); (K.P.); (D.Y.)
| | - Chengzhen Lyu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (K.H.); (C.L.)
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (K.H.); (C.L.)
| |
Collapse
|
22
|
Ye D, He J, He X. The role of bile acid receptor TGR5 in regulating inflammatory signalling. Scand J Immunol 2024; 99:e13361. [PMID: 38307496 DOI: 10.1111/sji.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is a bile acid receptor, and its role in regulating metabolism after binding with bile acids has been established. Since the immune response depends on metabolism to provide biomolecules and energy to cope with challenging conditions, emerging evidence reveals the regulatory effects of TGR5 on the immune response. An in-depth understanding of the effect of TGR5 on immune regulation can help us disentangle the interaction of metabolism and immune response, accelerating the development of TGR5 as a therapeutic target. Herein, we reviewed more than 200 articles published in the last 20 years in PubMed, to discuss the roles of TGR5 in regulating inflammatory response, the molecular mechanism, as well as existing problems. Particularly, its anti-inflammation effect is emphasized.
Collapse
Affiliation(s)
- Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiayao He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Key Laboratory of Pediatric Hematology and Oncology Disease of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
23
|
Bernardi F, D’Amico F, Bencardino S, Faggiani I, Fanizza J, Zilli A, Parigi TL, Allocca M, Danese S, Furfaro F. Gut Microbiota Metabolites: Unveiling Their Role in Inflammatory Bowel Diseases and Fibrosis. Pharmaceuticals (Basel) 2024; 17:347. [PMID: 38543132 PMCID: PMC10975629 DOI: 10.3390/ph17030347] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2025] Open
Abstract
In recent years, there has been a growing focus on the intricate interplay between the gut microbiota and host health, specifically in the context of inflammatory bowel diseases (IBDs). The gut microbiota produces a diverse array of metabolites, influencing the host's immune response and tissue homeostasis. Noteworthy metabolites, such as short-chain fatty acids, bile acids, and indoles, exert significant effects on intestinal inflammation and fibrosis. This review integrates current research findings to clarify the mechanisms through which gut microbiota metabolites contribute to the progression of IBD and fibrosis, offering insights into potential therapeutic targets and strategies for managing these intricate gastrointestinal conditions. The unraveling of the complex relationship between gut microbiota metabolites and inflammatory processes holds promise for the development of targeted interventions that could lead to more effective and personalized treatment approaches for individuals affected by IBD and subsequent intestinal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy; (F.B.); (F.D.); (S.B.); (I.F.); (J.F.); (A.Z.); (T.L.P.); (M.A.); (S.D.)
| |
Collapse
|
24
|
Xu N, He Y, Zhang C, Zhang Y, Cheng S, Deng L, Zhong Y, Liao B, Wei Y, Feng J. TGR5 signalling in heart and brain injuries: focus on metabolic and ischaemic mechanisms. Neurobiol Dis 2024; 192:106428. [PMID: 38307367 DOI: 10.1016/j.nbd.2024.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
The heart and brain are the core organs of the circulation and central nervous system, respectively, and play an important role in maintaining normal physiological functions. Early neuronal and cardiac damage affects organ function. The relationship between the heart and brain is being continuously investigated. Evidence-based medicine has revealed the concept of the "heart- brain axis," which may provide new therapeutic strategies for certain diseases. Takeda protein-coupled receptor 5 (TGR5) is a metabolic regulator involved in energy homeostasis, bile acid homeostasis, and glucose and lipid metabolism. Inflammation is critical for the development and regeneration of the heart and brain during metabolic diseases. Herein, we discuss the role of TGR5 as a metabolic regulator of heart and brain development and injury to facilitate new therapeutic strategies for metabolic and ischemic diseases of the heart and brain.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yongqiang Zhang
- Department of Cardiology, Hejiang County People's Hospital, Luzhou, China
| | - Shengjie Cheng
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Li Deng
- Department of Rheumatology, The Afliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Yan Wei
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
25
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 PMCID: PMC11932151 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
26
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
27
|
Zhang M, Xiao B, Chen X, Ou B, Wang S. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14065. [PMID: 38037846 DOI: 10.1111/apha.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Biyang Xiao
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaoqi Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Bingming Ou
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
28
|
Biagioli M, Marchianò S, Di Giorgio C, Bordoni M, Urbani G, Bellini R, Massa C, Sami Ullah Khan R, Roselli R, Chiara Monti M, Morretta E, Giordano A, Vellecco V, Bucci M, Jilani Iqbal A, Saviano A, Ab Mansour A, Ricci P, Distrutti E, Zampella A, Cieri E, Cirino G, Fiorucci S. Activation of GPBAR1 attenuates vascular inflammation and atherosclerosis in a mouse model of NAFLD-related cardiovascular disease. Biochem Pharmacol 2023; 218:115900. [PMID: 37926268 DOI: 10.1016/j.bcp.2023.115900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
While patients with nonalcoholic fatty liver disease (NAFLD) are at increased risk to develop clinically meaningful cardiovascular diseases (CVD), there are no approved drug designed to target the liver and CVD component of NAFLD. GPBAR1, also known as TGR5, is a G protein coupled receptor for secondary bile acids. In this study we have investigated the effect of GPBAR1 activation by BAR501, a selective GPBAR1 agonist, in Apolipoprotein E deficient (ApoE-/-) mice fed a high fat diet and fructose (Western diet), a validated model of NAFLD-associated atherosclerosis. Using aortic samples from patients who underwent surgery for abdominal aneurism, and ex vivo experiments with endothelial cells and human macrophages, we were able to co-localize the expression of GPBAR1 in CD14+ and PECAM1+ cells. Similar findings were observed in the aortic plaques from ApoE-/- mice. Treating ApoE-/- mice with BAR501, 30 mg/kg for 14 weeks, attenuated the body weight gain while ameliorated the insulin sensitivity by increasing the plasma concentrations of GLP-1 and FGF15. Activation of GPBAR1 reduced the aorta thickness and severity of atherosclerotic lesions and decreased the amount of plaques macrophages. Treating ApoE-/- mice reshaped the aortic transcriptome promoting the expression of anti-inflammatory genes, including IL-10, as also confirmed by tSNE analysis of spleen-derived macrophages. Feeding ApoE-/- mice with BAR501 redirected the bile acid synthesis and the composition of the intestinal microbiota. In conclusion, GPBAR1 agonism attenuates systemic inflammation and improve metabolic profile in a genetic/dietetic model of atherosclerosis. BAR501 might be of utility in the treatment for NAFLD-related CVD.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Antonino Giordano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Anella Saviano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adel Ab Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Enrico Cieri
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
29
|
Manchester AC, Chow L, Wheat W, Dow S. Modulation of In Vitro Macrophage Responses via Primary and Secondary Bile Acids in Dogs. Animals (Basel) 2023; 13:3714. [PMID: 38067065 PMCID: PMC10705343 DOI: 10.3390/ani13233714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 04/07/2024] Open
Abstract
Bile acids (BA) are important metabolites secreted into the intestinal lumen and impacted by luminal microbes and dietary intake. Prior studies in humans and rodents have shown that BAs are immunologically active and that primary and secondary BAs have distinct immune properties. Therefore, the composition of the gut BA pool may influence GI inflammatory responses. The current study investigated the relative immune modulatory properties of primary (cholic acid, CA) and secondary BAs (lithocholic acid, LCA) by assessing their effects on canine macrophage cytokine secretion and BA receptor (TGR5) expression. In addition, RNA sequencing was used to further interrogate how CA and LCA differentially modulated macrophage responses to LPS (lipopolysaccharide). We found that exposure to either CA or LCA influenced LPS-induced cytokine production via macrophages similarly, with suppression of TNF-α secretion and enhancement of IL-10 secretion. Neither BA altered the expression of the BA receptor TGR5. Transcriptomic analysis revealed that CA activated inflammatory signaling pathways in macrophages involving type II interferon signaling and the aryl hydrocarbon receptor, whereas LCA activated pathways related to nitric oxide signaling and cell cycle regulation. Thus, we concluded that both primary and secondary BAs are active modulators of macrophage responses in dogs, with differential and shared effects evident with sequencing analysis.
Collapse
Affiliation(s)
- Alison C. Manchester
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA (S.D.)
| | - Lyndah Chow
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA (S.D.)
| | - William Wheat
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Steven Dow
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA (S.D.)
| |
Collapse
|
30
|
Xiang T, Deng Z, Yang C, Tan J, Dou C, Luo F, Chen Y. Bile acid metabolism regulatory network orchestrates bone homeostasis. Pharmacol Res 2023; 196:106943. [PMID: 37777075 DOI: 10.1016/j.phrs.2023.106943] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Bile acids (BAs), synthesized in the liver and modified by the gut microbiota, have been widely appreciated not only as simple lipid emulsifiers, but also as complex metabolic regulators and momentous signaling molecules, which play prominent roles in the complex interaction among several metabolic systems. Recent studies have drawn us eyes on the diverse physiological functions of BAs, to enlarge the knowledge about the "gut-bone" axis due to the participation about the gut microbiota-derived BAs to modulate bone homeostasis at physiological and pathological stations. In this review, we have summarized the metabolic processes of BAs and highlighted the crucial roles of BAs targeting bile acid-activated receptors, promoting the proliferation and differentiation of osteoblasts (OBs), inhibiting the activity of osteoclasts (OCs), as well as reducing articular cartilage degradation, thus facilitating bone repair. In addition, we have also focused on the bidirectional effects of BA signaling networks in coordinating the dynamic balance of bone matrix and demonstrated the promising effects of BAs on the development or treatment for pathological bone diseases. In a word, further clinical applications targeting BA metabolism or modulating gut metabolome and related derivatives may be developed as effective therapeutic strategies for bone destruction diseases.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
31
|
Stojanović NM, Randjelović PJ, Maslovarić A, Kostić M, Raičević V, Sakač M, Bjedov S. How do different bile acid derivatives affect rat macrophage function - Friends or foes? Chem Biol Interact 2023; 383:110688. [PMID: 37648052 DOI: 10.1016/j.cbi.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Due to an increased need for new immunomodulatory agents, many previously known molecules have been structurally modified in order to obtain new drugs, preserving at the same time some of the benevolent characteristics of the parent molecule. This study aimed to evaluate the immunomodulatory potential of a selected library of bile acid derivatives (BAD) using a broad spectrum of assays, evaluating rat peritoneal macrophages viability, cell membrane damage, lysosomal and adhesion function, and nitric oxide and cytokine production as a response to lipopolysaccharide stimulation. Also, in silico studies on two bile acid-activated receptors were conducted and the results were related to the observed in vitro effects. All tested BAD exerted significant toxicity in concentrations higher than 10 μM, which was determined based on mitochondria and cell membrane damage in a panel of assays. On the other hand, at lower concentrations, the tested BAD proved to be immunomodulatory since they affected lysosomal function, cell adhesion capacities and the ability to produce inflammatory cytokines in response to a stimulus. One of the compounds proved to exhibit significant toxicity toward macrophages, but also caused a concentration-dependent decrease in nitric oxide levels and was identified as a potential farnesoid X receptor agonist.
Collapse
Affiliation(s)
- Nikola M Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000, Niš, Serbia.
| | - Pavle J Randjelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000, Niš, Serbia
| | | | - Miloš Kostić
- Department of Immunology, Faculty of Medicine, University of Niš, 18000, Niš, Serbia
| | - Vidak Raičević
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Marija Sakač
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Srđan Bjedov
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| |
Collapse
|
32
|
Zou Y, Ghaderpour A, Munkhbileg B, Seo SU, Seong SY. Taurodeoxycholate ameliorates DSS-induced colitis in mice. Int Immunopharmacol 2023; 122:110628. [PMID: 37454634 DOI: 10.1016/j.intimp.2023.110628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is typically managed using medications such as 5-aminosalicylic acid (5-ASA), glucocorticoids, anti-TNFα Ab, or anti-IL-12/23 Ab. However, some patients do not respond well to these treatments or frequently experience relapses. Therefore, alternative therapeutic options are needed. Since the activation of the inflammasome is crucial to the pathogenesis of IBD, inhibiting the inflammasome may be beneficial for patients. MATERIALS AND METHODS We tested the efficacy of taurodeoxycholate (TDCA), which is a known G-protein coupled receptor 19 (GPCR19) agonist, in a mouse colitis model induced by dextran sodium sulfate (DSS). RESULTS In the mouse colitis model, TDCA prevented loss of body weight, shortening of the colon, production of pro-inflammatory cytokines, infiltration of pro-inflammatory cells, and mucosal ulceration in the colon. In vitro, TDCA inhibited the activation of NF-κB in bone marrow-derived macrophages (BMDMs) by activating the cAMP-PKA axis. TDCA downregulated the expression of purinergic receptor P2X7 (P2X7R) and enhanced the colocalization of P2X7R with GPCR19, and inhibited the Ca2+ mobilization of BMDMs when stimulated with ATP or BzATP, which plays a pivotal role in activating the NLRP3 inflammasome (N3I) via P2X7R. TDCA inhibited the oligomerization of NLRP3-ASC and downregulated the expression of NLRP3 and ASC, as well as suppressed the maturation of pro-caspase-1 and pro-IL-1β. TDCA also increased the percentage of M2 macrophages while decreasing the number of M1 macrophages, Th1, Th2, and Th17 cells in the colon. CONCLUSION TDCA ameliorated DSS-induced colitis in mice, possibly by inhibiting both the priming phase (via the GPCR19-cAMP-PKA-NF-κB axis) and the activation phase (via the GPCR19-P2X7R-NLRP3-Caspase 1-IL-1β axis) of N3I signaling.
Collapse
Affiliation(s)
- Yunyun Zou
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Aziz Ghaderpour
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bolormaa Munkhbileg
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; Shaperon Inc., Seoul, Republic of Korea.
| |
Collapse
|
33
|
Zhu M, Dagah OMA, Silaa BB, Lu J. Thioredoxin/Glutaredoxin Systems and Gut Microbiota in NAFLD: Interplay, Mechanism, and Therapeutical Potential. Antioxidants (Basel) 2023; 12:1680. [PMID: 37759983 PMCID: PMC10525532 DOI: 10.3390/antiox12091680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common clinical disease, and its pathogenesis is closely linked to oxidative stress and gut microbiota dysbiosis. Recently accumulating evidence indicates that the thioredoxin and glutaredoxin systems, the two thiol-redox dependent antioxidant systems, are the key players in the NAFLD's development and progression. However, the effects of gut microbiota dysbiosis on the liver thiol-redox systems are not well clarified. This review explores the role and mechanisms of oxidative stress induced by bacteria in NAFLD while emphasizing the crucial interplay between gut microbiota dysbiosis and Trx mediated-redox regulation. The paper explores how dysbiosis affects the production of specific gut microbiota metabolites, such as trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), short-chain fatty acids (SCFAs), amino acids, bile acid, and alcohol. These metabolites, in turn, significantly impact liver inflammation, lipid metabolism, insulin resistance, and cellular damage through thiol-dependent redox signaling. It suggests that comprehensive approaches targeting both gut microbiota dysbiosis and the thiol-redox antioxidant system are essential for effectively preventing and treating NAFLD. Overall, comprehending the intricate relationship between gut microbiota dysbiosis and thiol-redox systems in NAFLD holds significant promise in enhancing patient outcomes and fostering the development of innovative therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (M.Z.); (O.M.A.D.); (B.B.S.)
| |
Collapse
|
34
|
Guo Q, Li Y, Dai X, Wang B, Zhang J, Cao H. Polysaccharides: The Potential Prebiotics for Metabolic Associated Fatty Liver Disease (MAFLD). Nutrients 2023; 15:3722. [PMID: 37686754 PMCID: PMC10489936 DOI: 10.3390/nu15173722] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Metabolic (dysfunction) associated fatty liver disease (MAFLD) is recognized as the most prevalent chronic liver disease globally. However, its pathogenesis remains incompletely understood. Recent advancements in the gut-liver axis offer novel insights into the development of MAFLD. Polysaccharides, primarily derived from fungal and algal sources, abundantly exist in the human diet and exert beneficial effects on glycometabolism, lipid metabolism, inflammation, immune modulation, oxidative stress, and the release of MAFLD. Numerous studies have demonstrated that these bioactivities of polysaccharides are associated with their prebiotic properties, including the ability to modulate the gut microbiome profile, maintain gut barrier integrity, regulate metabolites produced by gut microbiota such as lipopolysaccharide (LPS), short-chain fatty acids (SCFAs), and bile acids (BAs), and contribute to intestinal homeostasis. This narrative review aims to present a comprehensive summary of the current understanding of the protective effects of polysaccharides on MAFLD through their interactions with the gut microbiota and its metabolites. Specifically, we highlight the potential molecular mechanisms underlying the prebiotic effects of polysaccharides, which may give new avenues for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Qin Guo
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Yun Li
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xin Dai
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Bangmao Wang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Jie Zhang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| |
Collapse
|
35
|
Yao Q, Chen W, Yu Y, Gao F, Zhou J, Wu J, Pan Q, Yang J, Zhou L, Yu J, Cao H, Li L. Human Placental Mesenchymal Stem Cells Relieve Primary Sclerosing Cholangitis via Upregulation of TGR5 in Mdr2 -/- Mice and Human Intrahepatic Cholangiocyte Organoid Models. RESEARCH (WASHINGTON, D.C.) 2023; 6:0207. [PMID: 37600495 PMCID: PMC10433880 DOI: 10.34133/research.0207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a biliary disease accompanied by chronic inflammation of the liver and biliary stricture. Mesenchymal stem cells (MSCs) are used to treat liver diseases because of their immune regulation and regeneration-promoting functions. This study was performed to explore the therapeutic potential of human placental MSCs (hP-MSCs) in PSC through the Takeda G protein-coupled receptor 5 (TGR5) receptor pathway. Liver tissues were collected from patients with PSC and healthy donors (n = 4) for RNA sequencing and intrahepatic cholangiocyte organoid construction. hP-MSCs were injected via the tail vein into Mdr2-/-, bile duct ligation (BDL), and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse models or co-cultured with organoids to confirm their therapeutic effect on biliary cholangitis. Changes in bile acid metabolic profile were analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Compared with healthy controls, liver tissues and intrahepatic cholangiocyte organoids from PSC patients were characterized by inflammation and cholestasis, and marked downregulation of bile acid receptor TGR5 expression. hP-MSC treatment apparently reduced the inflammation, cholestasis, and fibrosis in Mdr2-/-, BDL, and DDC model mice. By activating the phosphatidylinositol 3 kinase/extracellular signal-regulated protein kinase pathway, hP-MSC treatment promoted the proliferation of cholangiocytes, and affected the transcription of downstream nuclear factor κB through regulation of the binding of TGR5 and Pellino3, thereby affecting the cholangiocyte inflammatory phenotype.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Lingling Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
36
|
Oteng AB, Liu L. GPCR-mediated effects of fatty acids and bile acids on glucose homeostasis. Front Endocrinol (Lausanne) 2023; 14:1206063. [PMID: 37484954 PMCID: PMC10360933 DOI: 10.3389/fendo.2023.1206063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Fatty acids and glucose are key biomolecules that share several commonalities including serving as energy substrates and as signaling molecules. Fatty acids can be synthesized endogenously from intermediates of glucose catabolism via de-novo lipogenesis. Bile acids are synthesized endogenously in the liver from the biologically important lipid molecule, cholesterol. Evidence abounds that fatty acids and bile acids play direct and indirect roles in systemic glucose homeostasis. The tight control of plasma glucose levels during postprandial and fasted states is principally mediated by two pancreatic hormones, insulin and glucagon. Here, we summarize experimental studies on the endocrine effects of fatty acids and bile acids, with emphasis on their ability to regulate the release of key hormones that regulate glucose metabolism. We categorize the heterogenous family of fatty acids into short chain fatty acids (SCFAs), unsaturated, and saturated fatty acids, and highlight that along with bile acids, these biomolecules regulate glucose homeostasis by serving as endogenous ligands for specific G-protein coupled receptors (GPCRs). Activation of these GPCRs affects the release of incretin hormones by enteroendocrine cells and/or the secretion of insulin, glucagon, and somatostatin by pancreatic islets, all of which regulate systemic glucose homeostasis. We deduce that signaling induced by fatty acids and bile acids is necessary to maintain euglycemia to prevent metabolic diseases such as type-2 diabetes and related metabolic disorders.
Collapse
|
37
|
Yang C, Yang L, Yang Y, Wan M, Xu D, Pan D, Sun G. Effects of flaxseed powder in improving non-alcoholic fatty liver by regulating gut microbiota-bile acids metabolic pathway through FXR/TGR5 mediating. Biomed Pharmacother 2023; 163:114864. [PMID: 37167728 DOI: 10.1016/j.biopha.2023.114864] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is gradually becoming one of the most common and health-endangering diseases. Flaxseed powder (FLA) is rich in α-linolenic acid, dietary fiber, lignans, and other active ingredients, which have lipid-lowering and anti-inflammatory effects. Here, we investigated whether the FLA improves host metabolism by gut bacteria modulation and further bile acid modulation in mice fed a high-fat diet. At the end of the experiment, we found that FLA can significantly reduce the body weight, body fat content, and serum TG, LDL-C, and TNF-α levels of mice, and improve liver steatosis. FLA intervention has a significant effect on preventing and regulating the gut flora disturbance caused by HFD. FLA intervention affects bile acid metabolism in the intestine and causes significant changes in functional bile acids, which can play a lipid-lowering and anti-inflammatory role by activating the intestinal Fxr- Fgfr4-Cyp7a1 and Tgr5-Tlr4-Tnfα pathways.
Collapse
Affiliation(s)
- Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Min Wan
- Rongxiang Community Health Service Center, Wuxi 214000, China
| | - Dengfeng Xu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
38
|
Alharthi J, Pan Z, Gloss BS, McLeod D, Weltman M, George J, Eslam M. Loss of metabolic adaptation in lean MAFLD is driven by endotoxemia leading to epigenetic reprogramming. Metabolism 2023; 144:155583. [PMID: 37146900 DOI: 10.1016/j.metabol.2023.155583] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Lean patients with MAFLD have an initial adaptive metabolic response characterised by increased serum bile acids and Farnesoid X Receptor (FXR) activity. How this adaptive response wanes resulting in an equal or perhaps worse long-term adverse outcome compared to patients with obese MAFLD is not known. We show that patients with lean MAFLD have endotoxemia while their macrophages demonstrate excess production of inflammatory cytokines in response to activation by Toll-like receptor (TLR) ligands when compared to healthy subjects. Alterations of the lean MAFLD macrophage epigenome drives this response and suppresses bile acids signalling to drive inflammation. Our data suggests that selectively restoring bile acids signalling might restore adaptive metabolic responses in patients with MAFLD who are lean.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia; Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Duncan McLeod
- Department of Anatomical Pathology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Sydney, Australia
| | - Martin Weltman
- Department of Gastroenterology and Hepatology, Nepean Hospital, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
39
|
Zeng J, Fan J, Zhou H. Bile acid-mediated signaling in cholestatic liver diseases. Cell Biosci 2023; 13:77. [PMID: 37120573 PMCID: PMC10149012 DOI: 10.1186/s13578-023-01035-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
Chronic cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), are associated with bile stasis and gradually progress to fibrosis, cirrhosis, and liver failure, which requires liver transplantation. Although ursodeoxycholic acid is effective in slowing the disease progression of PBC, it has limited efficacy in PSC patients. It is challenging to develop effective therapeutic agents due to the limited understanding of disease pathogenesis. During the last decade, numerous studies have demonstrated that disruption of bile acid (BA) metabolism and intrahepatic circulation promotes the progression of cholestatic liver diseases. BAs not only play an essential role in nutrition absorption as detergents but also play an important role in regulating hepatic metabolism and modulating immune responses as key signaling molecules. Several excellent papers have recently reviewed the role of BAs in metabolic liver diseases. This review focuses on BA-mediated signaling in cholestatic liver disease.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA.
| |
Collapse
|
40
|
Liu AN, Xu CF, Liu YR, Sun DQ, Jiang L, Tang LJ, Zhu PW, Chen SD, Liu WY, Wang XD, Targher G, Byrne CD, Wong VWS, Fu J, Su MM, Loomba R, Zheng MH, Ni Y. Secondary bile acids improve risk prediction for non-invasive identification of mild liver fibrosis in nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2023; 57:872-885. [PMID: 36670060 PMCID: PMC10792530 DOI: 10.1111/apt.17362] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dysregulated bile acid (BA) metabolism has been linked to steatosis, inflammation, and fibrosis in nonalcoholic fatty liver disease (NAFLD). AIM To determine whether circulating BA levels accurately stage liver fibrosis in NAFLD. METHODS We recruited 550 Chinese adults with biopsy-proven NAFLD and varying levels of fibrosis. Ultra-performance liquid chromatography coupled with tandem mass spectrometry was performed to quantify 38 serum BAs. RESULTS Compared to those without fibrosis, patients with mild fibrosis (stage F1) had significantly higher levels of secondary BAs, and increased diastolic blood pressure (DBP), alanine aminotransferase (ALT), body mass index, and waist circumstance (WC). The combination of serum BAs with WC, DBP, ALT, or Homeostatic Model Assessment for Insulin Resistance performed well in identifying mild fibrosis, in men and women, and in those with/without obesity, with AUROCs 0.80, 0.88, 0.75 and 0.78 in the training set (n = 385), and 0.69, 0.80, 0.61 and 0.69 in the testing set (n = 165), respectively. In comparison, the combination of BAs and clinical/biochemical biomarkers performed less well in identifying significant fibrosis (F2-4). In women and in non-obese subjects, AUROCs were 0.75 and 0.71 in the training set, 0.65 and 0.66 in the validation set, respectively. However, these AUROCs were higher than those observed for the fibrosis-4 index, NAFLD fibrosis score, and Hepamet fibrosis score. CONCLUSIONS Secondary BA levels were significantly increased in NAFLD, especially in those with mild fibrosis. The combination of serum BAs and clinical/biochemical biomarkers for identifying mild fibrosis merits further assessment.
Collapse
Affiliation(s)
- A-Na Liu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cui-Fang Xu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya-Ru Liu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan-Qin Sun
- Department of Nephrology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Ling Jiang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Dong Wang
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton & University of Southampton, Southampton General Hospital, Southampton, UK
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Junfen Fu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming-Ming Su
- Clinical Mass Spectrometry Innovation Center, Shanghai Keyi Biotechnology Co., Ltd., Shanghai, China
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Yan Ni
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Kasai K, Igarashi N, Tada Y, Kani K, Takano S, Yanagibashi T, Usui-Kawanishi F, Fujisaka S, Watanabe S, Ichimura-Shimizu M, Takatsu K, Tobe K, Tsuneyama K, Furusawa Y, Nagai Y. Impact of Vancomycin Treatment and Gut Microbiota on Bile Acid Metabolism and the Development of Non-Alcoholic Steatohepatitis in Mice. Int J Mol Sci 2023; 24:ijms24044050. [PMID: 36835461 PMCID: PMC9967260 DOI: 10.3390/ijms24044050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The potential roles of the gut microbiota in the pathogenesis of non-alcoholic fatty liver disease, including non-alcoholic steatohepatitis (NASH), have attracted increased interest. We have investigated the links between gut microbiota and NASH development in Tsumura-Suzuki non-obese mice fed a high-fat/cholesterol/cholate-based (iHFC) diet that exhibit advanced liver fibrosis using antibiotic treatments. The administration of vancomycin, which targets Gram-positive organisms, exacerbated the progression of liver damage, steatohepatitis, and fibrosis in iHFC-fed mice, but not in mice fed a normal diet. F4/80+-recruited macrophages were more abundant in the liver of vancomycin-treated iHFC-fed mice. The infiltration of CD11c+-recruited macrophages into the liver, forming hepatic crown-like structures, was enhanced by vancomycin treatment. The co-localization of this macrophage subset with collagen was greatly augmented in the liver of vancomycin-treated iHFC-fed mice. These changes were rarely seen with the administration of metronidazole, which targets anaerobic organisms, in iHFC-fed mice. Finally, the vancomycin treatment dramatically modulated the level and composition of bile acid in iHFC-fed mice. Thus, our data demonstrate that changes in inflammation and fibrosis in the liver by the iHFC diet can be modified by antibiotic-induced changes in gut microbiota and shed light on their roles in the pathogenesis of advanced liver fibrosis.
Collapse
Affiliation(s)
- Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Japan
| | - Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Japan
| | - Yuki Tada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Japan
| | - Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Japan
| | - Tsutomu Yanagibashi
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Imizu 939-0363, Japan
| | - Fumitake Usui-Kawanishi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shiro Watanabe
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Imizu 939-0363, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Japan
- Correspondence: ; Tel.: +81-766-56-7500
| |
Collapse
|
42
|
Fiorillo B, Roselli R, Finamore C, Biagioli M, di Giorgio C, Bordoni M, Conflitti P, Marchianò S, Bellini R, Rapacciuolo P, Cassiano C, Limongelli V, Sepe V, Catalanotti B, Fiorucci S, Zampella A. Discovery of a Novel Class of Dual GPBAR1 Agonists-RORγt Inverse Agonists for the Treatment of IL-17-Mediated Disorders. ACS OMEGA 2023; 8:5983-5994. [PMID: 36816679 PMCID: PMC9933477 DOI: 10.1021/acsomega.2c07907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Retinoic acid receptor-related orphan receptor γ-t (RORγt) and GPBAR1, a transmembrane G-protein-coupled receptor for bile acids, are attractive drug targets to develop clinically relevant small modulators as potent therapeutics for autoimmune diseases. Herein, we designed, synthesized, and evaluated several new bile acid-derived ligands with potent dual activity. Furthermore, we performed molecular docking and MD calculations of the best dual modulators in the two targets to identify the binding modes as well as to better understand the molecular basis of the inverse agonism of RORγt by bile acid derivatives. Among these compounds, 7 was identified as a GPBAR1 agonist (EC50 5.9 μM) and RORγt inverse agonist (IC50 0.107 μM), with excellent pharmacokinetic properties. Finally, the most promising ligand displayed robust anti-inflammatory activity in vitro and in vivo in a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis.
Collapse
Affiliation(s)
- Bianca Fiorillo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Cristina di Giorgio
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | | | - Paolo Conflitti
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera italiana (USI), via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera italiana (USI), via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| |
Collapse
|
43
|
Yoon JH, Do JS, Velankanni P, Lee CG, Kwon HK. Gut Microbial Metabolites on Host Immune Responses in Health and Disease. Immune Netw 2023; 23:e6. [PMID: 36911800 PMCID: PMC9995988 DOI: 10.4110/in.2023.23.e6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Intestinal microorganisms interact with various immune cells and are involved in gut homeostasis and immune regulation. Although many studies have discussed the roles of the microorganisms themselves, interest in the effector function of their metabolites is increasing. The metabolic processes of these molecules provide important clues to the existence and function of gut microbes. The interrelationship between metabolites and T lymphocytes in particular plays a significant role in adaptive immune functions. Our current review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and polyamines. We collated the findings of several studies on the transformation and production of these metabolites by gut microbes and explained their immunological roles. Specifically, we summarized the reports on changes in mucosal immune homeostasis represented by the Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was also analyzed through latest studies. Thus, this review highlights microbial metabolites as the hidden treasure having potential diagnostic markers and therapeutic targets through a comprehensive understanding of the gut-immune interaction.
Collapse
Affiliation(s)
- Jong-Hwi Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jun-Soo Do
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Priyanka Velankanni
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul 02792, Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
44
|
Michaels M, Madsen KL. Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention in inflammatory bowel disease. Mucosal Immunol 2023; 16:72-85. [PMID: 36642380 DOI: 10.1016/j.mucimm.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
The concept of immunometabolism has emerged recently whereby the repolarizing of inflammatory immune cells toward anti-inflammatory profiles by manipulating cellular metabolism represents a new potential therapeutic approach to controlling inflammation. Metabolic pathways in immune cells are tightly regulated to maintain immune homeostasis and appropriate functional specificity. Because effector and regulatory immune cell populations have different metabolic requirements, this allows for cellular selectivity when regulating immune responses based on metabolic pathways. Gut microbes have a major role in modulating immune cell metabolic profiles and functional responses through extensive interactions involving metabolic products and crosstalk between gut microbes, intestinal epithelial cells, and mucosal immune cells. Developing strategies to target metabolic pathways in mucosal immune cells through the modulation of gut microbial metabolism has the potential for new therapeutic approaches for human autoimmune and inflammatory diseases, such as inflammatory bowel disease. This review will give an overview of the relationship between metabolic reprogramming and immune responses, how microbial metabolites influence these interactions, and how these pathways could be harnessed in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Margret Michaels
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada
| | - Karen L Madsen
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada; IMPACTT: Integrated Microbiome Platforms for Advancing Causation Testing & Translation, Edmonton, Alberta, Canada.
| |
Collapse
|
45
|
Bile acids and their receptors in regulation of gut health and diseases. Prog Lipid Res 2023; 89:101210. [PMID: 36577494 DOI: 10.1016/j.plipres.2022.101210] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
It is well established that bile acids play important roles in lipid metabolism. In recent decades, bile acids have also been shown to function as signaling molecules via interacting with various receptors. Bile acids circulate continuously through the enterohepatic circulation and go through microbial transformation by gut microbes, and thus bile acids metabolism has profound effects on the liver and intestinal tissues as well as the gut microbiota. Farnesoid X receptor and G protein-coupled bile acid receptor 1 are two pivotal bile acid receptors that highly expressed in the intestinal tissues, and they have emerged as pivotal regulators in bile acids metabolism, innate immunity and inflammatory responses. There is considerable interest in manipulating the metabolism of bile acids and the expression of bile acid receptors as this may be a promising strategy to regulate intestinal health and disease. This review aims to summarize the roles of bile acids and their receptors in regulation of gut health and diseases.
Collapse
|
46
|
Ren ZL, Li CX, Ma CY, Chen D, Chen JH, Xu WX, Chen CA, Cheng FF, Wang XQ. Linking Nonalcoholic Fatty Liver Disease and Brain Disease: Focusing on Bile Acid Signaling. Int J Mol Sci 2022; 23:13045. [PMID: 36361829 PMCID: PMC9654021 DOI: 10.3390/ijms232113045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/01/2023] Open
Abstract
A metabolic illness known as non-alcoholic fatty liver disease (NAFLD), affects more than one-quarter of the world's population. Bile acids (BAs), as detergents involved in lipid digestion, show an abnormal metabolism in patients with NAFLD. However, BAs can affect other organs as well, such as the brain, where it has a neuroprotective effect. According to a series of studies, brain disorders may be extrahepatic manifestations of NAFLD, such as depression, changes to the cerebrovascular system, and worsening cognitive ability. Consequently, we propose that NAFLD affects the development of brain disease, through the bile acid signaling pathway. Through direct or indirect channels, BAs can send messages to the brain. Some BAs may operate directly on the central Farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) by overcoming the blood-brain barrier (BBB). Furthermore, glucagon-like peptide-1 (GLP-1) and the fibroblast growth factor (FGF) 19 are released from the intestine FXR and GPBAR1 receptors, upon activation, both of which send signals to the brain. Inflammatory, systemic metabolic disorders in the liver and brain are regulated by the bile acid-activated receptors FXR and GPBAR1, which are potential therapeutic targets. From a bile acid viewpoint, we examine the bile acid signaling changes in NAFLD and brain disease. We also recommend the development of dual GPBAR1/FXR ligands to reduce side effects and manage NAFLD and brain disease efficiently.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Yang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Dan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Hui Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Wen-Xiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
47
|
Chrysavgis L, Giannakodimos I, Chatzigeorgiou A, Tziomalos K, Papatheodoridis G, Cholongitas E. The role of fibroblast growth factor 19 in the pathogenesis of nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2022; 16:835-849. [PMID: 36124827 DOI: 10.1080/17474124.2022.2127408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) has emerged as the predominant cause of chronic liver injury worldwide. Bile acids and their receptors are profoundly implicated in the pathogenesis of NAFLD and its progression to nonalcoholic steatohepatitis and cirrhosis. AREAS COVERED We conducted extensive literature search using PubMed database, and we summarized the relevant literature. We provided an overview of the fibroblast growth factor 19 (FGF-19)-farnesoid X receptor (FXR) axis and summarized the latest findings derived from animal and human studies concerning the impact of FGF-19 on NAFLD. EXPERT OPINION FGF-19, a nutritionally regulated endocrine post-prandial hormone, governs bile acid metabolism, lipid oxidation, lipogenesis, and energy homeostasis. As no approved medication for NAFLD exists, FGF-19 seems to be a propitious therapeutic opportunity for NAFLD, since its administration was associated with ameliorated results in hepatic steatosis, liver inflammation and fibrosis. Furthermore, promising results have been derived from clinical trials concerning the beneficial efficacy of FGF-19 on histological findings and laboratory parameters of NAFLD. However, we should bear in mind the pleiotropic effects of FGF-19 on various metabolically active tissues along with its potential tumorigenic reservoir. Further clinical research is required to determine the clinical application of FGF-19-based therapies on NAFLD.
Collapse
Affiliation(s)
- Lampros Chrysavgis
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias Giannakodimos
- First Department of Internal Medicine, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
48
|
Li Y, Wang K, Ding J, Sun S, Ni Z, Yu C. Influence of the gut microbiota on endometriosis: Potential role of chenodeoxycholic acid and its derivatives. Front Pharmacol 2022; 13:954684. [PMID: 36071850 PMCID: PMC9442031 DOI: 10.3389/fphar.2022.954684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
The gut microbiota (GM) has received extensive attention in recent years, and its key role in the establishment and maintenance of health and in the development of diseases has been confirmed. A strong correlation between the GM and the progression of endometriosis (EMS) has been observed in emerging research. Alterations in the composition and function of the GM have been described in many studies on EMS. In contrast, the GM in the environment of EMS, especially the GM metabolites, such as bile acids and short-chain fatty acids that are related to the pathogenesis of EMS, can promote disease progression. Chenodeoxycholic acid (CDCA), as one of the primary bile acids produced in the liver, is metabolized by various enzymes derived from the GM and is critically important in maintaining intestinal homeostasis and regulating lipid and carbohydrate metabolism and innate immunity. Given that the complexity of CDCA as a signalling molecule and the interaction between the GM and EMS have not been clarified, the role of the CDCA and GM in EMS should be understood from a novel perspective. However, few articles on the relationship between CDCA and EMS have been reviewed. Therefore, we review the available and possible potential links between CDCA, the GM and EMS and put forward the hypothesis that CDCA and its derivative obeticholic acid can improve the symptoms of EMS through the GM.
Collapse
Affiliation(s)
- Yangshuo Li
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Kaili Wang
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jie Ding
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shuai Sun
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhexin Ni
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Zhexin Ni, ; Chaoqin Yu,
| | - Chaoqin Yu
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Zhexin Ni, ; Chaoqin Yu,
| |
Collapse
|
49
|
Dong Y, Xu T, Xiao G, Hu Z, Chen J. Opportunities and challenges for synthetic biology in the therapy of inflammatory bowel disease. Front Bioeng Biotechnol 2022; 10:909591. [PMID: 36032720 PMCID: PMC9399643 DOI: 10.3389/fbioe.2022.909591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex, chronic intestinal inflammatory disorder that primarily includes Crohn’s disease (CD) and ulcerative colitis (UC). Although traditional antibiotics and immunosuppressants are known as the most effective and commonly used treatments, some limitations may be expected, such as limited efficacy in a small number of patients and gut flora disruption. A great many research studies have been done with respect to the etiology of IBD, while the composition of the gut microbiota is suggested as one of the most influential factors. Along with the development of synthetic biology and the continuing clarification of IBD etiology, broader prospects for novel approaches to IBD therapy could be obtained. This study presents an overview of the currently existing treatment options and possible therapeutic targets at the preclinical stage with respect to microbial synthesis technology in biological therapy. This study is highly correlated to the following topics: microbiota-derived metabolites, microRNAs, cell therapy, calreticulin, live biotherapeutic products (LBP), fecal microbiota transplantation (FMT), bacteriophages, engineered bacteria, and their functional secreted synthetic products for IBD medical implementation. Considering microorganisms as the main therapeutic component, as a result, the related clinical trial stability, effectiveness, and safety analysis may be the major challenges for upcoming research. This article strives to provide pharmaceutical researchers and developers with the most up-to-date information for adjuvant medicinal therapies based on synthetic biology.
Collapse
Affiliation(s)
- Yumeng Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Suzhou U-Synbio Co., Ltd., Suzhou, China
| | - Tiangang Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guozheng Xiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ziyan Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Jingyu Chen,
| |
Collapse
|
50
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|